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Abstract. Ontologies are set to play a key role in the Semantic Web,
and several web ontology languages, like DAML+OIL, are based on DLs.
These not only provide a clear semantics to the ontology languages, but
allows them to exploit DL systems in order to provide correct and com-
plete reasoning services.
Recent results shown that DL systems can be enriched by a conjunctive
query language, providing a solution to one of the weakness of tradi-
tional DL systems. These results can be transfered to the Semantic Web
community, where the need for expressive query languages is witnessed
by different proposals (like DQL for DAML+OIL).
In this paper we present a logical framework for conjunctive query an-
swering in DAML+OIL. Moreover, we provide a sound and complete
algorithm based on recent Description Logic research.

1 Introduction

Description Logics (DLs) are a well-known family of knowledge representation
formalisms based on the notion of concepts (classes) and roles (properties). DLs
have proved useful in wide range of applications including configuration [18],
databases [5, 7] and ontological engineering (i.e., the design, maintenance and
deployment of ontologies).

The use of DLs in ontological engineering has been highlighted by the re-
cent explosion of interest in the Semantic Web [2]. Ontologies are set to play a
key role in the Semantic Web, where they will provide a source of shared and
precisely defined terms that can be used to describe web resources and improve
their accessibility to automated processes [9]. Several prominent web ontology
languages, in particular OIL and DAML+OIL [11], are based on DLs; this allows
them to exploit formal results (e.g., w.r.t. the decidability and complexity of key
inference problems [8]) and algorithm designs from DL research, as well as to
use DL based knowledge representation systems to provide reasoning support
for web applications [14].

In order to maximise the utility of Web ontologies, it will be necessary not
only to reason with ontology classes, but also with individuals (web resources)
that instantiate them, and in particular to answer queries over sets of such
individuals (e.g., see [4]). This highlights a serious shortcoming of many DL based



knowledge representation systems: the inadequacy of their query languages. In
this paper we show how the query answering technique presented in [17] can
be used to provide query answering services for conjunctive query languages
such as the one recently proposed for DAML+OIL (see http://www.daml.org/

listarchive/joint-committee/1052.html).

Recent years have witnessed the transfer of algorithmic techniques used for
terminological reasoning (Tbox reasoning) to the development of both algorithms
and optimised implementations that also support reasoning about individuals
(Abox reasoning), e.g., see [10, 12, 22]. Although these systems provide sound
and complete Abox reasoning for very expressive logics, they often have rather
weak Abox query languages. Typically, these only support instantiation (is an
individual a an instance of a class C?), realisation (what are the most specific
classes a is an instance of?) and retrieval (which individuals are instances of
C?). The reason for this weakness is that, in these expressive logics, all reasoning
tasks are reduced to that of determining knowledge base (KB) satisfiability. In
particular, instantiation is reduced to KB un-satisfiability by transforming the
query into a negated assertion; however, this technique cannot be used directly
for queries involving roles and variables.

In [6] and [17] it is shown that a more sophisticated reduction to KB un-
satisfiability can be used for answering conjunctive queries similar to those sup-
ported by relational databases.1 In this paper we show how, by placing certain
restrictions on the use of variables in the query (in particular, their use in query
cycles), we can adapt this technique to DAML+OIL. We will also show how
some simple extensions can be supported. Completely removing these restric-
tions causes problems, in particular when variables are used to force cycles in
the query. Due to lack of space, these problems are not discussed here; for full
technical details the reader is referred to [21].

We will focus on the problem of answering boolean queries, i.e., determining
if a query without free variables is true with respect to a KB. Retrieval, i.e.,
returning the set of all tuples (of individuals) that answer a query, can be turned
into a set of boolean queries for all candidate tuples as described in [17]. Clearly
this would be extremely inefficient if naively implemented, and we discuss some
basic techniques that can be used to improve performance.

