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1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve instances of concepts and roles. The development
of a decision procedure for conjunctive query answering in expressive DLs is,
however, still an open question. Grounded conjunctive queries for SHIQ are
supported by KAON2, Pellet, and Racer’s query language nRQL. However, the
semantics of grounded queries is different from the usually assumed open-world
semantics in DLs, since existentially quantified variables are always replaced
with individual names.

None of the existing conjunctive query answering techniques [11, 9, 3, 8] is
able to handle transitive roles or nominals in the query body.2 In this paper,
we present an extension of SHQ with a restricted form of the binder operator
(↓) and state variables known from Hybrid Logics [2], which allows to extend
the rolling-up technique [11] to transitive roles. Further on, we adapt the SHQ
tableaux algorithm [5] in order to decide conjunctive query entailment with this
extended logic. We also highlight why the extension with either nominals or
inverse roles makes the design of such a decision procedure much harder. Query
answering for SHOQ, i.e., SHQ plus nominals, can, however, be realised by a
suitable guessing technique that we introduce in Section 4.

∗This work was supported by an EPSRC studentship.
1For example, FaCT++ http://owl.man.ac.uk/factplusplus/, KAON2 http://

kaon2.semanticweb.org/, Pellet http://www.mindswap.org/2003/pellet/, or Racer Pro
http://www.racer-systems.com/

2Although the algorithm presented by Calvanese et al. [3] allows the use of regular expres-
sions, in particular the transitive reflexive closure, in the query it has been shown that the
algorithm is incomplete [6, 4].



2 Preliminaries

Let L be a Description Logic, C an L-concept, and NV a finite set of variable
names with y ∈ NV . With L↓ we denote the language obtained by allowing,
additionally, y and ↓y.C as L-concepts.

For an interpretation I = (∆I ,·I), an element d ∈ ∆I , and a variable y ∈ NV ,
we denote with I[y/d] the interpretation that extends I such that yI = {d}. The

L↓-concept ↓y.C is then interpreted as (↓y.C)I = {d ∈ ∆I | d ∈ CI[y/d]}.
Let ~y be a vector of non-distinguished variables and ~c a vector of individual

names. A Boolean conjunctive query q has the form 〈〉 ← conj1(~y;~c) ∧ . . . ∧
conjn(~y;~c). We call T(q) = ~y ∪ ~c the set of terms in q,3 and we call each
conji(~y;~c) for 1 ≤ i ≤ n an atom. Atoms are either concept or role atoms:
a concept atom has the form t1 : C, and a role atom the form 〈t1, t2〉 : r, for
{t1, t2} ⊆ T(q), C an L-concept, and r an L-role.

Let K be an L KB, I = (∆I ,·I) a model for K, q a Boolean conjunctive
query for K, and ·A : T(q) → ∆I an assignment in I. We say that q is true in
I and write I |= q if there exists an assignment ·A in I s.t. tA ∈ tI for every
individual t ∈ ~c, tA ∈ CI for every concept atom t : C in q, and 〈tA1 , tA2 〉 ∈ rI

for every role atom 〈t1, t2〉 : r in q. If I |= K implies I |= q for all models I of
K, then we say that q is true in K, and write K |= q; otherwise we say that q is
false in K, and write K 6|= q.

Since answering non-Boolean conjunctive queries can be reduced to answer-
ing (possibly several) Boolean queries, we consider only Boolean queries here.

3 The Rolling-Up Technique with Binders (↓)
The rolling-up technique is used to reduce conjunctive query answering to KB
satisfiability. This is achieved by reducing a query q into a concept expression
Cq and by testing if adding > v ¬Cq makes the KB unsatisfiable. This works
well for tree-like queries. Here we show how cyclic queries for an L KB can be
rolled-up into L↓-concepts.

A Boolean conjunctive query q can be represented as a directed, labelled
graph where the nodes correspond to the terms in the query. The nodes are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. For exam-
ple, let q1 be the query 〈〉 ← x : C ∧ 〈x, y〉 : s ∧ y : D and let q2 be the query
〈〉 ← x : C ∧ 〈x, y〉 : s ∧ 〈y, x〉 : r ∧ y : D. The query graph for q1 is depicted on
the left hand side and the one for q2 on the right hand side of Fig. 1.

3For readability, we sometimes abuse our notation and refer to ~y as a set. When referring
to a vector ~y as a set, we mean the set {yi | yi occurs in ~y}.
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Figure 1: The query graphs for q1 and for q2.

