
4

COMPUTATIONAL MODAL LOGIC

Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

1 Introduction . 1
2 Syntax, semantics, and reasoning problems of modal logics . 3
3 Translation-based methods . 6

3.1 Local satisfiability in multi modal Kn . 6
3.2 Global satisfiability, non-logical axioms, transitive modalities, and K4n 20
3.3 Converse modalities and the modal logics KBn and KB4n . 22
3.4 Implementation and optimisation . 23
3.5 Other extensions (counting, nominals) . 27

4 Tableau-based algorithms . 27
4.1 Tableau algorithms in general . 28
4.2 Local satisfiability for multi modal Kn . 29
4.3 Transitive modalities and K4n . 37
4.4 Non-logical axioms and background theories . 39
4.5 Converse modalities . 42
4.6 Converse modalities and background theories . 43
4.7 Other extensions (counting, nominals, transitive closure, and fixpoints) 44

5 Other computational approaches . 46
5.1 Automata-based algorithms . 46
5.2 Modal resolution . 47
5.3 Sequent-based approaches . 49
5.4 Inverse method . 50

6 Other reasoning problems . 51
6.1 Model checking . 51
6.2 Proof checking . 51
6.3 Computing correspondences . 52
6.4 Model generation . 53
6.5 Bisimulation . 54
6.6 Modal logic programming . 56

7 Review and Discussion . 57

1 INTRODUCTION

As we have seen in preceding chapters, the worst case complexity of basic reasoning tasks,
such as deciding the satisfiability of a modal formula, is at least NP-complete for almost all
modal logics. Moreover, for logics extended with features that are useful in practice, the worst
case complexity can be much higher, e.g., ExpTime-complete for Kn extended with non-logical

2 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

axioms (background theories), and NExpTime-complete for Kn extended with converse modal-
ities, graded modalities and nominals.

Some may regard these results as discouraging and the question arises whether automated
computation with such logics can be feasible in practice. Fortunately, the kinds of pathological
formulae/theories that give rise to these worst case results seem to be rarely encountered in
realistic applications, and this has allowed for the successful development and deployment of
automated reasoning systems for modal logics and their notational variant, description logics;
see Chapter ??. Applications of such systems include, e.g., multi-agent systems [53, 60, 196],
configuration [137], conceptual modelling [73], information integration [32], and ontology tools
and applications [125, 131, 167, 189, 138, 197].

Even for application derived formulae/theories, however, naive implementations of theoretical
proof systems, such as the tableau calculi presented in Chapter ??, are unlikely to be of practical
utility. As pointed out in [40], without the use of an analytic cut rule, the minimal length of proofs
using these calculi can exceed that of proofs using the truth table method for certain propositional
(and modal) formulae. Further, not only is it important that short proofs exist, but also how we
go about finding a proof or a counter-model. Much of the work presented in this chapter deals
with techniques that reduce the size of the search space or help to traverse the search space
more efficiently. Successful modern reasoning systems crucially employ specialised reasoning
techniques along with optimisations to dramatically improve typical case performance; cf. for
example [85, 90, 97, 115, 116, 158, 159]. In this chapter, we focus on reasoning and optimisation
techniques used in tableau-based algorithms and translation-based methods.

Translation-based methods make use of the fact that a wide variety of modal logics can be
translated into first-order logic; in fact, they can be considered as characterising certain frag-
ments of first-order logic as explained in Chapter ??. To the translated modal formulae, we
can apply first-order reasoning methods, in particular, refinements of resolution [16]. Using this
combination of a translation method and resolution has some obvious advantages. Any modal
logic which can be embedded into first-order logic can be treated. The translations are straight-
forward, and can be performed in time O(n log n), so the engineering effort is minimal. For the
resolution part, standard resolution provers can be used, or otherwise they can be used with small
adaptations. Modern resolution provers [169, 183, 194] are among the most sophisticated and
fastest first-order logic theorem provers currently available. The translation method is generic, it
can handle first-order modal logics, undecidable modal logics, and combinations of modal and
non-modal logics. In all cases, soundness and completeness of the method is immediate from
results showing that the translation is satisfiability equivalence preserving and the soundness
and completeness of the resolution calculus for first-order logic. The semi-decidability of first-
order logic and the behaviour of first-order resolution on first-order formulae does not give us,
however, any immediate insight into the modal fragment of first-order logic, which certainly is
decidable, or the behaviour of first-order resolution on translated modal formulae. While termi-
nation of a resolution derivation from a translated modal formula is not always guaranteed, there
are various ways, using different translations and different refinements of resolution, of obtaining
translation-based decision procedures. In Section 3, we discuss some of these approaches and
illustrate them using the modal logics Kn, K4n, KBn, K`

n (Kn with converse modalities), and
KB4n. Also, using the modal logic Kn, we want to provide some fundamental understanding
of how modern resolution provers work in general, what kind of optimisations are available, and
how they can be used to provide effective and practical decision procedures for modal logics.

Tableau-based algorithms are closely related to the prefixed tableau systems presented in
Chapter ??. In Section 4, we first explain the exact relationship between the two before de-

Computational Modal Logic 3

scribing a tableau algorithm which decides the satisfiability of formulae in the basic multi-modal
logic Kn. We then discuss implementation and optimisation techniques which can be used to
turn this tableau algorithm into an effective and practical decision procedure for Kn. Follow-
ing the same structure, we also describe tableau-based algorithms for the modal logics K4n, Kn

with non-logical axioms, K`

n , and their combinations and discuss implementation issues of those
algorithms. Whereas the Kn tableau algorithm terminates “automatically”, we use certain cycle
detection mechanisms to ensure termination for other modal logics. It can be easily seen that
these mechanisms must be chosen carefully to preserve correctness of the algorithm and, at the
same time, to enable termination as soon as possible so as to avoid an unnecessarily long search.
Interestingly, it has been shown by state of the art description logic reasoners [159, 90, 160]
that such tableau algorithms are amenable to optimisation, and that they behave better than their
worst-case complexity or that of the corresponding reasoning problem suggest: they implement
non-deterministic double exponential decision procedures for logics that are ExpTime-complete.

In Section 5, we give an overview of alternative computational approaches to the satisfiability
problem in modal logics. These include automata-based algorithms, direct resolution, the inverse
method, and sequent-based approaches. In Section 6, we survey reasoning problems other than
satisfiability and provability which are relevant for applications of modal logics, namely, model
checking, proof checking, and computing correspondence properties for modal axiom schemata.
Finally, we conclude the chapter with a brief review and discussion of current and future research.

2 SYNTAX, SEMANTICS, AND REASONING PROBLEMS OF MODAL LOGICS

Throughout this chapter, we use a notation that is compatible with the one presented in Chap-
ter ??. We will use the symbols p, q, pi, qi, . . . for propositional variables. Here, we will be
concerned with extensions and variants of the multi-modal logic Kn. The set of Kn formulae is
the smallest set that contains all propositional variables, is closed under Boolean operators, and
contains [i]ψ and 〈i〉ψ for each 1 ≤ i ≤ n and each Kn formula ψ. Formulae of the form [i]ψ
and 〈i〉ψ are called box formulae and diamond formulae, respectively. In different sections, we
will consider different normal forms of Kn formulae, and thus we are generous here and allow
all kinds of Boolean operators and abbreviations, e.g. ∧, ∨, ¬, →, > (for any tautology), ⊥ (for
¬>), etc.

As usual, the semantics of Kn is defined in terms of relational, Kripke structures or frames.
A frame is a tuple 〈W,R〉 of a non-empty set W (of worlds) and a mapping R from natural
numbers i, 1 ≤ i ≤ n to binary relations over W , thus R(i) ⊆ W ×W . Here and in the rest
of the chapter, we use Ri as an abbreviation of R(i), and we say that w is i-accessible from v
if Ri(v, w). A model is given by a triple M = 〈W,R, V 〉, where 〈W,R〉 is a frame and V is a
mapping from propositional variables to subsets of W . The notion of a formula ψ being true in
a model M at a world w ∈ W is inductively defined as follows (we omit the definition for most
Boolean operators).

M, w |= p iff w ∈ V (p)
M, w |= ¬ψ iff not M, w |= ψ
M, w |= ψ ∧ φ iff M, w |= ψ and M, w |= φ
M, w |= ψ ∨ φ iff M, w |= ψ or M, w |= φ
M, w |= [i]ψ iff M, v |= ψ, for all v with Ri(w, v)
M, w |= 〈i〉ψ iff M, v |= ψ, for some v with Ri(w, v)

A modal formula φ is satisfiable in Kn if there exists some M = 〈W,R, V 〉 such that, for some

4 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

w ∈ W , M, w |= φ. In this case, we say that φ is satisfied in M. φ is valid in Kn if, for every
M = 〈W,V 〉 and every w ∈W , M, w |= φ; φ and ψ are equivalent if φ↔ ψ is valid.

As usual, satisfiability and validity are inter-reducible, i.e., φ is satisfiable iff ¬φ is not valid,
and φ is valid iff ¬φ is unsatisfiable. Thus, in what follows, we will mostly concentrate on a
single inference problem, namely satisfiability testing. It is well-known that the satisfiability
problem (and thus validity) in Kn is PSpace-complete [93, 129] (see also Chapter ??), and
there are various decision procedures for this problem [49, 93, 129] and implementations thereof
[87, 90, 120, 159]. Many of these procedures exploit the fact that any satisfiable Kn formula is
satisfied in a finite tree model (i.e., one where the relational structure of the frame forms a finite
tree) of depth linear in the size of the input formula. In this chapter, we will discuss in depth
a resolution-based algorithm (in Section 3) and a tableau-based algorithm (in Section 4) for the
satisfiability of Kn, and then explain how these two basic algorithms can be modified to also
decide more expressive modal logics.

We will often restrict our attention to formulae in negation normal form (NNF). In formulae
in NNF, ∧, ∨, and ¬ are the only Boolean connectives used, and negation occurs only in front of
propositional variables. Each formula of Kn and all extensions of Kn discussed in this chapter
can be easily transformed into an equivalent formula in NNF in linear time, by pushing negation
inwards, using a combination of de Morgan’s laws and the duality between box and diamond
formulae.

In this chapter we refer to a number of extensions of Kn which we define in the following.

K4n, KBn, and KB4n. We will discuss decision procedures for K4n, the multi-modal logic of
transitive frames, KBn, the multi-modal logic of symmetric frames, and KB4n, the multi-modal
logic of symmetric and transitive frames. All these logics share the same language with Kn,
but their semantics is based on different classes of frames. As K4n models, we only consider
those models that are based on frames (W,R) in which each Ri is transitive, i.e., where for
any u, v, w ∈ W , Ri(u, v) and Ri(v, w) imply Ri(u,w). For example, 〈i〉〈i〉p ∧ [i]¬p is
Kn satisfiable, whereas the same formula is K4n unsatisfiable. As KBn models, we only
consider models that are based on frames (W,R) in which each Ri is symmetric, i.e., where
for any u, v ∈ W , Ri(u, v) implies Ri(v, u). An example of a formula which is Kn and K4n

satisfiable, but KBn unsatisfiable, is ¬p ∧ 〈i〉[i]p. Finally, KB4n models are based on frames
(W,R) where each Ri is symmetric and transitive. The formula 〈i〉¬p ∧ 〈i〉[i]p, for example, is
KB4n unsatisfiable, but satisfiable in Kn, K4n, and KBn.

The modal logic K4n is axiomatised by the axioms of the modal logic Kn (see, for example,
Chapter ??), plus the axiom schema 4 below. Similarly, KBn is axiomatised by adding the
axiom schema B to the axiomatisation of Kn. Finally, for KB4n, we add both axiom schemas
B and 4.

[i]φ→ [i][i]φAxiom 4

φ→ [i]〈i〉φAxiom B

The modal logic K4n is of interest since both tableau-based algorithms and translation-based
methods require additional techniques to ensure termination. The modal logic KBn only re-
quires a rather straightforward modification of the reasoning procedures we present for Kn, but
raises some implementation issues for tableau systems. It is also worthwhile to remember that,
in classical tableau systems, the treatment of KBn requires some form of cut rule. Finally, the
procedures we present for KB4n combine the techniques we introduce for K4n and KBn.

Computational Modal Logic 5

Non-logical axioms. We consider background theories, i.e., finite sets Γ = {γ1, . . . , γn} of
non-logical axioms γi. A model M satisfies a background theory Γ if, for each w ∈W and each
γ ∈ Γ, M, w |= γ. As a reasoning problem, we are interested in the satisfiability of a formula φ
w.r.t. a background theory Γ, i.e., whether there exists a model M that satisfies both φ and a
background theory Γ. Note that, in such a model, φ has to be true in at least one world, whereas
all formulae in Γ have to be true in all worlds.

Next, we explain why we discuss algorithms that reason w.r.t. background theories. Firstly,
considering background theories makes reasoning more difficult, i.e., satisfiability w.r.t. back-
ground theories is ExpTime-complete [173], and thus they present a considerable challenge for
automated reasoning tools. As with K4n, tableau algorithms for reasoning w.r.t. background the-
ories no longer terminate on all inputs. However, in contrast to K4n, background theories allow
us to enforce models with paths of exponential length using the standard encoding of incremen-
tation modulo 2n on n propositional variables representing a binary counter (see, for example,
page 14 of [133] for such a formula). The latter can be viewed as a symptom of the increased
complexity since we might have to consider and search models with paths of exponential length.
Secondly, background theories can be viewed as a weak form of the universal modality, i.e., φ is
satisfiable w.r.t. Γ iff

φ ∧
∧

γ∈Γ

[0]γ,

is satisfied in a model based on a frame 〈W,R〉 with R0 = W ×W . In such a model, [0] is
called the universal modality because it can be used to access all worlds. In [4], it was shown
how to reduce satisfiability in Kn with the universal modality (i.e., where the universal modality
might also occur at a deeper modal level) to satisfiability w.r.t. background theories. Thirdly,
background theories can be used to “internalise” axioms or “circumscribe” frame conditions. To
do this, we first restrict our attention to formulae in negation formal form. As an example, let
us consider K4n as discussed above and a K4n formula φ in NNF. It can be shown that φ is
satisfiable iff φ is Kn satisfiable w.r.t. the background theory

{[i]ψ → [i][i]ψ | [i]ψ is a subformula of φ and 1 ≤ i ≤ n}.

Finally, background theories are notational variants of description logic TBoxes or terminolo-
gies, which are used in applications to hold the intensional domain knowledge [44, 173]; see
also Chapter ??. A TBox is (the description logic variant of) a background theory of the form
{φi → ψi | 1 ≤ i ≤ m}. Restricting non-logical axioms to implications is (i) not a real
restriction: we can transform each background theory Γ into a single implication of the form
> →

∧

ψ∈Γ ψ; (ii) quite natural in various application, and (iii) enables the use of efficient
optimisation techniques in tableau systems [109], which we will discuss in Section 4.4.

