
International Journal of Electronic Commerce / Summer 2004, Vol. 8, No. 4, pp. 39–60.
Copyright © 2004 M.E. Sharpe, Inc. All rights reserved.

1086-4415/2004 $9.50 + 0.00.

A Software Framework for Matchmaking Based on
Semantic Web Technology

Lei Li and Ian Horrocks

ABSTRACT: The semantic Web can make e-commerce interactions more flexible and au-
tomated by standardizing ontologies, message content, and message protocols. This pa-
per investigates how semantic and Web Services technologies can be used to support
service advertisement and discovery in e-commerce. In particular, it describes the design
and implementation of a service matchmaking prototype that uses a DAML -S based on-
tology and a description logic reasoner to compare ontology-based service descriptions.
By representing the semantics of service descriptions, the matchmaker enables the behav-
ior of an intelligent agent to approach more closely that of a human user trying to locate
suitable Web services. The performance of this prototype implementation was tested in a
realistic agent-based e-commerce scenario.

KEY WORDS AND PHRASES: Matchmaking, ontologies, semantic Web, Web services.

The semantic Web requires not only that data be machine-readable (just as the
Web does nowadays), but that they be machine-understandable. To quote Tim
Berners-Lee, the director of the World Wide Web consortium (W3C) and prime
architect of the semantic Web:

The semantic Web goal is to be a unifying system that will (like the Web
for human communication) be as un-restraining as possible so that the
complexity of reality can be described. [6]

With a semantic Web, it will be easy to realize a range of tools and
applications that are difficult to handle in the framework of the current Web.
Examples include knowledge repositories, search agents, and information
parsers.

Moreover, the developers of end-user applications will not need to worry
about how to interpret the information found on the Web, because ontologies
will be used to provide vocabulary with explicitly defined and machine-
understandable meaning [18].

Electronic commerce is an important semantic Web application area. A great
deal of attention has been focused on semantic Web services, the aim of which is
to describe and implement Web services so as to make them more accessible
to automated agents. Here, ontologies can be used to describe services so that
agents (both human and automated) can advertise and discover services
according to a semantic specification of functionality (as well as other
parameters, such as cost and security) [25].

The first author thanks members of the Intelligent Enterprise Technology Labora-
tory (IETL) at HP Labs, especially David Trastour and Claudio Bartolini, for their kind
help and support. The first author was funded by the Departmental Scholarship in
the Department of Computer Science at the University of Manchester.

40 LEI LI AND IAN HORROCKS

As a first step in realizing the semantic Web, new standards for defining
and using ontologies are already being developed. RDF, under development
by the W3C RDF Core working group, is a Web markup language that provides
basic ontological primitives [7]. DAML+OIL, an ontology language that
extends RDF with a much richer set of primitives (e.g., boolean operators
and cardinality constraints), is now the basis for the W3C Web Ontology
Language working group’s development of the OWL ontology language
standard [4, 9].

If applications are to exchange semantic information, they will need to
use common ontologies. One such ontology, written in DAML+OIL and
designed for describing Web services, is the DAML-S ontology [24]. This
paper presents a case study of an e-commerce application in which the
DAML-S service ontology is used to provide the vocabulary for service
descriptions.1 These descriptions are used in a matchmaking prototype— a
repository where agents can advertise and search for services that match a
semantic description. The agent platform for the prototype was JADE, and
the RACER DL reasoner was used to compute semantic matches between
service advertisements and service requests [5, 10]. The paper illustrates some
difficulties both in the application of the DAML-S ontology and in the use of
the DL reasoner, and shows how these were overcome in the prototype
implementation. Finally, the prototype is subjected to a performance analysis
in order to discover whether the approach is likely to be feasible in large-
scale Web applications.

Background

Ontology Languages

As already mentioned, ontologies play a key role in the semantic Web by
providing vocabularies that applications can use to understand shared in-
formation.

DAML+OIL is an ontology language designed specifically for use in the
semantic Web. It was produced by merging two ontology languages, OIL and
DAML. OIL integrates features from frame-based systems and description
logics (DLs), and has an RDF-based syntax. DAML is more tightly integrated
with RDF, enriching it with a larger set of ontological primitives [13].

Because DAML+OIL is based on a description logic, a DL reasoner can be
used to compare (semantically) descriptions written in DAML+OIL. This
provides a powerful framework for defining and comparing e-commerce
service descriptions.

Service Description Languages

Choosing the appropriate service ontology is an important part of the
matchmaking prototype. The discussion that follows will illustrate why it is
reasonable to consider DAML-S in this context.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 41

WSDL

WSDL (Web Services Description Language) is an XML format for describing
network services in abstract terms derived from the concrete data formats
and protocols used for implementation [28].

As communication protocols and message formats are standardized in the
Web community, it becomes possible and important to describe communications
in a structured way. WSDL addresses this need by defining an XML grammar
for describing network services as collections of communication endpoints
capable of exchanging messages. WSDL service definitions provide
documentation for distributed systems and serve as a recipe for automating the
details involved in application communications.

However, WSDL does not support semantic description of services. For
example, it does not support the definition of logical constraints between its
input and output parameters, although it has the concept of input and output
types as defined by XSD.

UDDI

UDDI (Universal Description, Discovery, and Integration) is another emerg-
ing XML-based standard for Web service description [26]. It enables a busi-
ness to describe its business and services, discover other businesses that offer
desired services, and integrate with these other businesses by providing a
registry of businesses and Web services.

UDDI describes businesses by their physical attributes, such as name,
address, and the services they provide. UDDI descriptions are augmented by
a set of attributes, called tModels, that describe additional features, such as
the classification of services within taxonomies like NAICS (North American
Industry Classification System).

Since UDDI does not represent service capabilities, however, the tModels
it uses only provide a tagging mechanism, and the search performed is only
done by string matching on some fields they have defined. Thus, it is of no
use for locating services based on a semantic specification of their
functionality.