2 Preliminaries

2.1 DAML+OIL

DAML+OIL is an ontology language, and as such is designed to describe the
structure of a domain. DAML+OIL takes an object oriented approach, with the
structure of the domain being described in terms of classes and properties. An
ontology consists of a set of axioms that assert, e.g., subsumption relationships

1 This is inspired by the use of Abox reasoning to decide conjunctive query contain-
ment (see [15, 5]).



between classes or properties. Asserting that resources2 (pairs of resources) are
instances of DAML+OIL classes (properties) is left to RDF, a task for which it
is well suited. When a resource r is an instance of a class C we say that r has
type C.

From a formal point of view, DAML+OIL can be seen to be equivalent to
the expressive description logic SHIQ [16] with the addition of existentially de-
fined classes (i.e., the oneOf constructor) and datatypes (often called concrete
domains in DLs [1]). A DAML+OIL ontology corresponds to a DL terminology
(Tbox), and the set of RDF axioms asserting facts about resources corresponds
to a DL Abox. As in a DL, DAML+OIL classes can be names (URIs) or expres-

sions, and a variety of constructors are provided for building class expressions.
The expressive power of the language is determined by the class (and property)
constructors supported, and by the kinds of axiom supported.

Constructor DL Syntax Example

intersectionOf C1 u . . . u Cn Human u Male
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >nP.C >2hasChild.Lawyer
maxCardinalityQ 6nP.C 61hasChild.Male
cardinalityQ =n P.C =1hasParent.Female

Fig. 1. DAML+OIL class constructors

Figure 1 summarises the constructors supported by DAML+OIL. The stan-
dard DL syntax is used for compactness as the RDF syntax is rather verbose.
In the RDF syntax, for example, Human uMale would be written as

<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Human"/>

<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>

</daml:Class>

while >2hasChild.Lawyer would be written as
2 Everything describable by RDF is called a resource. A resource could be Web acces-

sible, e.g., a Web page or part of a Web page, but it could also be an object that is
not directly accessible via the Web, e.g., a person. Resources are named by URIs plus
optional anchor ids. See http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

for more details.



<daml:Restriction daml:minCardinalityQ="2">

<daml:onProperty rdf:resource="#hasChild"/>

<daml:hasClassQ rdf:resource="#Lawyer"/>

</daml:Restriction>

The meaning of the first three constructors (intersectionOf, unionOf and com-
plementOf) is relatively self-explanatory: they are just the standard boolean op-
erators that allow classes to be formed from the intersection, union and negation
of other classes. The oneOf constructor allows classes to be defined existentially,
i.e., by enumerating their members.

The toClass and hasClass constructors correspond to slot constraints in a
frame-based language and to value and existential restrictions in a DL. The
class ∀P.C is the class all of whose instances are related via the property P only
to resources of type C, while the class ∃P.C is the class all of whose instances
are related via the property P to at least one resource of type C. The hasValue
constructor is just shorthand for a combination of hasValue and oneOf.

The minCardinalityQ, maxCardinalityQ and cardinalityQ constructors (known
in DLs as qualified number restrictions) are generalisations of the hasClass and
hasValue constructors. The class >nP.C (6nP.C, =nP.C) is the class all of
whose instances are related via the property P to at least (at most, exactly) n
different resources of type C. The emphasis on different is because there is no
unique name assumption with respect to resource names (URIs): it is possible
that many URIs could name the same resource.

Note that arbitrarily complex nesting of constructors is possible. Moreover,
XML Schema datatypes (e.g., so called primitive datatypes such as strings, dec-
imal or float, as well as more complex derived datatypes such as integer sub-
ranges) can be used anywhere that a class name might appear.

The formal semantics of the class constructors is given by DAML+OIL’s
model-theoretic semantics3 or can be derived from the specification of a suitably
expressive DL (e.g., see [14]).

As already mentioned, besides the set of constructors supported, the other
aspect of a language that determines its expressive power is the kinds of ax-
iom supported. Figure 2 summarises the axioms supported by DAML+OIL.
These axioms make it possible to assert subsumption or equivalence with re-
spect to classes or properties, the disjointness of classes, the equivalence or non-
equivalence of individuals (resources), and various properties of properties.