Converse modalities. We discuss modifications of our algorithms to decide satisfiability of K
`

n

formulae w.r.t. background theories, where K
`

n is the extension of Kn that allows the use of
converse modal parameters i` in modalities. That is, [i`]φ and 〈i`〉φ are also well-formed for-
mulae. The mapping R is extended to converse modal parameters as follows: Ri` = {(w, v) |
Ri(v, w)}. Converse modalities are of interest because they occur naturally in applications, e.g.,
in description logics [105, 171] and temporal logics [163, 187], and because they require reason-
ing techniques that are able to reason in both directions over relations. For example, to detect the
unsatisfiability of the formula q ∧ 〈i〉(p ∧ [i`]¬q), one has to reason both ways over Ri. This is
similar to the kind of reasoning required for KBn but slightly more tricky since, in K

`

n , reason-
ing in “both ways” over a relation depends also on the worlds related by Ri. For example, the
KBn formula [i]ψ is equivalent to the K

`

n formula [i]ψ ∧ [i`]ψ.

6 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Graded/deterministic modalities. We discuss modifications of the tableau algorithm to handle
deterministic and graded modalities. The former have (atomic) modal parameters i whose inter-
pretationRi has to be a functional relation. To understand graded modalities, note that a diamond
formula 〈i〉φ can be read as “in at least one i-related world, φ is true”, and a box formula [i]φ can
be read as “in at most zero i-related worlds, φ is not true”. Graded modalities generalise these
formulae: K

c
n (resp. K`,c

n) is the extension of Kn (resp. K
`

n) where we also allow for formulae
of the form 〈i〉mφ and [i]mφ. We read 〈i〉mφ as “in at least (m + 1) i-related worlds, φ is true”
and [i]mφ as “in at most m i-related worlds, φ is true”. The semantics is extended in the obvious
way.

M, w |= 〈i〉mφ iff there are at least m+ 1 worlds v ∈W with Ri(w, v) and M, v |= ψ
M, w |= [i]mφ iff there are at most m worlds v ∈W with Ri(w, v) and M, v |= ψ

Please note that ¬[i]mφ is equivalent to 〈i〉m¬φ and that, by adding> → [i]1> to our background
theory, we restrict models to those in which Ri is a functional relation. Thus algorithms that can
handle both graded modalities and background theories can also handle deterministic modal-
ities. From a complexity point of view, adding graded/deterministic modalities rarely effects
the worst case complexity, e.g., K

c
n and K

`,c
n are both PSpace-complete without background

theories [93, 186] and ExpTime-complete w.r.t. background theories [173, 184, 186]. From a
practical reasoning perspective, graded modalities add quite some difficulty: consider, e.g., the
formulae [i]3>∧〈i〉1(p∨ q)∧〈i〉1(¬p∨ q) and [i]1p∧ [i]1¬p∧〈i〉2q. The former is satisfiable, but
we have to find that the two diamond formulae can be satisfied via a “common” i-related world.
The latter is unsatisfiable, but we have to find that a third i-related world in which neither p nor
¬p holds cannot exist.

Nominals. In their simplest form, nominals [5, 163] are propositional variables that are true in
exactly one world; we use o1, o2, . . . for these variables and indicate the availability of nominals
in a logic by the superscript ·o as, e.g., in K

o
n. Nominals are of interest for automated reasoning

since they destroy the tree model property (TMP) (see Chapter ??) of a logic. For example,
the formula o2 ∧ 〈i〉(o1 ∧ 〈i〉o2) has only models with a cycle of length two. We mentioned
above that Kn enjoys this property (and so do its extensions with converse and graded modalities
and background theories), and that this property is exploited by tableau- and some resolution-
based algorithms. Interestingly, adding nominals to K

`

n takes the complexity from PSpace- to
ExpTime-completeness [5], and adding nominals to K

`,c
n takes the complexity to NExpTime-

completeness [186]. Here, we will consider K
`,o
n with background theories.

3 TRANSLATION-BASED METHODS

3.1 Local satisfiability in multi modal Kn

As outlined in Chapter ??, using the standard translation formulae of the basic modal logic K

can be embedded into first-order logic. This translation is also called the relational translation,
since it is based on the relational Kripke semantics for modal logic. In the following we denote
this translation by πr and present here its straightforward generalisation to multi-modal Kn.

πr(>, x) = > πr(⊥, x) = ⊥

πr(p, x) = Pp(x) πr(¬ϕ, x) = ¬πr(ϕ, x)

πr(ϕ ? ψ, x) = πr(ϕ, x) ? πr(ψ, x) for ? ∈ {∧,∨,→,↔}

πr([i]ϕ, x) = ∀y (Ri(x, y) → πr(ϕ, y)) πr(〈i〉ϕ, x) = ∃y (Ri(x, y) ∧ πr(ϕ, y))

Computational Modal Logic 7

In the translation, each propositional variable p is uniquely associated with a unary predicate
symbol Pp, while each modal parameter i, 1 ≤ i ≤ n, is uniquely associated with a binary
predicate symbol Ri. In addition, x is an arbitrary first-order variable while y is an arbitrary
first-order variable distinct from x.

This translation is satisfiability equivalence preserving, that is, for every modal formula ϕ,
ϕ is Kn satisfiable iff πr(ϕ, x) is first-order satisfiable. The free variable x is assumed to be
existentially quantified.

The currently predominant method for reasoning about first-order formulae is resolution [170].
The method requires that a first-order formula or set of first-order formulae ϕ is first transformed
into a satisfiability equivalent set of clauses N0. This set of clauses is then saturated using the
resolution rule and factoring rule shown in Figure 1. That is, given a clause set Ni, i ≥ 0, these
inference rules are applied (top-down) to clauses already in the set and the conclusion C of such
an application is added to Ni to give us the clause set Ni+1. This process continues until either
(i) the current clause set Ni contains the empty clause (i.e. ⊥) or (ii) no new clauses can be de-
rived, that is, any conclusion of an application of the resolution and factoring rules to clauses in
Ni is already contained in Ni. Any clause set containing the empty clause is unsatisfiable. Thus,
in the case (i), Ni is unsatisfiable and by the soundness of the resolution calculus, so is N0. This
implies that ϕ is unsatisfiable, since N0 is satisfiable iff ϕ is satisfiable. In the case (ii), if Ni
does not contain the empty clause, Ni is satisfiable and it is possible to construct a model for Ni.
By the completeness of the resolution calculus, N0 is satisfiable. It follows that ϕ is satisfiable.
Due to the undecidability of first-order logic, there is in general no guarantee that, after a finite
number of steps, we either always encounter case (i) or (ii). If we apply the inference rules of
the resolution calculus in a fair way, then the completeness of the resolution calculus ensures
that, eventually, the empty clause is derived. However, if the formula ϕ and the clause set N0

are satisfiable, then the saturation process may continue indefinitely (unless suitable resolution
refinements and/or translation methods are used, see below).

The last observation is also true if the formula ϕ we are considering belongs to a decidable
fragment of first-order logic or is the result of translating a formula belonging to a decidable
modal logic like Kn. However, starting with [123], a large number of fragments of first-order
logic have been shown to be decidable by resolution or refinements of resolution [48, 65, 76, 82,
117, 179].

Let us start by considering what happens if we apply the basic unrefined resolution calcu-
lus to the relational translation of modal formulae. Consider, for example, the modal formula
ϕ1 = [2](p → 〈1〉p). Its translation πr(ϕ1, x) is the first-order formula ψr1 = ∀y (R2(x, y) →
(Pp(y) → ∃z (R1(y, z) ∧ Pp(z)))). The corresponding set of clauses N r

0 consists of the two
clauses

(1) ¬R2(a, x) ∨ ¬Pp(x) ∨R1(x, f(x))
(2) ¬R2(a, y) ∨ ¬Pp(y) ∨ Pp(f(y))

Resolution:
C ∨ A1 ¬A2 ∨ D

(C ∨ D)σ
where σ is the most general unifier of atoms
A1 and A2

Factoring:
C ∨ L1 ∨ L2

(C ∨ L1)σ
where σ is the most general unifier of literals
L1 and L2

Figure 1. The resolution calculus R

8 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

where a is a constant introduced during the clause form transformation (for the free variable x
in ψr1). We assume that the variables in two clauses to which we want to apply the resolution rule
are renamed so that they are variable disjoint, and we consider such variant clauses to be equal.
There are several possibilities to apply the resolution rule to clauses (1) and (2). For example, we
can resolve clause (1) on its second literal, ¬Pp(x), with clause (2) on its third literal, Pp(f(z)).
The conclusion is

[(1)2,R,(2)3] (3) ¬R2(a, f(z)) ∨R1(f(z), f(f(z))) ∨ ¬R2(a, z) ∨ ¬Pp(z)

Clause (3) resolves with clause (2) and yields

[(2)3,R,(3)4] (4) ¬R2(a, f(y)) ∨ ¬R2(a, f(f(y))) ∨R1(f(f(y)), f(f(f(y))))
∨ ¬R2(a, y) ∨ ¬Pp(y)

This clause also resolves with clause (2), and again, the conclusion resolves with (2), and so
forth. Repeatedly resolving the newly derived clauses with (2) yields clauses with increasingly
more literals and increasingly more complex terms. All these clauses are new, that is, none is the
same as an input clause or a clause derived earlier. As the formula ϕ1 and its translation ψr1 are
satisfiable, we are not able to derive the empty clause. So, the saturation process will continue
indefinitely.

There are three approaches that we can take to solve this termination problem:

1. We can develop and use alternative translations of modal formulae to first-order (clause)
logic, and try to find a translation for which resolution is a decision procedure.

2. We can develop and use refinements of resolution which restrict the application of the in-
ference rules of the resolution calculus and use powerful redundancy elimination methods.

3. We can develop and use alternative inference methods for first-order logic.

These three approaches are not mutually exclusive, in particular, alternative translations can be
combined with both refinements of resolution and alternative calculi.

Investigations following the first approach have resulted in the introduction of the optimised
functional translation of Kn to sorted first-order logic, more precisely, to a monadic fragment of
sorted first-order logic called basic path logic [149, 177]. Basic path logic has a sort SW for the
set of worlds W and a sort Si for each modal parameter i, 1 ≤ i ≤ n, in a modal logic. It has n
binary functions []i of sort SW × Si → SW . Also there are special unary predicates def i of
sort SW representing subsets of W . Each propositional variable p is uniquely associated with a
unary predicate symbols Pp of sort SW . Commonly, the optimised functional translation πof is
defined as a two step process: (i) the application of the functional translation to a modal formula
which translates it to basic path logic, followed by (ii) the application of a quantifier exchange
operation which converts the first-order formula obtained from the functional translation into
prenex normal form and moves all existential quantifiers inwards as far as possible. Since we fo-
cus here only on the satisfiability problem, we can give a simplified presentation of the optimised
functional translation obtained in just one step.

πof (>, s) = > πof (⊥, s) = ⊥

πof (p, s) = Pp(s) πof (¬ϕ, s) = ¬πof (ϕ, s)

πof (ϕ ? ψ, s) = πof (ϕ, s) ? πof (ψ, s) for ? ∈ {∧,∨,→,↔}

πof ([i]ϕ, s) = ∀y:Si(def i(s) → πof (ϕ, [s y:Si]i))

πof (〈i〉ϕ, s) = def i(s) ∧ πof (ϕ, [s y:Si]i)

Computational Modal Logic 9

where s denotes a (world) path and y:Si denotes a variable of sort Si. The omission of the
quantifiers in the definition for 〈i〉ϕ is intensional. The optimised functional translation of a
modal formula ϕ in negation normal form is now given by πof (ϕ, x:SW), where x:SW is an
arbitrary variable of sort SW , and x:SW as well as the y:Si from πof (〈i〉ϕ, s) are free variables
which are implicitly existentially quantified.

As an example, consider again the modal formula ϕ1 = [2](p → 〈1〉p). Its optimised func-
tional translation is ϕof

1 = πof (ϕ1, x:SW) = ∀y:S2 (def 2(x:SW) → (Pp([x:SW y:S2]2) →
(def 1([x:SW y:S2]2) ∧ Pp([[x:SW y:S2]2 z:S1]1)))).

In the representation of paths we often remove all occurrences of the binary functions []i
except for the outermost occurrence and also leave out the index of that remaining occurrence,
e.g. [[x:SW y:S2]2 z:S1]1 is written as [x:SW y:S2 z:S1]. It is straightforward to restore the orig-
inal path based on the remaining information. Intuitively, a path term like [x:SW y:S2 z:S1]
represents a path from a world x to another, possible identical, world in a Kripke frame via a
series of ‘steps’ along the accessibility relations of the frame. Here an R2-step is followed by an
R1-step, which is indicated by the sorts S2 and S1 associated with the variables y and z, respec-
tively. The def i predicates express ‘definability’ for a world in the sense that def i(s) is true iff
the world s has an i-successor.

The standard translation πr accommodates axiom schemas like 4 and B by adding first-order
formulae

∀x y (Ri(x, y) → Ri(y, x))(RB)

∀x y z ((Ri(x, y) ∧Ri(y, z)) → Ri(x, z))(R4)

representing the relational frame properties corresponding to these axiom schemas. By contrast,
in the case of the optimised functional translation, we add so-called functional frame properties
in the form of (conditional) equations between path terms, for example

∀x:SW∀y:Si∃z:Si (def i(x:SW) → def i([x:SW y:Si]) ∧
def i(x:SW) → x:SW = [[x:SW y:Si] z:Si])

(FB)

∀x:SW∀y:Si∀z:Si∃u : Si ((def i(x:SW) ∧ def i([x:SW y:Si])) →
[[x:SW y:Si] z:Si] = [x:SW u : Si])

(F4)

Functional frame properties corresponding to axiom schemas 5, D, T, G, as well as functional
frame properties corresponding to weak density, irreflexivity, and McKinsey’s axiom can be
found in [177].

THEOREM 1 ([149]). Let KnΣ be a complete modal logic such that the functional frame prop-
erties corresponding to the axiom schemas in Σ are a set of first-order formulae FΣ. Then ϕ is
satisfiable in KnΣ iff FΣ ∧ πof (ϕ, x:SW) is first-order satisfiable.

If we are only interested in establishing the satisfiability of formulae in the basic modal
logic Kn or extensions of Kn by the axiom schema D for some or all modalities, then the
use of sorted first-order logic and binary function symbols can be avoided by using k-ary predi-
cates where the sort information is coded into the predicate names [95, 116]. The k-ary predicate
symbols are Pp,σ and def i,σ where p denotes a propositional symbol, σ is a k-sequence of nat-
ural numbers and 1 ≤ i ≤ n, n ≥ 0. We use x to denote a sequence of variables x1, . . . , xk,
and we use ‘ε’ and ‘.’ for the empty sequence and the concatenation operation on sequences,

10 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

respectively.