DAML -S

DAML-S supplies Web service providers with a core set of markup language
constructs for describing the properties and capabilities of their Web services
in unambiguous, computer-interpretable form. DAML-S markup of Web ser-
vices is intended to facilitate the automation of Web service tasks, including
automated Web service discovery, execution, interoperation, composition, and
execution monitoring [24].

In DAML-S, service descriptions are structured into three essential types of
knowledge: a ServiceProfile, a ServiceModel (which describes the ServiceProfile),
and a ServiceGrounding. The ServiceProfile is typically required in a

42 LEI LI AND IAN HORROCKS

matchmaking process because it provides the information needed for an agent
to discover a service that meets its requirements.

Paolucci, Kawamura, Payne, and Sycara have described some experiments
designed to prove that DAML-S and its ServiceProfile can take up the challenge
of representing the functionalities of Web services [20].

Matchmaking Systems

InfoSleuth

InfoSleuth, an agent-based information discovery and retrieval system,
adopts “broker agents” to perform the syntactic and semantic matchmaking
[18, 19].

The broker agent matches agents that require services with other agents
that can provide them. By maintaining a repository containing up-to-date
information about the operational agents and their services, the broker enables
the querying agent to locate all available agents that provide appropriate
services.

Syntactic brokering is the process of matching requests to agents on the
basis of the syntax of the incoming messages that wrap the requests. Semantic
brokering is the process of matching requests to agents on the basis of the
requested agent capabilities or services, with the agent capabilities and services
described in a common shared ontology of attributes and constraints. This
single domain-specific ontology is a shared vocabulary that all agents can use
to specify advertisements and requests to the broker.

In InfoSleuth, service capability information is written in LDL++, a logical
deduction language [8]. Agents use a set of LDL++ deductive rules to support
inferences about whether an expression of requirements matches a set of
advertised capabilities. In contrast, the authors prefer to describe services
using a standard ontology language with a declarative semantics. Such
descriptions are easy to understand, highly portable, and do not constrain
agents to use any particular deductive mechanism.

RETSINA/LARKS

Sycara, Lu, Kilusch, and Widoff and Sycara, Paolucci, van Velsen, and
Giampapa have developed a multiagent infrastructure named RETSINA (Re-
usable Task Structure-based Intelligent Network Agents) [21, 22]. Media-
tion in this system also relies on service matchmaking, although their
specification of capability and service descriptions is different from the one
presented here.

They distinguished three general agent categories in cyberspace: service
provider, service requester, and middle agent. To describe the capabilities of
these agents in the matchmaking process, they have defined and implemented
an ACDL (Agent Capability Description Language) called LARKS (Language
for Advertisement and Request for Knowledge Sharing). Larks offers the option

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 43

of using application domain knowledge in any advertisement or request by
using a local ontology, written in a specific concept language, ITL, to describe
the meaning in a Larks specification.

As with InfoSleuth, the methodology presented here differs from this system
in respect to service description language, agent platform, and matching
engine. Moreover, the approach adopted here seeks to ensure that the service
description language lends itself to the negotiation process, that is, that the
same service description language is applicable to the negotiation stage.2

DLs and DAML+OIL

The use of description logics and DAML+OIL is central to the approach pre-
sented here. Some details of the two formalisms will therefore be helpful in
understanding the remainder of the paper.

Description Logics

Description logics are a well-known family of knowledge-representation for-
malisms. They are based on the notion of concepts (unary predicates, classes)
and roles (binary relations) and are mainly characterized by constructors that
allow complex concepts and roles to be built from atomic ones [15]. A DL
reasoner can check whether two concepts subsume each other [12].

A DL knowledge base typically consists of two components, a “TBox” and
an “ABox.” The TBox defines the structure of the knowledge domain and
consists of a set of asserted axioms—say, the definition of a new concept in
terms of other previously defined concepts. The ABox contains a concrete
example of the knowledge domain and asserted axioms about individuals—
for example, an individual is an instance of a concept, or an individual is
related to another by a role.

In the following sections, DL notations will be used to express our design.
Thus, it will be useful to give an overview of DL languages and notations. A
detailed discussion of DLs is, however, beyond the scope of this paper, and
the interested reader is referred to Baader et al. for further details [1].

Description Logics Syntax

Elementary descriptions are atomic concepts and atomic roles. Complex descrip-
tions can be built from them inductively with concept constructors. The discussion
that follows will use abstract notation. The letters A and B are used for atomic
concepts, the letter R for atomic roles, and the letters C and D for concept descrip-
tions. Description languages are distinguished by the constructors they provide,
and the language �� is a minimal language that is of practical usage. Concept
descriptions in �� are formed according to the following syntax rule [1]:

C, D → A (atomic concept)

44 LEI LI AND IAN HORROCKS

l (universal concept)
k (bottom concept)
¬ A (atomic negation)
C n D (intersection)
�R.C (universal value restriction)
∃ R.l (limited existential value restriction)

To give examples of what can be expressed in ��, suppose that Person and
Female are atomic concepts. Then Person n Female and Person n ¬Female are ��
concepts describing, intuitively, persons who are female and persons who are
not female. If it is supposed, in addition, that hasChild is an atomic role, the
concepts Person n ∃hasChild.l and Person n �hasChild.Female can be formed,
denoting persons who have a child and persons whose children are all female.
Using the bottom concept (k), we can also describe persons without a child by
the concept Person n�hasChild.k [1].

This basic �� language does not fulfill the requirements of the present
investigation because it is necessary to be able to reason with DAML+OIL
descriptions, which include, for example, cardinality restrictions on roles, and
data types (integers, strings, etc.). Therefore the DL ����(D) is used, because
its expressive power is (almost) equivalent to that of DAML+OIL [11, 13, 15].
This language consists of the basic �� language plus the negation of arbitrary
concepts, (qualified) cardinality restrictions, role hierarchies, inverse roles,
transitive roles, and data types (a restricted form of DL concrete domains). A
detailed discussion of these and other DL constructors can be found in Baader
et al. [1].

