
Conjunctive Query Answering for the Description

Logic SHOIQ
Birte Glimm∗ Ian Horrocks

Ulrike Sattler
University of Manchester, UK

[glimm,horrocks,sattler]@cs.man.ac.uk

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Syntax and Semantics of SHOIQ↓ . . . . . . . . . . . . . . . . . 3
2.2 Conjunctive Queries . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Representation of Queries as SHOIQ↓-Concepts 7
3.1 Representing Queries as Graphs . . . . . . . . . . . . . . . . . . . 7
3.2 Building a SHOIQ↓-Concept from a Query Graph . . . . . . . . 8
3.3 SHOIQ↓-Concepts in Query Form . . . . . . . . . . . . . . . . . 11
3.4 Role Rewriting for Query Concepts . . . . . . . . . . . . . . . . . 12

4 A Tableau for SHOIQ↓ 12

5 A Tableaux Algorithm for SHOIQ↓-Concepts in Query Form 16

6 Proof of the Algorithm’s Correctness and Termination 19

7 Conclusions 24

1 Introduction

The Semantic Web [2] aims at making web resources more accessible to auto-
mated processes by augmenting web pages with descriptions of their content.
Ontologies are used to provide precisely specified meanings for these descrip-
tions, and with the Web Ontology Language OWL [1] a standardised ontology
building language is available. A notable feature of OWL is that two of the
three OWL species (OWL Lite and OWL DL) correspond to Description Logics

∗This work was supported by an EPSRC studentship.

1



(DLs) [6]. Existing DL reasoners1 can, therefore, be used to provide automated
reasoning support for OWL tools and applications [17, 13, 22]. Important rea-
soning tasks include not only checking concepts (classes in OWL) for satisfi-
ability and subsumption, but also answering queries that retrieve instances of
concepts and roles (properties in OWL).

Recently, a decision procedure for deciding satisfiability (and hence sub-
sumption) of the DL SHOIQ has been introduced [8], which enables the im-
plementation of reasoning procedures for the full expressivity of OWL DL. The
development of a decision procedure for conjunctive query answering in SHOIQ
is, however, still an outstanding issue; in fact it is not known if the problem is
even decidable. Motik et al. [16] show that grounded conjunctive queries for
SHOIN (and therefore for OWL DL) are decidable. However, the semantics
of grounded queries is different from the usually assumed open-world semantics
in DLs, since existentially quantified variables are always replaced with indi-
vidual names. None of the existing conjunctive query answering techniques
[20, 14, 4, 12] is able to handle transitive roles or nominals in the query body.2

In this paper, we present a decision procedure for conjunctive query an-
swering for SHOIQ knowledge bases with a restriction on the use of transitive
roles in the query body. We therefore provide the first decision procedure for
conjunctive query answering in a logic that allows for nominals.

The algorithm extends the known tableaux algorithm for SHOIQ concept
satisfiability [7] with a restricted form of the binder operator (↓) and state
variables known from Hybrid Logics [3]. Query entailment can then be reduced
to deciding concept satisfiability for the extended DL. The binder operator is
very powerful and leads, in an unrestricted form, to undecidability even for
the simple DL ALC. Decidability is regained by placing syntactic restrictions
on the form of allowed concepts, while expressing conjunctive queries is still
possible in the restricted fragment. Similar restrictions were already used to
regain decidability for entailment in ALC (which is a syntactic variant of the
modal logic K) extended with the binder and state variables [15]. For building a
concept that represents a conjunctive query, we extend the so-called “rolling-up”
technique [4, 20].

Compared to the technique used in CARIN for ALCNR [14] and its ex-
tension to SHIQ [18], the use of the hybrid logic binder (↓) introduces far less
non-determinism. It directly guides the tableaux algorithm towards producing
a counter-model for the query. In addition, the presented technique integrates
seamlessly into the existing tableaux algorithms, whereas, for the CARIN-style
algorithm, checking the query entailment is an additional and completely sep-
arated step in the tableaux algorithm. We therefore believe that the presented
algorithm is a more attractive choice from an implementation point of view.

1For example, FaCT++ http://owl.man.ac.uk/factplusplus/, KAON2 http://kaon2.

semanticweb.org/, Pellet http://www.mindswap.org/2003/pellet/, or Racer Pro http://

www.racer-systems.com/
2Although the algorithm presented by Calvanese et al. [4] allows the use of regular expres-

sions in the query (in particular the transitive reflexive closure), it has been shown that the
algorithm is incomplete [9, 5].

2



2 Preliminaries

Before we describe the extended tableaux algorithm, we first introduce the syn-
tax and semantics of SHOIQ↓, i.e., SHOIQ extended with the binder operator
(↓) and state variables, and conjunctive queries.

2.1 Syntax and Semantics of SHOIQ↓

Definition 2.1 A SHOIQ Role Hierarchy
Let R be a set of role names with both transitive and normal role names R+ ∪
Rp = R, where Rp ∩ R+ = ∅. The set R of SHOIQ-roles (or roles for short)
is R ∪ {r− | r ∈ R}. A role inclusion axiom is of the form r v s, for two roles
r, s. A role hierarchy or RBox R is a finite set of role inclusion axioms.

An interpretation I = (∆I ,·I) consists of a non-empty set ∆I , the domain
of I, and a function ·I , which maps every role to a subset of ∆I ×∆I s.t., for
p ∈ R and r ∈ R+, 〈x, y〉 ∈ pI if 〈y, x〉 ∈ p−

I , and if 〈x, y〉 ∈ rI and 〈y, z〉 ∈ rI ,
then 〈x, z〉 ∈ rI .

An interpretation I satisfies a role hierarchy R if rI ⊆ sI for each r v s ∈ R;
such an interpretation is called a model of R .

We introduce some notation to make the following considerations easier:

1. The inverse relation on roles is symmetric, and to avoid considering roles
such as r−−, we define a function Inv which returns the inverse of a role.
More precisely, we define Inv(r) := r− if r ∈ R and Inv(r) := s if s = r−

for a role name s.

2. Since set inclusion is transitive, we define, for a role hierarchy R, v*R
as the transitive reflexive closure of v over R. We use r ≡R s as an
abbreviation for r v*Rs and s v*Rr.

3. For a role hierarchy R and a role s, we define Trans(s, R) := true if
r ∈ R+ for some r with r ≡R s and Trans(s, R) := false otherwise.

4. A role r is called simple w.r.t. a role hierarchy R if for each role s s.t.
s v*Rr Trans(s) = false.

5. In the following, if R is clear from the context, then we may abuse our
notation and use v* and Trans(s) instead of v*R and Trans(s, R), and we
say that “s is a simple role” instead of “s is simple with respect to R”.

Definition 2.2 (Syntax and Semantics of SHOIQ↓-Concepts)
Let NC be a set of concept names with a subset NI ⊆ NC of nominals and
let NV be a countable, finite set of variable names disjoint from the set of
concept names NC . The set of SHOIQ↓-concepts (or concepts for short) is the
smallest set built inductively from NC and NV using the following grammar,
where A ∈ NC , y ∈ NV , n ∈ N, r ∈ R is an arbitrary role, and s ∈ R is a simple
role:

C ::= > | ⊥ | A | ¬C | C1uC2 | C1tC2 | ∀r.C | ∃r.C |6 ns.C |> ns.C | y | ↓y.C.

We say that a variable y is free in a SHOIQ↓-concept C if y is not bound by ↓.
We assume, w.l.o.g., that every variable y is only bound once by an occurrence

3



of ↓y. Every concept D in which this is not the case can be transformed into
an equivalent one by naming variables apart.

We assume all concepts to be in negation normal form (NNF); any concept
can be transformed into an equivalent one in NNF by pushing negation inwards,
making use of de Morgan’s laws and the duality between existential and univer-
sal restrictions, and between atmost and atleast number restrictions (6 nr.C
and > nr.C respectively) [11]. Since the binder (↓) is self-dual, the concept
¬↓y.C is equivalent to ↓y.¬C. For a concept C, we use ¬̇C to denote the NNF
of ¬C.

The interpretation function ·I of an interpretation I = (∆I ,·I) maps, ad-
ditionally, every concept name to a subset of ∆I . For an interpretation I =
(∆I ,·I), an element d ∈ ∆I , and a variable y ∈ NV , we denote with I[y/d]

the interpretation that extends I such that yI = {d}. We can then define the
semantics of SHOIQ↓-concepts as:

>I = ∆I (C uD)I = CI ∩DI (¬C)I = ∆I \ CI

⊥I = ∅ (C tD)I = CI ∪DI ](oI) = 1 for all o ∈ NI

(∀r.C)I = {d ∈ ∆I | For all d′ ∈ ∆I , if 〈d, d′〉 ∈ rI , then d′ ∈ CI}
(∃r.C)I = {d ∈ ∆I | There is a d′ ∈ ∆I with 〈d, d′〉 ∈ rI and d′ ∈ CI}

(6 nr.C)I = {d ∈ ∆I | ](rI(d, C)) 6 n}
(> nr.C)I = {d ∈ ∆I | ](rI(d, C)) > n}

(↓y.C)I = {d ∈ ∆I | d ∈ CI[y/d]}

where, n ∈ N, for a set M we denote the cardinality of M by ](M), and we
define rI(d, C) as {d′ ∈ ∆I | 〈d, d′〉 ∈ rI and d′ ∈ CI}.

A concept C is called satisfiable w.r.t. a role hierarchy R, if there is a model
I = (∆I ,·I) of R with CI 6= ∅. Such an interpretation is called a model of C
with respect to R . For C and D (possibly complex) concepts, C v D is called
a general concept inclusion (GCI), and a finite set of GCIs is called a TBox. An
interpretation I satisfies a GCI C v D if CI ⊆ DI , and I satisfies a TBox T
if I satisfies each GCI in T ; such an interpretation is called a model of T . A
concept D subsumes a concept C with respect to R and T (written C vR,T D)
if CI ⊆ DI holds in every model I of R and T .

