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Abstract

We present an application – the Instance Store – aimed at solving some of the scala-
bility problems that arise when reasoning with the large numbers of individuals envisaged
in the semantic web. The approach uses well-known techniques for reducing description
logic reasoning with individuals to reasoning with concepts. Crucial to the implementa-
tion is the combination of a description logic terminological reasoner with a traditional
relational database. The resulting form of inference, although specialised, is sound and
complete and sufficient for several interesting applications. Most importantly, the appli-
cation scales to sizes (over 100,000s individuals) where all other existing applications
fail. This claim is substantiated by a detailed empirical evaluation of the Instance Store
in contrast with existing alternative approaches.

Introduction

The Semantic Web [6] aims at making Web resources more accessible to automated processes
by adding “semantic annotations”—metadata that describes their content. It is envisaged that
the semantics in semantic annotations will be given by ontologies, which will provide a source
of precisely defined terms (vocabularies) that are amenable to automated reasoning.

A standard for expressing ontologies in the Semantic Web has already emerged: the on-
tology language OWL [9], which recently became a W3C recommendation. One of the main
features of OWL is that there is a direct correspondence between (two of the three “species”
of) OWL and Description Logics (DLs) [19]. This means that DL reasoners can be used to
reason about OWL ontologies and about annotations that are instances of concept descriptions
formed using terms from an ontology.

Unfortunately, while existing techniques for TBox reasoning (i.e., reasoning about the
concepts in an ontology) seem able to cope with real world ontologies [18, 14], it is not
clear if existing techniques for ABox reasoning (i.e., reasoning about the individuals in an
ontology) will be able to cope with realistic sets of instance data. This difficulty arises not
so much from the computational complexity of ABox reasoning, but from the fact that the
number of individuals (e.g., annotations) might be extremely large.

In this paper we describe the instance Store (iS ), an approach to a restricted form of
ABox reasoning that combines a DL reasoner with a database. The result is a system that can
deal with very large ABoxes, and is able to provide sound and complete answers to instance
retrieval queries (i.e., computing all the instances of a given query concept) over such ABoxes.



While iS can be highly effective, it does have limitations when compared to a fully fledged
DL ABox. In particular, iS can only deal with a role-free ABox, i.e., an ABox that does not
contain any axioms asserting role relationships between pairs of individuals. Although this
may seem a rather severe restriction, the functionality provided by iS is precisely what is
required by many applications, and in particular by applications where ontology based terms
are used to describe/annotate and retrieve large numbers of objects. Examples include the use
of ontology based vocabulary to describe documents in “publish and subscribe” applications
[10], to annotate data in bioinformatics applications [12] and to annotate web resources such
as web pages [11] or web service descriptions [20] in Semantic Web applications. Indeed, we
have successfully applied iS to perform web service discovery [8], to search over the gene
ontology [12] and its associated instances (see below), and in an application to guide gene
annotation [4].

Using a database in order to support ABox reasoning is certainly not new (see below),
but to the best of our knowledge iS is the first such system that is general purpose (i.e., can
deal with any TBox and role-free ABox without customising the database schema), provides
sound and complete reasoning, and places no a-priori restriction on the size of the ABox.

In order to evaluate the design of iS , and in particular its ability to provide scalable perfor-
mance for instance retrieval queries, we have performed a number of experiments using iS to
search over a large (50,000 concept) gene ontology and its associated very large number (up
to 650,000) of individuals – instances of concept descriptions formed using terms from the
ontology. In the absence of other specialised ABox reasoners we have compared the perfor-
mance of iS with that of RACER [15] (the only publicly available DL system that supports full
ABox reasoning for an expressive DL) and of FaCT [18] (using TBox reasoning to simulate
reasoning with a role-free ABox).

Related Work As already mentioned, the idea of supporting DL style reasoning using
databases is not new. One example is [7], which can handle DL inference problems by
converting them into a collection of SQL queries. This approach is not limited to role-free
ABoxes, but the DL language supported is much less expressive, and the database schema
must be customised according to the given TBox. Another example is the Parka system [2].
Parka is not limited to role-free ABoxes and can deal with very large ABoxes. However, Parka
also supports a much less expressive language, and is not based on standard DL semantics, so
it is not really comparable to iS . Finally, [21] describes a “semantic indexing” technique that
is very similar to the approach used in iS except that files and hash tables are used instead of
database tables, and optimisations such as the use of equivalence sets are not considered.