The increased expressive power of the language is manifested in a range of
additional constructors, including:

∃ R.C (full existential value restriction)
¬C (atomic negation of arbitrary concept)
≤ n R (at-most cardinality restriction)
≥ n R (at-least cardinality restriction)
= n R (exact cardinality restriction)
≤ n R.C (qualified at-most cardinality restriction)
≥ n R.C (qualified at-least cardinality restriction)
= n R.C (qualified exact cardinality restriction)
≤n R (concrete domain max restriction)
≥n R (concrete domain min restriction)
=n R (concrete domain exact restriction)

Here are some examples of what can be expressed with these new
constructors: If Woman ≡ Person n Female, then Woman n ∃hasChild.Person
intuitively denotes “mothers,” ¬Woman denotes individuals who are not
women, Mother n ≥ 3 hasChild denotes a mother with more than three
children, Mother n = 3 hasChild denotes a mother with exactly three daughters,
and Person n ≥ 18 hasAge denotes “adults,” that is, a person whose age is
greater than 18.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 45

DL semantics

In order to define a formal semantics of DLs, it is necessary to consider interpretations
� that consist of a nonempty set ∆� (the domain of the interpretation) and an
interpretation function, which assigns to every atomic concept A a set A� � ∆�,
and to every atomic role R a binary relation R� � ∆�. The interpretation of complex
concepts is built up from the interpretation of primitive concepts [e.g., (C n D)� =
C� ∩ D� and (∃R.l)� = {a∈∆� ∃b.(a, b)∈R�}.

We say that two concepts C, D are equivalent, and write C ≡ D, if C� = D�

for all interpretations �. For instance, going back to the semantics of concepts,
one can easily verify that �hasChild.Female n �hasChild.Student and
�hasChild.(Female n Student) are equivalent. A complete interpretation function
for concept description can be found in Baader et al. [1].

Terminologies

In DLs, a knowledge base (equivalent to an ontology) consists of a set of ter-
minological axioms that asserts how concepts or roles are related to one other.
In the most general case, terminological axioms have the form:

C , D (R , S) or C ≡ D (R ≡ S)

where C, D are concepts (and R, S are roles). The first kind of axiom is called
an inclusion, and the second is called an equivalence.

An equivalence whose left-hand side is an atomic concept is sometimes
called a definition, and can be thought of as introducing symbolic names for
complex descriptions [1].3

DAML+OIL

DAML+OIL is a DL-based Web ontology language. Like any other DL,
DAML+OIL describes the structure of a domain in terms of classes (concepts in
DL) and properties (roles in DL). DAML+OIL is, in fact, based on the ���� (D)
DL, and provides an almost equivalent set of class constructors and class and
property axioms (DAML+OIL extends ����(D) with the oneOf constructor
for defining classes extensionally). Like ����(D), DAML+OIL also supports
the use of data types and data values in class description, with DAML+OIL
relying on XML Schema data types for this purpose. For a complete description
of DAML+OIL, the interested reader is referred to Van Harmelen et al. [27].

The DAML-S Service Ontology

The DAML-S Web service ontology will be used as the basis for representing
e-commerce constructs like advertisements and service queries.

46 LEI LI AND IAN HORROCKS

DAML-S is a DAML+OIL service-description ontology [24]. Through its
tight connection with DAML+OIL, DAML-S supports the need for the semantic
representation of services. DAML+OIL allows for subsumption reasoning on
concept taxonomies, for the definition of relations between concepts, and for
the application of property restrictions on the parameters of service concepts.
This means that DAML-S can be used to define the entities in e-commerce life
cycles, such as advertisements and requests, and to implement the
matchmaking functionalities by using a DL reasoner to compute the
subsumption relationships of those concepts.

DAML-S aims to facilitate discovery, execution, interoperation, composition,
and execution monitoring of Web services. It defines the notions of a service
profile (what the service does), a service model (how the service works), and
a service grounding (how to use the service).

A service profile describes who provides the service, the expected quality
of the service, and the transformation produced by the service in terms of
what it expects to run correctly and what results it produces. Specifically, it
specifies the preconditions that have to be satisfied for effective use of the service,
the inputs that the service expects, the effects expected from the execution of
the service, and the outputs returned [24]. Because the behavioral aspects of a
service profile are outside the scope of this paper, the discussion here will
only concern the fact that a service can be represented by input and output
properties (which represent the functional attributes of a service).

Based on the investigation by Paolucci et al. [20], one may conclude that
the ability of DAML-S to describe the semantics of Web services meets the
requirements of the matchmaking framework:

• Restrictions and constraints on service descriptions can be expressed.
• It provides the shared semantics needed to achieve interoperability.
• Descriptions are amenable to automated reasoning.
• It provides appropriate support for data types.
• Flexibility is provided by its support for loosely structured descrip-

tions (semistructured data).

Service Description

A Sample Ontology

Since service-description ontologies will have an important role to play in
the work discussed here, it was necessary to design a domain-specific sample
ontology about the sales of computers to achieve agreement at the semantic
level between various parties.4 The prototype used the OilEd ontology edi-
tor to build DAML+OIL ontologies [3]. For the purposes of clarity and com-
pactness, however, this paper will use DL notions in place of the DAML+OIL
syntax.

The ontology uses the DAML-S ServiceProfile class as a common superclass
for the concepts Advertisement, Query, Template, and Proposal, so they can be
expressed as

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 47

ServiceProfile , l
Advertisement , ServiceProfile
Query , ServiceProfile
Template , ServiceProfile
Proposal , ServiceProfile

Two kinds of services are also described in this ontology: Sales and Delivery.
Sales describes the sale of an item of EEquipment through constraints on the object
properties and data type properties, such as the unit price. Delivery describes the
structure of delivery information by specifying, for example, that there must be
exactly one DeliveryLocation and exactly one DeliveryDate.