An ABox is a partial instantiation of the schema defined by the TBox and
RBox. In the presence of nominals, an ABox can be expressed in terms of TBox
axioms [19]. Therefore, we do not consider ABoxes here and define a knowledge
base (KB) as a tuple 〈T , R〉 with T a TBox and R a role hierarchy. For K =
〈T , R〉 a KB and I = (∆I ,·I) a model of T and R, we say that I is a model of
K and write I |= K; we say that K is satisfiable if there is a model I s.t. I |= K
and we say that K is unsatisfiable otherwise.

In the presence of transitive roles, a TBox T can be internalised using an
“approximation” of a universal role u [8, 11]. Therefore, testing the satisfiability
of a concept with respect to a TBox and a role hierarchy can be reduced to
testing satisfiability with respect to the role hierarchy only and we assume in
the remainder that the TBox of a knowledge base is internalised.

2.2 Conjunctive Queries

Now that we have formally defined the syntax and semantics of SHOIQ↓-
concepts and knowledge bases, we are ready to formally introduce conjunctive

4



queries.

Definition 2.3 Conjunctive Queries
Let ~y be a vector of non-distinguished variables, and ~c a vector of nominals
from NI , both mutually disjoint. A Boolean conjunctive query q has the form
〈〉 ← conj1(~y;~c) ∧ . . . ∧ conjn(~y;~c). We call T(q) = ~y ∪ ~c the set of terms in q,3

and we call each conji(~y;~c) for 1 ≤ i ≤ n an atom. Atoms are either concept
or role atoms: a concept atom has the form t1 : C, and a role atom the form
〈t1, t2〉 : r, for {t1, t2} ⊆ T(q), C a SHOIQ-concept and r a SHOIQ-role.

We define the semantics of Boolean conjunctive queries as follows: Let K be
a KB, I = (∆I ,·I) a model for K, q a Boolean conjunctive query for K, and
·A : T(q)→ ∆I an assignment in I. We say that q is true in I and write I |= q,
if there is an assignment ·A in I s.t. tA ∈ tI for every nominal t ∈ ~c, tA ∈ CI for
every concept atom t : C in q, and 〈tA1 , tA2 〉 ∈ rI for every role atom 〈t1, t2〉 : r
in q. For such an interpretation I and assignment ·A, we write I, A |= q. If
I |= K implies I |= q for all models I of K, then we say that q is true in K, and
write K |= q; otherwise we say that q is false in K, and write K 6|= q.

Let ~x be a vector of distinguished (free) variables. The answer to a non-
Boolean query 〈~x〉 ← conj1(~x; ~y;~c) ∧ . . . ∧ conjn(~x; ~y;~c) with respect to a KB
K can be computed by using (possibly several) Boolean queries in which the
distinguished variables are replaced with nominals from K in such a way that
all possible answer tuples are tested. Given that there are a finite number of
nominals in K, there is a bound on the number of Boolean queries necessary to
answer a non-Boolean query. This is clearly not very efficient, but optimisations
can be used, e.g., to identify a (hopefully small) set of candidate tuples. In the
following we will, therefore, consider only Boolean conjunctive queries, and if
we write that q is a query, we implicitly assume that q is a Boolean conjunctive
query.

Without loss of generality, we further assume that all queries are in a particu-
lar normal form. This simplifies several parts of the query answering algorithm.
Therefore, we define some transformation for a given Boolean conjunctive query
that can be used to obtain an equivalent query in the desired normal form.

We first write a Boolean conjunctive query q as the set

{t : C | t : C is a concept atom in q} ∪ {〈t, t′〉 : r | 〈t, t′〉 : r is a role atom in q}.

I.e., each conjunct in q is an element in the set. In the remainder, we often use
this set notation and it should be clear from the context, when this is the case.

Lemma 2.4
Given a Boolean conjunctive query q, we can obtain an equivalent Boolean
conjunctive query q′ in which all terms are (non-distinguished) variables.

Proof. Let q be a query that contains constants, i.e., ~c is non-empty. We can
eliminate all constants from the terms and obtain a Boolean conjunctive query

3For readability, we sometimes abuse our notation and refer to ~y as a set. When referring
to a vector ~y as a set, we mean the set {yi | yi occurs in ~y}.

5



q′ from q as follows:

{y : C |y : C is a concept atom in q and y ∈ ~y}∪ (1)
{y : {a} u C |a : C is a concept atom in q,

a ∈ ~c, and y ∈ NV is new in q}∪ (2)
{〈y, y′〉 : r |〈y, y′〉 : r is a role atom in q, and y, y′ ∈ ~y}∪ (3)
{y : ∃r.{a} |〈y, a〉 : r is a role atom in q, a ∈ ~c, and y ∈ NV }∪ (4)

{y : ∃Inv(r).{a} |〈a, y〉 : r is a role atom in q, a ∈ ~c, and y ∈ NV }∪ (5)
{y : {a} u ∃r.{b} |〈a, b〉 : r is a role atom in q,

a, b ∈ ~c, and y ∈ NV is new in q}. (6)

We now have to show that q′ is equivalent to q:
The cases (1 and 3) for concept and role atoms in which all terms are vari-

ables from ~y are clear. These atoms are in q′ iff they are in q.
For case 2: Given an interpretation I = (∆I ,·I) such that I |= a : C, we have

that for each assignment ·A, aA ∈ aI for a ∈ NI and aA ∈ CI , i.e., aA ∈ aI∩CI .
We can, therefore, clearly extend any assignment ·A to an assignment ·A′

by
mapping the new variable y to a. Now, let I be an interpretation such that I
6|= a:C. This is the case if there is no assignment ·A such that aA ∈ aI ∩CI for
a ∈ NI . However, this means that aI ∩ CI = ∅ and clearly there cannot be an
assignment ·A′

such that yA ∈ aI ∩ CI .
For case 4: Given an interpretation I = (∆I ,·I) such that I |= 〈y, a〉 : r, we

have that there exists an assignment ·A such that 〈yA, aA〉 ∈ rI and aA ∈ aI for
a ∈ NI . In q′, 〈y, a〉 : r is replaced with y : ∃r.{a}. By definition of the semantics,
we have that (∃r.{a})I = {d ∈ ∆I | ∃d′.〈d, d′〉 ∈ rI and d′ ∈ aI}. By setting
d = yA and d′ = aA, it is clear that d ∈ (∃r.{a})I and clearly ·A is an assignment
for q′ and I. Now, let I = (∆I ,·I) be an interpretation such that I 6|= 〈y, a〉 : r.
Hence, there is no assignment ·A such that 〈yA, aA〉 ∈ rI and aA ∈ aI for a ∈ NI .
For a contradiction, assume that I |= y : ∃r.{a} and that ·A′

is the assignment
in I. Hence, yA′ ∈ (∃r.{a})I = {d ∈ ∆I | ∃d′.〈d, d′〉 ∈ rI and d′ ∈ aI}. Clearly,
we can obtain a mapping ·A for q in I by setting yA = d and aA = d′ such that
〈yA, aA〉 ∈ rI and aA ∈ aI , contradicting the assumption.

The following two cases (5 and 6) are very similar to the previous one (4).

Lemma 2.5
Given a Boolean conjunctive query q in which all terms are (non-distinguished)
variables, we can obtain an equivalent Boolean conjunctive query q′ in which
each variable occurs exactly once in a concept atom.

Proof. We obtain q′ from q by setting q′ to

{y : C1 u . . . u Cn |y : Ci is a concept atom in q for 1 6 i 6 n}∪ (7)
{y : > |y ∈ ~y and there is no concept atom y : C in q}∪ (8)

{〈y, y′〉 : r |〈y, y′〉 : r is a role atom in q′}. (9)

Clearly, each variable in q′ occurs exactly once in a concept atom. It therefore
remains to show that q′ is equivalent to q:

Let I = (∆I ,·I) be an interpretation such that I |= q, let ·A be an assignment
for q in I, and let y be a variable in ~y such that y : Ci for 1 6 i 6 n are concept

6



atoms in q. By definition of the semantics, we have that yA ∈ CI,A
i and hence

yA ∈ CI,A
1 ∩ . . . ∩ CI,A

n for 1 6 i 6 n. However, then y ∈ (C1 u . . . u Cn)I,A

and after replacing the concept atoms y : Ci for 1 6 i 6 n with a concept atom
y : C1 u . . . u Cn in q′, we still have that I, A |= q′. Let now I = (∆I ,·I)
be an interpretation such that I 6|= q, but I |= q′, where q′ is obtained by
replacing the concept atoms y : Ci for 1 6 i 6 n in q with a concept atom
y : C1 u . . . u Cn in q′. Hence, there is an assignment ·A for q′ in I such that
yA ∈ (C1 u . . . u Cn)I,A = CI,A

1 ∩ . . . ∩ CI,A
n , i.e., y ∈ CI,A

i for 1 6 i 6 n.
However, then ·A is also an assignment for q, contradicting the assumption.

Let y be a variable in q such that there is no concept atom y : C for y in q, let
I = (∆I ,·I) be an interpretation such that I |= q, and let ·A be an assignment
for q in I. However, since ·A is an assignment in I, yA ∈ ∆I = >I . Hence, ·A
is also an assignment for the query q′ obtained by adding y : > to q.

Since role atoms are in q′ iff there are in q, we are done.

Definition 2.6 Query Normal Form
Let q be a Boolean conjunctive query. We say that q is in query normal form
(QNF) if all terms of q are (non-distinguished) variables and if each variable
occurs exactly once in a concept atom.

Every Boolean conjunctive query q with ~y the vector of non-distinguished
variables and ~c the vector of nominals from NI can be transformed into an
equivalent query q′ in QNF as shown by Lemma 2.4 and Lemma 2.5. If not
stated otherwise, we therefore assume in the remainder of this paper that all
Boolean conjunctive queries are in QNF.