Note that all of the class and individual axioms, as well as the uniqueProperty
and unambiguousProperty axioms, can be reduced to subClassOf and sameClas-
sAs axioms (as can be seen from the DL syntax). In fact sameClassAs could also
be reduced to subClassOf as a sameClassAs axiom C ≡ D is equivalent to a pair
of subClassOf axioms, C v D and D v C.

As we have seen, DAML+OIL allows properties of properties to be asserted.
It is possible to assert that a property is unique (i.e., functional) and unambigu-

3 http://www.w3.org/TR/daml+oil-model



Axiom DL Syntax Example

subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human u Male
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1 ≡ P−

2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty > v 61P > v 61hasMother
unambiguousProperty > v 61P− > v 61isMotherOf−

Fig. 2. DAML+OIL axioms

ous (i.e., its inverse is functional). It is also possible to use inverse properties
and to assert that a property is transitive.

2.2 Description logic

In this paper we concentrate on a DL less expressive than DAML+OIL, since
answering to conjunctive queries over the complete DAML+OIL is still an open
problem.
SHIQ is built over a signature of distinct sets of concept (CN ), role (RN )

and individual (O) names. In addition, we distinguish two non-overlapping sub-
sets of RN (T RN and FRN ) which denote the transitive and the functional
roles. The set of all SHIQ roles is equal to the set of role names RN union
the set of the inverse roles {R− | P ∈ RN}. The set of all SHIQ concepts is
the smallest set such that every concept name in CN and the symbols >, ⊥
are concepts, and if C,D are concepts, R is a role, and n an integer, then ¬C,
(C uD), (C tD), (∀R.C), (∃R.C), >nR.C, and 6nR.C are concepts.

An interpretation I = (∆I , ·I) consists of a nonempty domain ∆I and a in-
terpretation function ·I . The interpretation function maps concepts into subsets
of ∆I , individual names into elements of ∆I , and role names into subsets of
the cartesian product of ∆I (∆I ×∆I). Concept names are interpreted as sub-
sets of ∆I , while complex expressions are interpreted according to the following
equations (see [19])

>I = ∆I (C uD)
I

= CI ∩DI

⊥I = ∅ (C tD)
I

= CI ∪DI

¬CI = ∆I \ CI

(∀R.C)
I

=
{

x ∈ ∆I | ∀y(x, y) ∈ RI ⇒ y ∈ CI
}

(∃R.C)
I

=
{

x ∈ ∆I | ∃y(x, y) ∈ RI ∧ y ∈ CI
}

(>nR.C)
I

=
{

x ∈ ∆I | ]
{

y | (x, y) ∈ RI ∧ y ∈ CI
}

≥ n
}

(6nR.C)
I

=
{

x ∈ ∆I | ]
{

y | (x, y) ∈ RI ∧ y ∈ CI
}

≤ n
}



A role and its inverse must be interpreted according to the equation

R−I

=
{

(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI
}

.

In addition, the interpretation function must satisfy the transitive and functional
restrictions on role names; i.e. for any R ∈ T RN if (x, y) ∈ RI and (y, z) ∈ RI ,
then (x, z) ∈ RI , and for any F ∈ FRN if (x, y) ∈ F I and (x, z) ∈ F I , then
y = z.

The semantics of DL often includes a so called unique name assumption: an
assumption that the interpretation function maps different individual names to
different elements of the domain (i.e., aI 6= bI for all a, b ∈ O such that a 6= b).
Our approach does not rely on such an assumption, and can be applied to DLs
both with and without the unique name assumption.

2.3 Knowledge bases

A SHIQ knowledge base K is a finite set of statements of the form:

C vD,Rv S, a:C, 〈a, b〉:R

where C,D are SHIQ concepts, R,S roles, and a, b individual names. The
first two kinds of statement are called terminological, while the two latter ones
are called assertional. Intuitively, terminological statements describe intensional
properties of all the elements of the domain, while assertional statements assign
properties of some named elements.

