
DAML+OIL: a Reason-able Web
Ontology Language

Ian Horrocks

Department of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Abstract. Ontologies are set to play a key role in the “Semantic Web”,
extending syntactic interoperability to semantic interoperability by pro-
viding a source of shared and precisely defined terms. DAML+OIL is an
ontology language specifically designed for use on the Web; it exploits
existing Web standards (XML and RDF), adding the familiar ontological
primitives of object oriented and frame based systems, and the formal
rigor of a very expressive description logic. The logical basis of the lan-
guage means that reasoning services can be provided, both to support
ontology design and to make DAML+OIL described Web resources more
accessible to automated processes.

1 Introduction

The World Wide Web has been made possible through a set of widely estab-
lished standards which guarantee interoperability at various levels: the TCP/IP
protocol has ensured that nobody has to worry about transporting bits over the
wire anymore; similarly, HTTP and HTML have provided a standard way of
retrieving and presenting hyperlinked text documents. Applications were able
to use this common infrastructure and this has led to the WWW as we know it
now.

The current Web can be characterised as the second generation Web: the
first generation Web was characterised by handwritten HTML pages; the second
generation made the step to machine generated and often active HTML pages.
These generations of the Web were meant for direct human processing (read-
ing, browsing, form-filling, etc.). The third generation Web aims to make Web
resources more readily accessible to automated processes by adding meta-data
annotations that describe their content—this coincides with the vision that Tim
Berners-Lee calls the Semantic Web in his recent book “Weaving the Web” [5].

1.1 Ontologies

If meta-data annotations are to make resources more accessible to automated
agents, it is essential that their meaning can be understood by such agents.
Ontologies will play a pivotal role here by providing a source of shared and



precisely defined terms that can be used in such meta-data. An ontology typically
consists of a hierarchical description of important concepts in a domain, along
with descriptions of the properties of each concept. The degree of formality
employed in capturing these descriptions can be quite variable, ranging from
natural language to logical formalisms, but increased formality and regularity
clearly facilitates machine understanding.

Examples of the use of ontologies could include:

– in e-commerce sites [25], where ontologies can facilitate machine-based com-
munication between buyer and seller, enable vertical integration of markets
(see, e.g., http://www.verticalnet.com/), and allow descriptions to be reused
in different marketplaces;

– in search engines [26], where ontologies can help searching to go beyond
the current keyword-based approach, and allow pages to be found that con-
tain syntactically different, but semantically similar words/phrases (see, e.g.,
http://www.hotbot.com/);

– in Web services [28], where ontologies can provide semantically richer service
descriptions that can be more flexibly interpreted by intelligent agents.

2 Ontology Languages

The recognition of the key role that ontologies are likely to play in the future
of the Web has led to the extension of Web markup languages in order to fa-
cilitate content description and the development of Web based ontologies, e.g.,
XML Schema,1 RDF2 (Resource Description Framework), and RDF Schema [9].
RDF Schema (RDFS) in particular is recognisable as an ontology/knowledge
representation language: it talks about classes and properties (binary relations),
range and domain constraints (on properties), and subclass and subproperty
(subsumption) relations.

RDFS is, however, a very primitive language (the above is an almost com-
plete description of its functionality), and more expressive power would clearly
be necessary/desirable in order to describe resources in sufficient detail. More-
over, such descriptions should be amenable to automated reasoning if they are
to be used effectively by automated processes, e.g., to determine the semantic
relationship between syntactically different terms.

2.1 DAML and OIL

In 1999 the DARPA Agent Markup Language (DAML) program3 was initi-
ated with the aim of providing the foundations of a next generation “semantic”
Web [17]. As a first step, it was decided that the adoption of a common ontology
language would facilitate semantic interoperability across the various projects
1 http://www.w3.org/XML/Schema/
2 http://www.w3c.org/RDF/
3 http://www.daml.org/



making up the program. RDFS was seen as a good starting point, and was al-
ready a proposed World Wide Web Consortium (W3C) standard, but it was not
expressive enough to meet DAML’s requirements. A new language called DAML-
ONT was therefore developed that extended RDF with language constructors
from object-oriented and frame-based knowledge representation languages. Like
RDFS, DAML-ONT suffered from a rather weak semantic specification, and it
was soon realised that this could lead to disagreements, both amongst humans
and machines, as to the precise meaning of terms in a DAML-ONT ontology.