3 The Representation of Queries as SHOIQ↓-
Concepts

In this section, we introduce the relationship between SHOIQ conjunctive
queries and SHOIQ↓ concepts. Since we aim at finding a decision proce-
dure for SHOIQ conjunctive queries and the ↓ binder makes already ALC
undecidable, we also define a syntactic restriction on SHOIQ↓-concepts. This
restricted form, called the query form, corresponds exactly to the concepts that
can express a conjunctive query and is far less expressive than the unrestricted
SHOIQ↓ DL.

3.1 Representing Queries as Graphs

We start with describing how a SHOIQ↓-concept can be obtained from a given
conjunctive query. This is easier to understand, if we represent a query as a
graph.

Definition 3.1 Query Graph
A Boolean conjunctive query q in QNF can be represented as a labelled, directed
multi-graph G(q) = 〈V,E,L〉 such that there is a bijective mapping σ : V → ~y
from the nodes in V to variables in q. Since q is in QNF, q contains only non-
distinguished variables. Each node v ∈ V is labelled with a concept L(v) = C
such that σ(v) : C is a concept atom in q. There is an edge 〈v, v′〉 ∈ E labelled

7



with L(〈v, v′〉) = r for each role atom 〈σ(y), σ(y′)〉 : r in q. We call the graph
G(q) the query graph for q .

Let I = (∆I ,·I) be an interpretation. Similarly to the semantics of con-
junctive queries, we say that I is a model of G(q), written as I |= G(q), if
there is an assignment ·A : V → ∆I such that for each node v ∈ V with
L(v) = C, σ(v)A ∈ CI and for each edge 〈v, v′〉 ∈ E with L(〈v, v′〉) = r,
〈σ(v)A, σ(v′)A〉 ∈ rI . For such an interpretation I and assignment A, we write
I, A |= G(q).

Lemma 3.2
Let G(q) be the query graph for a Boolean conjunctive query q in QNF and let
I = (∆I ,·I) be an interpretation, then I |= q iff I |= G(q).

Proof. The query graph is an equivalent representation for q since q is in QNF
and hence contains only non-distinguished variables as terms, σ is a one-to-one
mapping and for each node v, there is exactly on concept atom σ(v) : C in q
and L(v) = C. A similar argument holds for the edges. Hence, an assignment
·A for q in I is by definition an assignment for G(q) and vice versa.

3.2 Building a SHOIQ↓-Concept from a Query Graph

In general, a query graph G(q) may be composed of several connected compo-
nents G(q)1, . . . ,G(q)n. For each such component G(q)i with 1 6 i 6 n, we build
a SHOIQ↓-concept Ci by traversing the component in a depth-first manner.

We first define two auxiliary functions breakCycle and rollUp. The former
function is used when a cycle is detected and it replaces the edge that closes
the cycle with a concept expression. More formally, for a node v and an edge
e = 〈v, v′〉 or e = 〈v′, v〉, we define breakCycle(e, v) as:

1. if e = 〈v, v′〉 then
set L(v) := L(v) u ∃L(e).{σ(v′)}

else
set L(v) := L(v) u ∃Inv(L(e)).{σ(v′)}

2. remove e from E

Although the function removes an edge, a query q is true in the modified
query graph iff q is true in the original query graph, as shown by the following
lemma:

Lemma 3.3
Let q be a Boolean conjunctive query in QNF, G(q) = (V,E,L) the query graph
for q, and G(q)′ the graph obtained by applying breakCycle(e, v) for an edge
e = 〈v, v′〉 ∈ E or e = 〈v′, v〉 ∈ E and a node v ∈ V . For an interpretation I =
(∆I ,·I) and an assignment ·A in I, I, A |= G(q) iff I, A |= G(q)′.

Proof. We first show that if I, A |= G(q), then I, A |= G(q)′. Suppose first, that
e is an outgoing edge from v, i.e., e = 〈v, v′〉, and let L(e) = r. Since I, A |=
G(q), we have that 〈σ(v)A, σ(v′)A〉 ∈ rI . After applying breakCycle(e, v), we
have that L(v) = L(v)u∃L(e).{σ(v′)}. Therefore, we have to show that σ(v)A ∈
(∃r.{σ(v′)})I,A. However, (∃r.{σ(v′)}I,A = {d ∈ ∆I | 〈d, d′〉 ∈ rI and d′ ∈
{σ(v′)A}} and since 〈σ(v)A, σ(v′)A〉 ∈ rI and σ(v′)A ∈ {σ(v′)A}, we clearly
have that σ(v)A ∈ (∃r.{σ(v′)}I,A. Therefore, ·A is an assignment for G(q)′ in

8



I as well, and I |= G(q)′ as required. The case with with e = 〈v, v′〉 is similar,
just with the use of inverse roles. The same technique can be used to show the
opposite direction of the proof.

The function rollUp replaces a leaf node of the query graph and its incoming
edge with a concept expression added to the the label of the parent node. More
formally, for a query graph G(q) = (V,E,L), a node v ∈ V , and an edge
e = 〈v, v′〉 ∈ E or e = 〈v′, v〉 ∈ E such that e is the only edge for v′, we define
rollUp(e, v) as:

1. if e = 〈v, v′〉 then
set L(v) := L(v) u ∃L(e).(↓σ(v′).(L(v′)))

else
set L(v) := L(v) u ∃Inv(L(e)).(↓σ(v′).(L(v′)))

2. remove e and v′ from E and V respectively

This function is very similar to the known rolling-up technique and results
in an equi-satisfiable query graph:

Lemma 3.4
Let q be a Boolean conjunctive query in QNF, G(q) = (V,E,L) the query
graph for q, and G(q)′ the graph obtained by applying rollUp(e, v) for an edge
e = 〈v, v′〉 ∈ E or e = 〈v′, v〉 ∈ E, a node v ∈ V , and a leaf node v′ ∈ V .
For an interpretation I = (∆I ,·I) and an assignment ·A in I, I, A |= G(q) iff
I, A |= G(q)′.

Proof. We first show that if I, A |= G(q), then I, A |= G(q)′. Suppose first,
that e is an outgoing edge from v, i.e., e = 〈v, v′〉, and let L(e) = r. Since
I, A |= G(q), we have that 〈σ(v)A, σ(v′)A〉 ∈ rI and that σ(v′)A ∈ L(v′)I,A.
After applying rollUp(e, v), we have that L(v) = L(v) u ∃L(e).(↓σ(v′).(L(v′)))
and v′ and e are removed from G(q). Therefore, we have to show that σ(v)A ∈
(∃r.(↓σ(v′).(L(v′))))I,A. However, (∃r.(↓σ(v′).(L(v′))))I,A = {d ∈ ∆I | 〈d, d′〉 ∈
rI and d′ ∈ (↓σ(v′).(L(v′)))I,A}. Since 〈σ(v)A, σ(v′)A〉 ∈ rI , we have to show
that σ(v′)A ∈ (↓σ(v′).(L(v′)))I,A = {d ∈ ∆I | d ∈ (L(v′))I[σ(v′)/d]} and clearly
this is the case for d = σ(v′), since σ(v′)A ∈ (L(v′))I,A if I, A |= G(q). There-
fore, ·A is an assignment for G(q)′ in I as well, and I |= G(q)′ as required. The
case with with e = 〈v, v′〉 is similar, just with the use of inverse roles and again,
the same technique can be used to show the opposite direction of the proof.

We are now ready to define the graph traversal algorithm. For v ∈ V , we
recursively define the function visit(v) as follows:

1. mark v

2. while there is an unmarked edge e = 〈v, v′〉 or e = 〈v′, v〉

(a) if v′ is marked then

i. breakCycle(e, v′)

(b) else

i. mark e

ii. visit(v′), and

9



iii. rollUp(e, v′)

Lemma 3.5
Let G(q)i be a component of a query graph G(q). The function visit(v), applied
to a starting node v, terminates.

Proof. The while loop in step 2 works only on unmarked edges. However, in
each loop, we either remove an edge with breakCycle or mark an edge, and since
the number of role atoms in q gives a bound on the number of edges, there is a
bound on how often we can go through the while loop. Since the recursive call
of visit is in the while loop, there is a bound on the number of recursion steps
as well. Both functions breakCycle and rollUp trivially terminate.

Lemma 3.6
Let G(q)i be a component of a query graph G(q). After applying the function
visit(v) to a starting node v, G(q)i is collapsed into v.

Proof. We have to show that we do not apply breakCycle to cut off unvisited
parts of the component. However, breakCycle is only applied on unmarked
edges between marked nodes, hence we only delete edges between parts of the
component that were already seen. Further on, we cannot cut off parts of the
component that are not completely finished and are used in a backtracking step,
since we mark edges that were used to visit an unmarked node and breakCycle is
only applied to unmarked edges. Since we visit all nodes in the component and
mark each node and the edge that was used to visit this component, we finally
remove all edges from a node, except the edge marked when visiting the node.
Hence, rollUp can finally remove all but the starting node (that has no marked
edge left) and the edges connecting these nodes.

Definition 3.7 Query Concepts
Let G(q) be the query graph for a Boolean conjunctive query q in QNF and
let G(q)1, . . . ,G(q)n be the components of G(q). After traversing a component
G(q)i from a starting node v in G(q)i with the function visit, the component is
collapsed into v. We can now obtain a SHOIQ↓-concept Ci for G(q)i by setting
Ci = ↓σ(v).L(v). If a concept Ci contains a binder ↓y., but the variable y does
not occur in Ci, then we omit ↓y. from Ci. This does obviously not affect the
satisfiability of Ci. We call each concept Ci obtained by traversing G(q)i a query
concept and we call the set {C1, . . . , Cn} the query concepts for q.

Lemma 3.8
Let q be a Boolean conjunctive query in QNF, G(q)i a component of the query
graph for q, and G(q)′i the collapsed component after traversing G(q)i from a
starting node v. For an interpretation I = (∆I ,·I) and an assignment ·A in I,
I, A |= G(q)′i iff I, A |= ↓σ(v).L(v).