We say that an interpretation I = (∆I , ·I) satisfies the terminological state-
ment C v D (R v S) iff CI ⊆ DI (RI ⊆ SI), and the assertional statement
a:C (〈a, b〉:R) iff aI ∈ CI ((aI , bI) ∈ RI). When an interpretation I satisfies a
statement α, we use the notation I |= α. An interpretation I satisfies (or is a
model for) a KB K iff it satisfies all the statements in K (written as I |= K).

2.4 Query language

Query answering services provided by a DL system can be seen as the process of
verifying whether a given statement (the query) is a logical consequence of the
knowledge base (written as K |= α). The meaning of logical consequence is given
in terms of interpretations; i.e. a statement is logical consequence of a KB K if it
is satisfied in every interpretation satisfying K (K |= α iff for any interpretation
I, I |= K implies I |= α). For example, instantiation can be written as K |= a:C
(i.e., a is an instance of C in every model of K).

Using the same mechanism, we extend the kind of queries we can ask by in-
troducing a conjunctive query language whose terms are assertional statements
(see [17]). For this purpose we consider a set of variable names V distinct from
the individual names (O). Analogously to conjunctive queries in the database
setting, variables can be used in place of individuals and are considered as exis-
tentially quantified.



A DL boolean conjunctive query is defined as a conjunction of terms of the
form x:C or 〈x, y〉:R, where C is a concept, R is a role, and x, y are variable or
individual names taken from V ∪O. We call the first kind concept terms and the
latter kind role terms.

The semantics of a boolean conjunctive query follows the schema shown above
for the knowledge bases. The difference is that we need to consider the variable
names, since the satisfiability of a term may be affected by the assignment of the
variables. Given an interpretation I = (∆I , ·I), we consider evaluations defined
as mappings from names in V ∪ O to elements of the interpretation domain
∆I (with the constraint that evaluations must agree with the interpretation
function on the mapping of individual names). We say that the interpretation
I = (∆I , ·I) satisfies the term x:C (〈x, y〉:R) w.r.t. an evaluation ν, written as
I |=ν x:C (I |=ν 〈x, y〉:R), iff ν(x) ∈ CI (〈ν(x), ν(y)〉 ∈ RI). This is extended to
arbitrary conjunctive queries: an interpretation I satisfies the conjunctive query
q = t1 ∧ . . . ∧ tn w.r.t. an evaluation ν iff I |=ν ti for every i = 1, . . . , n.

Note that we do not require that variables are interpreted as the individual
names appearing in the KB; instead they can be mapped to arbitrary elements
of the interpretation domain. For example, let us consider the KB containing
only the assertion sam:∃Has child.FEMALE, and the query 〈sam, y〉:Has child.
If we restrict variables to individual names only, then the query is not a logical
consequence of the KB, because there is no individual name asserted to be related
to sam. If we allow variables to range over arbitrary elements of interpretation
domains, then the query is a logical consequence of the KB. This can be seen
by considering that the query is equivalent to the query sam:∃Has child.>, and
that the concept ∃Has child.> is more general than ∃Has child.FEMALE.

In answering boolean queries, we are not really interested in the evaluation
itself but only on the satisfiability of the given query; we say that I satisfies the
query q (written I |= q) iff there is an evaluation ν such that I |=ν q.

Query graph To present the query answering algorithm we associate a query

graph to each conjunctive query. The main idea is to consider a conjunctive
query as a directed graph, where the nodes are variable and individual names. In
addition, concept and role terms provide labels for nodes and edges respectively.

For example, the query

x:Start ∧ 〈x, y〉:Path ∧ 〈x, z〉:Path

corresponds to the graph

y

x z

Path

PathStart



In this paper we restrict to queries whose graphs are directed acyclic graphs
(DAGs). This restriction leads to a much more efficient procedure, and the al-
gorithm still works with very expressive DLs.