Since q1 is acyclic, the standard rolling-up technique can be used to build
a concept that represents q1: We remove y and its incoming edge and conjoin
∃s.D to the label C of x resulting in C u∃s.D for Cq1 . A given KB K entails q1

iff K ∪ {> v ¬Cq1} is unsatisfiable.
This reduction is not directly extendable to cyclic queries since, due to the

tree-model property of most DLs, a concept cannot capture cyclic relationships.
The binder (↓), however, allows to label elements in a model with a variable,
and this variable can be used to enforce a co-reference. The query concept Cq2

for q2 can then be expressed as ↓x.(C u∃s.(Du∃r.x)). Now we have again that
K |= q2 iff K ∪ {> v ¬Cq2} is unsatisfiable.

Even for cyclic queries the rolling-up for SHQ is now straightforward, pro-
vided that each connected component in the query graph is also strongly con-
nected. In the presence of weakly connected components, we would need inverse
roles in order to roll-up a query. Tessaris [11] shows how arbitrary conjunctive
queries can be rolled-up even without inverse roles and we expect that we could
combine his approach with binders and variables as well.

Unfortunately, there are no known decision procedures for expressive DLs
with the binder operator. It is even known that ALC extended with binders
and state variables is undecidable [1]. However, we observe some interesting
properties for our query concepts. (1) After rolling-up, all variables occur only
positively. (2) Only existential restrictions are introduced in the rolling-up.
Hence, after negating the query concept and transforming it into negation nor-
mal form (giving ↓x.(¬C t ∀s.(¬D t ∀r.¬x))), we have that all variables occur
only negated and are only under the scope of universal quantifiers. For ALC,
these restrictions are enough to regain decidability [10].

3.1 A Tableaux Algorithm for SHQ Query Concepts

The tableaux algorithms for SHIQ [7] or SHOQ [5] are both capable of decid-
ing KB satisfiability for SHQ. For handling query concepts that may contain
binders and state variables, some adaptations are necessary. For storing the
bindings of variables, we modify the labels to contain tuples of the form 〈C, B〉,
where C is a concept and B is a (possibly empty) set of bindings for the free vari-
ables in C. The next obvious addition is a rule for handling concepts of the form
↓y.C. Therefore, if 〈↓y.C, B〉 is in the label of a node v, we add 〈C, {y/v} ∪B〉
and 〈y, {y/v}〉 to the label of v. This states that y is bound to v at v and that
the free variable y in C is bound to v as well. All other existing rules have to
propagate the bindings as well, e.g., the ∀-rule applied to 〈∀r.C, B〉 in the label



of a node v adds 〈C, B〉 to the labels of v’s r-successors. The set B contains all
and only the bindings for the free variables in C. Another obvious consequence
is the addition of a new clash condition: If both 〈y, {y/v}〉 and 〈¬y, {y/v}〉 are
in the label of the node v, then this is a clash.

A more challenging task is the extension of the blocking condition. For SHQ,
however, we argue that we can simply ignore the bindings, i.e., if 〈C, B〉 is in
the label, we consider only C in the blocking condition. This clearly ensures
termination. But why does this guarantee that we can unravel a complete and
clash-free completion forest into a tableau? Obviously, in SHQ, there is no way
for a node to propagate information back to its ancestors, and clashes according
to the new clash condition can only occur through a cyclic structure. This
is because a node v is only labelled with 〈y, {y/v}〉 by an application of the
new ↓-rule to some concept 〈↓y.C, B〉 in the label of v. Furthermore, the only
way ¬y can occur with v as a binding is when 〈C, {y/v} ∪ B〉 is expanded to
〈¬y, {y/v}〉 via a cyclic path back to v. This is obviously only possible among
individual nodes in SHQ and, therefore, no clash in the tableau can by caused
by unravelling. Hence, transitive roles alone are not causing major problems.

An interesting consequence is, however, that we loose the finite model prop-
erty. For example, let K contain the axioms > v ∃r.> and > v ¬Cq with r
a transitive role and ¬Cq ≡ ↓x.(∀r.¬x). The first axiom enforces an infinite
r-chain for every individual. Normally, a finite model could contain an r-cycle
instead of an infinite chain, but this would clearly violate ¬Cq. Hence, every
model of K must be acyclic and therefore contain an infinite r-chain.