1 Instance Store

Description Logics are a family of knowledge representation formalisms evolved from early
frame systems and semantic networks. We assume the reader to be familiar with DLs—see
[3] for a detailed discussion of DLs.

An ABox
�

is role-free if it contains only axioms of the form ����� . We can assume,
without loss of generality, that there is exactly one such axiom for each individual as ���
���
	�� holds in all interpretations, and two axioms ���� and ����� are equivalent to a single



axiom � �
�
��� ��� . It is well known that, for a role-free ABox, instantiation can be reduced

to TBox subsumption [16, 22]; i.e., if ���
	��� ��� , and
�

is role-free, then ��� ��� � � iff
� � ��� � and ��� � ��� � . Similarly, if ����	��� ��� and

�
is a role-free ABox, then the

instances of a concept � could be retrieved simply by testing for each individual � in
�

if
��� ��� �� . However, this would clearly be very inefficient if

�
contained a large number of

individuals.
An alternative approach is to add a new axiom ����� � to � for each axiom � �� in

�
,

where ��� is a new atomic concept; we will call such concepts pseudo-individuals. Classifying
the resulting TBox is equivalent to performing a complete realisation of the ABox: the most
specific atomic concepts that an individual � is an instance of are the most specific atomic
concepts that subsume ��� and that are not themselves pseudo-individuals. Moreover, the
instances of a concept � can be retrieved by computing the set of pseudo-individuals that
are subsumed by � . The problem with this latter approach is that the number of pseudo-
individuals added to the TBox is equal to the number of individuals in the ABox, and if
this number is very large, then TBox reasoning may become inefficient or even break down
completely (e.g., due to resource limits).

The basic idea behind iS is to overcome this problem by using a DL reasoner to classify
the TBox and a database to store the ABox, with the database also being used to store a
complete realisation of the ABox, i.e., for each individual � , the concepts that � realises
(the most specific atomic concepts that � instantiates). The realisation of each individual is
computed using the DL (TBox) reasoner when an axiom of the form � � � is added to the iS
ABox.

A retrieval query � to iS (i.e., computing the set of individuals that instantiate a concept
� ) can be answered using a combination of database queries and TBox reasoning. Given an
iS containing a KB 	��� ��� and a query concept � , retrieval involves the computation of sets
of concepts and individuals which we denote as follows:

� �! #" denotes the set of atomic concepts in � subsumed by � ; these are the equivalents
and descendants of � in � .

�%$ �'& " denotes the set of most specific atomic concepts in � subsuming � ; if � is itself
an atomic concept in � then clearly $ �(&)"*�,+)�.- .

�0/)1 denotes the set of individuals in
�

that realise some concept in �� " ;

�0/32 denotes the set of individuals in
�

that realise every concept in $ �'& " .

The iS algorithm to retrieve the instances of � can be then described as follows:

1. use the DL reasoner to compute �� " ;

2. use the database to find the set of individuals / 1 ;
3. use the reasoner to check whether � is equivalent to any atomic concept in � ; if that is

the case then simply return /41 and terminate;

4. otherwise, use the reasoner to compute $ �(& " ;

5. use the database to compute /52 ;



6. use the reasoner and the database to compute /�� , the set of individuals � � / 2 such that
� �� is an axiom in

�
and � is subsumed by � ;

7. return / 1���/�� and terminate.

Proposition. The above procedure is sound and complete for retrieval, i.e., given a concept
� , it returns all and only individuals in

�
that are instances of � .

The above is easily proved using the fact that we assume, without loss of generality, that for
each individual there is only one axiom associated to it.

An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the performance
of iS . In the first place, as it is potentially costly, we should try to minimise the DL reasoning
required in order to compute realisations (when instance axioms are added to the ABox) and
to check if individuals in /41 are instances of the query concept (when answering a query).