There is ongoing research to extend the algorithm to arbitrary shaped queries,
and expressive DLs. Encouraging results have been published for DLs less ex-
pressive than DAML+OIL (see [6, 17, 20]).

Query retrieval Using the definition of boolean queries we can easily extend the
formalism to retrieve arbitrary tuples of individual names. We use the notation
〈x1, . . . , xn〉 ← q to indicate that variables x1, . . . , xn appearing in q must be
bound to individual names, and constitute the answer to the query. We call these
variables distinguished.

Formally, the answer set of a query 〈x1, . . . , xn〉 ← q w.r.t. the KB K is the
set n-ary tuples defined by

{〈a1, . . . , an〉 ∈ O
n | K |= q[x1/a1, . . . , xn/an]} ,

where q[x/a] indicates the query q with all the occurrences of variable x substi-
tuted by the individual name a.

3 Answering Boolean Queries

In this section we show how to answer to boolean queries (see Section 2.4); i.e.
queries not returning set of tuples but only a yes/no answer. In Section 4 we
show that using this algorithm we can provide answers to non-boolean queries
as well.

A boolean query can be partitioned in one or more connected components
by considering its query graph. Unconnected components do not share variables,
therefore they can be considered independently to each other.

For example, the query

〈Mary, y〉:children ∧ y:MALE ∧ z:STUDENT

has two connected components: (〈Mary, y〉:children∧ y:MALE) and (z:STUDENT).
Since they not share any variable, the query is a logical consequence of a KB
iff the two components 〈Mary, y〉:children ∧ y:MALE and z:STUDENT are logical
consequence of the KB.

Boolean query answering, i.e. logical consequence, can easily be reduced to a
KB satisfiability problem if the query contains only a single concept term (this
is the standard instantiation problem). For example,

{STUDENTv PERSON, Tom:STUDENT} |= Tom:PERSON

iff the KB

{STUDENTv PERSON, Tom:STUDENT, Tom:¬PERSON}



is not satisfiable.

This is true not only for individual names, but for variables as well. The
query x:PERSON is satisfied iff in every model of the KB the interpretation of
PERSON is not the empty set. This can be verified by checking whether the KB
plus the axiom PERSONv⊥ is satisfiable. If this is the case, then there is at least
a model of the KB in which the interpretation of PERSON is the empty set (⊥ is
by definition the empty set).

This simple approach cannot be used in our case since a query may also
contain role terms. However, the idea is to transform the initial query into an
equivalent query containing only a single concept term (see [5, 17]). In terms of
query graphs this means collapsing the DAG into a single node, by eliminating
all the edges.

Firstly, we consider queries containing only variable names; then we show
that constants (i.e. individual names) can be handled in a similar fashion.

3.1 Queries without constants

Let us consider the simple query 〈y, z〉:children∧ z:MALE. The query is satisfied
if there is an element (y), related by role children to an element (z) of the class
MALE.4 Given the semantics of DL operators (see Section 2.2), the same query
can be paraphrased as the single term y:∃children.MALE.

The intuition from the example is substantiated by the fact that the query
corresponds to the first order logic formula ∃y∃z(children(y, z) ∧ MALE(z)),
which is the first order logic translation of the term y:∃children.MALE (see [3]).
We indicate the transformation of query formulae suggested by this example, as
the rolling-up of role terms.

Inverse role constructor (e.g. children−) enables the rolling-up in both di-
rections. In fact, the role term in the example can be rolled-up into the variable
z obtaining the query z:∃children−.> ∧ z:MALE.

Note that the transformation eliminates one of the variables (z in the ex-
ample); therefore the equivalence is guaranteed iff the variable being eliminated
does not appear anywhere else in the query.

Let us consider the query 〈x, y〉:children ∧ 〈y, z〉:has degree, and the KB
containing the assertion Mary:(∃children.MALE u ∃has degree.PHD). This query
is not a logical consequence of the given KB, because there is nothing in the KB
forcing the role chain expressed by the query. A careless use of rolling-up, applied
to the first role term, produces the query x:∃children.>∧〈y, z〉:has degree. The
resulting query is a logical consequence of the KB; therefore this transformation
does not guarantee correctness.