4 A Rolling-up Technique for SHOQ
For the DL SHOQ, i.e., SHQ extended with nominals, we propose to extend
the guessing technique by Calvanese et al. [3]. In the setting considered in [3],
cycles must involve individuals explicitly named in the ABox. Hence, by non-
deterministically replacing variables in a cycle with individual names, the query
can be rolled-up. In the presence of nominals this variable replacement is not
sufficient. For example, Fig. 2 represents a model for the KB containing the
axioms {a} v ¬C u ¬D u ∃s.(C u ∃r.(D u ∃s.{a})) and trans(s).

n1:{C}a:{¬C, ¬D}

s

s n2:{D}r

s

Figure 2: The dashed line indicates the relationship added due to s being tran-
sitive. Therefore, there is a cycle not directly containing the nominal a.

The query 〈〉 ← x : C ∧ y : D ∧ 〈x, y〉 : r ∧ 〈y, x〉 : s (see Fig. 3) would
clearly be true, although a cannot be bound to either x or y. For SHOQ,
however, a cycle among new nodes can only occur due to a transitive role that



provides a shortcut for “skipping” the nominal. Hence, a nominal is always at
least indirectly involved in a cycle. In this case, we have only one nominal a,
and we may guess that it is either in the position of x, in the position of y, or it
is “splitting” the role s. In each case, we can roll-up into the nominal, obtaining
three query concepts. The query is true just in case one of these is entailed by
the KB. Clearly, in our example, only the concept corresponding to the third
“new” guess is entailed. If we had n nominals, then we would need to try 3 ∗ n
guesses plus the guesses obtained by equating variables as suggested in [6].

x:{C} y:{D}r
s

Figure 3: The orig-
inal query graph.

x:{C} y:{D}r
s sa

Figure 4: An alternative query graph in
which the nominal a is assumed to be in-
volved in the cycle.

Since it was, to the best of our knowledge, not even known if conjunctive
query answering for logics with nominals and transitive roles is decidable, this
technique is clearly valuable, although it is, due to its highly non-deterministic
nature, not very practical.

5 The Challenges of Inverses and Nominals

The arguments used for the extension of SHQ with binders (i.e., blocking can
ignore different bindings) and the extended guessing strategy for SHOQ cannot
be used with inverse roles. Fig. 5 shows a representation of a model for the
concept {a} u ∃r.(∃s.>) for s a transitive and symmetric role. The query 〈〉 ←
〈x, x〉 : s is obviously true in this model. The nominal a is, however, not even
indirectly involved in the cycle.

n1a r n2s

ss s

Figure 5: The dashed lines represent the additional relationships added for s
being transitive and symmetric.

Since completion graphs are finite representations of models, the question is,
how far do we have to expand a completion graph before blocking is “safe”, i.e.,
unravelling into a tableau does not lead to a clash.

To see the same problem from another perspective, we briefly sketch another
possible query answering algorithm in the style of CARIN [9]. CARIN provides
a conjunctive query answering algorithm for ALCNR and is based on the idea
that, if the query is true in each model I of K, then there is a mapping σI
from terms in the query to the individuals in I s.t., if x : C is a concept atom
(〈x, y〉 : r is a role atom) in q, then σI(x) ∈ CI (〈σI(x), σI(y)〉 ∈ rI). We call
such a mapping a q-mapping. A q-mapping φ for completion graphs is defined



s.t., if x : C is a concept atom in q, then C is in the label of φ(x) and, if 〈x, y〉 : r
is a role atom in q, then φ(y) is an r-descendant of φ(x), where r-descendant
implicitly closes the transitive roles. Since φ is purely syntactic, we extend the
KB with an axiom > v C t¬C for each concept C s.t. x : C is a concept atom
in q. Hence, we obtain a decision procedure for conjunctive query answering, if
we can show the following:

Claim 5.1 There is a q-mapping σI for each model I of K iff there is a q-
mapping φ from q to each completed and clash-free completion graph of K.

To capture the length of the paths in the query, blocking has to be de-
layed appropriately. In CARIN (i.e., for a logic without transitive roles) this is
achieved by using two isomorphic trees (instead of two isomorphic pairs as it is
the case for normal pairwise blocking as in SHIQ) s.t. the depth of the trees
corresponds to the longest path in the query.