At around the same time, a group of (largely European) researchers with
aims similar to those of the DAML researchers (i.e., to provide a foundation for
the next generation Web) had designed another Web oriented ontology language
called OIL (the Ontology Inference Layer) [11, 12]. Like DAML-ONT, OIL had
an RDFS based syntax (as well as an alternative XML syntax) and a set of
language constructors based on frame-based languages. The developers of OIL,
however, placed a stronger emphasis on formal rigor, and the language was ex-
plicitly designed so that its semantics could be specified via a mapping to a very
expressive description logic, SHIQ [22].

It became obvious to both groups that their objectives could best be served
by combining their efforts, the result being the merging of DAML-ONT and OIL
to produce DAML+OIL. The merged language has a formal (model theoretic)
semantics that provides machine and human understandability (as well as an
axiomatization [13]), and a reconciliation of the language constructors from the
two languages.

Until recently, the development of DAML+OIL has been undertaken by a
committee largely made up of members of the two language design teams (and
rather grandly titled the Joint EU/US Committee on Agent Markup Languages).
More recently, DAML+OIL has been submitted to W3C4 and is to form the basis
for the W3C’s Web ontology language which the Web-Ontology Working Group
has been mandated to deliver.5

2.2 DAML+OIL

DAML+OIL is an ontology language, and as such is designed to describe the
structure of a domain. DAML+OIL takes an object oriented approach, with the
structure of the domain being described in terms of classes and properties. An
ontology consists of a set of axioms that assert, e.g., subsumption relationships
between classes or properties. Asserting that resources6 (pairs of resources) are
instances of DAML+OIL classes (properties) is left to RDF, a task for which it

4 http://www.w3.org/Submission/2001/12/
5 http://www.w3c.org/2001/sw/WebOnt/
6 Everything describable by RDF is called a resource. A resource could be Web accessi-

ble, e.g., a Web page or part of a Web page, but it could also be an object that is not
directly accessible via the Web, e.g., a person. Resources are named by URIs plus
optional anchor ids. See http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
for more details.



is well suited. When a resource r is an instance of a class C we say that r has
type C.

From a formal point of view, DAML+OIL can be seen to be equivalent to
a very expressive description logic, with a DAML+OIL ontology corresponding
to a DL terminology (Tbox). As in a DL, DAML+OIL classes can be names
(URIs) or expressions, and a variety of constructors are provided for building
class expressions. The expressive power of the language is determined by the class
(and property) constructors supported, and by the kinds of axiom supported.

Constructor DL Syntax Example

intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >nP.C >2hasChild.Lawyer
maxCardinalityQ 6nP.C 61hasChild.Male
cardinalityQ =nP.C =1 hasParent.Female

Fig. 1. DAML+OIL class constructors

Figure 1 summarises the constructors supported by DAML+OIL. The stan-
dard DL syntax is used for compactness as the RDF syntax is rather verbose.
In the RDF syntax, for example, Human uMale would be written as

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Human"/>
<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>
</daml:Class>

while >2hasChild.Lawyer would be written as

<daml:Restriction daml:minCardinalityQ="2">
<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClassQ rdf:resource="#Lawyer"/>

</daml:Restriction>

The meaning of the first three constructors (intersectionOf, unionOf and com-
plementOf) is relatively self-explanatory: they are just the standard boolean op-
erators that allow classes to be formed from the intersection, union and negation
of other classes. The oneOf constructor allows classes to be defined existentially,
i.e., by enumerating their members.



The toClass and hasClass constructors correspond to slot constraints in a
frame-based language. The class ∀P.C is the class all of whose instances are
related via the property P only to resources of type C, while the class ∃P.C is
the class all of whose instances are related via the property P to at least one
resource of type C. The hasValue constructor is just shorthand for a combination
of hasValue and oneOf.