The problem highlighted by this example can be overcome by eliminating
variables appearing in a single role term. Multiple concept terms (like x:MALE ∧
x:PIG) are not a problem; since they can be collapsed into a single one by using
the conjunction construct (e.g. x:(MALE u PIG)). The assumption that the query

4 This must be true in every interpretation satisfying the KB being queried.



graph is a DAG (see Section 2.4) ensures that there is always at least a variable
appearing in one role term only.

3.2 Queries with constants

When there are constants (i.e. individual names) in the query, the rolling-up
cannot be used as described in the last section.

The rolling-up described in the last section cannot be used as it is when
there are constants (i.e. individual names) in the query. The reason for this is
that names are significant, so we cannot treat them as variables.

Let us consider the example of the previous section where we substitute
variable z with an individual name:

〈y, Bill〉:children ∧ Bill:MALE.

This query is not a logical consequence of a KB containing only the assertion
Bill:MALE u ∃children.MALE; because the role term 〈y, Bill〉:children is not
satisfied in every model of the KB. However, if we roll-up the role term, ignoring
the fact that Bill is a constant, we obtain the query y:∃children.MALE, which
is a logical consequence of the assertion in the KB.

The problem can be solved by using the one-of DL construct, which enables
to describe a concept by enumerating its members. For example, the interpre-
tation of the concept { Sally, Bill } is the set containing the elements corre-
sponding to Sally and Bill (see Section 2.2). It is not difficult to realise that
a query term like Bill:MALE is equivalent to z:{ Bill } ∧ z:MALE; where z is a
newly introduced variable. In fact, the term z:{ Bill } guarantees that variable
z is always interpreted as the constant Bill.

Generalising this idea, we can remove all the constants from the query by
introducing appropriate concept terms involving the one-of DL construct. For
example, the query example is transformed into

〈y, z〉:children ∧ z:MALE ∧ z:{ Bill },

by replacing all the occurrences of Bill with the new variable z, and introduc-
ing the new term z:{ Bill }. Now the query can be rolled-up as described in
Section 3.1, obtaining the concept term y:∃children.(MALE u { Bill }).

Note that it is not necessary to use same variable name for all the occurrences
of a constant. The crucial point is that they all have to be constraint by a concept
term involving the one-of construct. The query example can be transformed into
the equivalent

〈y, z′〉:children ∧ z′:{ Bill } ∧ z:MALE ∧ z:{ Bill },

since the terms z′:{ Bill } and z:{ Bill } ensure that z′ and z are always inter-
preted as the same element.

Unfortunately, the DL systems used to support reasoning in DAML+OIL do
not provide the one-of construct. However, in our case we do not need the full



expressivity of one-of, and it can be simulated by primitive concept names. The
technique used is to substitute each occurrence of one-of with a new concept
name not appearing in the knowledge base. These new concept names must be
different for each individual in the query, and are called the representative con-
cepts of the individuals (written Pa, where a is the individual name). In addition,
assertions which ensure that each individual is an instance of its representative
concept must be added to the knowledge base (e.g., Bill:PBill).

In general, a representative concept cannot be used in place of one-of because
it can have instances other than the individual which it represents (i.e., Pa

I ⊇
{

aI
}

). However, representative concepts can be used instead of one-of in our
reduced setting.

4 Retrieving Answer Sets

Ideally, we would like to provide an efficient bottom up procedure for retriev-
ing answer sets. However, in the context of expressive DLs this is not easily
achievable, and we are not aware of any lead towards a solution.

It is important to stress the fact that, given the expressivity of DLs, query
answering cannot simply be reduced to model checking as in the database frame-
work. This is because KBs may contain nondeterminism and/or incompleteness,
making the use of an approach based on minimal models infeasible. In fact, query
answering in the DL setting requires the same reasoning machinery as logical
derivation. To use model checking techniques for query answering we must be
able to associate a “preferred” model to a given KBs, and this is quite difficult
for arbitrary DL KBs.