Proof. If I is a model for ↓σ(v).L(v), then there is an element d ∈ ∆I such
that σ(y)A = d and d ∈ (↓σ(v).L(v))I,A, i.e., d ∈ {(L(v))I[σ(v)/d],A}. However,
this is exactly the case, when I, A |= G(q)′i.

We can now use the query concepts from the query graph traversal to decide
query entailment for a given knowledge base.

10



Lemma 3.9
Let K = 〈T , R 〉 be a SHOIQ knowledge base, q a Boolean conjunctive query,
and {C1, . . . , Cn} the query concepts for q. K |= q iff each Ki = 〈T ∪ {> v
¬Ci},R〉 for 1 6 i 6 n is unsatisfiable.

Proof. Lemma 3.9 is a consequence of the facts that I |= q iff I |= G(q) (by
Lemma 3.2), and I |= G(q)i iff I |= Ci for 1 6 i 6 n (by Lemma 3.8).

3.3 SHOIQ↓-Concepts in Query Form

We are now ready to define exactly those SHOIQ↓-concept that the tableaux
algorithm presented in Section 5 is able to handle and we show that for each
query concept Ci for a query q that contains only simple roles, ¬̇Ci has this
form.

Definition 3.10 Query Form
Let D be a SHOIQ↓-concept. We say that D is in query form, if

1. D is in negation normal form,

2. no variable occurs free in D,

3. D is built according to the following grammar:
D ::= C | ¬y | C t ↓y.(∀r1.D t . . . t ∀rn.D),
where C is a SHOIQ-concept, r1, . . . , rn are roles, and y ∈ NV , and

4. all roles that occur under the scope of a universal quantifier over a variable
are simple.

For an example, let D be a SHOIQ-concept, r, s simple roles, and y ∈
NV . The concept ↓y.(¬D t ∀r.(∀s.¬y)) is in query form, whereas the con-
cept ↓y.(¬D t ∃r.(∀s.¬y)) is not since ¬y occurs in the scope of an existential
quantifier.

Lemma 3.11
Let q be a Boolean conjunctive query in QNF with only simple roles occur-
ring in the role atoms of q, let G(q) = (V,E,L) be the query graph for q with
G(q)1, . . . ,G(q)n the components of G(q), and let C1, . . . , Cn be the query con-
cepts for q. Each concept ¬̇Ci is a SHOIQ↓-concept in query form.

Proof. Each concept ¬̇Ci is in NNF by definition. We now show that no vari-
able occurs free in ¬̇Ci: During the graph traversal, we only use the func-
tions breakCycle and rollUp. The function breakCycle introduces a variable for
a marked node and the function rollUp introduces a ↓ binder for a variable.
In Lemma 3.6, we have already shown that we do not apply breakCycle to cut
off unvisited parts of a component and hence a ↓ binder is introduced for each
variable represented by a node in the component. Since we use rollUp only on
leaf nodes and remove the node and its incoming edge, no new references to the
node can be introduces by breakCycle and the ↓ introduced in rollUp binds all
the existing variables.

Each ¬̇Ci satisfies the given grammar, since the SHOIQ concept C that
initially labels a node v is only conjoined with concepts obtained in the traversal
of G(q)i. During the traversal, we only introduce positive variables, existential

11



quantifiers and conjunctions. Hence, after negating Ci and building the NNF,
we have that all variables occur negatively, are universally quantified, and each
conjuncts added during the traversal becomes a disjunct.

Finally, roles that occur under the scope of a universal quantifier over a
variable are those introduced by removing an edge in G(q)i. These roles are
simple, because all edges correspond to a role atom in q and all roles in the role
atoms of q are simple roles by assumption.

Since SHOIQ↓-concepts in query form are not closed under negation, our
definition of the closure of a concept with respect to a role hierarchy is slightly
different from the one used for SHOIQ.

Definition 3.12 Closure
Let D be a SHOIQ↓-concept in query form and R a role hierarchy. We define
the closure cl(D,R) of D with respect to R , as follows:

cl(D,R) := sub(D)∪
{¬̇C | C ∈ sub(D) and C is variable free}∪
{∀s.E | ∀r.E ∈ sub(D) or ¬̇(∀r.E) ∈ sub(D) and
s occurs in R or D}.

3.4 Role Rewriting for Query Concepts

The tableaux algorithm introduced in Section 5 builds a finite structure that
represents a model. It uses a termination strategy called blocking, which is
based on cycle detection. In the case of blocking, we have enough information
for building an infinite model from the finite representation by repeating parts
of the built structure. If C is a concept that contains a variable and C is a
sub-concept of two different disjuncts D1 and D2, then it is important to know
in the blocking condition, if C originates from D1 or from D2. For keeping the
blocking conditions simple, we rewrite the roles occurring in one of the disjuncts
and extend the role hierarchy of the given knowledge base, in order to preserve
the original semantics.

Definition 3.13 Role Rewriting
Let R be a role hierarchy, D SHOIQ↓-concept in query form such that C tC ′

is a sub-concept of D, and y ∈ NV a variable. If there are two sub-concept C1

and C2 from the two different disjuncts C and C ′ such that y occurs in both
of them and C1 is a sub-concept of C2, then we obtain a concept D′ and role
hierarchy R’ by renaming each role r quantifying over y in C1 with a new role
name r′ not occurring in D or R and set R′ = R∪ {r′ v r}.

Since the newly introduced role names do not occur in D or R, we have that
D is satisfiable with respect to R iff D′ is satisfiable with respect to R’.

4 A Tableau for SHOIQ↓
Before we introduce the tableaux algorithm for SHOIQ↓-concept satisfiability,
we introduce tableaux as a close representation of models. Compared to a tab-
leau for a SHOIQ-concept, we now have to store the bindings for the variables.
Further on, additional constraints are necessary for the ↓ binders and variables.

12



Definition 4.1 (Tableau)
Let D be a SHOIQ↓-concept in query form, R a role hierarchy, RD the set of
role names occurring in D and R, S a set of individuals, and BT := {y/s | y ∈
NV and s ∈ S} the set of possible bindings. We define a tableau T = (S,L, E)
for D and R such that L : S 7→ 2cl(D)×2BT maps each individual to a set of
tuples 〈C,B〉, where C ∈ cl(D) and B ⊆ BT , and E : RD 7→ 2S×S maps each
role in RD to a set of pairs of individuals, and there is some individual s0 ∈ S
such that 〈D, ∅〉 ∈ L(s0).

For 〈C,B〉 ∈ L(s), we call B the bindings for C, and for b = y/s′ ∈ B,
we call s′ the binding for y in C. For s ∈ S, the function LC(s) returns
the set of concepts that are in the label of s without their bindings, i.e.,
LC(s) = {C | 〈C,B〉 ∈ L(s)}. The function Lsubst(s) returns the set of concepts
with all variables replaced by their bindings, i.e., Lsubst(s) = {C[y1/s1,...,yn/sn] |
〈C, {y1/s1, . . . , yn/sn}〉 ∈ L(s)}. If 〈C,B〉 ∈ L(s) with B = {y1/s1, . . . , yn/sn},
then we denote with C[B], the result of replacing all occurrences of yi in C with
si for 1 6 i 6 n. It is worth mentioning that for a concept C without variables
and an individual s ∈ S, C ∈ LC(s) iff C ∈ Lsubst(s). We assume that the set
of bindings for a concept C contains only bindings for variables that occur in C.
As a consequence, the set of bindings B for a concept name C ∈ NC is always
the empty set. Due to the restriction of concepts in query form, it is always
the case for a concept D in query form that sub-concepts of D occurring inside
number or existential restrictions are variable-free. If we write 〈C, {y/s} ∪ B〉,
we assume that y occurs as a free variable in C and that B possibly contains
bindings for other free variables in C.

For all s, s′ ∈ S, C, C1, C2 ∈ cl(D), r, r′ ∈ RD, y ∈ NV , and

rT (s, C) := {s′ ∈ S | 〈s, s′〉 ∈ E(r) and C ∈ LC(s′)},

it holds that:

(P1) if 〈C, ∅〉 ∈ L(s) and C ∈ NC , then 〈¬C, ∅〉 /∈ L(s),
(P2) 〈¬y, {y/s}〉 /∈ L(s),
(P3) if 〈C1 u C2, B〉 ∈ L(s), then 〈C1, B

′〉 ∈ L(s) and 〈C2, B
′′〉 ∈ L(s),

(P4) if 〈C1 t C2, B〉 ∈ L(s), then 〈C1, B
′〉 ∈ L(s) or 〈C2, B

′′〉 ∈ L(s),
(P5) if 〈∀r.C,B〉 ∈ L(s) and 〈s, s′〉 ∈ E(r), then 〈C,B〉 ∈ L(s′),
(P6) if 〈∃r.C, ∅〉 ∈ L(s), then there is some s′ ∈ S such that 〈s, s′〉 ∈ E(r) and

〈C, ∅〉 ∈ L(s′),
(P7) if 〈∀r.C,B〉 ∈ L(s′) and 〈s, s′〉 ∈ E(r′) for some r′ v* r with Trans(r′), then

〈∀r′.C, B〉 ∈ L(s′),
(P8) if 〈> nr.C, ∅〉 ∈ L(s), then ](rT (s, C)) > n,
(P9) if 〈6 nr.C, ∅〉 ∈ L(s), then ](rT (s, C)) 6 n,

(P10) if 〈6 nr.C, ∅〉 ∈ L(s) and 〈s, s′〉 ∈ E(r), then {〈C, ∅〉, 〈¬̇C, ∅〉} ∩ L(s′) 6= ∅,
(P11) if 〈s, s′〉 ∈ E(r) and r v* r′, then 〈s, s′〉 ∈ E(r′),
(P12) 〈s, s′〉 ∈ E(r) iff 〈s′, s〉 ∈ E(Inv(r)),
(P13) if 〈o, ∅〉 ∈ L(s) ∩ L(s′) for some o ∈ NI , then s = s′,
(P14) if o ∈ NI , then there is an s ∈ S s.t. 〈o, ∅〉 ∈ L(s),
(P15) if 〈↓y.C,B〉 ∈ L(s), then 〈C,B ∪ {y/s}〉 ∈ L(s) and 〈y, {y/s}〉 ∈ L(s),
(P16) if 〈y, {y/s′}〉 ∈ L(s), then s′ = s, and
(P17) for all 〈C,B〉 ∈ L(s), y/s′ ∈ B iff y is free in C.