π′of (>, x, k, σ) = > π′of (⊥, x, k, σ) = ⊥

π′of (p, x, k, σ) =

{

Pp,ε if σ = ε and k = 0

Pp,σ(x1, . . . , xk) otherwise

π′of (¬ϕ, x, k, σ) = ¬π′of (ϕ, x, k, σ)

π′of (ϕ ? ψ, x, k, σ) = π′of (ϕ, x, k, σ) ? π′of (ψ, x, k, σ) for ? ∈ {∧,∨}

π′of ([i]ϕ, x, k, σ) = ∀xn+1 (def i,σ(x) → π′of (ϕ, x.xk+1, k+1, σ.i))

π′of (〈i〉ϕ, x, k, σ) = def i,σ(x) ∧ π
′
of (ϕ, x.xk+1, k+1, σ.i)

The translation of a modal formula ϕ in negation normal form is given by π′of (ϕ, ε, 0, ε). In the
case of the modal logic KDn, and in fact for any modal logic where an accessibility relation Ri
is serial, all occurrences of def i,σ can be replaced with the logical constant >.

The translation π′of , called the polyadic optimised functional translation, takes advantage of
two observations:

1. All paths in πof (ϕ, x:SW) start with x:SW and since this variable is free, it is implicitly
existentially quantified, and is interpreted as a constant. Therefore, removing x:SW from
all paths is a satisfiability equivalence preserving transformation.

2. The variables in the paths occurring in πof (ϕ, x:SW) are prefix stable, that is, for any vari-
able xi+1:Sji there exists a unique prefix [x:SW x0:Sj0 . . . xi:Sji] such that every path
containing xi+1:Sji has the form [x:SWx0:Sj0 . . . xi:Sjixi+1:Sji+1

. . . xk:Sjk]. Thus,
if a variable occurs at position i in one path, then it occurs at position i in all paths.
This property is due to a characteristic ordering of variables in the path terms deter-
mined by the structure of modal formulae and is a reflection of the tree model property.
Also, since variables do not ‘move’, the sort information can be associated with the po-
sition at which a variable occurs instead of with the variable itself. Thus, we can code
the sort information into predicate names. Replacing Pp([x:SW x0:Sj0 . . . xk:Sjk]) by
Pp,SWSj0

...Sjk
(x, x0, . . . , xk) is therefore a satisfiability equivalence preserving transfor-

mation.

Taking both observations together, and also taking advantage of the assumption that each sort Si
is uniquely identified by its index i, we see that we can replace Pp([x:SW x0:Sj0 . . . xk:Sjk])
with Pp,j0...jk(x0, . . . , xk).

For the modal formula ϕ1 = [2](p→ 〈1〉p) the translation using π′of is ψof ′

1 = ∀y (def 2,ε →

(Pp,2(y) → (def 1,2(y) ∧ Pp,21(y, z)))). The corresponding set Nof ′

0 of clauses again consists
of two clauses.

(5) ¬def 2,ε ∨ ¬Pp,2(y) ∨ def 1,2(y)
(6) ¬def 2,ε ∨ ¬Pp,2(y) ∨ Pp,21(y, z)

Unlike for the clausal form of the relational translation of ϕ1, for these two clauses there is no
possibility to apply either the resolution rule or the factoring rule. For, we see that Pp,21(y, z) in
clause (6) is not unifiable with Pp,2(y) in clause (5), nor is it unifiable with Pp,2(y) in clause (6).

So, for this particular example we are able to conclude that N of ′

0 , ψof ′

1 , and ϕ1 are satisfiable
without the need to perform a single inference step.

Computational Modal Logic 11

With this translation, is termination of the saturation process guaranteed? Consider the modal
formula ϕ2 = [2](¬p ∨ [1]q) ∨ [2]p. Its optimised functional translation is

ψof ′

2 = ∀y(def 2,ε → (¬Pp,2(y) ∨ ∀z(def 1,2(y) → Pq,21(y, z)))) ∨ ∀u(def 2,ε → Pp,2(u)).

The corresponding set Nof
0 of clauses consists of just one clause

(7) ¬def 2,ε ∨ ¬Pp,2(y) ∨ ¬def 1,2(y) ∨ Pq,21(y, z) ∨ ¬def 2,ε ∨ Pp,2(u).

We consider clauses to be multisets of literals, that is, a literal can occur more than once in a
clause, as is the case with the literal ¬def 2,ε in clause (7). It is sometimes convenient to con-
sider clauses as sets of literals. However, this complicates the completeness proof for resolution
calculi which commonly proceeds by lifting ground level derivations to the non-ground level.
This lifting is easier if clauses are considered to be multisets on both the ground and the non-
ground level. Furthermore, multisets make the computational effort explicit which has to go into
removing duplicate literals from clauses.

We can resolve clause (7) with itself on the second literal and the last literal. Remember that
this means that we first have to generate a variable-disjoint copy of clause (7) to serve as second
premise of a resolution step. The conclusion is

[(7)2,R,(7)6] (8) ¬def 2,ε ∨ ¬Pp,2(y1) ∨ ¬def 1,2(y1) ∨ Pq,21(y1, z1) ∨ ¬def 1,2(y2)

∨ Pq,21(y2, z2) ∨ ¬def 2,ε ∨ Pp,2(u2) ∨ ¬def 2,ε ∨ ¬def 2,ε.

We observe that the number of occurrences of ¬def 2,ε has doubled, to four, and also that we
now have two subclauses ¬def 1,2(y1) ∨ Pq,21(y1, z1) and ¬def 1,2(y2) ∨ Pq,21(y2, z2) which
are variants of each other.1 Note that these two subclauses are not simply duplicates, so in a
clauses-as-sets setting they would still remain, while all the duplicates of ¬def 2,ε would not
occur. Clause (8) can again be resolved with itself or with clause (7). A possible resolvent is:

[(7)2,R,(8)8] (9) ¬def 2,ε ∨ ¬Pp,2(y3) ∨ ¬def 1,2(y3) ∨ Pq,21(y3, z3)

∨ ¬def 1,2(y1) ∨ Pq,21(y1, z1) ∨ ¬def 1,2(y2) ∨ Pq,21(y2, z2)

∨ ¬def 2,ε ∨ Pp,2(u2) ∨ ¬def 2,ε ∨ ¬def 2,ε ∨ ¬def 2,ε ∨ ¬def 2,ε

We can continue this process indefinitely, producing bigger and bigger clauses. This shows that
the saturation process does not terminate.

We observe, however, that resolution is not the only inference rule that can be applied to
clause (8): we can also apply the factoring rule. Indeed, there are several possibilities to do so,
for example, we can apply the factoring rule to Pq,21(y1, z1) and Pq,21(y2, z2). The resulting
factor is:

[(8)4,F,(8)6] (10) ¬def 2,ε ∨ ¬Pp,2(y1) ∨ ¬def 1,2(y1) ∨ ¬def 1,2(y1) ∨ Pq,21(y1, z1)

∨ ¬def 2,ε ∨ Pp,2(u2) ∨ ¬def 2,ε ∨ ¬def 2,ε.

We see that the clause (10) is a subclause of the clause (8) from which it was derived. Clause (10)
thus subsumes clause (8). In general, a clause C subsumes a clause D iff there is a substitution
σ such that Cσ is a subclause of D. Subsumed clauses are redundant and can be removed from
a clause set without losing completeness.

1We consider two formulae or clauses to be equal iff they are variants of each other, that is, they are syntactically
equal modulo variable renaming.

12 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Further factoring steps are possible on clause (10), for example, on the two occurrences of
¬def 1,2(y1). It turns out that the final clause that we can derive by a series of factoring steps is
a condensation of clause (8). By definition, a condensation Cond(C) of a clause C is a minimal
subclause of C which is also an instance of C. A clause C is condensed iff there exists no
condensation of C which is a strict subclause of C. For any clause C, Cond(C) subsumes C,
and hence C is redundant in the presence of Cond(C) and can be removed. This justifies that
we can systematically replace clauses with their condensation.

The condensation of clauses (7) and (8) are the clauses

(7′) ¬def 2,ε ∨ ¬Pp,2(y) ∨ ¬def 1,2(y) ∨ Pq,21(y, z) ∨ Pp,2(u)
(8′) ¬def 2,ε ∨ ¬Pp,2(y1) ∨ ¬def 1,2(y1) ∨ Pq,21(y1, z1) ∨ Pp,2(u2).

These two clauses are variants of each other, that is, we regard them as equal. So, the only clause
derivable from (7′) is identical to (7′), which means the saturation process terminates.

It turns out that systematically replacing clauses by their condensation is sufficient to guaran-
tee termination not only for this particular example formula, but for any modal formula in Kn

or KDn.

THEOREM 2 ([175]). Let ϕ be a modal formula and N0 = π′of (ϕ, ε, 0, ε). Then the saturation
process from N0 by the resolution calculus R defined in Figure 1 in which clauses are systemati-
cally and eagerly replaced with their condensation always terminates with a clause set Nn, and
ϕ is K(D)n unsatisfiable iff Nn contains the empty clause.

It is important to understand how Theorem 2 is to be interpreted. The theorem says that
R plus condensing is a decision procedure for this translation of modal satisfiability problems.
It does not stipulate that we must use R plus condensing. Rather, the theorem sets out the
minimal requirement or weakest condition we have to impose on a saturation process by R to
ensure that it terminates. It states that, as long as we keep clauses condensed, we can use any
refinement of the calculus R, we can perform inference steps on any literals in a clause and can
perform inference steps in any order, and the saturation process is still guaranteed to terminate.
Condensing can be simulated by factoring and subsumption deletion. Consequently, any first-
order theorem prover which implements some refinement of R (and subsumption deletion, which
is standardly available) can serve as a decision procedure for Kn and KDn.

The question as to which particular refinement of resolution to use (determining which infer-
ence steps are required for completeness) and which particular strategies and heuristics to use
(determining the order in which inference steps are performed) is then subject to both theoretical
and empirical investigation. We leave empirical aspects aside for the moment and instead focus
on refinements of resolution.

A wide range of refinements of resolution can be formulated in the general resolution calculus
of Bachmair and Ganzinger; full details can be found in [16]. In the general resolution calculus,
here denoted by R�

S , inference rules are parameterised by an admissible ordering � on literals
and a selection function S. Essentially, an admissible ordering is a total (well-founded) strict
ordering on the ground level such that for literals: . . . � ¬An � An � . . . � ¬A1 � A1.
This is extended to the non-ground level in a canonical manner. A selection function S assigns
to each clause a possibly empty set of occurrences of negative literals. If C is a clause, then the
literal occurrences in S(C) are selected. No restrictions are imposed on the selection function.
The calculus comprises expansion rules of the general form

N
N1 | · · · | Nn

Computational Modal Logic 13

Deduction:
N

N ∪ {Cond(C)}
if C is either a resolvent or a factor
of clauses in N .

Deletion:
N ∪ {C}

N
if C is redundant in N .

Splitting:
N ∪ {C ∨ D}

N ∪ {C} | N ∪ {D}
if C and D are variable-disjoint.

Resolution:
C ∨ A1 ¬A2 ∨ D

(C ∨ D)σ
where (i) σ is the most general unifier of atoms
A1 and A2, (ii) no literal is selected in C, and
A1σ is strictly �-maximal with respect to Cσ, and
(iii) ¬A2 is either selected, or ¬A2σ is maximal
with respect to Dσ and no literal is selected in D.

Positive Factoring:
C ∨ A1 ∨ A2

(C ∨ A1)σ
where (i) σ is the most general unifier of atoms A1

and A2, and (ii) no literal is selected in C and A1σ
is �-maximal with respect to Cσ.

Figure 2. Expansion and inference rules of R�
S

where both the numerator N and the denominators N1, . . . , Nn (n ≥ 1) are finite sets of clauses.
Expansion rules are applied top-down. There are three kinds of expansion rules: Deduction,
Deletion and Splitting which are defined in Figure 2. The inferences rules consist of the resolu-
tion and the factoring rule also defined in Figure 2. The left premise of the resolution rule is called
the positive premise and the right premise is called the negative premise. The implicit assumption
is that the premises have no common variables. Resolvents are conclusions of resolution steps,
while factors are conclusions of factoring steps.

A derivation in R�
S from a set of clauses N is a finitely branching, ordered tree T with root N

and nodes which are sets of clauses. The tree is constructed by applications of the expansion
rules to the leaves. We assume that no resolution or factoring inference (on the same premises)
is performed twice on the same branch of the derivation. A branch N(= N0), N1, . . . in a
derivation T is called a closed branch in T iff the clause set

⋃

j≥0Nj contains the empty clause,
otherwise it is called an open branch. We call a branch B in a derivation tree complete (with
respect to R�

S) iff no new successor nodes can be added with R�
S to the endpoint of B, otherwise

it is called an incomplete branch. A derivation T is a refutation iff every path N(= N0), N1, . . .
in it is a closed branch, otherwise it is called an open derivation.

In general, the calculus R�
S can be enhanced with standard simplification rules such as tau-

tology deletion and subsumption deletion. In fact, it can be enhanced by all simplification rules
which are compatible with a general notion of redundancy [16, 18]. For example, C is redundant
inN ∪{Cond(C)}. A setN of clauses is saturated up to redundancy with respect to a particular
refinement of resolution if the conclusion of every inference from non-redundant premises in N
is either contained in N , or else is redundant in N . A derivation T from N is called fair if,
for any path N(= N0), N1, . . . in T with limit N∞ =

⋃

j≥0

⋂

k≥j Nk, it is the case that each
clause C which can be deduced from non-redundant premises in N∞ is contained in some Nj .
Intuitively, fairness means that no non-redundant inferences are delayed indefinitely. For a finite
complete branch N(= N0), N1, . . . Nn, the limit N∞ is equal to Nn.

THEOREM 3 ([18]). Let T be a fair R�
S derivation from a set N of clauses. Then

1. if N(= N0), N1, . . . is a path with limit N∞, then N∞ is saturated (up to redundancy),

2. N is satisfiable iff there exists a path in T with limit N∞ such that N∞ is satisfiable, and

14 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

3. N is unsatisfiable iff for every pathN(= N0), N1, . . . the clause set
⋃

j≥0Nj contains the
empty clause.

As an aside, we note that it follows from the decidability result for the optimised functional
translation (Theorem 2) that we can use any instance of R�

S for the clause sets obtained by
applying πof ′ to modal formulae in Kn or KDn. In particular, this gives us full flexibility with
respect to orderings and selection functions. Furthermore, by Theorem 2, even instances of R�

S

without splitting will terminate.
The purpose of the ordering � and the selection function S is to restrict the set of literals in a

clause to which resolution and factoring can be applied. This limits the number of inferences per-
formed and consequently reduces the search space. For example, reconsider the clause set N of

0

consisting of just the clause

(7) ¬def 2,ε ∨ ¬Pp,2(y) ∨ ¬def 1,2(y) ∨ Pq,21(y, z) ∨ ¬def 2,ε ∨ Pp,2(u).

Using an ordering we could restrict inference steps to the literals Pq,21(y, z) and Pp,2(u). Now
¬Pp,2(y) can no longer be resolved with Pp,2(u), since ¬Pp,2(y) is neither maximal nor selected.
Alternatively, using a selection function we could restrict inference steps to the negative literals
¬def 2,ε or ¬Pp,2(y). Again, no inference steps are possible.