Let us consider for example a simple KB containing the single axiom Elephantv
¬Mouse, stating that elephants and mice are disjoint, and the Abox assertion
hathi:(Elephant t Mouse). We can identify two minimal (w.r.t. inclusion) inter-
pretations satisfying the KB: in the first the element mapped from the individual
hathi is in the extension of the concept Elephant, while in the second it is in the
extension of the concept Mouse. Which of the two interpretations can be consid-
ered the “preferred” one? The point is that there is not any general mechanism
for choosing one, even with this trivial KB.

From the definition of answer set, given in Section 2.4, we can easily derive
an algorithm for retrieving tuples of individuals answering a given query. In fact,
using the boolean query answering algorithm applied to the query obtained by
substituting the distinguished variables with constants, we can test the mem-
bership of a given tuple to the answer set. The idea is to iterate among all the
possible assignment of the distinguished variables, and checking whether the
corresponding tuples belong to the answer set.



Although this procedure is possibly not the most practical one,5 it fits nicely
with the recent proposal for the DQL DAML+OIL query language.6 In fact,
in the proposal a response to a query would consist of a single binding for the
distinguished variables, and a “server continuation” which can be used to obtain
the next answers (bindings).

Another feature of the above mentioned proposal is the possibility of return-
ing partial bindings when the KB entails the existence of individuals, but those
are not among the known names (i.e. not in the set of O).

For example, a KB containing only the assertion Red:∃colour−.> implies
the existence of an element related to Red via the role colour. However, there
is not any individual name which is asserted to correspond to this element. Any
query like 〈x, y〉 ← 〈x, y〉:colour, with x, y distinguished variables, would not
return any answer (i.e. the empty set).

In the proposal is suggested that in such a case an answer would be a bind-
ing only for the variable y (the individual name Red), while x would be left
unspecified (or a bind to a newly invented name representing an anonymous
element).

This effect can be achieved in our framework by relaxing the conditions on the
variables; i.e. making part of the distinguished variables no longer distinguished.
For example, the query 〈x, y〉 ← 〈x, y〉:colour can be relaxed into the query
〈y〉 ← 〈x, y〉:colour, where x is no longer distinguished.

In our view, the task of relaxing the conditions should not be incorporated
into the basic query answering mechanism, but left to an external layer. For
example, this external layer would first tries to answer to the query as it is
(leaving all the distinguished variables). If with these restrictions no answers
can be retrieved, then different queries can be generated by making one or more
variables non-distinguished. The process would continue until an answer is found,
and returned to the user.

Several heuristics and ordering can be adopted for the selection of distin-
guished variables to be relaxed. We think that this mainly depends on the spec-
ifications of DQL, which is still an ongoing project. However, the main point is
that our logical framework can be used to capture this feature.

5 Speeding Up the Answer

The rolling-up procedure is polynomial in the size of the query, and the KB
satisfiability test is EXPTIME for the DL SHIQ. Given the fact that boolean
query answering is at least as expensive as KB satisfiability,7 our algorithm is
optimal w.r.t. the class of boolean acyclic conjunctive queries (assuming that

5 The naive evaluation of such a retrieval could be prohibitively expensive, but as we
point out in Section 5 it is amenable to optimisation.

6 The so called DQL query language, discussed in the joint-committee DAML mailing
list (see http://www.daml.org/listarchive/joint-committee/1052.html).

7 A KB is unsatisfiable iff the query x:⊥ is a logical consequence of the KB.



the KB satisfiability test is optimal). However, we can use several heuristics to
obtain a better behaviour in most of the cases (i.e. practical tractability).

We have empirical evidence that axioms in the KB are one of the major
cause of practical intractability (see [13]). As seen in Section 3, the query need
to be encoded as an axiom only if is rolled-up into a variable. When the query is
rolled-up into an individual name, the query can be transformed into an Abox
assertion. Therefore, the choice of node into which a query graph is rolled-up
can be used to speed up the KB satisfiability test.