The minCardinalityQ, maxCardinalityQ and cardinalityQ constructors (known
in DLs as qualified number restrictions) are generalisations of the hasClass and
hasValue constructors. The class >nP.C (6nP.C, =nP.C) is the class all of
whose instances are related via the property P to at least (at most, exactly) n
different resources of type C. The emphasis on different is because there is no
unique name assumption with respect to resource names (URIs): it is possible
that many URIs could name the same resource.

Note that arbitrarily complex nesting of constructors is possible. Moreover,
XML Schema datatypes (e.g., so called primitive datatypes such as strings, dec-
imal or float, as well as more complex derived datatypes such as integer sub-
ranges) can be used anywhere that a class name might appear.

The formal semantics of the class constructors is given by DAML+OIL’s
model-theoretic semantics7 or can be derived from the specification of a suitably
expressive DL (e.g., see [21]).

Axiom DL Syntax Example

subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1 ≡ P−2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty > v 61P > v 61hasMother
unambiguousProperty > v 61P− > v 61isMotherOf−

Fig. 2. DAML+OIL axioms

As already mentioned, besides the set of constructors supported, the other
aspect of a language that determines its expressive power is the kinds of ax-
iom supported. Figure 2 summarises the axioms supported by DAML+OIL.
These axioms make it possible to assert subsumption or equivalence with re-
spect to classes or properties, the disjointness of classes, the equivalence or non-
equivalence of individuals (resources), and various properties of properties.

7 http://www.w3.org/TR/daml+oil-model



A crucial feature of DAML+OIL is that subClassOf and sameClassAs axioms
can be applied to arbitrary class expressions. This provides greatly increased
expressive power with respect to standard frame-based languages where such
axioms are invariably restricted to the form where the left hand side is an atomic
name, there is only one such axiom per name, and there are no cycles (the class
on the right hand side of an axiom cannot refer, either directly or indirectly, to
the class name on the left hand side).

A consequence of this expressive power is that all of the class and individual
axioms, as well as the uniqueProperty and unambiguousProperty axioms, can
be reduced to subClassOf and sameClassAs axioms (as can be seen from the DL
syntax). In fact sameClassAs could also be reduced to subClassOf as a same-
ClassAs axiom C ≡ D is equivalent to a pair of subClassOf axioms, C v D and
D v C.

As we have seen, DAML+OIL allows properties of properties to be asserted.
It is possible to assert that a property is unique (i.e., functional) and unambigu-
ous (i.e., its inverse is functional). It is also possible to use inverse properties
and to assert that a property is transitive.

3 Reasoning Services

As we have seen, DAML+OIL is equivalent to a very expressive description logic.
More precisely, DAML+OIL is equivalent to the SHIQDL [22] with the addition
of existentially defined classes (i.e., the oneOf constructor) and datatypes (often
called concrete domains in DLs [1]). This equivalence allows DAML+OIL to
exploit the considerable existing body of description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [10];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [22, 21];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [19, 29, 16].

A important consideration in the design of DAML+OIL was that key in-
ference problems in the language, in particular class consistency/subsumption,8

should be decidable, as this facilitates the provision of reasoning services. More-
over, the correspondence with DLs facilitates the use of DL algorithms that
are known to be amenable to optimised implementation and to behave well in
realistic applications in spite of their high worst case complexity [20, 15].

Maintaining the decidability of the language requires certain constraints on
its expressive power that may not be acceptable to all applications. However, the
8 In propositionally closed languages like DAML+OIL, class consistency and sub-

sumption are mutually reducible. Moreover, in DAML+OIL the consistency of an
entire “knowledge base” (an ontology plus a set of class and property membership
assertions) can be reduced to class consistency.



designers of the language decided that reasoning would be important if the full
power of ontologies was to be realised, and that a powerful but still decidable
ontology language would be a good starting point.

Reasoning can be useful at many stages during the design, maintenance and
deployment of ontologies.

– Reasoning can be used to support ontology design and to improve the quality
of the resulting ontology. For example, class consistency and subsumption
reasoning can be used to check for logically inconsistent classes and (possibly
unexpected) implicit subsumption relationships [4]. This kind of support has
been shown to be particularly important with large ontologies, which are
often built and maintained over a long period by multiple authors. Other
reasoning tasks, such as “matching” [3] and/or computing least common
subsumers [2] could also be used to support “bottom up” ontology design,
i.e., the identification and description of relevant classes from sets of example
instances.