Let us reconsider our very first example, the set of clauses N r
0 obtained via the relational

translation of ϕ1 = [2](p→ 〈1〉p):

(1) ¬R2(a, x) ∨ ¬Pp(x) ∨R1(x, f(x))
(2) ¬R2(a, y) ∨ ¬Pp(y) ∨ Pp(f(y))

If we use an ordering� such that R1(x, f(x)) is maximal in clause (1) and Pp(f(y)) is maximal
in clause (2), then no inference steps are possible on N r

0 . Likewise, if we select the literals
¬R2(a, x) and ¬R2(a, y) in their respective clauses, then again no inference steps are possible.

This raises the question whether it is possible to obtain decision procedures for Kn satisfi-
ability based on the relational translation πr and the calculus R�

S by using particular ordering
or selection functions. To simplify matters, we use a technique called structural transformation.
The purpose of the structural transformation is to convert the first-order translation into a more
manageable form. Before we describe it formally, we need to define some basic notions.

The polarity of (occurrences of) modal or first-order subformulae is defined as usual. Any
occurrence of a proper subformula of an equivalence has zero polarity. For occurrences of sub-
formulae not below a ‘↔’ symbol, an occurrence of a subformula has positive polarity if it is
inside the scope of an even number of (explicit or implicit) negations, and it has negative polarity
if it is inside the scope of an odd number of negations. For any first-order formula ϕ, if λ is the
position of a subformula in ϕ, then ϕ|λ denotes the subformula of ϕ at position λ and ϕ[ψ 7→ λ]
is the result of replacing ϕ|λ at position λ by ψ. The set of all the positions of subformulae of ϕ
is denoted by Λ(ϕ).

Structural transformation, also referred to as renaming, associates a predicate symbol Qλ and
a literal Qλ(x) with each element λ of Λ ⊆ Λ(ϕ), where x = x1, . . . , xn are the free variables
of ϕ|λ, the symbol Qλ does not occur in ϕ and two symbols Qλ and Qλ′ are equal only if ϕ|λ
and ϕ|λ′ are equivalent formulae. In practice, one may want to use the same symbols for variant
subformulae, or subformulae which are obviously equivalent, for example, ϕ ∨ ψ and ψ ∨ ϕ.
Let Def+λ (ϕ) = ∀x (Qλ(x) → ϕ|λ) and Def−λ (ϕ) = ∀x (ϕ|λ → Qλ(x)). The definition of Qλ

Computational Modal Logic 15

is the formula

Defλ(ϕ) =

Def+λ (ϕ) if ϕ|λ has positive polarity,

Def−λ (ϕ) if ϕ|λ has negative polarity,

Def+λ (ϕ) ∧ Def−λ (ϕ) otherwise.

The corresponding clauses are called definitional clauses. Now, assume that Λ is a set of positions
in a formula ϕ and that we want to systematically replace subformulae at positions in Λ while
adding definitions for the newly introduced predicate symbols. A convenient way to do so, is
to start by the renaming innermost subformulae, and then to proceed up towards the root of ϕ.
Formally, define DefΛ(ϕ) inductively by:

Def∅(ϕ) = ϕ and DefΛ∪{λ}(ϕ) = DefΛ(ϕ[Qλ(x) 7→ λ]) ∧Defλ(ϕ),

where λ is maximal in Λ ∪ {λ} with respect to the prefix ordering on positions. A definitional
form of ϕ is DefΛ(ϕ), where Λ is a subset of all positions of subformulae of ϕ (usually, non-
atomic or non-literal subformulae).

THEOREM 4 (e.g. [29, 161]). Let ϕ be a first-order formula. Then

1. ϕ is satisfiable iff DefΛ(ϕ) is satisfiable, for any Λ ⊆ Λ(ϕ), and

2. DefΛ(ϕ) can be computed in polynomial time (or linear time if new symbols are introduced
for all formulae occurring in Λ).

By Λm(ϕ) we denote the set of positions in πr(ϕ, x) corresponding to non-atomic subexpres-
sions of the modal formula ϕ.

Structural transformation allows us to keep the structure of the clauses we have to deal with
very simple. This in turn simplifies the characterisation of classes of clause sets that can be
derived from some initial clause set using R�

S . For example, assume that, in the relational trans-
lation of the modal formula ϕ3 = [2]〈1〉p, we apply structural transformation to all positions
that correspond to non-atomic subexpressions of the original modal formula ϕ3. The result is the
set of formulae on the left of Figure 3, while the clausal form is given on the right. In general,
the formulae we obtain in this way from the relational translation of modal formulae (as well as
the corresponding sets of clauses) belong to quite a number of decidable fragments of first-order
logic, for example, the two-variable fragment, the guarded fragment [3], Maslov’s class K [135],
and fluted logic [165, 166]. Resolution decision procedures have been developed for the guarded
fragment [48, 76], for Maslov’s class K [111, 117], for fluted logic [179] and various other classes
related to modal logics, see e.g. [65, 82, 83, 111]. Here we use the results for the clausal class
DL

∗ defined in [49]. DL
∗ is a variation of the class of DL-clauses, that was introduced in [119]

for the purpose of deciding expressive description logics.

Q[2]〈1〉p(x)

∧∀x (Q[2]〈1〉p(x) → ∀y (R1(x, y) → Q〈1〉p(y)))

∧∀x (Q〈1〉p(x) → ∃y (R1(x, y) ∧ Pp(y)))

Q[2]〈1〉p(a)
∗

¬Q[2]〈1〉p(x) ∨ ¬R2(x, y)
∗ ∨ Q〈1〉p(y)

¬Q〈1〉p(x) ∨ R1(x, f(x))∗

¬Q〈1〉p(x) ∨ Pp(f(x))∗

Figure 3. The structural transformation and the clausal form of [2]〈1〉p

16 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

In order to simplify the definition of DL
∗, all clauses are assumed to be maximally split. The

components in the variable partition of a clause are called variable-disjoint or split components,
that is, split components do not share variables. If C1, . . . , Cn are the split components of C,
then we say C can be decomposed into C1, . . . , Cn. A clause which cannot be split further is
called a maximally split clause or an indecomposable clause. Now, a maximally split clause C
is a DL

∗-clause iff the following conditions are satisfied: (i) all literals are unary, or binary; (ii)
there is no nesting of function symbols; (iii) every functional term in C contains all the variables
of C (this condition implies that, if C contains a functional ground term, then C is ground); (iv)
every binary literal (even if it has no functional terms) contains all the variables of C. It can be
shown that all clauses in structural form obtained from DefΛ(πr(ϕ, x)) for a modal formula ϕ
belong to DL

∗ [49].
In order to decide the class DL

∗, we use the following ordering. First we define an order >d
on terms: s >d t if s is deeper than t, and every variable that occurs in t, occurs deeper in s. Then
we define P (s1, . . . , sn) � Q(t1, . . . , tm) as {s1, . . . , sn} >mul

d {t1, . . . , tm}. Here >mul
d is the

multiset extension of >d [16]. So we have P (f(x)) � P (a), P (x) and P (x, y) � Q(x), but not
P (f(x)) � P (f(a)). The selection function S is empty. We denote this particular instance of
the resolution calculus R�

S by Rord.
In the example in Figure 3, the maximal literals (with respect to �) are marked with ∗. These

are the literals that we may apply resolution or factoring to.
In order to prove that the procedure Rord is indeed a decision procedure we have to show

that it is complete and terminating. Completeness follows immediately from the completeness
of R�

S . Termination follows from the fact, that over a finite signature, there are only finitely many
maximally split DL

∗-clauses (module variable renaming), and the fact that, from DL
∗-clauses,

Rord produces only clauses that are again in DL
∗, or are splittable into components in DL

∗

(cf. [111, 119]).

THEOREM 5 ([49, 180]). Let Σ be an arbitrary set of axiom schemas such that KnΣ is com-
plete and the clausal form of the relational frame properties FΣ corresponding to the axiom
schemas in Σ are expressible in DL

∗. Let ϕ be a Kn formula and let N be the clausal form of
FΣ,ϕ = FΣ ∧DefΛm(ϕ)(πr(ϕ, x)). Then

1. ϕ is unsatisfiable in KnΣ iff FΣ,ϕ is first-order unsatisfiable iff there is a refutation of N
by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in double exponential time;
if Σ is empty, then any derivation from N in Rord (up to redundancy) terminates in expo-
nential time, and

Here, and in subsequent theorems, we assume that the complexity of redundancy elimination is
at most exponential in the size of a clause set. The theorem remains true for Rord without the
splitting rule, but condensing is key for decidability.

It is usually the case that, when studying modal decidability problems by analysing the de-
cidability of related clausal classes, one comes to realise that stronger results are possible than
initially anticipated. In [49], extensions of Kn with PDL-like relational operations have been
studied. Relational operations expressible in DL

∗ include intersection, union, complementation,
and converse, as are non-logical axioms.

Computational Modal Logic 17

In Rord, the inferences performed are determined by a refinement based on an ordering and
the empty selection function. We now consider results from [49, 119, 121, 180] for a different
refinement which is based solely on a selection function and an optional ordering. More pre-
cisely, the calculus is based on maximal selection of negative literals. This means the selection
function S selects exactly the set of all negative literals in any non-positive clause. When no
ordering refinement � is used, the resolution rule of R�

S can be replaced with the following rule.

C1 ∨ A1 · · · Cn ∨ An ¬An+1 ∨ . . . ∨ ¬A2n ∨ D
(C1 ∨ . . . ∨ Cn ∨ D)σ

Resolution with maximal selection:

provided that for every i, 1 ≤ i ≤ n, (i) σ is the most general unifier ofAi andAn+i, (ii)Ci ∨ Ai
andD are positive clauses, (iii) noAi occurs inCi, and (iv) the ¬An+i are selected. The negative
premise is ¬An+1 ∨ . . . ∨ ¬A2n ∨ D and the other premises are the positive premises. The
literals Ai and An+i are the eligible literals.

Let Rhyp be the instance of R�
S based on maximal selection and no ordering. This means that

the rules are the above resolution rule, positive unordered factoring and splitting. This refinement
of resolution is also referred to as hyperresolution plus splitting. Condensation is not needed,
but could of course be added without losing completeness and will improve the performance
of the procedure. Tautology deletion is used as a simplification rule. All derivations in Rhyp

are generated by strategies in which no application of the resolution or factoring with identical
premises and identical consequence may occur twice on the same path in any derivation. In
addition, deletion rules, splitting, and the deduction rules are applied in this order, except that
splitting is not applied to clauses which contain a selected literal.

All clauses occurring in the clausal form of DefΛm(ϕ)(πr(ϕ, x)) for a modal formula in Kn

have one of the forms described in Figure 4 [49, 119]. The literals marked with + are selected in
the clauses by the maximal selection function S. The notation P(s) in the figure represents some
literal with a unary predicate symbol and argument term s, and R(s, t) represents some literal
with a binary predicate symbol and argument terms s and t (not necessarily in this order). Two
occurrences of P(s) or R(s, t) need not be identical, for example, ¬Qψ(x) ∨ Pp(x) ∨ Qχ(x)
is an instance of ¬Qψ(x) ∨ P(x) ∨ P(x), while ¬Qψ(x) ∨ ¬Ri(y, x) ∨ Qχ(y) is an instance
of ¬Qψ(x) ∨ ¬R(x, y) ∨ P(y).

As all non-unit clauses of a typical input set contain a selected literal, all definitional clauses
can only be used as negative premises of resolution steps. To begin with, there is only one
candidate for a positive premise, namely, the ground unit clause Qϕ(a) (which representing
the input formula ϕ). Inferences with such ground unary unit clauses produce ground clauses

P(a)

¬Qψ(x)+ ∨ ¬Pp(x)
+ if ψ = ¬p

¬Qψ(x)+ ∨ P(x) [∨ P(x)] if ψ = φ1 ∧ φ2 [ψ = φ1 ∨ φ2]

¬Qψ(x)+ ∨ ¬R(x, y)+ [∨ P(y)] if ψ = [i]⊥ [ψ = [i]φ]

¬Qψ(x)+ [∨ P(f(x))]

¬Qψ(x)+ ∨ R(x, f(x))
if ψ = 〈i〉> [ψ = 〈i〉φ]

Figure 4. Schematic clausal forms for Kn

18 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

consisting of positive literals only, which are split into ground unit clauses. It can be shown
that maximally split (non-empty) inferred clauses have one of two forms: P(s), or R(s, f(s)),
where s is a ground term [119]. In general, s is a nested non-constant functional ground term,
which is typically avoided in resolution decision procedures based on an ordering refinement
because, in most situations, nesting causes unbounded computations. For the class of clauses
under consideration, however, any derived clause is smaller than its positive parent clauses with
respect to a well-founded ordering which reflects the structure of the formula.

THEOREM 6 ([119, 121]). Let ϕ be a Kn formula and let N be the clausal form of the formula
DefΛm(ϕ)(πr(ϕ, x)). Then

1. ϕ is unsatisfiable in Kn iff there is a refutation of N by Rhyp, and

2. any Rhyp derivation from N terminates.

THEOREM 7 ([49]). Let ϕ be a Kn formula. The space complexity for testing the satisfiability
of a modal formula ϕ with Rhyp is bounded by O(ndm), where n is the number of symbols in ϕ,
d is the number of different diamond subformulae in ϕ, and m is the modal depth of ϕ.2

Formulae in Kn translate by the relational translation into the guarded fragment, in particular,
into the two-variable guarded fragment GF

2. It is not difficult to see that formulae in Kn are
in fact translated into the subfragment GF

−, introduced in [134]. Under the assumption that
either (i) there is a bound on the arity of predicate symbols in GF

− formulae, or (ii) that each
subformula of a GF

− formula has a bounded number of free variables, the satisfiability problem
of GF

− is PSpace-complete, the same as for the satisfiability problem of Kn. Obviously, there
is a bound of two on the arity on predicate symbols occurring in the relational translation of
modal formulae in Kn. From these observations a well-known result follows.

THEOREM 8. The computational complexity of the satisfiability problem of Kn is PSpace-
complete.

In [81] it is shown that Rhyp can be implemented as a modification of the main procedure of
a standard (saturation based) first-order theorem prover with splitting (e.g. (M)SPASS [120, 174,
192, 194]) to provide a space optimal decision procedure for GF

−. A direct consequence is the
following.

THEOREM 9 ([81, 180]). Rhyp can be turned into a polynomial space resolution decision pro-
cedure for Kn.