In accordance with the DAML-S 0.6 specification, Sales also includes the
providing and requesting Actors as the values of providedBy and requestedBy
properties. This allows the advertiser and the requester to specify who they
are and restrict who they would like to do business with.

ServiceProfile , (=1 providedBy.Actor) n
(=1 requestedBy.Actor) n
(=1 item.EEquipment) n
(=1 hasQuantity.Integer)
(=1 hasUnitPrice.Integer) n
(=1 canDeliver.Delivery)

Delivery , (= 1 location.DeliveryLocation) n
(= 1 date.DeliveryDate)

Actor , (= 1 hasName.ActorName) n
(= 1 hasCreditLevel.Integer)

To express the concept computer used in this example, a class PC is defined
as a subclass of EEquipment, and must have several properties, like hasProcessor
and memorySize.

PC , EEquipment n
(= 1 hasProcessor.Processor) n
(= 1 memorySize.positiveInteger)

Processor ≡ PentiumIII b Pentium4 b Athlon

As noted in the preceding section, the service is represented by the input
and output properties of the profile. The input property specifies the
information that the service requires to proceed with the computation.

For example, a PC-selling service could require such information as unit
price and quantity as the inputs to sell. The outputs specify the result of the
operation of the service. In the PC-selling case, the output could be an item
description that acknowledges the sale.

These restriction properties are divided into inputs and outputs according
to the context in which they are used.5 In particular, inputs are used by
buyers and sellers to describe business constraints (e.g., unit quantity, unit
price, delivery information), and outputs are used to describe the product
itself.

48 LEI LI AND IAN HORROCKS

inputs , parameter
outputs , parameter

hasQuantity , inputs
hasUnitPrice , inputs
canDeliver , inputs

item , outputs

These simple constructs made it possible to express the concepts needed in
this context, but arbitrarily complex DAML+OIL constructs could be used if
required. The next several sections will show the examples used in the
matchmaking process.

Advertisement

Let us now consider the example of an advertisement. Suppose that one wants
to specify the concept of an advertisement by which the Actor would like to
sell some PCs. There are several restrictions on the Sales and the Delivery. For
example:

• Items are provided by an Actor with name “Georgia.”
• Items are PCs and the memory size is at least 128 Mb.
• The quantity of PCs being bought will be less than 200.
• The unit price is more than 700.
• The seller must have a creditLevel greater than 5.
• Goods must be delivered before September 15, 2002.
• Goods must be delivered in Bristol.

In DL notation, this advertisement can be written as:

Advert1 ≡ ServiceProfile n
(�providedBy.(ActornhasName.{Georgia}) n
�requestedBy.(Actor n ≥ 5 hasCreditLevel) n
�item.(PC n ≥128 memorySize) n
≥ 700 hasUnitPrice n
≤ 200 hasQuantity n
�delivery.(Delivery n
≤ 20030501 date n �location.Manchester))

In DAML+OIL, the way to express a concept like “has unit price more than
700” is to define a new data type “more700,” and describe it “�hasUnitPrice.more700.”
However, for achieving concept reasoning with data types using the RACER
reasoner, the RACER syntax is used to express this kind of concept “(≥700

hasUnitPrice).”
In addition, intuitively, an advertisement should be an instance rather than

a concept. That is, it looks more reasonable to express it as Advert1 ∈ ServiceProfile
n The reason for treating advertisements as TBox concepts is that TBox
reasoning is often more effective than ABox reasoning, and is equivalent to

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 49

ABox reasoning when the ABox is restricted to assertions of this type. In this
example instance advertisements are treated as atomic primitive concepts.
Thus, instead of having the ABox assertion a:C, a TBox assertion, Ca , C,6 is
used. In contexts like the present e-commerce application, where individuals
are not related to one another via properties, this does not lead to any loss of
inferential power. Since this issue is beyond the scope of the paper, the
interested reader is referred to the treatment by Tessaris [23].

Query

As in the case of the advertisement, a query can be defined by which Actor
would like to buy some PCs. For example, restrictions to Sales and Delivery
could express the following:

• The provider is an Actor with creditLevel greater than 5.
• Items are PCs, and the Processor must be Pentium4.
• The unit price must be less than 700.

From the Description Logic point of view, the query and the advertisement
are almost identical. Both of them are subsumed by the concept ServiceProfile.

Note that the query does not specify anything about the delivery. The
flexibility of DL-based languages like DAML+OIL makes it possible to do this
and still be able to find relevant matches.

Query1 ≡ ServiceProfile n
(� providedBy.(Actor n ≥5 hasCreditLevel) n
�item.(PC n 8hasProcessor.Pentium4)
≤700 hasUnitPrice))

Revised Design

As discussed in the first section, in accordance with DAML-S, the providing
and requesting Actors have been included as the values of providedBy and
requestedBy properties in the definitions of advertisements and queries. This
design looks reasonable and rational but has a fatal error.

Consider the advertisement Advert1, which has the property providedBy.(Actor
n �hasName.{Georgia}). Consider the request Query1, and suppose that we
perform a matchmaking operation between Advert1 and Query1 using a DL
reasoner to (semantically) compare the DAML+OIL descriptions. Owing to
the existence of providedBy.(Actor n �hasName.{Georgia}), there is no
subsumption relationship between Query1 and Advert1. All one can do is prove
that the two descriptions are not incompatible (their intersection is not
equivalent to the bottom concept). This is probably the case because the
requester could not have the knowledge that the looked-for service will be
provided by an Actor with the name “Georgia.” Matches of this kind are weak
and do not allow for result selection via a hierarchy of match types with varying
specificity (discussed below).

50 LEI LI AND IAN HORROCKS

This design problem is inherent to the DAML-S specification. There is too
much information inside the service profile, and this makes it difficult to use
automated reasoning techniques to compute semantic matches between service
descriptions.