– Like information integration [8], ontology integration can also be supported
by reasoning. For example, integration can be performed using inter-ontology
assertions specifying relationships between classes and properties, with rea-
soning being used to compute the integrated hierarchy and to highlight any
problems/inconsistencies. Unlike some other integration techniques (e.g.,
name reconciliation [27]), this method has the advantage of being non-
intrusive with respect to the original ontologies.

– Reasoning with respect to deployed ontologies will enhance the power of
“intelligent agents”, allowing them to determine if a set of facts is consistent
w.r.t. an ontology, to identify individuals that are implicitly members of a
given class etc. A suitable service ontology could, for example, allow an agent
seeking secure services to identify a service requiring a userid and password
as a possible candidate.

4 Datatypes

DAML+OIL supports the full range of XML Schema datatypes. This is facil-
itated by maintaining a clean separation between instances of “object” classes
(defined using the ontology language) and instances of datatypes (defined using
the XML Schema type system). In particular, it is assumed that that the domain
of interpretation of object classes is disjoint from the domain of interpretation of
datatypes, so that an instance of an object class (e.g., the individual “Italy”) can
never have the same interpretation as a value of a datatype (e.g., the integer 5),
and that the set of object properties (which map individuals to individuals) is
disjoint from the set of datatype properties (which map individuals to datatype
values).

The disjointness of object and datatype domains was motivated by both
philosophical and pragmatic considerations:



– Datatypes are considered to be already sufficiently structured by the built-
in predicates, and it is, therefore, not appropriate to form new classes of
datatype values using the ontology language [18].

– The simplicity and compactness of the ontology language are not compro-
mised: even enumerating all the XML Schema datatypes would add greatly
to its complexity, while adding a logical theory for each datatype, even if it
were possible, would lead to a language of monumental proportions.

– The semantic integrity of the language is not compromised—defining theories
for all the XML Schema datatypes would be difficult or impossible without
extending the language in directions whose semantics may be difficult to
capture within the existing framework.

– The “implementability” of the language is not compromised—a hybrid rea-
soner can easily be implemented by combining a reasoner for the “object”
language with one capable of deciding satisfiability questions with respect
to conjunctions of (possibly negated) datatypes [21].

From a theoretical point of view, this design means that the ontology lan-
guage can specify constraints on data values, but as data values can never be
instances of object classes they cannot apply additional constraints to elements
of the object domain. This allows the type system to be extended without hav-
ing any impact on the ontology language, and vice versa. Similarly, the formal
properties of hybrid reasoners are determined by those of the two components;
in particular, the combined reasoner will be sound and complete if both compo-
nents are sound and complete.

From a practical point of view, DAML+OIL implementations can choose to
support some or all of the XML Schema datatypes. For supported data types,
they can either implement their own type checker/validater or rely on some
external component. The job of a type checker/validater is simply to take zero
or more data values and one or more datatypes, and determine if there exists
any data value that is equal to every one of the specified data values and is an
instance of every one of the specified data types.

5 Research Challenges for DAML+OIL

Class consistency/subsumption reasoning in DAML+OIL is know to be decid-
able (as it is contained in the C2 fragment of first order logic [14]), but many
challenges remain for implementors of “practical” reasoning systems, i.e., sys-
tems that perform well with the kinds of reasoning problem generated by realistic
applications.

5.1 Individuals

The OIL language was designed so that it could be mapped to the SHIQ DL,
thereby providing a implementation path for reasoning services. This mapping is
made possible by a very weak treatment of individuals occurring in existentially



defined classes, which are treated not as single elements but as the extensions of
corresponding primitive classes. This is a well known technique for avoiding the
reasoning problems that arise with existentially defined classes (such as classes
defined using DAML+OIL’s oneOf constructor) and is also used, e.g., in the
Classic knowledge representation system [6].