A more detailed description of how this can be done is given in Section 3.4.
Another interesting aspect of Rhyp is that it can polynomially simulate tableau algorithms [118,

119, 121]. In general, a proof system A polynomially simulates (p-simulates) a proof system B
iff there is a function g, computable in polynomial time, mapping proofs of any given formula
ϕ in B to proofs of ϕ in A [38]. To establish a correspondence between tableau proofs and
derivations in Rhyp, we make use of the fact that each subformula ψ of a given modal formula ϕ
corresponds to a predicate symbol Qψ in DefΛm(ϕ)(πr(ϕ, x)). Every node w occurring in a

tableau completion tree corresponds to a term tw occurring in a Rhyp derivation. A formula ψ
occurring in a set labelling a node w corresponds to a unit clause Qψ(tw) and any edge between
nodes w and v with label i in a completion tree corresponds to a unit clause Ri(tw, f(tw)) in

2The modal depth of a formula ϕ is the maximal nesting of modal operators 〈i〉 or [i] in ϕ.

Computational Modal Logic 19

a Rhyp derivation, where tw is the term corresponding to node w and f(tw) is the term corre-
sponding to node v, for some function symbol f . Given these correspondences, each application
of a tableau expansion rule to a completion tree can be simulated by at most two applications of
expansion rules in a Rhyp derivation.

This p-simulation result extends to tableau algorithms for many extension of Kn, for example
extensions by the modal axiom schemas T, D, B, 4, and 5 [121]. It also extends to other forms
of tableau and sequent-style calculi.

The notion of p-simulation leaves open the possibility that an algorithm based on the proof
system A which p-simulates a proof system B would have to search a much larger search space
to find a proof for a given formula than an algorithm based on B. For Rhyp, however, it is possible
to show that the search space corresponds to that of the tableau algorithm for Kn presented in
Section 4.2 [121]. Related simulation results of tableau procedures for description logics can be
found in [118, 119], see also [65]. All these simulation results provide valuable insights into the
similarities and difference between tableau methods and resolution. On the one hand, the view
presented is that many tableau algorithms are essentially hyperresolution with lazy translation to
first-order logic. On the other hand, because of the generality of the setting (first-order logic) it is
even possible to exploit the close link with hyperresolution and use it as a basis for systematically
developing new tableau procedures. Using this approach, a new tableau decision procedure was
essentially ‘read off’ in [49] from a translation-based hyperresolution decision procedure for an
expressive PDL-style modal logic.

For the modal logic Kn, an improved version of the relational translation is presented in [9]. In
the original presentation, this translation consists of two steps, first mapping a formula from one
multi-modal logic into another, and then applying the relational translation to it. Our presentation
merges both steps into one. We uniquely associate a unary predicate symbol Pp,σ with every
propositional variable p and sequence σ of modalities. Similarly, we uniquely associate a binary
predicate symbol Rσ with every sequence σ of modalities. Then the tree(-based) relational
translation πtr is defined as follows.

πtr (>, x, σ) = > πtr (⊥, x, σ) = ⊥

πtr (p, x, σ) = Pp,σ(x) πtr (¬ϕ, x, σ) = ¬πtr (ϕ, x, σ)

πtr (ϕ ? ψ, x, σ) = πtr (ϕ, x, σ) ? πtr (ψ, x, σ) for ? ∈ {∧,∨,→,↔}

πtr ([i]ϕ, x, σ) = ∀y(Rσ.i(x, y) → πtr (ϕ, y, σ.i))

πtr (〈i〉ϕ, x, σ) = ∃y(Rσ.i(x, y) ∧ πtr (ϕ, y, σ.i))

The translation of a modal formula is given by πtr (ϕ, x, ε). The tree relational translation can
be viewed as incorporating a feature of the (optimised) functional translation into the relational
translation. Whereas the relational translation uses a family of binary predicate symbols Ri,
where i is a modal parameter, the tree relational translation uses a larger family of binary pred-
icate symbols Rσ, where σ is a sequence of modal parameters representing a path from the
initial world, to encode transitions between worlds. Another difference is that in the tree-based
translation the σ are also encoded into the unary predicates.

THEOREM 10. A modal formula ϕ is satisfiable in Kn iff πtr (ϕ, x, ε) is first-order satisfiable.

If we restrict ourselves to K, that is, our logic has only one modality, then the sequence σ in
the definition of πtr only serves as a unary coding of the natural numbers. Thus, we can further
simplify the translation by using πtr (ϕ, x, 0) as translation of a modal formula and modifying

20 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

the translation πtr as follows.

πtr ([i]ϕ, x, σ) = ∀y(Rσ+1(x, y) → πtr (ϕ, y, σ+1))

πtr (〈i〉ϕ, x, σ) = ∃y(Rσ+1(x, y) ∧ πtr (ϕ, y, σ+1))

All other cases in the definition of πtr remain unchanged. In [8] it is shown that we can use
the following ordering to ensure that derivations in R�

S from the clausal form of πtr (ϕ, x, 0)
of a K formula ϕ terminates: Pσ(s1, . . . , sn) � Qδ(t1, . . . , tm) if either σ < δ, or σ = δ and
n > m. This result can easily be extended to Kn by defining the ordering� as Pσ(s1, . . . , sn) �
Qδ(t1, . . . , tm) if either length(σ) < length(δ) or length(σ) = length(δ) and n > m. This
ordering restriction can be seen to force a kind of top-down approach.

THEOREM 11. Let ϕ be a modal formula in Kn and let N be the clausal form of πtr (ϕ, x, ε).
Then any derivation from N in Rord (up to redundancy) without splitting terminates.

One of the interesting aspects of this result is that it does not require the use of structural
transformation (nor does it require the use of the splitting rule, but condensing is crucial).

3.2 Global satisfiability, non-logical axioms, transitive modalities, and K4n

So far we have focused on local satisfiability, that is, the problem whether for a given modal
formula ϕ, there exists a model M = 〈W,R, V 〉 and a world w ∈ W such that M, w |= ϕ.
Now we turn to the problem of determining whether there is a model M such that for all worlds
w ∈ W M, w |= ϕ, i.e. is ϕ globally true in some model. The modifications necessary to
allows us to determine the global satisfiability of a modal formula in Kn based on the relational
translation are minimal: ϕ is globally satisfiable in Kn iff ∀xπr(ϕ, x) is first-order satisfiable.
Is it straightforward to see that the clausal form N of DefΛm(ϕ)(∀xπr(ϕ, x)) still consists only

of DL
∗ clauses. Consequently, Rord can decide the satisfiability of the clause set N .

THEOREM 12. Let Σ be an arbitrary set of axiom schemas such that KnΣ is complete and
the clausal form of the relational frame properties FΣ corresponding to the axiom schemas in Σ
is in DL

∗. Let ϕ be a modal formula in Kn and let N be the clausal form of FΣ,ϕ = FΣ ∧
DefΛm(ϕ)(∀xπr(ϕ, x)). Then

1. ϕ is not globally satisfiable in KnΣ iff FΣ,ϕ is not first-order satisfiable iff there is a
refutation of N by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in double exponential time
and in exponential time, if Σ is empty.

For local and global Kn-satisfiability w.r.t. to a background theory of non-logical axioms the
same result is true. Furthermore the complexity of ordered resolution is optimal.

THEOREM 13. Let Γ = {γ1, . . . , γn} be a finite set of of modal formulae and let ϕ be a modal
formula. Let FΓ,ϕ be the first-order formula ∃xπr(ϕ, x) ∧

∧

i=1,...,n ∀xπr(γi, x) and let N be
the clausal form of DefΛΓ,ϕ

(FΓ,ϕ), where ΛΓ,ϕ contains all non-atomic positions of FΓ,ϕ. Then

1. ϕ is unsatisfiable in Kn w.r.t. Γ iff FΓ,ϕ is first-order unsatisfiable iff there is a refutation
of N by Rord,

Computational Modal Logic 21

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in exponential time.

In contrast to Rord, derivations in Rhyp from the clausal form of DefΛΓ,ϕ
(FΓ,ϕ), as defined in

Theorem 13, are not guaranteed to terminate. Tableau algorithms face the same problem, and
the solution typically used is a technique called blocking. See Sections 4.3 and 4.4 for details.
This technique can be transferred to the context of first-order clausal logic and Rhyp derivations
as described in [118]. It involves the addition of a blocking rule which at certain points during
a derivation adds equations t1 ≈ t2 between ground terms t1 and t2 to the clause set, rendering
inferences on literals involving the greater of the two terms redundant. One of the interesting
properties of this approach is that completeness follows immediately from the general complete-
ness result for Rhyp [18], only soundness needs to be established. Another way of combining
blocking with Rhyp is presented in [27]. In addition, optimisations techniques like lazy unfolding
and absorption, which will be discussed in detail in Section 4.4, are in-built and therefore free in
Rhyp.

However, for Kn extended with axiom schemas sometimes quite different approaches are re-
quired. For example the formula ∀xyz ((Ri(x, y)∧Ri(y, z)) → Ri(x, z)) stating the transitivity
of Ri is not a formula in any of the relevant decidable first-order fragments. The corresponding
clause does not belong to DL

∗ either. To handle transitive modal logics one possibility is to
use the ordered chaining calculus introduced in [15] for binary relations satisfying the general
schema Ri ◦ Rj ⊆ Rk. A decision procedure for a first-order fragment covering the modal log-
ics K4, KD4, and KT4, and their multi-modal variants, which is based on ordered chaining,
is presented in [77]. Recent work in [124] presents an extension of R�

S which can decide the
guarded fragment with transitive guards. This provides a decision procedure for all modal logics
translatable into this fragment.

In the following we present another approach, the axiomatic translation approach [181], which
allows a variety of modal logics with transitive modalities to be embedded in DL

∗. Consequently
this allows the use of Rord to decide these logics. This method is not restricted to transitive modal
logics and applies to a large class of modal logics.

Remember that structural transformation introduces for each modal subformula [i]ψ of a
modal formula ϕ a predicate symbol Q[i]ϕ in πr(ϕ, x). The general principle of the axiomatic
translation approach for K4n is the following. For every transitive modality [i] and every sub-
formula [i]ψ of the formula ϕ, add the first-order formula

(A4) ∀xy ((Q[i]ψ(x) ∧Ri(x, y)) → Q[i]ψ(y)).

to the translation. The main technical question with the axiomatic translation principle is to
know how many instances of such a ‘schema formula’ need to be added to the translation. In the
Hilbert axiomatisation, axioms such as 4 are valid for all substitution instances. Since we do not
have access to a substitution rule, we need to make sure from the outset that enough instances of
the schema formulae are present in the translation of ϕ. (Of course, this does not preclude a lazy
implementation which delays the translation of subformulae and the inclusion of instances of
schema formulae until absolutely necessary.) The clausal form ofA4 is ¬Q[i]ψ(x)∨¬Ri(x, y)∨
Q[i]ψ(y), which is a DL

∗ clause (and a guarded clause).

THEOREM 14. Let ϕ be a modal formula and Ξ the set of all subformulae of the form [i]ψ of ϕ.
Let F4 be the first-order formula

∧

[i]ψ∈Ξ ∀xy ((Q[i]ψ(x)∧Ri(x, y)) → Q[i]ψ(y)). Let N be the
clausal form of F4,ϕ = F4 ∧DefΛm(ϕ)(πr(ϕ, x)). Then

22 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

1. ϕ is unsatisfiable in K4n iff F4,ϕ is first-order unsatisfiable iff there is a refutation of N
by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in exponential time.

The same result is true for global satisfiability in K4n and also reasoning with respect to non-
logical axioms. Theorem 14 reduces reasoning in K4n to reasoning in Kn with background
theories. Consequently, Rhyp combined with a blocking rule provides an alternative decision
procedure for K4n.

3.3 Converse modalities and the modal logics KBn and KB4n

Extending the results of Section 3.1 to modal logics with converse modalities or to the modal log-
ics KBn and KB4n is straightforward. For converse modalities we have to extend our definition
of the relational translation πr as follows:

πr([i
`]ϕ, x) = ∀y (Ri(y, x) → πr(ϕ, y)) πr(〈i

`〉ϕ, x) = ∃y (Ri(y, x) ∧ πr(ϕ, y))

Then, Theorem 13 extends to the following.

THEOREM 15. Let Γ = {γ1, . . . , γn} be a finite set of of K
`

n formulae and let ϕ be a K
`

n

formula. Let FΓ,ϕ be the first-order formula ∃xπr(ϕ, x)∧
∧

i=1,...,n ∀xπr(γi, x)). Let N be the
clausal form of DefΛΓ,ϕ

(FΓ,ϕ) where ΛΓ,ϕ contain all non-atomic positions of FΓ,ϕ. Then

1. ϕ is unsatisfiable in K
`

n w.r.t. Γ iff FΓ,ϕ is first-order unsatisfiable iff there is a refutation
of N by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in exponential time.

In the case of the modal logic KBn we extend the relational translation (or the axiomatic transla-
tion) by adding the relational frame property RB corresponding to B, namely ∀xy (Ri(x, y) →
Ri(y, x)), to the translation of ϕ. Finally, in the case of KB4n we restrict ourselves to the
axiomatic translation and again add the relational frame property RB to the translation of ϕ.

In all these cases, the clausal form N of the translated modal formulae as well as that of RB

consists only of DL
∗ clauses. Consequently, Rord provides us with a decision procedure for the

satisfiability of N .

THEOREM 16. Let ϕ be a KBn formula and letN be the clausal form of the first-order formula
FB,ϕ = ∀xy (Ri(x, y) → Ri(y, x)) ∧DefΛm(ϕ)(πr(ϕ, x)). Then

1. ϕ is unsatisfiable in KBn iff FB,ϕ is first-order unsatisfiable iff there is a refutation of N
by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in exponential time.

Computational Modal Logic 23

The result extends easily to global satisfiability and non-logical axioms. So, the axiomatic trans-
lation for KB is another reduction into DL

∗, but also GF
2, and Rord is an exponential time

decision procedure [181]. Besides Rord we can also use Rhyp to decide the satisfiability of N
(this is a consequence of the main results in [82, 83]).

THEOREM 17. Let ϕ be a KB4n formula and let Ξ be the set of all subformulae of the form
[i]ψ of ϕ. Let FB4 be the first-order formula

∀xy (Ri(x, y) → Ri(y, x)) ∧
∧

[i]ψ∈Ξ ∀xy ((Q[i]ψ(x) ∧Ri(x, y)) → Q[i]ψ(y)).

Let N be the clausal form of FB4,ϕ = FB4 ∧DefΛm(ϕ)(πr(ϕ, x)). Then

1. ϕ is unsatisfiable in KB4n iff FB4,ϕ is first-order unsatisfiable iff there is a refutation of
N by Rord,

2. N is a set of DL
∗ clauses, and

3. any derivation from N in Rord (up to redundancy) terminates in exponential time.

As described in Section 3.1, in the case of the optimised functional translation, we add so-called
functional frame properties in the form of (conditional) equations between path terms to ac-
commodate additional axiom schemas like 4 and 5. Alternatively, one can replace syntactic
unification in the inference rules of R with theory unification [175, 176]. The resulting calculus
is called theory resolution. So far, the only decision procedures for modal logics like K4n or
KBn based on theory resolution make use of a term depth bound, that is, any derived clause
involving terms of depth greater than a pre-computed bound dependent on the modal formula
whose satisfiability is tested will be removed [175, 178].