The problem is fixed by modifying the design of advertisements and queries.
The new design treats advertisements and queries as objects with various
properties, one of which is the profile. Information about who is providing
and requesting services is removed from the service profile and attached to
advertisements and queries via the providedBy and requestedBy properties (this
could be thought of as some extra information provided by the advertiser/
querier). The core ServiceProfile component is attached to advertisements and
queries via the profile property, and includes constraints such as item
information, unit price, unit quantity, and delivery information. Later, in the
matchmaking phase, only this ServiceProfile part of an advertisement will be
used when computing semantic matches. Constraints such as hasCreditLevel
might also be used in realistic e-commerce applications, such as eBay
(www.ebay.com) or Amazon (www.amazon.com), but we do not consider them
in the prototype.

The modified design uses the following notation to separate the different
components of an advertisement:

Advert1 = (providedBy (Actor n �hasName.{Georgia}),
requestedBy (Actor n ≥5 hasCreditLevel),
profile (ServiceProfile n
�item.(PC n ≥128 memorySize) n
≥700 hasUnitPrice n
≤200 hasQuantity n
�canDeliver.(Delivery n
≤20030501 date n �location.Manchester))

Similarly, queries are written as:

Query1 = (providedBy (Actor n ≥5 hasCreditLevel),
profile (ServiceProfile n
�item.(PC n �hasProcessor.Pentium4) n
≤700 hasUnitPrice))

Matchmaking Operation

Matching Definition

Matchmaking is defined as a process that requires a repository host to take a
query or an advertisement as input, and to return all the advertisements that
may satisfy the requirements specified in the input query or advertisement.7

Formally, this can be specified as:
Let α be the set of all advertisements in a given advertisement repository.

For a given query or advertisement, Q, the matchmaking algorithm of the

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 51

repository host returns the set of all advertisements that are compatible,
matches(Q):

matches(Q) = {A ∈ /α compatible(A, Q) }

Two descriptions are compatible if their intersection is satisfiable:

satisfiable(D1, D2) ⇔ ¬(D1 n D2 , l)

For example, consider the following query:

Query2 = (providedBy (Actor n �hasName.{Alan}),
requestedBy (Actor n =5 hasCreditLevel),
profile (ServiceProfile n
�item.(PC n =256 memorySize) n
=500 hasUnitPrice))

The intersection of this query with Advert1 is satisfiable. Formally,

Advert1∈matches(Query2)

Matching Algorithm

To understand the matching algorithm adopted in the prototype, it is first
necessary to introduce the definition of the degree of match. This notion is
introduced because it is not particularly useful merely to determine that an
advertisement and query are not semantically incompatible. Therefore, start-
ing from the matching degree definition described by Paolucci et al. [20], the
match level “intersection satisfiable” is extended to:

• Exact: If advertisement A and request R are equivalent concepts, then
one calls the match Exact; formally, A ≡ R.

• PlugIn: If request R is a subconcept of advertisement A, then one
calls the match PlugIn; formally, R , A.

• Subsume: If request R is a superconcept of advertisement A, then
one calls the match Subsume; formally, A , R.

• Intersection: If the intersection of advertisement A and request R is
satisfiable, then one calls the match Intersection to distinguish it from
Disjoint, where the advertisement and request are completely
incompatible (this distinction was not made by Paolucci et al. [20]);
formally, ¬(A n R , k).

• Disjoint: Otherwise, one calls the match Disjoint; that is, A n R , k.

Degrees of the match are organized on a discrete scale. Exact matches are
clearly preferable. PlugIn matches are considered the next-best, because
advertisers may be expected to also provide specific (subclass) services. For
example, an advertiser selling PCs might be expected to sell specific kinds of
PCs. Subsume matches are considered to be third-best, because an advertiser
may also provide specific (superclass) services. For example, an advertiser
selling used PCs may sell PCs in general.8 Intersection is considered to be

52 LEI LI AND IAN HORROCKS

fourth-best. It only says that the advertisement is not incompatible with the
request. Disjoint is the lowest level, because it shows that no item could satisfy
both the advertisement and the request—it is considered to be a failed match.

With these definitions of match degrees, the process of matching a request
can now be introduced. The RACER system is used to compute a ServiceProfile
hierarchy for all advertised services. For an incoming request, RACER is used
to classify the input/output parts of the request’s ServiceProfile R (i.e., to
compute the input/output parts of R’s subsumption relationships with
respect to the input/output parts of all the advertisement ServiceProfiles).
To express it precisely, a piece of pseudocode is presented in Figure 1. In the
pseudocode, the inequations like “degreeMatch < globalDegreeMatch”
follow the definition of match ordering (i.e., “Disjoint < Intersection <
Subsume < PlugIn < Exact”).

Prototype Implementation

This section describes the implementation of a multiagent system that includes
matchmaking, advertising, and querying agents. The system emulates a simple
but realistic e-commerce scenario. Some issues, however, such as security (e.g.,
fraud), have not been taken into account, because they were not considered
relevant to the purpose of investigating ontology-based service description
and a DL-based matchmaking service.

Abstract Roles

The usability of service descriptions and matchmaking in the semantic Web
will be tested by introducing a scenario in which agents play a variety of roles.

doMatch(Request) {
forall advertisements in Repository do {
globalDegreeMatch = Exact
degreeMatch = matchDegree(RqInputs, AdInputs)
if (degreeMatch < globalDegreeMatch)
globalDegreeMatch = degreeMatch
degreeMatch = matchDegree(RqOutputs, AdOutputs)
if (degreeMatch < globalDegreeMatch)
globalDegreeMatch = degreeMatch
storeResult(currentAdvertisement, globalDegreeMatch)
}
}
matchDegree(R, A) {
if concept-equivalent(R, A) return Exact
if concept-subsumes(A, R) return PlugIn
if concept-subsumes(R, A) return Subsume
if concept-subsumes(:R, A) return Disjoint
return Intersection
}

Figure 1. Pseudocode for Request Matching

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 53

• Host manages the repository of advertisements and queries, and
performs the matching function by communicating with a DL
reasoner.