One way to (possibly) reduce the need for DL reasoning is to avoid repeating computa-
tions for “equivalent” individuals, e.g., individuals � 1  � 2 where � 1 � � 1 and � 2 � � 2 are
ABox axioms, and � 1 is equivalent to � 2 . Since checking for semantic equivalence between
two concepts would require DL reasoning (which we are trying to avoid), the optimised iS
only checks for syntactic equality using a database lookup. (The chances of detecting equiva-
lence via syntactic checks could be increased by transforming concepts into a syntactic normal
form, as is done by optimised DL reasoners [17], but this additional refinement has not yet
been implemented in iS .) Individuals are grouped into equivalence sets, where each individ-
ual in the set is asserted to be an instance of a syntactically identical concept, and only one
representative of the set is added to the iS ABox as an instance of the relevant concept. When
answering queries, each individual in the answer is replaced by its equivalence set. Similarly,
we can avoid repeated computations of sub and super-concepts for the same concept (e.g.,
when repeating a query) by caching the results of such computations in the database.

Finally, the number and complexity of database queries also has a significant impact on
the performance of iS . In particular, the computation of / 1 can be costly as �� " may be
very large. One way to reduce this complexity is to store not only the most specific concepts
instantiated by each individual, but to store every concept instantiated by each individual. As
most concept hierarchies are relatively shallow, this does not increase the storage requirement
too much, and it greatly simplifies the computation of / 1 : it is only necessary to compute
the (normally) much smaller set of most general concepts subsumed by � and to query the
database for individuals that instantiate some member of such set. On the other hand, the
computation of /52 is slightly more complicated, because /#1 must be subtracted from the set of
individuals that instantiate every concept in $ �(& " . Empirically, however, the savings when
computing / 1 seems to far outweigh the extra cost of computing / 2 .

2 Implementation

We have implemented iS using a component based architecture that is able to exploit existing
DL reasoners and databases. The core component is a Java application [1] talking to a DL



reasoner via the DIG interface [5] and to a relational database via JDBC. We have tested it
with FaCT [18] and RACER reasoners and MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner reasoner, Database db, TBox t)
addAssertion(Individual i, Concept C)
retract(Individual i)
retrieve(Concept Q): Set � Individual �

Figure 1: Basic functionality of iS

The basic functionality of iS is illustrated by Figure 1. The four basic operations are
initialise, which loads a TBox into the DL reasoner, classifies the TBox and establishes
a connection to the database; addAssertion, which adds an axiom ����� to iS ; retract,
which removes any axiom of the form � � � (for some concept � ) from iS ; and retrieve,
which returns the set of individuals that instantiate a query concept � . Since an iS ABox can
only contain one axiom for each individual, asserting ��� � when ��� � is already in the ABox
is equivalent to first removing � and then asserting ���

�
� � � � .

In the current implementation, we make the simplifying assumption that the TBox itself
does not change. Extending the implementation to deal with monotonic extensions of the
TBox would be relatively straightforward, but deleting information from the TBox might
require (in the worst case) all realisations to be recomputed.

Database. For the basic iS , the database schema is straightforward: a table with all the
assertions stored as pairs individual/concept (with individual as primary key), and a table of
pairs individual/atomic concept. The latter table holds the asserted individuals together with
the most specific atomic concepts instantiated by them.

For the optimised iS , the database schema is illustrated in Figure 2. There is a main

Concepts(id, concept)
Assertions(individual, conceptId)
Types(conceptId, atomicConcept)
Equivalents(conceptId, atomicConcept)
Parents(conceptId, atomicConcept)
Children(conceptId, atomicConcept)

Figure 2: Database Schema for the Optimised iS

Concepts table assigning a unique id to every asserted or retrieved concept; the conceptId
in the other tables is a foreign key referencing id. Apart from the evident Assertions ta-
ble, the remaining tables hold TBox information inferred using the reasoner: the Types table
holds all ancestors and equivalents of the asserted/retrieved concepts, while the position of the
concepts in the taxonomy is recorded by either storing their equivalents if they exist or both
their children and parents in the corresponding tables.