In contrast, DAML+OIL gives a standard semantics to such individuals, i.e.,
they are interpreted as single elements in the domain of discourse. This treatment
of individuals is very powerful, and justifies intuitive inferences that would not
be valid for OIL, e.g., that persons all of whose countries of residence are (oneOf)
Italy are kinds of person that have at most one country of residence:

Person u ∀residence.{Italy} v 61residence

Unfortunately, the combination of such individuals with inverse properties
is so powerful that it pushes the worst case complexity of the class consistency
problem from ExpTime (for SHIQ/OIL) to NExpTime. No “practical” deci-
sion procedure is currently known for this logic, and there is no implemented sys-
tem that can provide sound and complete reasoning for the whole DAML+OIL
language. In the absence of inverse properties, however, a tableaux algorithm
has been devised [21], and in the absence of individuals (in existentially defined
classes), DAML+OIL can exploit implemented DL systems via a translation into
SHIQ (extended with datatypes) similar to the one used by OIL. It would, of
course, also be possible to translate DAML+OIL ontologies into SHIQ using
OIL’s weak treatment of individuals,9 but in this case reasoning with individuals
would not be sound and complete with respect to the semantics of the language.

5.2 Scalability

Even without the oneOf constructor, class consistency reasoning is still a hard
problem. Moreover, Web ontologies can be expected to grow very large, and with
deployed ontologies it may also be desirable to reason w.r.t. a large numbers of
class/property instances.

There is good evidence of empirical tractability and scalability for imple-
mented DL systems [20, 15], but this is mostly w.r.t. logics that do not include
inverse properties (e.g., SHF 10). Adding inverse properties makes practical im-
plementations more problematical as several important optimisation techniques
become much less effective. Work is required in order to develop more highly op-
timised implementations supporting inverse properties, and to demonstrate that
they can scale as well as SHF implementations. It is also unclear if existing tech-
niques will be able to cope with large numbers of class/property instances [23].

Finally, it is an inevitable consequence of the high worst case complexity that
some problems will be intractable, even for highly optimised implementations.
It is conjectured that such problems rarely arise in practice, but the evidence
9 This approach is taken by some existing applications, e.g., OilEd [4].

10 SHF is equivalent to SHIQ without inverse properties and with only functional
properties instead of qualified number restrictions [22].



for this conjecture is drawn from a relatively small number of applications, and
it remains to be seen if a much wider range of Web application domains will
demonstrate similar characteristics.

5.3 New Reasoning Tasks

So far we have mainly discussed class consistency/subsumption reasoning, but
this may not be the only reasoning problem that is of interest. Other tasks could
include querying, explanation, matching, computing least common subsumers,
etc. Querying in particular may be important in Semantic Web applications.
Some work on query languages for description logics has already been done [30,
7, 24], and work is underway on the design of a DAML+OIL query language, but
the computational properties of such a language, either theoretical or empirical,
have yet to be determined.

Explanation may also be an important problem, e.g., to help an ontology
designer to rectify problems identified by reasoning support, or to explain to
a user why an application behaved in an unexpected manner. As discussed in
Section 3, reasoning problems such as matching and computing least common
subsumers could also be important in ontology design.

6 Summary

DAML+OIL is an ontology language specifically designed for use on the Web;
it exploits existing Web standards (XML and RDF), adding the formal rigor of
a description logic and the ontological primitives of object oriented and frame
based systems.

This combination of features has proved very attractive and DAML+OIL
has already been widely adopted, with some major efforts already committed
to encoding their ontologies in DAML+OIL. This has been particularly evident
in the bio-ontology domain, where the Bio-Ontology Consortium has specified
DAML+OIL as their ontology exchange language, and the Gene Ontology [31] is
being migrated to DAML+OIL in a project partially funded by GlaxoSmithKline
Pharmaceuticals in cooperation with the Gene Ontology Consortium.11

What of the future? The development of the semantic Web, and of Web
ontology languages, presents many opportunities and challenges. A “practical”
(satisfiability/subsumption) algorithm for the full DAML+OIL language has yet
to be developed, and it is not yet clear that sound and complete reasoners can
provide adequate performance for typical Web applications.