13



Property P15 asserts that for every concept ↓y.C, there is is an instantiated
version of C in the label of the individual. Property P16 asserts that an un-
negated atomic variable can only occur in the label of one individual, namely
the one it is assigned to. All other variable occurrences can only be in negated
form.

Lemma 4.2
Let D be a SHOIQ↓-concept in query form and R a role hierarchy, then D is
satisfiable with respect to R iff D has a tableau with respect to R.

Proof. For the “if” direction:
If T = (S,L, E) is a tableau for D with respect to R with D ∈ L(s0), we
construct a model I = (∆I ,·I) for D and R as follows:

∆I = S
for A ∈ NC : AI = {s ∈ S | 〈A, ∅〉 ∈ L(s)}

for s ∈ S : sI = {s}

for r ∈ RD : rI =

E
′(r) if Trans(r)
E(r) ∪

⊔
r′ v* r,r′ 6=r

r′
I otherwise

where E ′(r) denotes the transitive closure of E(r). The interpretation of non-
transitive roles is recursive in order to correctly interpret those non-transitive
roles that have a transitive sub-role. From the definition of rI and P7, it
follows that, if 〈s, s′〉 ∈ rI , then either 〈s, s′〉 ∈ E(r) or there exists a path
〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, s′〉 ∈ E(r′) for some role r′ with Trans(r′) and r′ v* r.

By induction on the structure of concepts, we show that if 〈C,B〉 ∈ L(s)
with B = {y1/s1, . . . , yn/sn}, then s ∈ CI[y1/s1,...,yn/sn] , where I[y1/s1,...,yn/sn]

denotes the interpretation obtained by extending I such that yi
I = si for 1 6

i 6 n. This implies then that DI 6= ∅, because 〈D, ∅〉 ∈ L(s0) and DI = DI[B]

for B = ∅, and hence s0 ∈ DI .
Let 〈C,B〉 ∈ L(s):

1. If C = A ∈ NC is a concept name, then s ∈ CI by definition.

2. If C = ¬A for A ∈ NC , then 〈A, ∅〉 /∈ L(s) due to P1, so s ∈ (∆I \AI) =
CI .

3. If C = y, y ∈ NV , then B = {y/s} by P16 and P17. Thus s ∈ CIB =
yIy/s = {s}.

4. If C = ¬y for y ∈ NV , then B = y/s′ by P17 and s 6= s′ by P2. Hence
s ∈ CI[B] = (¬y)I[y/s′] = ∆I \ yI[y/s′] = ∆I \ {s′}.

5. If C = (C1 u C2), then, due to P3, 〈C1, B
′〉 ∈ L(s) and 〈C2, B

′′〉 ∈ L(s),
and hence, by induction and by the fact that B′ and B′′ contain exactly
those bindings for the free variables in C1 and C2 respectively due to P17,
s ∈ C

I[B]
1 and s ∈ C

I[B]
2 . Thus, s ∈ (C1 u C2)I[B] .

6. If C = (C1 t C2), then, due to P4, 〈C1, B
′〉 ∈ L(s) or 〈C2, B

′′〉 ∈ L(s),
and hence, by induction and by the fact that B′ and B′′ contain exactly
those bindings for the free variables in C1 and C2 respectively due to P17,
s ∈ C

I[B]
1 or s ∈ C

I[B]
2 . Thus, s ∈ (C1 t C2)I[B] .

14



7. If C = ∃r.E, C => nr.E, C =6 nr.E, or C = o for o ∈ NI , then B = ∅
and C is variable free, since variables can only occur universally quantified
in concepts in query form. Hence, the proof is the same as the one for
SHOIQ [8].

8. If C = ∀r.E and 〈s, s′〉 ∈ rI[B] , then either

(a) 〈s, s′〉 ∈ E(r) and 〈E,B〉 ∈ L(s′) due to P5, or
(b) 〈s, s′〉 /∈ E(r). This can only be the case if r is transitive and there

exists a path of length n > 1 such that 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, s′〉 ∈
E(r). Due to P7, 〈∀r.E,B〉 ∈ L(si) for all 1 6 i 6 n, and we have
〈E,B〉 ∈ L(s′), again due to P5.

In both cases, by induction s′ ∈ EI[B] holds, and hence s ∈ (∀r.E)I[B] =
CI[B] .

9. If C = ↓y.E, then 〈E,B∪{y/s}〉 ∈ L(s) and 〈y, {y/s}〉 ∈ L(s) by P15 and
by induction s ∈ EI[B∪{y/s}] and s ∈ yI[y/s] and hence s ∈ (↓y.E)I[B] =
CI[B] .

For the “only-if” direction:
Given a model I = (∆I ,·I) for D with respect to R, we can define a tableau
T = (S,L, E) for D with respect to R as follows:

S = ∆I

E(r) = rI

L(s) = {〈C,B〉 | C ∈ cl(D)
B = {y/s′ ∈ BT | y is free in C, y/s′′ /∈ B, and s ∈ CI[B]}

It remains to demonstrate that T is indeed a tableau for D:

1. P1 holds due to the semantics of SHOIQ↓-concepts and the fact that a
concept C ∈ NC is variable free.

2. To show a contradiction, assume that 〈¬y, {y/s}〉 ∈ L(s) for some y ∈ NV

and s ∈ S. Then s ∈ (¬y)I[y/s] = ∆I \ yI[y/s] = ∆I \ {s}, which is a
contradiction. Hence, 〈y, {¬y/s}〉 /∈ L(s) and P2 holds.

3. If 〈C1 u C2, B〉 ∈ L(s) for (C1 u C2) ∈ cl(D), then {C1, C2} ⊆ cl(D) and
P3 holds, since s ∈ (C1 u C2)I[B] implies that s ∈ C

I[B]
1 and s ∈ C

I[B]
2 by

the definition of the semantics.

4. P4, P5, and P6 hold as well by definition of the semantics.

5. For P7, if s ∈ (∀r.C)I and 〈s, s′〉 ∈ r′
I with Trans(r′) and r′ v* r, then

s′ ∈ (∀r′.C)I if s′ has no r′-successor or only r′-successor that are in
CI . The individual s cannot be in (r’.C)I if there is some s′′ such that
〈s′, s′′〉 ∈ r′

I and s′′ /∈ CI . In this case, since 〈s, s′〉, 〈s′, s′′〉 ∈ r′
I , and

Trans(r′), it holds that 〈s, s′′〉 ∈ r′
I . Hence 〈s, s′′〉 ∈ rI and s /∈ ∀r.CI in

contradiction to the assumption. Therefore, T satisfies P7.

6. P8, P9, and P10 hold as a consequence of the definition of the semantics
of SHOIQ↓-concepts and the fact that variables only occur universally
quantified and are not allowed to appear inside an existential restriction
or in number restrictions.

15



7. P11 is satisfied because I |= R and set inclusion is a transitive property.

8. P12 and P13 are satisfied by the definition of the semantics.

9. For P15: If 〈↓y.C,B〉 ∈ L(s), then {C, y} ⊆ cl(D), s ∈ CI[B∪{y/s}] , and
hence 〈C, {y/s} ∪ B〉 ∈ L(s). Since s ∈ yI[y/s] = {s}, we have that
〈y, {y/s}〉 ∈ L(s) as required.

10. We show P16 by contradiction. Assume that 〈y, {y/s′}〉 ∈ L(s) and s 6= s′.
Then, by definition of the labels, s ∈ Y I[y/s′] = {s′}, which clearly is a
contradiction for s 6= s′. Hence, P16 holds.

11. P17 holds by definition of the labels. In particular by the constraint that
no variable y ∈ NV can occur in the set of bindings for a concept C twice.

5 A Tableaux Algorithm for SHOIQ↓-Concepts
in Query Form

From Lemma 4.2, an algorithm which constructs a tableau for a SHOIQ↓-
concept D in query form can be used as a decision procedure for the satisfiability
of D with respect to a role hierarchyR. Such an algorithm will now be described
in detail.

Definition 5.1 (Tableaux Algorithm)
Let D be a SHOIQ↓-concept in query form, R a role hierarchy, and RD the
set of role names occurring in D and R. A completion graph for D w.r.t. R is a
directed graph G = (V,E,L, 6 .=). Each node (vertex) v ∈ V is labelled with a set
L(v) of tuples 〈C,B〉, where C ∈ cl(D) and B ⊆ {y/v′ | y ∈ NV and v′ ∈ V }.
We call B the bindings for C, and for b = y/v′ ∈ B, we call v′ the binding for y
in C. Each edge 〈v, v′〉 ∈ E is labelled with a set of role names L(〈v, v′〉) ⊆ RD.
The symmetric binary relation 6 .= is used to keep track of inequalities between
nodes of the graph G.

For v ∈ V , the function LC(v) returns the set of concepts that are in the
label of v without their bindings, i.e., LC(v) = {C | 〈C,B〉 ∈ L(v)}. The
function Lsubst(v) returns the set of concepts with all variables replaced by their
bindings, i.e., Lsubst(v) = {C[y1/v1,...,yn/vn] | 〈C, {y1/v1, . . . , yn/vn}〉 ∈ L(v)}. If
〈C,B〉 ∈ L(v) with B = {y1/v1, . . . , yn/vn}, then we denote with C[B], the
result of replacing all occurrences of yi in C with vi for 1 6 i 6 n. It is
worth mentioning that for a concept C without variables and a vertex v ∈ V ,
C ∈ LC(v) iff C ∈ Lsubst(v).