• Advertiser publishes advertisements to the host, and modifies,
withdraws, and browses advertisements stored in the repository.

• Seeker sends a query to the host, and gets the matched advertise-
ments back.

All three of these abstract roles can be played by the same entity at different
times or even at the same time, (e.g., an information broker is an Advertiser
and a Seeker at the same time). With this abstract definition, different types of
matchmaking systems can be covered by adding one or more roles to the
concrete entity in the real system.

Functionalities

The matchmaking service provides five kinds of functionalities: advertising a
service, querying a service, withdrawing the published service, modifying
the published service, and browsing advertised services in the repository.

Advertising

The Advertiser publishes to the Host a service description of what it is pro-
viding or seeking. This description captures the relevant features of the ser-
vice, including the service profile component that will be used in matchmaking.

Querying

The Seeker can submit a query to find relevant advertisements among the
currently available ones. By adding constraints on aspects that the Seeker is
interested in, the query can be used to filter irrelevant advertisements. Two
kinds of queries can be defined:

• Volatile Query: The seeker submits a query to the Host, the matched
advertisements are immediately returned, and then the Host discards
the query.

• Persistent Query: The seeker can also submit a persistent query to the
Host. A persistent query is a query that will remain valid for a length
of time defined by the Seeker. The Host immediately returns
matched advertisements that are currently present in the repository.
Within the validity period of the query, whenever a matching adver-
tisement is added to the repository (or an advertisement is modified
so that it becomes a match), the Host will notify the Seeker with a
new set of matched advertisements including those that have been
changed or added. The persistent query is automatically removed
when the validity period is ended.

54 LEI LI AND IAN HORROCKS

Modifying/Withdrawing

An Advertiser can modify and withdraw the advertisements it has published
before. After the Advertiser publishes an advertisement to the Host, the Host
notifies an ID indicating the advertisement to the Advertiser. Later on, this ID
is used between the Host and the Advertiser to specify which advertisement
is to be modified or withdrawn. There is an obvious security issue involved,
but it is assumed that all the partners in the framework are trusted.

Browsing

The Host offers the functionality of browsing the currently available adver-
tisements. It maintains an advertisement repository, where published adver-
tisements are stored. In finding out about advertised services, browsing parties
can make use of this information to tune the advertisements they will submit
to maximize the likelihood of matching.

Agents

JADE was chosen as the agent platform because the goal of JADE is to sim-
plify the development of multiagent systems while ensuring standard com-
pliance through a comprehensive set of system services and agents in
compliance with FIPA specifications. The benefit of JADE is that one can con-
centrate on the agent functionalities and leave other things, like communica-
tion between agents, to the platform.

Three kinds of agents have been implemented:

• HostAgent has the responsibility to initialize the RACER server using
assigned ontologies and maintain the advertisement repository. This
is the core component of the system, and its operation is described in
more detail below.

• AdvertiserAgent publishes the advertisement to the HostAgent,
withdraws, and modifies its own advertisement if needed. It can also
browse the advertisement repository in HostAgent.

• SeekerAgent has the choice of publishing a volatile or persistent
request to the HostAgent. It also has the browse functionality.

Matchmaking

At the beginning of the matchmaking process, the HostAgent initializes RACER
with the service ontology described. The RACER system uses the ontology to
compute the subsumption relations between advertisements and requests
throughout the whole matchmaking process. On receiving an advertisement,
the HostAgent assigns it a unique ID and stores it in the repository. It then
sends the advertisement’s ServiceDescription to the RACER system to be added
to the subsumption hierarchy.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 55

On receiving a request, the HostAgent uses the RACER system to compute
all the match degrees between the request and each advertisement in the
repository, as described. Matching advertisements are returned to the seeker
agent, along with their IDs and match degrees (Exact, PlugIn, etc.). For
efficiency reasons, match results for a persistent request are maintained until
the request expires.

The HostAgent stores persistent requests along with an ID and expiry
duration. At the same time that it classifies new (and updated) advertisements,
the HostAgent will check all persistent requests, delete them if expired, and
compute their match degree with respect to the new (or updated)
advertisement. If a match is found, the information is added to the stored
information from the initial matchmaking, and the complete result for the
persistent request is returned to the seeker agent.

Evaluation

In terms of functionality, the matchmaking stage has achieved its purpose: It
can respond to an input request with the results of matched advertisements.
However, to find a match for a particular request, the RACER reasoner needs
to check the satisfiability of the request with each advertisement already pub-
lished to the Matchmaking host. Given the high worst-case complexity of rea-
soning with DAML+OIL descriptions,9 the question of scalability arises.
Therefore the prototype implementation was used to carry out some simple
experiments designed to test the system’s performance in a realistic agent-
based e-commerce scenario. The experiment used datasets of between 100
and 1,500 advertisements, and recorded the time the DL reasoner needed to
find matched advertisements in response to a given request. The data sets
were artificially generated by randomly creating the specifications of adver-
tisements. For example, the range of location and hasProcessor were randomly
chosen from a set of concepts in the ontology, and the numbers of memorySize
and hasUnitPrice were randomly chosen from a fixed range of integers. All the
experiments were performed on a machine equipped with a Pentium III 850
MHz processor, with 256 MB of main memory and running LINUX with the
kernel version 2.4.9.

The results showed that, regardless of the number of advertisements, if the
advertisements have already been classified (in RACER’s TBox), then the
reasoning time required to respond to a matching request is always less than
20 milliseconds—so small that accurate measurement was difficult. This would
be fast enough for the matchmaking system to handle a high frequency of
matching requests.

In contrast, classifying the advertisements in the TBox is time-consuming.
From the comparison of the different-size data sets shown in Figure 2, one can
see that the average classification time per advertisement (shown on the y-
axis) increases rapidly with the size of the data set (shown on the x-axis). The
time rises from 49.57 milliseconds per advertisement for a data set of size 100,
and increases to 715.33 milliseconds per advertisement for a data set of size
1,500.