Acknowledgements

I would like to acknowledge the contribution of all those involved in the devel-
opment of DAML-ONT, OIL and DAML+OIL, amongst whom Dieter Fensel,
Frank van Harmelen, Deborah McGuinness and Peter F. Patel-Schneider deserve
particular mention.
11 http://www.geneontology.org/.



References

1. F. Baader and P. Hanschke. A schema for integrating concrete domains into con-
cept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 452–457, 1991.

2. F. Baader and R. Küsters. Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN -concept descriptions. In Proc. of
the 22nd German Annual Conf. on Artificial Intelligence (KI’98), volume 1504 of
Lecture Notes in Computer Science, pages 129–140. Springer-Verlag, 1998.

3. F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in description
logics. J. of Logic and Computation, 9(3):411–447, 1999.

4. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontol-
ogy editor for the semantic web. In Proc. of the Joint German/Austrian Conf.
on Artificial Intelligence (KI 2001), number 2174 in Lecture Notes in Artificial
Intelligence, pages 396–408. Springer-Verlag, 2001.

5. T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.
6. A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for sub-

sumption in the CLASSIC description logic. J. of Artificial Intelligence Research,
1:277–308, 1994.

7. D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
in description logics. In Proc. of the 1999 Description Logic Workshop (DL’99),
pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/,
1999.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information
integration: Conceptual modeling and reasoning support. In Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

9. S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks,
M. Klein, and S. Melnik. The semantic web: The roles of XML and RDF. IEEE
Internet Computing, 4(5), 2000.

10. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134:1–58, 1997.

11. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a nutshell. In R. Dieng, editor, Proc. of the 12th European Workshop on
Knowledge Acquisition, Modeling, and Management (EKAW’00), number 1937 in
Lecture Notes in Artificial Intelligence, pages 1–16. Springer-Verlag, 2000.

12. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-
Schneider. OIL: An ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2):38–45, 2001.

13. R. Fikes and D. L. McGuinness. An axiomatic semantics for rdf, rdf
schema, and daml+oil. In Stanford University KSL Technical Report KSL-01-
01. http://www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomatic-
semantics.html, 2001.

14. E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable.
In Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97), pages
306–317. IEEE Computer Society Press, 1997.

15. V. Haarslev and R. Möller. High performance reasoning with very large knowledge
bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), 2001.

16. V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), 2001.



17. J. Hendler and D. L. McGuinness. The darpa agent markup language”. IEEE
Intelligent Systems, 15(6):67–73, 2000.

18. B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR’91), pages 335–346, 1991.

19. I. Horrocks. The FaCT system. In H. de Swart, editor, Proc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397
of Lecture Notes in Artificial Intelligence, pages 307–312. Springer-Verlag, 1998.

20. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647, 1998.

21. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). Mor-
gan Kaufmann, Los Altos, 2001.

22. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer-
Verlag, 1999.

23. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the de-
scription logic SHIQ. In Proc. of the 17th Int. Conf. on Automated Deduction
(CADE 2000), number 1831 in Lecture Notes in Artificial Intelligence, pages 482–
496. Springer-Verlag, 2000.

24. I. Horrocks and S. Tessaris. A conjunctive query language for description logic
aboxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),
pages 399–404, 2000.

25. D. L. McGuinness. Ontological issues for knowledge-enhanced search. In Proc. of
FOIS, Frontiers in Artificial Intelligence and Applications. IOS-press, 1998.

26. D. L. McGuinness. Ontologies for electronic commerce. In Proc. of the AAAI ’99
Artificial Intelligence for Electronic Commerce Workshop, 1999.

27. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera ontology envi-
ronment. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),
2000.

28. S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Sys-
tems, 16(2):46–53, March/April 2001.

29. P. F. Patel-Schneider. DLP system description. In Proc. of the 1998 Description
Logic Workshop (DL’98), pages 87–89. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/, 1998.

30. M.-C. Rousset. Backward reasoning in ABoxes for query answering. In Proc.
of the 1999 Description Logic Workshop (DL’99), pages 18–22. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-22/, 1999.

31. The Gene Ontology Consortium. Gene ontolgy: tool for the unification of biology.
Nature Genetics, 25(1):25–29, 2000.