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈
E and r ∈ L(〈v1, v2〉). If 〈v1, v2〉 ∈ E, then v2 is called a successor of v1 and v1

is called a predecessor of v2. Ancestor is the transitive closure of predecessor,
and descendant is the transitive closure of successor. A node v2 is called an
r-successor of a node v1 if, for some role r′ with r′ v* r, r′ ∈ L(〈v1, v2〉).

For a role r and a node v ∈ V , we define the set of v’s r-successors with C
in their label, rG, as follows:

rG(v, C) := {v′ | v′ is an r-successor of v and C ∈ L(v′)}.

A completion graph G = (V,E,L, 6 .=) is said to contain a clash if

16



1. for some concept name A ∈ NC and vertex v ∈ V , {A,¬A} ⊆ LC(v), or

2. for some role r and vertex v ∈ V , 6 nr.C ∈ LC(v) and there are n + 1
r-successor s v0, . . . , vn of v with C ∈ LC(vi) for each 0 6 i 6 n and
vi 6

.= vj for each 0 6 i < j 6 n, or

3. for some o ∈ NI , there are vertices v 6 .= v′ with o ∈ (LC(v) ∩ LC(v′)), or

4. for y ∈ NV , there is a vertex v ∈ V with {v,¬v} ⊆ Lsubst(v).

If o1, . . . , o` are all the nominals occurring in D, then the tableaux algorithm
starts with the completion graph G = ({r0, r1, . . . , r`}, ∅,L, ∅) with L(r0) =
{〈D, ∅〉} and L(ri) = {〈oi, ∅〉} for 1 6 i 6 `. G is then expanded by repeatedly
applying the expansion rules given in Table 5, stopping if a clash occurs.

The ↓-rule in Table 5 extends the expansion rules for SHOIQ. Since the
labels of the vertices are now tuples, the LC and Lsubst functions are used in
some of the rules. We distinguish two types of nodes in G: nominal nodes and
blockable nodes. A node v is a nominal node if L(v) contains a nominal and v
is a blockable node otherwise.

A vertex vd ∈ V is directly blocked in G if it has ancestors v′d, vb, and v′b
such that

1. vd is a successor of v′d and vb is a successor of v′b,

2. vb, vd and all nodes on the path from vb to vd are blockable,

3. LC(vd) = LC(vb) and LC(v′d) = LC(v′b), and

4. L(〈v′d, vd〉) = L(〈v′b, vb〉).

In this case we say that vb blocks vd. A node is blocked if is directly blocked
or if its predecessor is blocked.

The only difference to the blocking for SHOIQ is that the function LC ,
which does not consider the bindings, is used for comparing the labels of the
vertices in SHOIQ↓.

During the expansion it is sometimes necessary to merge two nodes or to
delete (prune) a part of the graph. Since the node labels are now tuples, we
adapt the according definitions from SHOIQ. When a node vr (the subscript r
accounts for the fact that the node is to be removed) is merged into a node vm

(the subscript m indicates the node into which vr is merged) by an application
of the 6-rule, we “prune” the completion graph by removing vr and, recursively,
all blockable successors of vr to prevent a further rule application on this nodes.
More precisely, pruning a node vr (written Prune(vr)) in G = (V,E,L, 6 .=) yields
a graph that is obtained from G as follows:

1. for all successors v of vr, remove 〈vr, v〉 from E and, if v is blockable,
Prune(v);

2. remove vr from V .

Intuitively, when we merge a node vr, we add L(vr) to L(vm), “move” all the
edges leading to vr so that they lead to vm and “move” all the edges leading from
vr to nominal nodes so that they lead from vm to the same nominal nodes; we
then remove vr (and blockable sub-trees below vr) from the completion graph.
More precisely, merging a node vr into a node vm (written Merge(vr, vm)) in
G = (V,E,L, 6 .=) yields a graph that is obtained from G as follows:

17



1. for all nodes v such that 〈v, vr〉 ∈ E

(a) if 〈v, vm〉 /∈ E, then E = E ∪ {〈v, vm〉}
(b) L(〈v, vm〉) = L(〈v, vm〉) ∪ L(〈v, vr〉),
(c) remove 〈v, vr〉 from E;

2. for all nominal nodes v such that 〈vr, v〉 ∈ E

(a) if 〈vm, v〉 /∈ E, then E = E ∪ 〈vm, v〉
(b) L(〈vm, v〉) = L(〈vm, v〉) ∪ L(〈vr, v〉),
(c) remove 〈vr, v〉 from E;

3. L(vm) = L(vm) ∪ L(vr)

4. add vm 6
.= v for all v such that vr 6

.= v; and

5. Prune(vr).

u-rule if 1. 〈C1 u C2, B〉 ∈ L(v), v is not indirectly blocked, and
2. {〈C1, B1〉, 〈C2, B2〉} * L(v), where

B1 = {y/v′ | y is free in C1} and
B2 = {y/v′ | y is free in C2}

then L(v) = L(v) ∪ {〈C1, B1〉, 〈C2, B2〉}.
t-rule if 1. 〈C1 t C2, B〉 ∈ L(v), v is not indirectly blocked, and

2. {〈C1, B1〉, 〈C2, B2〉} ∩ L(v) = ∅, where
B1 = {y/v′ | y is free in C1} and
B2 = {y/v′ | y is free in C2}

then L(v) = L(v) ∪ {〈C1, B1〉} or L(v) = L(v) ∪ {〈C2, B2〉}
∃-rule if 1. 〈∃r.C, ∅〉 ∈ L(v), v is not blocked, and

2. n has no safe r-neighbour v′ with 〈C, ∅〉 ∈ L(v′),
then create a new node v′ and an edge 〈v, v′〉

with L(v′) = {〈C, ∅〉} and L(〈v, v′〉) = {r}.
∀-rule if 1. 〈∀r.C, B〉 ∈ L(v), v is not indirectly blocked, and

2. there is an r-neighbour v′ of v with 〈C, B〉 /∈ L(v′),
then L(v′) = L(v′) ∪ {〈C, B〉}.

∀+-rule if 1. 〈∀r.C, B〉 ∈ L(v), v is not indirectly blocked, and
2. there is some r′ with Trans(r′) and r′ v* r
3. there is an r′-neighbour v′ of v with 〈∀r′.C, B〉 /∈ L(v′)

then L(v′) = L(v′) ∪ {〈∀r′.C, B〉}.
choose-rule if 1. 〈6 nr.C, ∅〉 ∈ L(v), v is not indirectly blocked, and

2. there is an r-neighbour v′ of v with
{〈C, ∅〉, 〈¬̇C, ∅〉} ∩ L(v′) = ∅

then L(v′) = L(v′) ∪ {〈E, ∅〉} for some E ∈ {C, ¬̇C}
>-rule if 1. 〈> nr.C, ∅〉 ∈ L(v), v is not blocked, and

2. there are not n safe r-neighbours v1, . . . , vn of v
with 〈C, ∅〉 ∈ L(vi) and vi 6

.
= vj for 1 6 i < j 6 n

then create n new nodes v1, . . . , vn with L(〈v, vi〉) = {r},
L(vi) = {〈C, ∅〉} and vi 6

.
= vj for 1 6 i < j 6 n.

6-rule if 1. 〈6 nr.C, ∅〉 ∈ L(v), v is not indirectly blocked,
2. ](rG(v, C)) > n and there are two r-neighbours v1, v2 of v

with 〈C, ∅〉 ∈ (L(v1) ∩ L(v2)) and not v1 6
.
= v2,

then a. if v1 is a nominal node, then Merge(v2, v1)
b. else if v2 is a nominal node or an ancestor of v1,

then Merge(v1, v2)
c. else Merge(v2, v1).

Table 1: The expansion rules for SHOIQ↓ (continued next page).

18



Table 1– continued from previous page

o-rule if for some o ∈ NI , there are two nodes v, v′

with 〈o, ∅〉 ∈ (L(v) ∩ L(v′)) and not v 6 .= v′

then Merge(v, v′).
NN -rule if 1. 6 nr.C ∈ LC(v), v is a nominal node, and there is a

blockable r-neighbour v′ of v such that C ∈ LC(v′) and
v is a successor of v′,

2. there is no m such that 1 6 m 6 n, (6 mr.C) ∈ LC(v),
and there exist m nominal r-neighbours v1, . . . , vm of v
with C ∈ LC(vi) and vi 6

.
= vj for all 1 6 i < j 6 m.

then 1. guess m with 1 6 m 6 n and L(v) → L(v) ∪ {〈6 mr.C, ∅〉}
2. create m new nodes v′1, . . . , v

′
m with L(〈v, v′i〉) = {r},

L(v′i) = {〈C, ∅〉, 〈oi, ∅〉} and each oi ∈ NI new in G,
and v′i 6

.
= v′j for 1 6 i < j 6 m.

↓-rule if 1. 〈↓y.C, B〉 ∈ L(v), v is not indirectly blocked, and
2. {〈y, {y/v}〉, 〈C, {y/v} ∪B〉} * L(v),

then L(v) = L(v) ∪ {〈y, {y/v}〉, 〈C, B ∪ {y/v}〉}.
Table 1: The expansion rules for SHOIQ↓.

6 Proof of the Algorithm’s Correctness and Ter-
mination

In order to obtain a decision procedure, we have to prove that the algorithm
is sound, complete, and terminating. We start with the termination proof and
continue with the proofs for soundness and completeness.

Lemma 6.1
Let D be a SHOIQ↓-concept in query form and R a role hierarchy, then the
SHOIQ↓ tableaux algorithm terminates, given D and R as input.

Proof. Since the blocking conditions consider the non-instantiated concepts
only, the proof of termination works as for SHOIQ.

The next step towards showing that the algorithm as presented in Section 5
is a decision procedure for a SHOIQ↓ concept D in query form with respect to
a role hierarchy R is to prove the soundness of the algorithm.