56 LEI LI AND IAN HORROCKS

Although this test illustrates that data-set size is an important issue in
applications that use a DL reasoner, it does not mean that large data sets cannot
be handled. For instance, in the prototype, the TBox classification could be
done off-line. That is, for all the published advertisements, the TBox is classified
before the matchmaking process starts, and the classified TBox is used to reason
about requests. As for new incoming advertisements, they can simply be
inserted into the classified TBox hierarchy, which is much easier than classifying
the entire TBox.10

Conclusion

This paper introduces service matchmaking in e-commerce, assesses the re-
quirements for a service-description language and ontology, and argues that
DAML+OIL and DAML-S fulfill these requirements. The argument is sup-
ported by the design and implementation of a prototype matchmaker that
uses a DL reasoner to match service advertisements and requests based on the
semantics of ontology-based service descriptions. By representing the seman-
tics of service descriptions, the matchmaker enables the behavior of an intelli-
gent agent to approach more closely that of a human user trying to locate
suitable Web services (assuming that a suitable ontology has already been
developed and deployed).

The design of the prototype matchmaker revealed a problem with the use
of DAML-S in matchmaking: DAML-S service profiles contain too much
information for effective matching. This problem was solved by separating

Figure 2. RACER Classification Times

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 57

various components of the description. In particular, the description of the
service being provided was separated from the descriptions of the providing
and requesting “actors.”

Finally, the performance of the prototype implementation was evaluated
using a simple but realistic e-commerce scenario. This revealed that, although
the initial classification of large numbers of advertisements could be quite
time-consuming, subsequent matching of queries to advertisements could be
performed efficiently. Based on these preliminary results, it seems possible
that DL reasoning technology can cope with large-scale e-commerce
applications. Future work will include more extensive testing to establish
whether this is the case.

NOTES

1. Coincidentally, a similar approach has been adopted by Di Noia, Di Sciascio,
Donini, and Mongiello [9].

2. After finding suitable services, a consuming agent may enter into a negotia-
tion with the providing agent regarding the terms of service provision (cost,
delivery, etc.)

3. This does not hold in the general case where the knowledge base can contain
arbitrary axioms.

4. Note that this simple ontology is only intended for didactic purposes. In
realistic applications, much larger and more comprehensive ontologies would be
required.

5. The matchmaking algorithm is based on this division.
6. The idea is to create a “pseudo-concept,” Ca, which is a subconcept of C.

Thus, an individual instantiation is expressed using a concept implication.
7. It is obvious that the host needs to return advertisements on receiving a

query, but it is also reasonable for the host to return advertisements on receiving an
advertisement; for example, an advertiser might want to know the advertisements
made by the others so that he can make some modification to his business strategy.

8. One could argue that Subsume is preferable to PlugIn, but this discussion is
beyond the scope of the present work and would not qualitatively affect the
performance of the prototype.

9. Key inference problems for the logic implemented in the RACER system have
worst-case EXPTIME complexity in the size of the input.

10. However, removing advertisements from the TBox hierarchy would be more
difficult.

REFERENCES

1. Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P.F., eds. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge: Cambridge University Press, 2003.

2. Bartolini, C.; Preist, C.; and Jennings, N. Architecting for reuse: A
software framework for automated negotiation. In F. Giunchiglia, J. Odell,
and G. Weiss (eds.), Proceedings of the Third International Workshop on Agent-
Oriented Software Engineering. Bologna: Springer, 2002, pp. 88–100.

3. Bechhofer, S.; Horrocks, I.; Goble, C.; and Stevens, R. OilEd: A reason-
able ontology editor for the semantic Web. In Proceedings of the Joint German/

58 LEI LI AND IAN HORROCKS

Austrian Conference on Artificial Intelligence (KI 2001), no. 2174 in Lecture
Notes in Artificial Intelligence. Vienna: Springer, 2001, pp. 396–408.

4. Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness,
D.L.; Patel-Schneider, P.F.; and Stein, L.A. OWL Web ontology language 1.0
reference. W3C proposed recommendation (www.w3.org/TR/owl-ref).

5. Bellifemine, F.; Poggi, A.; and Rimassa, G. JADE—A FIPA2000-compliant
agent development environment. In J. Müller, E. Andre, S. Sen, and C.
Frasson (ed.), Proceedings of the Fifth International Conference on Autonomous
Agents. Montreal: ACM, 2001, pp. 216–217.

6. Berners-Lee, T. Weaving the Web. San Francisco: Harper, 1999.
7. Brickley, D., and Guha, R.V. RDF vocabulary description language 1.0: RDF

schema. W3C proposed recommendation (www.w3.org/TR/rdf-schema).
8. Chimenti, D.; Gamboa, R.; Krishnamurthy, R.; Naqvi, S.A.; Tsur, S.; and

Zaniolo, C. The LDL system prototype. IEEE Transactions on Knowledge and
Data Engineering, 2, 1 (1990), 76–90.