Different optimizations can be directed to minimize the choice of individual
name candidates for distinguished variables (see Section 4). In fact, in case of
query retrieval of n-ary tuples we potentially have to test every possible element
of On. For reducing the number of candidate individuals for a variable name,
we envisage two different techniques. The first one relies on the standard re-
trieval service provided by DL reasoners (i.e. retrieving all the individual names
instances of a given concept), while the second on the structure induced by role
terms in the query.

In our setting, the rolling-up is a cheap operation so we can use it to prune
the number of candidates. The idea is to roll-up the query into a distinguished
variable prior to substitute it with any individual name. The concept we obtain
describes necessary conditions for the individuals that can be substituted to this
distinguished variable. The concept is used to retrieve the list of individual names
being instance of the concept, and the retrieved individuals are the candidates
for the distinguished variable.

This technique is not an alternative to the boolean query answering, since
tuples membership to the answer set still need to be verified by a boolean query
answer. However, this may significantly reduce the number of boolean queries
that need to be tested. Moreover, DL systems are usually optimised for retrieval,
by means of internal indexes and specialised algorithms (see [10]).

The structure of role terms in the query (i.e. the “shape” of the query graph)
can be used to reduce the number of candidates for distinguished variables.
This idea is based on the observation that role assertions in the KB do not
allow to express incomplete information as the concept assertions do. In fact,
role assertions are usually limited to simple statements like 〈a, b〉:R. The crucial
point is that two individual names can be related by a role only if there is a role
assertion between them. Note that in expressive DLs, like SHIQ, the names of
the roles in the query and in the assertions do not need to match. This limited
expressivity for roles is shared by most of the DLs studied and/or implemented.
Note that this is no longer valid for languages including the one-of operator,
like DAML+OIL, or without the unique name assumption (see Section 2.2).
Therefore, this kind of optimizations need to be used with extreme caution.

For example, if the underlying DL language allows the use of this optimiza-
tion, and the query contains the role term 〈x, y〉:children (with both x, y dis-
tinguished variables), then we can restrict their candidates to pair of individual
names having an asserted role between them.



6 Conclusions

In this paper we have described a basic conjunctive query language for DAML+OIL
(or any other description logic based ontology language), and presented a for-
mal framework that precisely defines the meaning of such qeries. Moreover, we
have shown how queries can be rewritten so that query answering is reduced to
the problem of knowledge base satisfiability for the logic corresponding to the
ontology language. This enables us to answer queries using standard reasoning
techniques, and to guarantee that query answers will be sound and complete in
the case that that our knowledge base satisfiability test is sound and complete.
In practice, this means that we can use implemented description logic systems
(or any other system capable of deciding knowledge base satisfiability) to provide
sound and complete answers to queries.

There have been a number of proposals for query languages for RDF and
DAML+OIL (a review of some of them can be found at http://139.91.183.

30:9090/RDF/publications/state.html). However, the aproach we have de-
scribed is, to the best of our knowledge, unique in formalising the problem and
in describing a mechanism whereby sound and complete answers to non-trivial
queries can be computed using an inference procedure.

The query rewriting relies on a restriction with respect to the use of vari-
ables and constants in query expressions, notably that no cyclical references are
allowed. Relaxing this condition so that distinguished variables and constants
can occur in query cycles is not too difficult, but dealing with non-distinguished
variables ocurring in query cycles is still an open research problem (although the
problem has been solved for less expressive description logics [17]).

It also remains to be seen how effective such techniques will be in practice. If
implemented naively, it is clear that they would be extremely inefficient. How-
ever, as we have seen in Section 5, there are many possibilities for optimising
implementations in order to speed up query answering. Moreover, this technique
lends itself naturally to incremental query answering, where the system can re-
turn partial answers without having to wait until the complete answer has been
computed.
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