Lemma 6.2
Let D be a SHOIQ↓-concept in query form and R a role hierarchy. If the
expansion rules can be applied to D and R such that they yield a complete and
clash-free completion graph, then D has a tableau with respect to R.

Proof. We can obtain a tableau T = (S,L′, E) from a complete and clash-free
completion graph G = (V,E,L, 6 .=) by unravelling blockable “tree” parts of the
graph and by extending the labels with respect to binder concepts accordingly.
As a result and in difference to tableau for SHOIQ, there might be no bound
on the size of the labels in a tableau, which is, however, not a problem. We
define a trace as follows:
For a directly blocked node v, let b(v) denote a node that blocks v. A trace in
T is a sequence of pairs of blockable nodes of G of the form t = 〈v0

v′0
, . . . , vn

v′n
〉.

For such a trace, we define Tail(t) := vn and Tail′(t) := v′n. With 〈t | vn+1
v′n+1
〉 we

19



denote the trace 〈v0
v′0

, . . . , vn

v′n
, vn+1

v′n+1
〉. The set Traces(G) is defined inductively as

follows:

• For each blockable node v of G that is a successor of a nominal node or a
root node, 〈vv 〉 ∈ Traces(G), and

• For a trace t ∈ Traces(G) and a blockable node v′ in G:

– if v′ is a successor of Tail(t) and v′ is not blocked, then 〈t | v′

v′ 〉 ∈
Traces(G), and

– if v′ is a successor of Tail(t) and v′ is blocked, then 〈t | b(v′)
v′ 〉 ∈

Traces(G).

Due to the construction of Traces(G), all nodes occurring in a trace are blockable
and, for t ∈ Traces(G) with t = 〈t | v

v′ 〉, v is not blocked, and v′ is blocked iff
v 6= v′. Furthermore, the blocking condition implies LC(v) = LC(v′).

We further on extend the function tail to be the identity on nominal nodes,
i.e., v ∈ Nom(G), Tail(v) = v. This makes that definition of the labels more
convenient.

For concepts in a blocked node, we may have to make non-deterministic
choices during the unravelling. For a trace t s.t. t contains free variables, we use
the equivalent concept modulo bindings in Tail(t) to steer the non-deterministic
decisions.

We now use Nom(G) for the set of nominal nodes in G and define a tableau
T = (S,L′, E) from G as follows:

S = Nom(G) ∪ Traces(G)
L′(s) = {〈C,B〉 | 〈C,B′〉 ∈ L(Tail(s)) and y/t ∈ B iff y/Tail(t) ∈ B′}
E(r) = {〈t, t′〉 ∈Traces(G)× Traces(G) |

t′ = 〈t | v
v′ 〉 and v′ is an r-successor of Tail(t) or

t = 〈t′ | v
v′ 〉 and v′ is an Inv(r)-successor of Tail(t′)}∪

{〈t, v〉 ∈Traces(G)× Nom(G) | v is an r-neighbour of Tail(t)}∪
{〈v, t〉 ∈Nom(G)× Traces(G) | Tail(t) is an r-neighbour of v}∪
{〈v, v′〉 ∈Nom(G)× Nom(G) | v′ is an r-neighbour of v}

We show that T is indeed a tableau for D with respect to R by showing that
T satisfies all of the properties from Definition 4:

• P1 holds by the definition of L′ and the fact that C is variable free since
C ∈ NC and G is complete and clash-free.

• P2 holds by the definition of L′ and the fact that G is clash-free. In
particular, if {〈y, {y/t}〉, 〈¬y, {y/t}〉} ⊆ L′(t), then by definition of L′,
{〈y, {y/v}〉, 〈¬y, {y/v}〉} ⊆ L(v) for v = Tail(t), which clearly contradicts
the fact that G is clash-free.

• As a consequence of the definition of concepts in query form, conjunc-
tions occur only in concepts without free variables. Hence property P3 is
satisfied because of the definition of L′ and because G is complete.

• If 〈C1 t C2, B〉 ∈ L′(t), we can, due to P17, partition B into B1 and B2

such that {y/s} ∈ Bi iff y is a free variable in Bi for i ∈ {1, 2}. Then

20



by definition of L′, 〈C1 t C2, B
′
1 ∪ B′

2〉 ∈ L(Tail(t)) for y/Tail(s) ∈ B′
i iff

y/s ∈ Bi for i ∈ {1, 2}. Completeness of G implies now that 〈Ci, B
′
i〉 ∈

L(Tail(t)) for i ∈ {1, 2}. Since y/Tail(s) ∈ B′
i iff y/s ∈ Bi and by definition

of L′, we have that 〈Ci, Bi〉 ∈ L(Tail(t)) as required by P4.

• Property P5 holds since G is complete and by the definition of L′.

• Since all concepts are in query form, all existentially quantified concepts
are free of state variables and the set of bindings is empty. Hence the
proof given for SHOIQ suffices.

• Due to the definition of concepts in query form, only simple roles can be
used in quantifiers over state variables. Hence, property P7 applies only
to tuples 〈∀r.C,B〉 in which B = ∅ and again the proof given for SHOIQ
suffices.

• Since the input concept is in query form, also all concepts that occur in
the scope of a number restriction are free of state variables and the set of
bindings is empty. Therefore, for P8, P9, and P10, we again have that if
〈./ r.C, ∅〉 ∈ L′(t), for ./ a placeholder for 6 or >, the standard proof for
given SHOIQ is sufficient.

• Property P11 is satisfied due to the definition of an r-successor that, due
to the use of v* , takes into account the role hierarchy.

• Property P13 holds since G is complete and clash-free.

• Property P14 holds due to the following arguments:

– G is initialised such that for each nominal oi for 1 6 i 6 ` there is a
node ri ∈ V with 〈oi, ∅〉 ∈ L(ri).

– Pruning removes only blockable nodes and none of the nodes ri is
blockable.

– If a nominal node rj with 〈oj , ∅〉 ∈ L(rj) was merged into another
nominal node ri with 〈oi, ∅〉 ∈ L(ri), then the label of ri after the
merging is a union of the labels of the two nodes. Hence we have
that 〈oi, ∅〉, 〈oj , ∅〉 ∈ L′(ri) in T .

• If 〈↓y.C,B〉 ∈ L′(s), then 〈↓y.C,B′〉 ∈ L(Tail(s)) and completeness im-
plies that {〈C,B′ ∪ {y/Tail(s)}〉, 〈y, {y/Tail(s)}〉} ∈ L(Tail(s)). Hence, by
definition of L′, also {〈C,B ∪ {y/s}〉, 〈y, {y/s}〉} ∈ L′(s) as required by
property P15.

• The only way a non-negated variable can be added to the label of an
individual s ∈ S is if 〈↓y.C,B〉 ∈ L′(s). Let now v = Tail(s). Even if
a node v′ is merged into a node v in G such that 〈y, {y/v′}〉 ∈ L(v),
then also 〈↓y.C,B′〉 ∈ L(v) and by the completeness of G we have that
〈y, {y/v}〉 ∈ L(v). By definition of L′, we then have that 〈y, {y/s}〉 ∈ L′(s)
iff 〈y, {y/Tail(s)}〉 ∈ L(Tail(s)) = L(v). Since the removed node v′ can
never be equal to Tail(s) for an individual s ∈ S, property P16 holds.

• Property P17 holds due to the definition of concepts in query form and of
L′.

21



Finally, we now show the completeness of the algorithm, by showing that
given a tableau for a SHOIQ↓ concept D in query form with respect to a
role hierarchy R, we can use this tableau to steer the application of the non-
deterministic rules. This technique is often used for showing the completeness
of a tableaux algorithm for concept satisfiability [10, 8, 21].

Lemma 6.3
Let D be a SHOIQ↓-concept in query form and R a role hierarchy. If D has a
tableau with respect to R, then the expansion rules can be applied to D and R
such that they yield a complete and clash-free completion graph.

Proof. Let T = (S,L′, E) be a tableau for D with respect to R. We use this
tableau to guide the application of the non-deterministic rules in order to create
a complete and clash-free completion graph G.

If o1, . . . , o` are all the nominals occurring in D, then we start with an initial
completion graph G = ({r0, r1, . . . , r`}, ∅,L, ∅), where with L(r0) = {〈D, ∅〉}
and L(ri) = {〈oi, ∅〉} for 1 6 i 6 `.

We now define a mapping π : V → S that is inductively extended with
each application of a generating rule. Initially, we define π(r0) = s0, for some
s0 ∈ S with 〈D, ∅〉 ∈ L′(s0) and we define π(ri) = si for 1 6 i 6 ` such that
〈oi, ∅〉 ∈ L′(si). Clearly the individual s0 exists, since T is a tableau for D with
respect to R. The nodes si for 1 6 i 6 ` exist due to P14.

We require that π satisfies the following conditions for each node v ∈ V and
each edge 〈v, v′〉 ∈ E:

1. if 〈D, {y0/v0, . . . , yn/vn}〉 ∈ L(v), then
〈D, {y0/π(v0), . . . , yn/π(vn)}〉 ∈ L′(π(v)),

2. if v′ is an r-neighbour of v, then 〈π(v), π(v′)〉 ∈ E(r) and
3. v 6 .= v′ implies π(v) 6= π(v′)

 (∗)

It is easy to see that the initial mapping π satisfies (∗) since the set of
bindings is initially empty and obviously, no completion graph that satisfies (∗)
contains a clash as this would contradict one of P1, P2, P9, or P13.

Claim 6.4
Let G be a completion graph and π a function that satisfies (∗). If a rule
is applicable to G, then the rule is applicable to G in a way that yields a
completion graph G′ and an extension of π that also satisfies (∗).

We focus here only on the ∀-, t-, and ↓-rules, since this are the only rules
that can be applied to concepts where the set of bindings is non-empty. For
all other rules an extension of the known proof for SHOIQ is straightforward,
since only the labels have to be changed to contain tuples with an empty set of
bindings.