This section is an incomplete discussion of the different uses of first-order resolution. Due to
space restrictions we have only been able to present a few of the translations that are available
and have omitted a lot of details. Other translation methods are surveyed in [64, 148]. See also
the surveys [65, 49, 122, 180, 182].

3.4 Implementation and optimisation

In this section, we give a brief overview of the implementation of the resolution calculus pre-
sented in Section 3.1 and discuss some of the issues involved in using such an implementation
for theorem proving in modal logic. For further details on the implementation of first-order
theorem provers see e.g. [193, 169, 183].

The procedure ResolutionProver presented in Figure 5 is the main procedure implementing
the calculus R�

S . The input is a set N of clauses. The output on termination is a proof of
unsatisfiability or a saturated clause set. The procedure operates on two sets of clauses, US and
WO (the set of usable clauses and the set of worked-off clauses). The set WO contains all
the clauses that have already been used as premises in inference steps (or can never be used as
premises) and the set US contains all the clauses that still need to be considered as premises. In
our particular case, the input set N is the clausal form of the translation of some modal formula.

The procedure proceeds as follows. First, the input set N is simplified by the function ired,
that is, all tautologies and strictly subsumed clauses are deleted from N (this is achieved by the
two argument ired function). The set N is then divided into two sets: the usable clauses US
and the worked-off clauses WO. The set US contains all the clauses which are candidates for

24 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Procedure ResolutionProver(N)
local WO, US, NEW , Given;
begin
WO := ∅;
US := ired(N,N);
Stack := emptystack();
while (US 6= ∅) and (⊥ 6∈ US or not stackempty(Stack))
do

if (⊥ ∈ US) then
(Stack, US, WO) := backtrack(Stack, US,WO);

else
begin

(Given, US) := choose(US);
if (splittable (Given)) then

begin
NEW := firstsplitcase(Given);
Stack := push(Stack, secondsplitcase(Given))

end
else

begin
WO := WO ∪ {Given};
NEW := inf(Given,WO);

end
end
(NEW , WO, US) := ired(NEW , WO, US);

return(US)
end

Figure 5. Standard inference loop in a saturation theorem prover

inferences and the setWO contains all the clauses that have already been selected for inferences.
Initially, the set WO is the empty set, while US contains all clauses of N remaining after ap-
plication of ired. Next the procedure enters the main inference loop in which it remains while
the set US is not empty and the empty clause ⊥ has not been derived or there are still alternative
branches of the derivation tree that need to be considered. Within the main loop it is first checked
whether the set US contains the empty clause. If so, the current branch of the derivation is a
closed branch and backtracking takes the computation to a different branch of the derivation.
Otherwise the function choose selects a clause from US. This clause is called the given clause.
If the splitting rule can be applied to the given clause, one of its two split components is taken to
be the newly derived clause, which is stored in NEW , and the other split component is pushed
onto a stack. Basically, this creates a new branch in the derivation tree that is explored later, if
it turns out that the current branch can be closed. This corresponds to a depth-first construction
of the derivation tree. If the splitting rule cannot be applied, we add the given clause to the set
WO and compute all conclusions of inferences by resolution and factoring between the given
clause and clauses in WO using the function inf. After removing redundant clauses from the
sets US, WO, as well as the newly derived clauses (this is achieved by the three argument ired
function), the remaining new clauses are added to the set US, and a new iteration of the main

Computational Modal Logic 25

loop is entered.
Important points to note about the ResolutionProver procedure are the following. First, in the

main inference loop, the function inf computes all conclusions derivable from the given clause
and clauses in WO. For example, suppose we use the Rhyp instance of R�

S . Let the set US con-
tain the clausesQ〈1〉ϕ(t),D0 = ¬Q〈1〉ϕ(x)∨R1(x, f(x)), andD1 = ¬Q〈1〉ϕ(x)∨Qϕ(f(x)), as
well as n clauses of the form Ci+1 = Q[1]ψi

(t) and Di+1 = ¬Q[1]ψi
(x) ∨ ¬Ri(x, y) ∨Qψi

(y),
for 1 ≤ i ≤ n. If we first choose each Di, 0 ≤ i ≤ n+1 they are simply moved to WO, without
any new clause being inferred from them. The same is true if we continue by choosing each Ci+1

in turn. Finally, when we choose Q〈1〉ϕ(t), the clauses Ri(t, f(t)) and Qϕ(f(t)) is computed by
inf and moved to US. When R1(t, f(t)) becomes the given clause, inf computes in one step the
clauses Qψi

(f(t)), for 1 ≤ i ≤ n. This corresponds to the application of the tableau inference
rule

w : 〈i〉ϕ w : [i]ψ1 · · · w : [i]ψn
v : ϕ v : ψ1 · · · v : ψn

where v is an i-successor of w. However, if we choose clauses starting with D0, followed by
D1, and then Q〈1〉ϕ(t), inf infers R1(t, f(t)) and Qϕ(f(t)), corresponding to an application of
the 3-rule in the tableau algorithm defined in Figure 8. If we proceed by choosing R1(t, f(t)),
then each Ci+1 directly followed by Di+1, inf infers Qψi

(f(t)), corresponding to a series of
applications of the 2-rule in Figure 8. This shows that the way in which clauses are selected by
choose gives us added flexibility in how the search for a refutation is directed.

Second, the ordering � and the selection function S only influence the function inf without
changing what has just been said. Concerning the selection function S the user is able to se-
lect among a fixed set of pre-defined selection functions. The selection function which selects
every negative literal in any clause is usually included in that set. Concerning the ordering �,
state-of-the-art first-order theorem provers standardly contain implementations of recursive path
orderings, lexicographic path orderings or Knuth Bendix orderings, which are parameterised by
an ordering on the signature of the input clause set N , which the user can specify. Refinements
of the particular ordering� defined in Section 3.1 can be obtained by either recursive path order-
ings or Knuth Bendix orderings (definitions of orderings and ordering extensions can be found
in [52]).

Third, the remaining functions in ResolutionProver are firstsplitcase and secondslitcase
which basically determine the order in which branches of a derivation tree are investigated.
Again, it is possible to exercise control on this order by using some heuristic.

Fourth, the implementation of backtrack has significant influence on the performance of the
prover. On the stack we only store the second split component that may need to be considered
at a later point, but not the current state of WO and US. The information required to return
WO and US to the correct state on backtracking is stored in each clause, allowing us to remove
clauses which are no longer derivable and restoring clauses which are no longer redundant after
backtracking. When we derive a contradiction it is not necessary to backtrack to the state as-
sociated with the split component currently on top of the stack. Instead more intelligent forms
of backtracking are possible. For example, the theorem prover SPASS [194] implements branch
condensing. Here, on backtracking, all first components not used to derive a contradiction are
removed from the set US as well as all the corresponding second split components on the stack.
The prover then backtracks to the second split component which is now on top of the stack,
removing clauses which are no longer derivable and restoring clauses which are no longer redun-
dant. For further details see [193]. This form of intelligent backtracking is closely related but
not identical to conflict-directed backjumping [78, 164]. See also Section 4.2.

26 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

An alternative to explicit splitting is splitting through new propositional variables [168] im-
plemented in the theorem prover VAMPIRE [169] or the generalisation called separation in [179].
In the splitting through propositional variables approach, a clause C ∨D with variable-disjoint
components C and D is replaced with two clauses C ∨ p and D ∨¬p, where p is a new proposi-
tional variable called a split propositional variable. The ordering � and the selection function S
are extended to ensure that p is minimal in D∨¬p and ¬p is selected in D. This makes it impos-
sible for the clause C ∨ D to be derived from the two new clauses and also blocks D ∨ ¬p for
inferences until we derive a clause in which p is maximal. The derivation of a contradiction from
the split component C in explicit splitting then corresponds to the derivation of a clause E ∨ p
where E consists solely of split propositional variables. If p is maximal in E ∨ p we can derive
E∨D which corresponds to backtracking to the branch of the derivation in whichD is true. Note
that this again is a form of intelligent backtracking since E ∨ p is a representation of all the split
components involved in deriving a ‘contradiction’. Thus, in backtracking we ignore all other
splits not represented by a split propositional variable in E ∨ p. Unlike branch condensing and
(conflict-driven) backjumping, however, those splits are still present. A disadvantage of splitting
through new propositional symbols is that subsumption and reductions such as unit propagation
are not as effective as for explicit splitting. De Nivelle [47] has suggested modifications of the
standard inference and redundancy elimination rules which take account of split propositional
variables.

Both explicit splitting and splitting through new propositional variables split a clause C ∨D
into split components C andD. The two branches of the derivation do not necessarily investigate
disjoint sets of Kripke/first-order models. For variants of splitting we have the option to add the
negation of C, ¬C, to the branch on whichD is true. However, in contrast to propositional logic,
the benefit is less obvious. For example, assume thatC isQ[i]p(a) and that the clause set to which
we add ¬C = ¬Q[i]p(a) contains already the unit clauseQ[i](p∧q)(a). We can propagate the unit
clause ¬C to all clauses in the clause set which removes all occurrences of Q[i]p(a) from those
clauses. However, the contradiction between ¬Q[i]p(a) and Q[i](p∧q)(a) is not detected. This
is true even if the clause set contains the definitional clauses Q[i]p(x) ∨ R(x, f(x)), Q[i]p(x) ∨
¬Pp(f(x)), which we can use to derive R(a, f(a)) and ¬Pp(f(a)). Only when R(a, f(a))
and Q[i](p∧q)(a) together with the definition clauses ¬Q[i](p∧q)(x) ∨ ¬R(x, y) ∨ Pp(y) (and
¬Q[i](p∧q)(x) ∨ ¬R(x, y) ∨ Pq(y)) are used to derive Pp(f(a)), is a contradiction detected.
Note also that the clause R(a, f(a)) might trigger the derivation of a large number of additional
clauses which would not be derived in the absence of ¬Q[i]p(a) or its definitional clauses. In
general, the computational effort expended to this point might be great without a guarantee that
there is a payoff. Termination is however not compromised.

Used as a procedure to test the satisfiability of a Kn formula ϕ with any refinement of R�
S and

any of the translations presented in this section, ResolutionProver requires exponential space in
the size of ϕ. In [81] we have shown how ResolutionProver can be turned into a space optimal
decision procedure for the class GF

−. This modified procedure provides also a polynomial
space decision procedure for the relational translation of Kn and KBn formulae. If we focus
on Kn, then a simple modification of ResolutionProver as described in Figure 6 is sufficient.
The procedure uses an additional local variable t which stores the term we currently focus on.
Initially it is the only ground term inN , and is returned by groundTerm. The procedure choose
selects the given clauses in a particular order. It starts by choosing non-ground clauses. This
transfers all definitional clauses from US to WO without any inference steps being performed.
Then it selects ground clauses in an order which ensures that the derivation corresponds to a
depth-first exploration of the completion tree in a tableau derivation. Finally, ired is modified so

Computational Modal Logic 27

Procedure ResolutionProver(N)
local WO, US, NEW , Given, t;
begin
t := groundTerm(N);
. . .
(Given, US , t) := choose(US , t);
. . .
(NEW , WO, US) :=

ired(NEW , WO, US, t);
. . .

end

Procedure choose(US , t)
begin

if (C ∈ US where C is non-ground) then
return(C, US − {C}, t)

else if (Q(t) ∨ C ∈ US) then
return(Q(t) ∨ C, US − {Q(t) ∨ C}, t)

else if (Ri(t, s) ∈ US) then
return(Ri(t, s), US − {Ri(t, s)}, s)

else if (Ri(u, v) ∈ US with v having greatest
depth in US) then

return(Ri(u, v), US − {Ri(u, v)}, v)
end

Figure 6. Modified procedures for a polynomial space decision procedure for Kn

that it removes from WO all clauses containing argument terms which are not subterms of the
term t. This modification ensures that the information on terms which have been fully explored
and does not contribute to a refutation is removed, bringing the space requirements down to
polynomial space.

3.5 Other extensions (counting, nominals)

The modal logics K
c
n and K

`,c
n with graded modalities and the modal logic K

o
n with nominals

can be translated to first-order logic using a number of different embeddings. The simplest one
is an extension of the relational translation as follows (the symbol oi denotes a nominal).

πr(〈i〉mϕ, x) = ∃y1 . . . ym (Ri(x, y1) ∧ . . . ∧Ri(x, ym) ∧ y1 6≈ y2 ∧ . . . ∧ ym−1 6≈ ym)

πr([i]mϕ, x) = ∀y1 . . . ym+1 ((Ri(x, y1) ∧ . . . ∧Ri(x,ym+1)) →
(y1 ≈ y2 ∨ . . . ∨ yn ≈ ym+1))

πr(oi, x) = (x ≈ oi)

The superposition calculus [14] and the basic superposition calculus [17] are extensions of R�
S

with rules for equality reasoning. In [113, 112] it is shown that the basic superposition calculus
can be used to decide the satisfiability of knowledge bases in the SHIQ description logic. It
follows that it can also be used to decide the satisfiability of formulae in K

c
n and K

`,c
n .

An extension of the optimised functional translation to K
c
n is presented and shown to be sound

and complete in [150].

4 TABLEAU-BASED ALGORITHMS

In this section, we describe tableau-based decision procedures for modal logics and discuss their
complexity and implementation issues. First, we discuss various choices for presenting tableau
algorithms in general, and then present the basic tableau algorithm for Kn together with a de-
tailed discussion of implementation and optimisation issues. Next, we modify this algorithm to
handle K4n, background theories, converse modalities, and their combinations, and point out
relevant modifications concerning the implementation and optimisation.

28 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Intuitively, a tableau algorithm tries to construct, for an input formula ϕ, a model of ϕ; i.e.,
to decide the validity of a formula ψ, the tableau algorithm is started with ¬ψ. Depending on
the modal logic, it is often convenient to consider an abstraction of models rather than models,
namely a so-called tableau.

4.1 Tableau algorithms in general

We start with a description of a tableau algorithm for multi modal Kn. Roughly speaking, this
algorithm takes the input formula ϕ and deduces constraints on the model it is going to build
by breaking it down into its sub-formulae. We will first describe different styles in which this
attempt at a model construction has been described and relate them to each other.

The “breaking down” is realized through tableau expansion rules; quite often, we find one
such expansion rule per logical constructor. For example, if we know that ψ1 ∧ ψ2 should
be true in world w of the model we are constructing, then we break the conjunction down and
explicitly add the constraints that each ψi has to be true in w. Next, we discuss the rules that
handle box- and diamond formulae. Intuitively, if we know that 〈i〉ψ should be true in world w,
then we “generate” a witness world w′, which is i-accessible from w and in which ψ is true. This
can be formalised in different ways:

• for certain modal logics such as Kn, one can first handle all formulae talking about a single
world, then collect all constraints concerning another world and process these, and so on
[129]. This approach is sometimes called “distructive” [92] (see also Chapter ??) because
we can forget the constraints concerning an “old” world once we procede to the next one.

