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Abstract

Ontologies are set to play a key role in the “Semantic Web”, extending syntactic interoper-
ability to semantic interoperability by providing a source of shared and precisely defined terms.
DAML+OIL is an ontology language specifically designed for use on the Web; it exploits existing
Web standards (XML and RDF), adding the familiar ontological primitives of object oriented
and frame based systems, and the formal rigor of a very expressive description logic. The logical
basis of the language means that reasoning services can be provided, both to support ontology de-
sign and to make DAML+OIL described Web resources more accessible to automated processes.

1 Introduction

The World Wide Web has been made possible through a set of widely established standards which
guarantee interoperability at various levels. For example, the TCP/IP protocol has ensured interoper-
ability at the transport level, while HTTP and HTML have provided a standard way of retrieving and
presenting hyperlinked text documents. Applications have been able to use this common infrastructure
and this has made possible the World Wide Web as we know it now.

The “first generation” Web consisted largely of handwritten HTML pages. The current Web,
which can be described as the second generation, has made the transition to machine generated and
often active HTML pages. Both the first and second generation Web were meant for direct human
processing (reading, browsing, form-filling, etc.). The third generation Web aims to make Web resources
more readily accessible to automated processes by adding meta-data annotations that describe their
content. This idea was first delineated, and named the Semantic Web, in Tim Berners-Lee’s recent
book “Weaving the Web” [5].

If meta-data annotations are to make resources more accessible to automated agents, it is essential
that their meaning can be understood by such agents. This is where ontologies will play a crucial
role, providing a source of shared and precisely defined terms that can be used in meta-data. An
ontology typically consists of a hierarchical description of important concepts in a domain, along with
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descriptions of the properties of each concept. The degree of formality employed in capturing these
descriptions can be quite variable, ranging from natural language to logical formalisms, but increased
formality and regularity obviously facilitates machine understanding. Examples of the use of ontologies
could include e-commerce sites [16], search engines [17] and Web services [19].

2 Web Ontology Languages

The recognition of the key role that ontologies are likely to play in the future of the Web has led to
the extension of Web markup languages in order to facilitate content description and the development
of Web based ontologies, e.g., XML Schema,1 RDF2 (Resource Description Framework), and RDF
Schema [7]. RDF Schema (RDFS) in particular is recognisable as an ontology/knowledge representation
language: it talks about classes and properties (binary relations), range and domain constraints (on
properties), and subclass and subproperty (subsumption) relations.

RDFS is, however, a very primitive language (the above is an almost complete description of its
functionality), and more expressive power would clearly be necessary/desirable in order to describe
resources in sufficient detail. Moreover, such descriptions should be amenable to automated reasoning
if they are to be used effectively by automated processes, e.g., to determine the semantic relationship
between syntactically different terms.

The recognition of these requirements has led to the development of DAML+OIL, an expressive
Web ontology language. DAML+OIL is the result of a merger between DAML-ONT, a language
developed as part of the US DARPA Agent Markup Language (DAML) programme3) and OIL (the
Ontology Inference Layer) [9], developed by a group of (mostly) European researchers.4

3 DAML+OIL and Description Logics

DAML+OIL is designed to describe the structure of a domain; it takes an object oriented approach,
describing the structure in terms of classes and properties. An ontology consists of a set of axioms that
assert, e.g., subsumption relationships between classes or properties. Asserting that resources5 (pairs
of resources) are instances of DAML+OIL classes (properties) is left to RDF, a task for which it is well
suited. When a resource r is an instance of a class C we say that r has type C.

From a formal point of view, DAML+OIL can be seen to be equivalent to a very expressive descrip-
tion logic (DL), with a DAML+OIL ontology corresponding to a DL terminology (Tbox). As in a DL,
DAML+OIL classes can be names (URIs) or expressions, and a variety of constructors are provided
for building class expressions. The expressive power of the language is determined by the class (and
property) constructors supported, and by the kinds of axiom supported.