9. Di Noia, T.; Di Sciascio, E.; Donini, F.M.; and Mongiello, M. A system for
principled matchmaking in an electronic marketplace. International Journal of
Electronic Commerce, 8, 4 (summer 2004), 9–37.
10. Haarslev, V., and Moller, R. RACER system description. In R. Goré, A.
Leitsch, and T. Nipkow (ed.), Proceedings of the International Joint Conference
on Automated Reasoning (IJCAR 2001). Siena: Springer, 2001, pp. 701–705.
11. Horrocks, I. DAML+OIL: A reason-able Web ontology language. In C.S.
Jensen, K.G. Jeffery, J. Pokorny, S. Saltenis, E. Bertino, K. Bohm, and M. Jarke
(eds.), Proceedings of EDBT 2002. Prague: Springer, March 2002, pp. 2–13.
12. Horrocks, I., and Patel-Schneider, P.F. Comparing subsumption optimi-
zations. In E. Franconi, G. De Giacomo, R.M. MacGregor, W. Nutt, and C.A.
Welty (eds.), Proceedings of the 1998 Description Logic Workshop (DL’98).
Trento, Italy: CEUR Electronic Workshop Proceedings, 1998, pp. 90–94
(http://ceur-ws.org/Vol-11/).
13. Horrocks, I.; Patel-Schneider, P.F.; and van Harmelen, F. Reviewing the
design of DAML+OIL: An ontology language for the semantic Web. In R.
Dechter, M. Kearns, and R. Sutton (ed.), Proceedings of the 18th National
Conference on Artificial Intelligence (AAAI 2002). Edmonton: AAAI Press,
2002, pp. 792–797.
14. Horrocks, I., and Sattler, U. Ontology reasoning in the SHIQ(D) descrip-
tion logic. In B. Nebel (ed.), Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2001). San Francisco: Morgan Kaufmann,
2001, pp. 199–204.
15. Horrocks, I.; Sattler, U.; and Tobies, S. Practical reasoning for expressive
description logics. In H. Ganzinger, D. McAllester, and A. Voronkov (eds.),
Proceedings of the Sixth International Conference on Logic for Programming and
Automated Reasoning (LPAR’99). Lecture Notes in Artificial Intelligence, No.
1705. Tbilisi: Springer, 1999, pp. 161–180.
16. Horrocks, I.; Sattler, U.; and Tobies, S. Reasoning with individuals for the
description logic SHIQ(D). In D. McAllester (ed.), Proceedings of the 17th
International Conference on Automated Deduction (CADE2000). Pittsburgh:
Springer, 2000, pp. 482–496.
17. McGuinness, D.L. Ontological issues for knowledge-enhanced search. In

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 59

N. Guarino (ed.), Proceedings of the First International Conference on Formal
Ontology in Information Systems. Trento, Italy: IOS Press, 1998, pp. 302–316.
18. Nodine, M.; Bohrer, W.; and Ngu, A. Semantic multibrokering over
dynamic heterogeneous data sources in InfoSleuth. In M. Kitsuregawa, L.
Maclaszek, M. Papazoglou, and C. Pu (ed.), Proceedings of the Fifteenth
International Conference on Data Engineering. Sydney: IEEE Computer Society
Press, 1999, pp. 358–365.
19. Nodine, M.H.; Fowler, J.; Ksiezyk, J.; Perry, B.; Taylor, M.; and Unruh, A.
Active information gathering in InfoSleuth. International Journal of Coopera-
tive Information Systems, 9, 1/2 (2000), 3–28.
20. Paolucci, M.; Kawamura, T.; Payne, T.; and Sycara, K. Semantic match-
ing of Web services capabilities. In I. Horrocks and J. Hendler (eds.), Pro-
ceedings of the First International Semantic Web Conference (ISWC). Sardinia:
Springer, 2002, pp. 333–347.
21. Sycara, K.; Lu, J.; Klusch, M.; and Widoff, S. Dynamic service
matchmaking among agents in open information environments. ACM
SIGMOD Record (Special Issue on Semantic Interoperability in Global
Information Systems), 28, 1 (1999), 47–53.
22. Sycara, K.; Paolucci, M.; van Velsen, M.; and Giampapa, J. The RETSINA
MAS infrastructure. Technical report CMU-RI-TR-01–05. Pittsburgh:
Carnegie Mellon University, Robotics Institute, 2001.
23. Tessaris, S. Questions and answers: Reasoning and querying in descrip-
tion logic. Ph.D. dissertation, University of Manchester, 2001.
24. The DAML Services Coalition. DAML-S: Semantic markup for Web
services (www.daml.org/services/daml-s/0.9/daml-s.html).
25. Trastour, D.; Bartolini, C.; and Preist, C. Semantic Web support for the
business-to-business e-commerce lifecycle. In D. Lassnor, D. De Rourre, and
A. Iyengar (ed.), Proceedings of the Eleventh International Conference on World
Wide Web. New York: ACM, 2002, pp. 89–98.
26. UDDI. White paper (www.uddi.org).
27. van Harmelen, F.; Patel-Schneider, P.F.; and Horrocks, I. Reference
description of the DAML+OIL (March 2001) ontology markup language
(www.daml.org/2001/03/reference.html).
28. Web services description language (WSDL) 1.1. W3C note, March 15,
2001 (www.w3.org/TR/wsdl).

LEI LI (lil@cs.man.ac.uk) is a Ph.D. student working with Professor Ian Horrocks in
the computer science department at the University of Manchester. His primary re-
search interest is the application of description logic reasoning, especially the deploy-
ment of ontologies in the semantic Web. He is particularly interested in reasoning
with large numbers of individuals using a combination of databases and DL reason-
ing techniques. He has a bachelor’s degree in computer science from the University of
Science and Technology of China, and a master’s degree in advanced computer sci-
ence from the University of Manchester. Prior to studying in Manchester, he worked
in industry for two years as a software developer in Shanghai, and from April to
September 2002, he was a research intern in the Intelligent Enterprise Technology
Lab, Hewlett-Packard Labs, Bristol, UK.

IAN HORROCKS (horrocks@cs.man.ac.uk) is professor of computer science at the
University of Manchester. His FaCT system revolutionized the design of description

60 LEI LI AND IAN HORROCKS

logic systems, redefining the notion of tractability and establishing a new standard
for implementations. He has published widely in leading journals and conferences,
winning the best paper prize at Knowledge Representation ‘98. He has been a mem-
ber of the program/editorial committees of numerous international conferences, work-
shops, and journals, and was the program chair of the 2002 International Semantic
Web Conference, and the semantic Web track chair for the 2003 World Wide Web Con-
ference. He is a member of the Joint EU/US Committee on Agent Markup Languages
and the W3C Web Ontology Language working group, and has been involved in the
development of the OIL, DAML+OIL, and OWL ontology languages.