3 Empirical Evaluation

To illustrate the scalability and performance of iS we describe the tests we have performed
using the gene ontology and its associated instance data. We also illustrate how this compares



with existing non-specialised ABox reasoning techniques by describing the same tests per-
formed using RACER and FaCT (the latter using the pseudo-individual approach discussed in
Section 1).

The gene ontology (GO) itself, an ontology describing terms used in gene products and
developed by the Gene Ontology Consortium [23], is little more than three taxonomies of
gene terms, with a single role being used to add “part-of” relationships. However, the on-
tology is large (47,012 atomic concepts) and the instance data, obtained by mining the GO
database [13] of gene products, consists of 653,762 individual axioms involving 48,581 dis-
tinct complex DL expressions using three more roles.

The retrieval performance tests use two sets of queries. The first set (Q1-Q5) was for-
mulated with the help of domain experts and consists of five realistic queries that might be
posed by a biologist. The second set (Q6-Q11) consists of six artificial queries designed to
test the effect on query answering performance of factors such as the number of individuals
in the answer, whether the query concept is equivalent to an atomic concept (if so, then the
answer can be returned without computing /�� ), and the number of candidate individuals in /)2
for which DL reasoning is required in order to determine if they form part of the answer. The
characteristics of the various queries with respect to these factors is shown in Table 1.

Table 1: Query characteristics
Query Equivalent to No. of Instances No. of “candidates”

Atomic Concept in Answer in / 2
Q1 Yes 2,641 n/a
Q2 No 0 284
Q3 No 3 284
Q4 Yes 7,728 n/a
Q5 Yes 25 n/a
Q6 No 13,449 551
Q7 No 11,820 116
Q8 No 12 603
Q9 No 19 19

Q10 Yes 4,543 n/a
Q11 Yes 1 n/a

3.1 Loading and Querying Tests

In these tests, we compared the performance of iS with that of RACER using the GO TBox
and different sized subsets of the GO ABox. The iS was first initialised with the GO TBox,
then for each ABox, we measured the time (in CPU seconds) taken to load the ABox into it.
A comparison with RACER is shown in Table 2.

The time taken by the iS to load the ABoxes increases more slowly than their size: for
ABox size 200, iS takes about 1s to add each individual axiom; by the time the ABox size has
reached 400,000 this has fallen to approximately 0.25s per axiom. In view of the equivalent
individuals optimisation employed by iS , however, it may be more relevant to consider the



Table 2: iS and RACER load and realise times (CPU seconds)
Number of Distinct Load & Realise (s)
Individuals Descriptions iS RACER

200 155 189 180
500 330 405 3,420

1,000 591 804 22,320
2,000 1,017 1,395 fault
5,000 2,024 2,906 fault

10,000 3,299 5,988 fault
20,000 5,364 11,057 fault
50,000 9,760 21,579 fault

100,000 15,147 33,456 fault
200,000 23,387 56,613 fault
400,000 35,800 96,503 fault
653,762 48,581 140,623 fault

time taken per distinct description: this increases from about 1s per description for the size
200 ABox (which contains 155 distinct descriptions) to approximately 3s per description for
the size 653,762 ABox (which contains 48,581 distinct descriptions).

The time taken by RACER to realise the smallest ABox is roughly the same as that taken
by iS . As the ABox size grows, however, the time taken by RACER increases rapidly, and
at ABox size 1,000 it is already taking approximately 22s per axiom. For larger ABoxes,
RACER broke down due to a resource allocation error in the underlying Lisp system.

Next, we measured retrieval times. For RACER, we carried out the same tests in two
different ways. In both cases we first initialised RACER with the GO TBox, then loaded the
ABox. In the first test, we used the realize-abox function to force RACER to compute a com-
plete realisation of the ABox before answering any queries; if the realisation was successfully
completed, we then timed how long it took to answer each of the queries. In the second test,
we simply timed how long it took RACER to answer each of the queries without first forcing
it to realise the ABox.

The results for iS when answering each of the five realistic queries and six artificial
queries are plotted against the size of the ABox in Figure 3; note the logarithmic scales on
both axes.