• If the ∀-rule is applicable to a node v ∈ V , i.e., D = 〈∀r.E,B〉 ∈ L(v)
and v′ is an r-successor of v such that 〈E,B〉 /∈ L(v′), then 〈∀r.E,B′〉 ∈
L′(π(v)) due to constraint 1 of (∗) and 〈E,B′〉 ∈ L′(π(v′)) due to P5. The
∀-rule adds 〈E,B〉 to L(v′) and it is easy to see that (∗) is preserved.

22



• Assume that the t-rule is applicable to a node v ∈ V for a concept
D = 〈C1tC2, B〉 ∈ L(v), with B = B1∪B2 and B1 = {y0/v0, . . . , yn/vn} is
chosen such that y0, . . . , yn are exactly the free variables in C1 and where
B2 = {yn+1/vn+1, . . . , ym/vm} is chosen such that yn+1, . . . , ym are ex-
actly the free variables in C2. Due to constraint 1 of (∗) we have that 〈C1t
C2, B

′〉 ∈ L′(π(v)) such that B can be partitioned into B′
1 and B′

2 with
B′

1 = {y0/π(v0), . . . , yn/π(vn)} and B′
2 = {yn+1/π(vn+1), . . . , ym/π(vm)}.

Due to property P4, we know that {〈C1, B
′
1〉, 〈C2, B

′
2〉} ∩ L′(π(v)) 6= ∅.

Hence, the t-rule can add E ∈ {〈C1, B1〉, 〈C2, B2〉} to L(v) such that (∗)
is preserved.

• If the ↓-rule is applicable to a node v ∈ V , i.e., D = 〈↓y.C,B〉 ∈ L(v)
and {〈y, {y/v}〉, 〈C, {y/v} ∪ B〉} * L(v), then 〈↓y.C,B′〉 ∈ L′(π(v)) due
to constraint 1 of (∗) and {〈y, {y/π(v)}〉, 〈C, {y/π(v)} ∪ B′〉} ⊆ L′(π(v))
due to P15. The ↓-rule adds 〈y, {y/v}〉 and 〈C, {y/v} ∪B〉 to L(v) and it
is easy to see that (∗) is preserved.

Since every rule application preserves (∗) and since the tableaux algorithm
given in Definition 5.1 terminates, it is the case that any sequence of rule ap-
plications must terminate and result in a complete and clash-free completion
graph.

Since it is possible to internalise general TBoxes and ABoxes in SHOIQ↓,
the following theorem is now a simple consequence of Lemma 6.1, Lemma 6.2,
and Lemma 6.3.

Theorem 6.5
The tableaux algorithm presented in Section 5 is a decision procedure for sat-
isfiability of SHOIQ↓-concepts in query form with respect to TBoxes, role
hierarchies, and ABoxes.

Since, by Lemma 3.9, a query q is true in a knowledge base K iff K extended
with the negated query concept for q is unsatisfiable and since the negated
query concept is in query form, we get the following result with regard to query
answering:

Corollary 6.6
Let q be a boolean conjunctive query and let K = 〈T , R, A 〉 be a knowledge
base. The tableaux algorithm presented in Section 5 is a decision procedure for
deciding if K |= q.

Now, since answering non-Boolean queries can be reduced to answering (pos-
sibly several) Boolean queries by answering one Boolean query for each possible
substitution of the free variables with individual names, we obtain our desired
result:

Corollary 6.7
Let q be a conjunctive query and let K = 〈T , R, A 〉 be a knowledge base. The
tableaux algorithm presented in Section 5 is a decision procedure for deciding
if K |= q.

23



7 Conclusions

In the previous sections we have presented what is, to the best of our knowl-
edge, the first decision procedure for answering conjunctive queries for SHOIQ
knowledge bases. In particular, the presented algorithm allows for nominals in
the Description Logic, which was an open problem before.

We achieved this by extending the SHOIQ Description Logic with a re-
stricted form of the Hybrid Logic binder (↓) resulting in a logic, called SHOIQ↓.
SHOIQ↓ is capable of expressing conjunctive queries and their negations, which
is, for most queries, not possible in SHOIQ, because there is no support for role
negation. In SHOIQ↓, it is then possible to reduce the problem of deciding if a
knowledge base entails a conjunctive query to a concept satisfiability problem.

Adding the ↓ binder in an unrestricted form makes even ALC undecidable.
In order to regain decidability, we define a syntactic restriction on SHOIQ↓
concepts, which is still capable of expressing the negation of conjunctive queries.
However, even in this very restricted form, the ↓ has a notable impact on the
resulting logic. In the case of SHOIQ, for example, the extension leads to the
loss of the finite model property.

In Section 5, we present a novel tableaux algorithm for deciding concept
satisfiability of SHOIQ↓-concepts, which extends the tableaux algorithm for
deciding SHOIQ concept satisfiability [7]. For query answering blocking has to
be delayed depending on the size of the query (the longest path in the query).
In CARIN [14] or its extension to SHIQ [18], for example, two isomorphic
trees whose depths depends on the size of the query, are used in the blocking
condition. This is a severe disadvantage from a practical point of view. In our
approach, we can use the normal blocking conditions of SHOIQ (modulo the
newly introduced bindings) and the length of the query is captured automati-
cally in the query concept. Hence blocking is delayed only as much as necessary
to achieve completeness. Further on, the algorithms in the style of CARIN
require the addition of an axiom > v C t¬C for every concept C in the query,
which can significantly increase the amount of non-determinism, whereas the
query concept guides the algorithm towards producing a counter-model and en-
forces a decision about concept membership only if necessary. This makes ↓
binders and variables the more attractive choice from an implementation point
of view.

Cycles in the query, in particular cycles containing transitive roles, have
a significant impact on the blocking conditions as well. For cycles without
transitive roles the blocking conditions for SHOIQ↓ are comparable to the
ones for SHOIQ. With transitive roles, however, it is difficult to find a bound
on the length of paths in a completion graph and the blocking conditions do no
longer work. We therefore do not allow transitive roles to occur in cycles in the
query and it is currently unknown, if conjunctive query answering without this
restriction is still decidable. Or future work is aimed at finding an answer to
this problem.

References

[1] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

24



OWL web ontology language reference. Technical report, W3C, February
10 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[2] Tim Berners-Lee, Mark Fischetti, and Michael L. Dertouzos. Weaving the
Web: The Original Design and Ultimate Destiny of the World Wide Web
by its Inventor. Harper San Francisco, 1999.

[3] Patrick Blackburn and Jerry Seligman. Advances in Modal Logic, volume 1,
chapter What are hybrid languages?, pages 41–62. CSLI Publications,
Stanford University, 1998. Kracht, Marcus and de Rijke, Maarten and
Wansing, Heinrich and Zakharyaschev, Michael (editors.).

[4] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the
decidability of query containment under constraints. In Proceedings of the
17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems (PODS 1998), pages 149–158. ACM Press, 1998.

[5] Birte Glimm and Ian Horrocks. Handling cyclic conjunctive queries. In
Proceedings of the 18th International Workshop on Description Logics (DL
2005), Edinburgh, Scotland, UK, July 26–28 2005. CEUR-Workshop Pro-
ceedings.

[6] Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Journal of Web Semantics, 1(4):345–357,
2004.

[7] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ descrip-
tion logic. In Bernd Nebel, editor, Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001), pages 199–204.
Morgan Kaufmann, 2001.

[8] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.
In Proceedings of the 19th International Joint Conference on Artificial In-
telligence (IJCAI 2005), July 30 – August 5 2005.

[9] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. How
to decide query containment under constraints using a description logic.
In Proceedings of the 7th International Conference on Logic for Program-
ming and Automated Reasoning (LPAR 2000), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2000.

[10] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning for
Expressive Description Logics. In Harald Ganzinger, David McAllester,
and Andrei Voronkov, editors, Proceedings of the 6th International Confer-
ence on Logic for Programming and Automated Reasoning (LPAR 1999),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[11] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with Individ-
uals for the Description Logic SHIQ. In David McAllester, editor, Proceed-
ings of the 17th International Conference on Automated Deduction (CADE
2000), number 1831 in Lecture Notes in Artificial Intelligence, pages 482–
496. Springer-Verlag, 2000.

25



[12] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. A decomposition rule for
decision procedures by resolution-based calculi. In Proceedings of the 11th
International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR 2004), volume 3452 of Lecture Notes in Computer
Science. Springer, March 14–18 2004.

[13] Aditya Kalyanpur, Bijan Parsia, and James Hendler. A tool for working
with web ontologies. International Journal on Semantic Web and Infor-
mation Systems, 1(1):36–49, 2005.

[14] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation lan-
guage combining horn rules and description logics. In European Conference
on Artificial Intelligence, pages 323–327, 1996.

[15] Maarten Marx. Narcissists, stepmothers and spies. In Proceedings of the
2002 Description Logic Workshop (DL 2002), volume 53. CEUR Workshop
Proceedings, April 19–21 2002.

[16] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-
DL with rules. In Proceedings of the 3rd International Semantic Web Con-
ference (ISWC 2004), Hiroshima, Japan, November 2004.

[17] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubzy, Ray W.
Fergerson, and Mark A. Musen. Creating semantic web contents with
protégé-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[18] Maria M. Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data
complexity for conjunctive query answering in expressive description logics.
In Proceedings of the 21th National Conference on Artificial Intelligence
(AAAI 2006), 2006.

[19] Andrea Schaerf. Reasoning with individuals in concept languages. Data
Knowledge Engineering, 13(2):141–176, 1994.

[20] Sergio Tessaris. Questions and answers: reasoning and querying in De-
scription Logic. PhD thesis, University of Manchester, 2001.

[21] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[22] Katy Wolstencroft, Andy Brass, Ian Horrocks, Phil Lord, Ulrike Sattler,
Daniele Turi, and Robert Stevens. A Little Semantic Web Goes a Long
Way in Biology. to appear in the International Semantic Web Conference,
2005, Galway, Ireland., 2005.

26