Figure 1 summarises the constructors supported by DAML+OIL. The standard DL syntax is used
for compactness as the RDF syntax is rather verbose. In the RDF syntax, for example, ≥2hasChild.Lawyer
would be written as

<daml:Restriction daml:minCardinalityQ="2">
<daml:onProperty rdf:resource="#hasChild"/>

1http://www.w3.org/XML/Schema/
2http://www.w3c.org/RDF/
3http://www.daml.org/
4http://www.ontoknowledge.org/oil
5Everything describable by RDF is called a resource. A resource could be Web accessible, e.g., a Web page or part of a

Web page, but it could also be an object that is not directly accessible via the Web, e.g., a person. Resources are named
by URIs plus optional anchor ids. See http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ for more details.
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Constructor DL Syntax Example
intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ ≥nP.C ≥2hasChild.Lawyer
maxCardinalityQ ≤nP.C ≤1hasChild.Male
cardinalityQ =nP.C =1 hasParent.Female

Figure 1: DAML+OIL class constructors

<daml:hasClassQ rdf:resource="#Lawyer"/>
</daml:Restriction>

The meaning of the first three constructors (intersectionOf, unionOf and complementOf) is
relatively self-explanatory: they are just the standard boolean operators that allow classes to be formed
from the intersection, union and negation of other classes. The oneOf constructor allows classes to be
defined existentially, i.e., by enumerating their members.

The toClass and hasClass constructors correspond to slot constraints in a frame-based language.
The class ∀P.C is the class all of whose instances are related via the property P only to resources of
type C, while the class ∃P.C is the class all of whose instances are related via the property P to at least
one resource of type C. The hasValue constructor is just shorthand for a combination of hasClass
and oneOf.

The minCardinalityQ, maxCardinalityQ and cardinalityQ constructors (known in DLs as qual-
ified number restrictions) are generalisations of the toClass and hasClass constructors. The class
≥nP.C (≤nP.C, =nP.C) is the class all of whose instances are related via the property P to at least
(at most, exactly) n different resources of type C. The emphasis on different is because there is no
unique name assumption with respect to resource names (URIs): it is possible that many URIs could
name the same resource.

Note that arbitrarily complex nesting of constructors is possible. Moreover, XML Schema datatypes
(e.g., so called primitive datatypes such as strings, decimal or float, as well as more complex derived
datatypes such as integer sub-ranges) can be used anywhere that a class name might appear.

The formal semantics of the class constructors is given by DAML+OIL’s model-theoretic semantics6.

The other aspect of a language that determines its expressive power is the kinds of axiom sup-
ported. Figure 2 summarises the axioms supported by DAML+OIL. These axioms make it possible to
assert subsumption or equivalence with respect to classes or properties, the disjointness of classes, the
equivalence or non-equivalence of individuals (resources), and various properties of properties.

A crucial feature of DAML+OIL is that subClassOf and sameClassAs axioms can be applied to
arbitrary class expressions. This provides greatly increased expressive power with respect to standard
frame-based languages where such axioms are invariably restricted to the form where the left hand side
is an atomic name, there is only one such axiom per name, and there are no cycles (the class on the

6http://www.w3.org/TR/daml+oil-model

3



Axiom DL Syntax Example
subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1 ≡ P−2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty > v ≤1P > v ≤1hasMother
unambiguousProperty > v ≤1P− > v ≤1isMotherOf−

Figure 2: DAML+OIL axioms

right hand side of an axiom cannot refer, either directly or indirectly, to the class name on the left
hand side).

A consequence of this expressive power is that all of the class and individual axioms, as well as the
uniqueProperty and unambiguousProperty axioms, can be reduced to subClassOf and sameClassAs
axioms (as can be seen from the DL syntax). In fact sameClassAs could also be reduced to subClassOf
as a sameClassAs axiom C ≡ D is equivalent to a pair of subClassOf axioms, C v D and D v C.

As we have seen, DAML+OIL allows properties of properties to be asserted. It is possible to assert
that a property is unique (i.e., functional), unambiguous (i.e., its inverse is functional) or transitive, as
well as to use inverse properties.

4 Reasoning Services

As we have shown, DAML+OIL is equivalent to a very expressive description logic. More precisely,
DAML+OIL is equivalent to the SHIQ DL [15] with the addition of existentially defined classes (i.e.,
the oneOf constructor) and datatypes (often called concrete domains in DLs [1]). This equivalence
allows DAML+OIL to exploit the considerable existing body of description logic research, e.g.:

• to define the semantics of the language and to understand its formal properties, in particular the
decidability and complexity of key inference problems [8];

• as a source of sound and complete algorithms and optimised implementation techniques for de-
ciding key inference problems [15, 14];

• to use implemented DL systems in order to provide (partial) reasoning support [12, 20, 11].