As can be seen, the time taken to answer queries like Q6 and Q8 becomes quite large.
In these cases, since the number of individuals in / 2 is large the time taken to check if these
individuals (roughly 0.2s per individual) dominates other factors. The number of “distinct”
individuals in the answer also has a significant impact on performance: when there are many
such individuals, the database query required in order to compute the complete answer set can
be quite time consuming.

The results for RACER when answering the same sets of queries are also taken, both in the
case where the ABox has been realised and where it has not. Timings are only approximate, as
precise measurements were not possible when using RACER under Windows. When the ABox



Figure 3: iS realistic (left) and artificial (right) query times -v- ABox size

had been realised, queries were answered almost instantly, but results are only available for
the relatively small ABoxes that RACER was able to realise (up to 1,000 individuals). When
the ABox was not realised, answers were again returned almost instantly for smaller ABoxes,
but when the ABox size exceeded 1,000 individuals the answer times increased dramatically,
and for ABoxes larger than 10,000 individuals (larger than 5,000 in the case of Q9) RACER

again broke down due to a resource allocation error in the underlying Lisp system.
It should be mentioned that the results for iS include significant communication overheads

(both with the database and DL reasoner), which was not the case for RACER since queries
were posed directly via its command line interface.

3.2 Pseudo-individual Tests

As discussed in � 1, one way to deal with role-free ABoxes is to treat individuals as atomic
concepts in the TBox (pseudo-individuals). To test the feasibility of this approach, we again
used the GO TBox and ABox, and the set of queries described above. To make the comparison
fair, only the distinct instantiated concept expressions are used. The FaCT system was used in
these tests as RACER broke down when trying to classify the GO TBox augmented with the
pseudo-individuals, again due to a resource allocation error in the underlying Lisp system.

In order to investigate how the pseudo-individual approach would scale with increasing
ABox (and hence TBox) size, we tried computing the concepts subsumed by each query with
the GO TBox alone (which contains 47,012 concept names) and with the TBox augmented
with the pseudo-individuals derived from the GO ABox (a total of 95,593 concept names).
The results of these tests are given in Table 3. It is important to note that they do not include
the time required to expand answers to include sets of equivalent individuals—as discussed
above, this can be quite time consuming for some queries (e.g., 19.5s in the case of Q9 with
the largest ABox).

As one can see, the time taken to compute the answers to the queries is heavily dependent
on the size of the answers, and in the case of Q4 with the pseudo-individual augmented TBox,
the time was over 600s. This is in contrast to iS , where the size of answer had comparatively
little effect on the time taken to answer queries. For queries with relatively small answers,



Table 3: Pseudo-individual query time (CPU seconds) and answer size
Query GO TBox GO TBox + ABox

Time Answer Size Time Answer Size

Q1 8.1 220 233.3 2,861
Q2 1.3 1 1.2 1
Q3 0.2 1 1.4 4
Q4 26.0 881 631.8 8,609
Q5 0.5 2 5.2 27
Q6 4.3 86 176.6 2,450
Q7 1.4 1 10.0 147
Q8 1.3 1 1.5 7
Q9 1.4 1 3.5 22
Q10 4.2 109 114.4 1,407
Q11 0.5 1 2.0 2

however, the pseudo-individual approach was highly effective, even for queries that were time
consuming to answer using iS .

4 Discussion and Future Work

Our experiments show that iS provides stable and effective reasoning for role-free ABoxes,
even those containing very large numbers of individuals. In contrast, full ABox reasoning us-
ing the RACER system exhibited accelerating performance degradation with increasing ABox
size, and at least the current RACER release was not able to deal with the larger ABoxes used
in our evaluation. The pseudo-individual approach to role-free ABox reasoning was more
promising, and may be worth further investigation.

The acceptability of the performance of iS would obviously depend on the nature of
the application and the characteristics of the KB and of typical queries. It is likely that the
performance of iS can be substantially improved simply by dealing with constant factors such
as communication overheads.

Future work includes the investigation of additional optimisations and enhancements,
such as providing a more sophisticated query interface. We are also investigating ways to
extend iS to ABoxes that are not completely role-free. This may be possible in restricted
cases by applying some form of precompletion [16] to the ABox.
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