The “if” direction of Claim 5.1 is relatively straight forward but, for the
“only if” direction, we have to show (in contrapositive form) that, if there is a
completion graph G for K s.t. there is no q-mapping φ from q onto G, then there
is a model I of K s.t. there is no q-mapping σI for I. We now give an example
that shows that, even if we find such a completion graph G, we cannot guarantee
that there is no mapping σI for q and the canonical model I of G if q contains a
transitive role. Let K be a KB containing the axiom > v ∃r.> for r a transitive
and symmetric role and let q be the query 〈〉 ← 〈x, x〉 : r∧〈x, y〉 : r∧〈y, y〉 : r∧x :
C ∧ y : C (Fig. 6, right). The upper part of Fig. 6 shows a possible (simplified)
completion graph G for K, where C or ¬C is added to the node labels to allow
for a purely syntactic mapping φ. The grey underlying triangle shapes illustrate
the two isomorphic trees used for blocking and clearly, there is no q-mapping for
G. The lower part of Fig. 6, however, shows that, by unravelling G, we get a
structure for which there is a q-mapping. This is so because there is no longer
only one node labelled with C, and all role relationships for q are satisfied since
r is transitive and symmetric (inferred relationships are not explicitly pictured).
Even choosing a larger depth for the two trees would allow this to happen, since
the decision for C or ¬C was purely non-deterministic.

n1:{¬C}

r
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r

n3:{¬C}
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Figure 6: A completion graph G with trees for blocking (top), a partial unrav-
elling of G (bottom), and a query graph (right).

Therefore, the absence of a q-mapping for the completion graph does not
give us sufficient reasons to show that there is a model for which there is no
q-mapping.



We encounter similar difficulties when using binders and variables. It is
difficult to determine how “deep” the completion graph has to be before it is
safe to block. If the completion graph is not “deep enough”, unravelling leads
to a clash in the tableau. Since it is, to the best of our knowledge, not known
if conjunctive query answering is decidable for SHIQ or SHOIQ, this might
indicate that it is not. We believe, however, that the problem is decidable and
that a different proof technique can be used to show this. Our future work is
aimed at investigating this.

6 Conclusions

In the previous sections, we have presented two ideas that allow an extension of
the rolling-up technique also to cyclic conjunctive queries for SHQ and SHOQ.
For SHQ we achieved this by extending the logic with a restricted form of
binders (↓) and state variables as known from Hybrid Logics. This allows us to
also express cyclic queries as concepts since binders and variables can be used
to express a co-reference. Query entailment can then be reduced to deciding
concept satisfiability for the extended DL. However, adding the binder (↓) even
in the very restricted form needed for query answering has a notable impact on
the resulting logic; e.g., for SHQ, this extension leads to the loss of the finite
model property. In Section 3.1, we illustrate how a tableaux algorithm for SHQ
can be extended in order to handle query concepts. Although each ↓ introduces
a fresh nominal on the fly, we show that, for SHQ termination can be regained
by ignoring them in the blocking condition. Therefore, we sketched a way of
how conjunctive queries with transitive roles in the query body can be answered,
which was previously an unsolved problem.

In Section 4, we extend the work by Calvanese et al. [3] to SHOQ, i.e., to
a logic that allows for nominals. We do this by proposing a more sophisticated
guessing technique, which then again enables the rolling-up of a query into a
SHOQ-concept. This suggests that conjunctive query answering for SHOQ is
decidable, which has not been shown before.

In Section 5, we highlight why none of the proposed techniques extends easily
to a logic with inverse roles. We also show this for a query entailment algorithm
in the style of CARIN [9]. The main problem is to decide when a completion
graph is expanded “far enough” to decide if the query is also not entailed in its
possibly infinite canonical model.

The rolling-up technique with binders and variables integrates seamlessly into
the existing tableaux algorithms, whereas, for the CARIN-style algorithms, the
search for a q-mapping is an additional and completely separated step. Further
on, the added axioms > v C t ¬C for every concept C in the query, can
significantly increase the amount of non-determinism. This makes binders and



variables the much more attractive choice from an implementation point of view.
Therefore, our future work will include efforts to show that arbitrary con-

junctive queries for SHIQ and SHOIQ are decidable. If that is the case,
and we believe it is, we aim at extending the rolling-up technique with binders
and state variables to SHIQ, SHOQ and SHOIQ. This would provide a
(hopefully practical) decision procedure for arbitrary conjunctive queries over
OWL-DL knowledge bases.
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