A important consideration in the design of DAML+OIL was that key inference problems in the
language, in particular class consistency/subsumption,7 should be decidable, as this facilitates the
provision of reasoning services. Moreover, the correspondence with DLs facilitates the use of DL
algorithms that are known to be amenable to optimised implementation and to behave well in realistic

7In propositionally closed languages like DAML+OIL, class consistency and subsumption are mutually reducible.
Moreover, in DAML+OIL the consistency of an entire “knowledge base” (an ontology plus a set of class and property
membership assertions) can be reduced to class consistency.
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applications in spite of their high worst case complexity [13, 10]. In particular, DAML+OIL is able to
exploit highly optimised reasoning services provided by DL systems such as FaCT [12], DLP [20], and
Racer [11], although these systems do not, as yet, support the whole DAML+OIL language (none is
able to reason with existentially defined classes, i.e., the oneOf construct, or to provide support for all
XML Schema datatypes).

Maintaining the decidability of the language requires certain constraints on its expressive power
that may not be acceptable to all applications. However, the designers of the language decided that
reasoning would be important if the full power of ontologies was to be realised, and that a powerful
but still decidable ontology language would be a good starting point.

Reasoning can be useful at many stages during the design, maintenance and deployment of ontolo-
gies.

• Reasoning can be used to support ontology design and to improve the quality of the resulting
ontology. For example, class consistency and subsumption reasoning can be used to check for
logically inconsistent classes and (possibly unexpected) implicit subsumption relationships (as
demonstrated in the OilEd8 ontology editor [4]). This kind of support has been shown to be
particularly important with large ontologies, which are often built and maintained over a long
period by multiple authors. Other reasoning tasks, such as “matching” [3] and/or computing
least common subsumers [2] could also be used to support “bottom up” ontology design, i.e., the
identification and description of relevant classes from sets of example instances.

• Like information integration [6], ontology integration can also be supported by reasoning. For
example, integration can be performed using inter-ontology assertions specifying relationships
between classes and properties, with reasoning being used to compute the integrated hierarchy
and to highlight any problems/inconsistencies. Unlike some other integration techniques (e.g.,
name reconciliation [18]), this method has the advantage of being non-intrusive with respect to
the original ontologies.

• Reasoning with respect to deployed ontologies will enhance the power of “intelligent agents”,
allowing them to determine if a set of facts is consistent w.r.t. an ontology, to identify individuals
that are implicitly members of a given class etc. A suitable service ontology could, for example,
allow an agent seeking secure services to identify a service requiring a userid and password as a
possible candidate.

5 Summary

DAML+OIL is an ontology language specifically designed for use on the Web; it exploits existing
Web standards (XML and RDF), adding the formal rigor of a description logic. As well as providing
the formal underpinnings of the language, the connection to DLs can be exploited as a source of
algorithms and implementation techniques, and to provide (partial) reasoning support for DAML+OIL
applications by using implemented DL systems.

DAML+OIL has already been widely adopted, with some major efforts having already committed
to encoding their ontologies in the language. This has been particularly evident in the bio-ontology
domain, where the Bio-Ontology Consortium has specified DAML+OIL as their ontology exchange
language, and the Gene Ontology [21] is being migrated to DAML+OIL in a project partially funded
by GlaxoSmithKline Pharmaceuticals in cooperation with the Gene Ontology Consortium.9

8http://img.cs.man.ac.uk/oil
9http://www.geneontology.org/.
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What of the future? The development of the semantic Web, and of Web ontology languages,
presents many challenges. As we have seen, no DL system yet provides reasoning support for the full
DAML+OIL language. Developing a “practical” satisfiability/subsumption algorithm (i.e., one that
is amenable to highly optimised implementation) for the whole language would present a major step
forward in DL (and semantic web) research. Moreover, even if such an algorithm can be developed, it
is not clear if even highly optimised implementations of sound and complete algorithms will be able to
provide adequate performance for typical web applications.
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