• labelled tableaux are closely related to propositional tableaux: they are sets of labelled
formulae that partially describe a model: each formula is labelled with the world it should
be true in (see ??). For example, the case where 〈1〉ψ is true in world w would translate to
finding the labelled formulaw : 〈1〉ψ in our tableau, and the 3-rule adds labelled formulae
w′ : ψ andw1w′, where the latter encodes thatw′ is 1-accessible fromw. This information
is required if we find, additionally, a formula of the form w : [1]ψ′: in this case, the 2-rule
adds w′ : ψ′.

Alternatively, one can store the information that w′ is i-accessible from w in the labels by
using appropriate sequences instead of atomic “names” w, w′. We start with the empty
sequence labelling the input concept, and then append these labels, e.g., as follows: if a
world is generated for a labelled formula s : 〈i〉ψ, we name this world s(i, ψ) and simply
introduce the new labelled formula s(i, ψ) : ψ. Please note that si : ψ does not suffice
because 〈1〉ψ ∧ 〈1〉¬ψ is satisfiable, but only in a world that has two distinguished 1-
acccessible worlds.

• other tableau algorithms explicitly store the relational structure of the model (or tableau)
they are building. More precisely, they work on labelled graphs (often trees) where nodes
represent worlds and labelled edges represent i-accessibility. Moreover, nodes are labelled
with the set of formulae that should be true in the corresponding world. Thus, instead
of finding two labelled formulae w′ : ψ′ and w′ : ψ′′ in a tableau, we would find both
formulae in the label of the node w′, written {ψ′, ψ′′} ⊆ L(w′).

An advantage of this approach is that all information concerning a single world is kept in
the same place. For example, it allows for the detection of obvious inconsistencies such as
w : p and w : ¬p by a test that is local to L(w). When considering logics with converse

Computational Modal Logic 29

or graded modalities, the advantages of this “one node per world” approach become even
more pronounced. State-of-the-art implementations of modal tableau algorithms adopt this
approach [159, 90], which is why we have chosen it for this section.

Similarly, the ∨-rule is often formulated using either branching or non-determinism in the
model construction. For example, if we know that ψ1 ∨ ψ2 should be true in w, then the ∨-rule
can be formalised in the following two ways:

• we branch our model construction into two, one in which ψ1 is true in w and one in which
ψ2 is true in w, and then continue with the construction of each branch independently.

This is how non-deterministic constructors are handled in standard first order and modal
logic tableau: the tableau rules expand a tree where each branching represents a non-
deterministic choice, and thus where each path stands for a possible model.

• we non-deterministically choose one ψi to be true in w. This yields a non-deterministic
algorithm which, when implemented, requires back-tracking to be complete.

From a computational perspective, this approach is preferable since, in contrast to the
above “branching” alternative, it preserves the useful “one node per world” property. Addi-
tionally, it can easily be adapted to exploit techniques developed for solving SAT problems,
such as David-Putnam and related heuristics [41, 87]. State-of-the-art implementations of
modal tableau algorithms handle disjunctions (and possibly other non-deterministic oper-
ators) in this way, and are combined with intelligent back-tracking (or back-jumping) and
heuristics to make the “good” choice first, see Section 4.2.

The algorithms described in this chapter will use the latter, non-deterministic formulation, and
will work on a single model/tableau at any world in time, where all information concerning each
world is stored in a single node.

Figure 7 shows two example applications of different tableau algorithms to decide the satisfi-
ability of the K formula ψ = 〈1〉p ∧ 〈1〉q ∧ [1](¬p ∨ ¬q). On the left hand side, we show the
result of a standard labelled tableau, where we use sequences as labels. First, we have broken
down the conjunctions, then generated two new labels (1, p) and (1, q) for the two diamond for-
mulae. Next, we have expanded the box formula for both new worlds, and finally branched for
the disjunctions. The resulting tree stands for four different attempts to construct a model, one
for each path from a leaf node to the root. Only the one ending in the filled node corresponds to
a model since all other branches contain obvious inconsistencies: e.g., the first one contains both
(1, p) : p and (1, p) : ¬p.

On the right hand side, we show a (successfull) application of the non-deterministic version
of a tableau algorithm working on trees. It has generated three nodes wi with labels that are
completely expanded sets of formulae. Here, the edges stand for the accessibility relations, i.e.,
w2 and w3 are 1-accessible from w1. In contrast, on the left hand side, (the formulae along) one
path in the tree represents a model, i.e., edges relate formulae that are true in the same model.

4.2 Local satisfiability for multi modal Kn

Before we describe the algorithm, we introduce an appropriate data structure in which to rep-
resent models (and later tableaux). Firstly, it will be convenient to assume that all formulae
descriptions are in negation normal form (see Section 2). The tableau algorithms presented in
this section work on completion trees: a completion tree is a finite tree where each node x is

30 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

(1, q) : ¬p

ε : ψ

w1

{q,¬p}{p,¬q}

ε : 〈1〉q

ε : [1](¬p ∨ ¬q) [1](¬p ∨ ¬q)}

(1, q) : ¬q (1, q) : ¬p

w2 w3

ε : 〈1〉p

1 1

{ψ, 〈1〉p, 〈1〉q,

(1, p) : p

(1, q) : q

(1, p) : ¬p ∨ ¬q

(1, q) : ¬p ∨ ¬q

(1, p) : ¬q

(1, q) : ¬q

(1, p) : ¬p

Figure 7. Two application of tableau algorithms to the same formula.

labelled with a set L(x) of formulae, and edges are labelled with modal parameters. A node y
is called an i-successor of a node x if y is a successor of x and the edge from x to y is labelled
with i. A completion tree is said to be closed if it contains a node x with {p,¬p} ⊆ L(x); a
completion tree that is not closed is open, and it is complete if no expansion rule applies—the
expansion rules are given in Figure 8. Please note that they are formulated in such a way that, if
a rule is applicable (i.e., the corresponding condition is satisfied by the current completion tree),
then its application indeed changes the tree.

To decide the satisfiability of φ (in NNF), the tableau algorithm is started with a completion
tree consisting of the root node x0 only, with L(x0) = {φ}. It applies the expansion rules until
the completion tree becomes closed or complete, and returns “φ is satisfiable” if the expansion
rules can be applied such that they yield a complete and open tableau, and “φ is unsatisfiable”
otherwise. The “can be applied” formulation is due to the non-deterministic ∨-rule, as discussed
in Section 4.1. Also, the algorithm does not fix any order in which the rules are to be applied,
which means that an implementation has to/can chose a “good” one.

∧-rule: If there is a node x with ψ1 ∧ ψ2 ∈ L(x) and {ψ1, ψ2} 6⊆ L(x),
then L(x) := L(x) ∪ {ψ1, ψ2}.

∨-rule: If there is a node x with ψ1 ∨ ψ2 ∈ L(x) and {ψ1, ψ2} ∩ L(x) = ∅,
then L(x) := L(x) ∪ {ψi} for some i ∈ {1, 2}.

3-rule: If there is a node x with 〈i〉ψ ∈ L(x) and x has no i-successor y with ψ ∈ L(y),
then create a new i-successor y of x with L(y) := {ψ}.

2-rule: If there is a node x with [i]ψ ∈ L(x) and x has an i-successor y with ψ 6∈ L(y),
then L(y) := L(y) ∪ {ψ}.

Figure 8. The expansion rules for Kn.

Before discussing the properties of this algorithm, we would like to point out that the tableau

Computational Modal Logic 31

rule
w : 〈i〉ϕ w : [i]ψ1 · · · w : [i]ψn

v : ϕ v : ψ1 · · · v : ψn

mentioned in Section 3.4 of this chapter corresponds, in our notation, to
If there is a node x with {〈i〉ϕ, [i]ψ1, . . . , [i]ψn} ⊆ L(x),
then create a new i-successor y of x with L(y) := {ϕ,ψ1, . . . , ψn}.

The fact that our algorithm decides satisfiability of Kn formulae is an immediate consequence
of the following lemma, for which we first need to define the semantics of completion trees. Let
T be a completion tree, M = 〈W,R, V 〉 a model, and π a (total) mapping from the nodes of T

to W . Then M is said to satisfy T via π if, for each node x in T,

1. for each ψ ∈ L(x), we have M, π(x) |= ψ and

2. for each i successor y of x, we have Ri(π(x), π(y)).

LEMMA 18. Let φ be a Kn formula and T a completion tree generated by the tableau algorithm
for φ.

1 When applied to φ, the tableau algorithm terminates.

2 If M satisfies T via π and one of the expansion rules is applicable to T, then this rule can
be applied in such a way that it yields a T

′ satisfied by M via π or an extension of π.

3 If T is complete, then there exists a model M and a mapping π such that M satisfies T via
π iff T is open.

Lemma 18.1 is due to the fact that (i) the breadth and depth of the completion tree are bounded
linearly by the length of φ, (ii) node labels are sets of subformulae of φ, and (iii) the completion
tree is built in a monotonic way, i.e., each rule strictly increases node labels or adds new nodes.
Property (i) is due to the fact that there are at most |φ| diamond modalities in φ and that the max-
imal modal depth of formulae in node labels strictly decreases from a node to its (i-)successors.
Lemma 18.2 is an immediate consequence of the semantics of Kn and completion trees. For
example, let the 3-rule be applicable to some T with 〈i〉ψ ∈ L(x), and let M satisfy T via π.
Hence M, π(x) |= 〈i〉ψ, and thus there exists some w ∈ W with Ri(π(x), w) and M, w |= ψ.
As a consequence, we can extend π to π(y) = w for y the newly introduced node, and M satisfies
the result of this rule application via (the extended) π. The “if” direction of Lemma 18.3 is easy
since each open completion tree can be viewed as a model with W the set of nodes, x ∈ V (p) if
p ∈ L(x), andRi(x, y) if y is an i-successor of x. The only-if direction of Lemma 18.3 is trivial.

THEOREM 19. The Kn tableau algorithm decides Kn satisfiability and can be implemented in
polynomial space.

As an immediate consequence of Lemma 18 and the fact that each model M satisfying ψ
is one that satisfies the initial completion tree (and vice versa), we thus have the first point of
Theorem 19. The second part follows from the following observations. As a consequence of (i)
and (ii) in the proof sketch of Lemma 18.1, we can store each branch of a completion tree in space
bounded polynomially in the length of ψ. Next, we observe that we can consider each branch
independently, and thus we can build the completion tree in a depth first manner, keeping only
a single branch in memory at each point in time. Finally, our ∨-rule is non-deterministic, but it
is known how to transform a non-deterministic polynomial space algorithm into a deterministic
one that also runs in polynomial space [172].

32 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Implementation Issues

Even this “simplest” modal logic Kn extends propositional logic, and thus the complexity is
rather discouraging from an implementational perspective: we may have to consider a number
of models (or completion trees) that is exponential in the size of the input formula. Moreover,
because the completion tree is usually built in a depth first manner, with the ∧- and ∨-rules being
exhaustively applied to a given node before creating any modal successors with the 3-rule, it is
easy to find formulae with unsatisfiability “hidden” in the leaves of the tree for which a naive
implementation will always exhibit pathological worst case behaviour. Consider, for example,
the formula:

(11) φ = (p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn) ∧ 〈i〉ψ ∧ [i]¬ψ.

There are 2n different ways in which the combination of the ∧-and ∨-rules can be applied to a
node whose label is initialised with {φ}, but in each case subsequent applications of the 3- and
the 2-rules will eventually lead to a closed completion tree. A naive implementation of the trace
technique with “chronological” backtracking search would consider all 2n possible expansions
before concluding that the input formula is unsatisfiable; this kind of unproductive backtracking
search in often referred to as thrashing.

Fortunately, a wide range of optimisation techniques has been developed in order to improve
the efficiency with which the algorithm explores the space of possible models [104, 103]. Al-
though these optimisations may lead to a situation in which the worst case behaviour would
actually be much worse than the theoretical worst case, empirical studies have shown that such
optimised algorithms are very effective with typical formulae, i.e., formulae derived from appli-
cations. These techniques include normalisation and simplification, dependency directed back-
tracking, SAT based search techniques, simplification of node labels, heuristics and caching.

Normalisation and Simplification As usual, our description of the Kn tableau algorithm as-
sumes that the input formula is in negation normal form (NNF); this simplifies the (description of
the) algorithm, but it means that a completion tree will only be closed when a propositional vari-
able and its negation occur in the same node label. For example, when testing the satisfiability of
the formula (p ∧ q) ∧ ¬(p ∧ q), the transformation into NNF would give (p ∧ q) ∧ (¬p ∨ ¬q);
in practise this means that, in spite of the “obvious” contradiction, backtracking search will be
performed in order to determine that the formula is unsatisfiable.

For this reason, practical algorithms do not transform the input concept into NNF, but include
a ¬-rule that performs a single (negation) normalisation step (e.g., applying the ¬-rule to ¬(p ∧
q) ∈ L(x) would cause ¬p ∨ ¬q to be added to L(x)), and a completion tree is closed if it
contains a node x with {ψ,¬ψ} ⊆ L(x) for an arbitrary formula ψ. Moreover, in order to
facilitate the detection of such closure conditions, the input formula is normalised and simplified
so that logically equivalent formulae are more often syntactically equivalent. This is achieved by
(recursively) applying a set of rewrite rules to the input formula, and by ordering conjuncts w.r.t.
some total ordering. For example, we re-write ∨ and 3 formulae as negated ∧ and 2 formulae,
respectively; we remove redundant parentheses between conjunctions; we order conjuncts; and
we simplify formulae using the following equivalences: (ψ ∧ ψ) ↔ ψ, ¬¬ψ ↔ ψ, (ψ ∧ ¬ψ ∧
ρ) ↔ ¬>, (ψ ∧ >) ↔ ψ, (ψ ∧ ¬>) ↔ ¬>, and [i]> ↔ >.

If the above transformations are applied to the formula φ from the above example (11), then
〈i〉ψ would be rewritten as ¬[i]¬ψ, ¬[i]¬ψ ∧ [i]¬ψ would be rewritten as ¬> and (p1 ∨ q1) ∧
. . . ∧ (pn ∨ qn) ∧ ¬> would be rewritten as ¬>, a formula that is trivially unsatisfiable.

Computational Modal Logic 33

If ψ1 was added to L(x) by the
∧-rule for ψ1 ∧ ψ2 ∈ L(x), then dep(ψj , x) := dep(ψ1 ∧ ψ2, x) for each j ∈ {1, 2}
∨-rule for ψ1 ∨ ψ2 ∈ L(x), then dep(ψj , x) := dep(ψ1 ∨ ψ2, x) ∪ {b} for each j ∈ {1, 2}
3-rule for 〈i〉ψ1 ∈ L(x′), then dep(ψ1, x) := dep(〈i〉ψ1, x

′)
2-rule for [i]ψ1 ∈ L(x′), then dep(ψ1, x) := dep([i]ψ1, x

′) ∪ dep(〈i〉ψ2, x
′)

where x was generated by the 3-rule for 〈i〉ψ2 ∈ L(x′)

Figure 9. Inductive definition of dep(ψ, x)

Dependency Directed Backtracking As we saw in the above example (11), inherent unsatisfia-
bility concealed in sub-formulae can lead to large amounts of unproductive backtracking search
known as thrashing. Although the normalisation and simplification technique described above
solved the problem for this example, this might not have been the case if the unsatisfiability
caused by the modal sub-formulae had been slightly less trivial. Consider, e.g., the following,
only slightly modified formula φ′:

(12) φ′ = (p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn) ∧ 〈i〉(ψ ∧ ρ) ∧ [i]¬ψ.

To avoid an exponential search in the case of φ′, a more sophisticated solution is required, and can
be found by adapting a form of dependency directed backtracking called backjumping, which has
also been used, e.g., in solving constraint satisfiability problems [19] and (in a slightly different
form) in the HARP theorem prover [153].

Intuitively, backjumping works by labelling each formula ψ in the label of a node x with
a dependency set dep(ψ, x) indicating the branching points (i.e., applications of the ∨-rule)
on which it depends. In case the completion tree is closed because it contains some node x
with {ψ,¬ψ} ∈ L(x), we use dep(ψ, x) and dep(¬ψ, x) to identify the most recent branching
point b on which ψ or ¬ψ depends. The algorithm can then jump back to b over intervening
branching points without exploring any alternative branches (non-deterministic choices), and
make a different non-deterministic choice which might not lead to the same closure condition
being encountered. In case no such b exists, the closure did not depend on any non-deterministic
choice, and the algorithm stops.

To be more precise, a branching point is simply a non-negative integer b indicating the b-th
∨-rule application in the run of the tableau algorithm. Initially, for x0 the root node and φ the
input formula, dep(φ, x0) := ∅. The sets dep(ψ, x) are then defined inductively as shown in
Figure 9. In this way, each formula in each node label is associated with a dependency set. If
the completion tree is closed because it contains some node x with {ψ,¬ψ} ∈ L(x), the closure
dependency set S := dep(ψ, x) ∪ dep(¬ψ, x), and the algorithm backtracks to the b-th ∨-rule
application (or exits if b = 0).

The procedure for expanding a completion tree T is given in Figure 10. For an input for-
mula φ, T is initialised to contain a single node x0 with L(x0) = {φ} and dep(φ, x0) := ∅;
φ is satisfiable if Satisfiable(T,0) returns {−1} and unsatisfiable otherwise. For example, when
expanding the formula φ′ from 12 above, the ∧-rule might first be applied exhaustively via re-
cursive calls to Satisfiable, resulting in {p1 ∨ q1, . . . , pn ∨ qn, 〈i〉(ψ ∧ ρ), [i]¬ψ} ⊆ L(x0) and
dep(ψj , x0) = ∅ for each formula ψj ∈ L(x0). These dependencies reflect the fact that, so far,
no non-deterministic choices have been made. A top-down and “left to right” strategy might
then cause Branch to be called n times, with, for the j-th call, b = j, f1 = pj , f2 = qj and

34 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Procedure Satisfiable(T,b)
local f ;
begin

if for some node x in T, {ψ,¬ψ} ∈ L(x)
then

return(dep(ψ, x) ∪ dep(¬ψ, x))
else if T is complete then

return({−1})
else

begin
f := some unexpanded formula in node
x in T

if f is of the form ψ1 ∨ ψ2 then
return(Branch(T,b +
1,x,ψ1,ψ2,dep(f, x)))

else
begin

expand f (as per Fig. 8 and 9)
return(Satisfiable(T,b))

end
end

end

Procedure Branch(T,b,x,f1,f2,D)
local S, T-saved;
begin

T-saved := T

add f1 toL(x) with dep(f1, x) = {b}∪D
S := Satisfiable(T,b)
if b 6∈ S then

return(S)
else

begin
T := T-saved
add f2 to L(x) with dep(f2, x) =
b ∪ d
return(S ∪ Satisfiable(T,b))

end
end

Figure 10. Procedure for tableau expansion with backjumping

D = ∅, so that p1, . . . , pn are added to L(x0) with dep(pj , x0) = j. Next, recursive calls to
Satisfiable would expand: 〈i〉(ψ ∧ ρ) ∈ L(x0), causing the generation of an i-successor x1 of
x0 with L(x1) = {ψ ∧ ρ} and dep(ψ ∧ ρ, x1) = ∅; [i]¬ψ ∈ L(x0), causing ¬ψ to be added to
L(x1), with dep(¬ψ, x1) = ∅; and ψ ∧ ρ ∈ L(x1), causing ψ and ρ to be added to L(x1), with
dep(ψ, x1) = dep(ρ, x1) = ∅. The completion tree would then be closed, as {ψ,¬ψ} ⊆ L(x1),
and Satisfiable would return dep(ψ, x1) ∪ dep(¬ψ, x1) = ∅.

If we were using chronological backtracking, the recursion would return to the n-th branching
point, i.e., the one where Branch was called with b = n, f1 = pn and f2 = pn. T would be
restored to its state prior to adding pn to L(x0), and the rule would be applied again such that qn
was added to L(x0). Using backjumping, however, we return from Branch immediately because
b 6∈ S. This is obviously true for all of the preceding branching points, so all calls to Branch will
return without expanding the completion trees obtained by adding the various qj to L(x0), and
Satisfiable will eventually return ∅, allowing us to conclude that φ′ is unsatisfiable.

SAT Based Search Techniques Even with the addition of dependency directed backtracking, a
naive implementation of the 3-rule is inherently inefficient as it can lead to the repetition of parts
of the expansion. For example, given an input formula

(13) φ′′ = (ρ ∨ ψ1) ∧ . . . ∧ (ρ ∨ ψn),

where ψ1 ∧ . . . ∧ ψn is satisfiable but ρ is not, the procedure described above would lead to
the construction of n (possibly large) closed completion trees, each with ρ ∈ L(x0), before a
complete and open completion tree is constructed.

This problem can be avoided by using more sophisticated search techniques. One of best

Computational Modal Logic 35

known of these is the Davis-Putnam algorithm, originally designed for solving propositional sat-
isfiability (SAT) problems [42]. The basic idea behind Davis-Putnam is that, instead of branching
on unexpanded disjunctions, we branch on a formula ψ such that ψ occurs in an unexpanded dis-
junction in a node x of the completion tree and {ψ,¬ψ}∩L(x) = ∅; the algorithm then searches
the two possible trees obtained by adding ψ or ¬ψ to L(x). This basic technique is usually en-
hanced with heuristics and simplification rules (which we will discuss in more detail below); in
particular, we usually branch first on formulae that occur in many unexpanded disjunctions and,
if {ψ ∨ ρ,¬ψ} ⊆ L(x), then ψ ∨ ρ is deterministically expanded by adding ρ to L(x). It is
easy to see that if this strategy is applied to φ′′ above, we would branch first on ρ (as it occurs in
n unexpanded disjunctions), and at most one closed completion tree (if ρ is tried first) would be
constructed before finding a complete and open one.

This technique has been shown to be very effective with formulae generated at random us-
ing generators adapted from those used to generate SAT problems [87, 114]. Such problems
typically include a relatively small number of propositional variables (so there is likely to be
significant repetition of the sub-formulae occurring in disjunctions), and have a very low modal
depth (so the importance of propositional reasoning is emphasised); this is because large num-
bers of propositional variables and/or a high modal depth would result in almost all problems
of reasonable size being trivially satisfiable. Formulae from applications, however, typically do
not exhibit these characteristics, and Davis-Putnam is much less effective—in fact it can even be
counter-productive if the negated formulae that Davis-Putnam introduces are large and/or com-
plex [103].

An alternative technique used in [56] is to enhance the standard chronological backtracking
method with a no-good list for each node, i.e., a set of formulae, each of which has already been
shown to lead to a closed completion tree when it is added to the node label by an application
of ∨-rule. Formulae in the no-good list are not considered when applying the ∨-rule. Using
this technique with φ′′ above, ρ would be added to the no-good list after the first application
of the ∨-rule leads to a closed completion tree. In subsequent applications of the ∨-rule, ρ
would not be considered, and ψj would always be selected. This technique has the advantage
that wasted search is avoided without adding negated formulae that could themselves lead to
additional (possibly non-deterministic) expansion.

Note that, when using these (and other) optimisations in addition to backjumping, care must
be taken to ensure that all dependencies are being taken into consideration. For example, when
using a no-good list to restrict the possible choices made by the ∨-rule, it is important to also
consider the dependencies associated with the relevant formulae in the no-good list.

Simplification of Node Labels As well as the standard tableau expansion rules described in
Figure 8, additional inference rules can be applied to the formulae occurring in a node label,
usually with the objective of simplifying them and reducing the number of ∨-rule applications.
The most commonly used simplification, often called Boolean Constraint Propagation (BCP)
[74], is again derived from SAT solvers, where it is usually used in conjunction with the Davis-
Putnam procedure. The basic idea is to identify a disjunction ψ1 ∨ . . . ∨ ψn ∈ L(x) such that
the negations of all but one of the ψj are already elements of L(x); when this is the case, the
formula can be deterministically expanded by adding the relevant ψj to L(x). This amounts to
applying the following inference rule

¬ψ1, . . . ,¬ψn, ψ1 ∨ . . . ∨ ψn ∨ ψ

ψ

to the formulae in a node label, which is a restricted variant of hyper resolution, see 3.1.

36 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

As we have already seen, when ¬ρ is added to L(x0) during the expansion of φ′′ above,
the BCP rule can be applied to all the remaining φ ∨ ψj formulae, leading to a complete and
open completion tree without any further applications of the ∨-rule. Note that, as with the more
sophisticated search techniques described above, careful consideration needs to be given to the
dependencies of formulae added by such inference rules if they are to be used together with
backjumping.

Heuristics As mentioned in Section 4.1, one advantage of the non-deterministic formulation of
the ∨-rule is that an algorithm can try to choose a “good” order in which to try the different
possible expansions. In practise, this usually means using heuristics to select the way in which
the ∨-rule is applied to the disjunctions in a node label, and the order in which the successor
nodes created by 3-rule applications are expanded; in either case, a heuristic function is used to
compute the relative “goodness” of candidate formulae/nodes.

When using the Davis-Putnam technique, the well known MOMS heuristic [74] is often used
to select the formulae on which to branch; it tries to select formulae that will maximise the effect
of BCP and so minimise the number of non-deterministic choices needed in order to complete
the completion tree [103]. There is little evidence, however, that (a suitably adapted form of) this
heuristic is effective with modal formulae, and even some evidence to suggest that interference
with the backjumping optimisation makes it counter productive [103].

An alternative heuristic, whose design was prompted by this observation, tries to maximise
the effect of backjumping by preferentially selecting formulae with low valued dependencies
[103, 99]. This heuristic has the added advantage that it can also be used to select the order in
which successor nodes are expanded.

Caching When using the top-down construction strategy, all information from predecessors is
added to a node label before it is processed. This means that, when a given node has been fully
expanded (i.e., the expansion rules have been exhaustively applied to it), a successor node y
with L(y) = {ψ1, . . . , ψn} can be treated as an independent problem, equivalent to testing the
satisfiability of ψ1 ∧ . . . ∧ ψn.

A completion tree may contain many such nodes, and the labels of nodes tend to be quite
similar, particularly as the labels of i-successors of a node x each contain the same formulae
resulting from 2-rule applications to [i]ψ-formulae in L(x). For some formulae, this may result
in the same sub-problem being solved again and again. In order to avoid this, it is possible to
cache and re-use the results of such sub-problems. The usual technique is to use a hash table
to store the satisfiability status of node labels (i.e., sets of formulae treated as a conjunction).
Before applying any expansion rules to a new node x, the cache is interrogated to determine if the
satisfiability status of L(x) is already known. If it is known, then the result can be used without
further expansion, i.e., L(x) can be treated as though it were either {⊥} (for unsatisfiable) or
{>} (for satisfiable). If the satisfiability status of L(x) is not known, then L(x) is added to the
cache, and its status set to satisfiable if a complete and open completion tree rooted in x can be
constructed, and to unsatisfiable otherwise.

Since the satisfiability of a set of formulae L implies the satisfiability of each subset of L, and
the unsatisfiability of a set of formulae L implies the unsatisfiability of each superset of L, this
basic idea can be extended to check for satisfiable supersets of L(x) and unsatisfiable subsets of
L(x). However, this requires a considerably more sophisticated data structure if cache operations
are to be efficient [100, 86].

Apart from the problem of the storage required for the cache, another more subtle disadvan-
tage of caching is that, in the case where the cache returns “unsatisfiable” for L(x), there is
no information about the cause of the unsatisfiability that can be used to derive the dependency

Computational Modal Logic 37

information required for backjumping. Backjumping can still be performed by combining the de-
pendency sets of all of the formulae in L(x), but this is likely to overestimate the set of branching
points on which the unsatisfiability depends.

Another useful form of caching is a technique known as model merging [103, 91]. The idea
here is to prove the satisfiability of a node label L(x) by showing that open and complete com-
pletion trees for L1, . . . , Lk with L1 ∪ . . . ∪ Lk = L(x) can be combined into an open and
complete completion tree for L(x) by simply “gluing” their root nodes together. This is possi-
ble if there are no “interactions” between the various completion trees, e.g., if there are no j, k
such that either ψ ∈ Lj and ¬ψ ∈ Lk or 〈i〉ψ ∈ Lj and [i]ρ ∈ Lk for some i, ψ and ρ. Thus
model merging involves (a) cashing satisfiable sets of formulae that occur as root labels of open
and complete completion trees, and (b) trying to prove the satisfiability of some L(x) by finding
cached sets Lj that do not interact in the above sense.

4.3 Transitive modalities and K4n

The main problem one has to overcome when modifying the Kn tableau algorithm presented
in Section 4.2 to K4n is termination. Please recall that the Kn tableau algorithm terminates
“automatically” since it builds a tree of bounded depth and breadth in a monotonic way. As
we will see, this is not the case for K4n. Consider, e.g., the K4n formula 〈i〉ψ ∧ [i]〈i〉ψ. A
K4n tableau algorithm would start with a root node x0 labelled with this formula, then apply
the ∧-rule, and then generate an i-successor x1. Next, the 3-rule would be applicable and it
would add 〈i〉ψ to L(x1). Thus the 3-rule would generate an i-successor x2 of x1. At his point,
the difference between Kn and K4n becomes apparent: in K4n models, Ri has to be transive,
and thus x2 should be i-accessible from x0, i.e., 〈i〉ψ would also need to be true in (the world
represented by) x2. Hence, we would need a (new) rule that adds 〈i〉ψ to L(x2). However, this
would trigger the applicability of the 3-rule, which would generate an i-successor x3 of x2. Now
we can useRi’s transitivity again to argue that 〈i〉ψ needs to be added to L(x3), and continue the
whole pattern to construct an infinite i-chain. Thus the tableau algorithm would not terminate:
in contrast to the Kn tableau algorithm, the maximal modal depth of formulae in node labels no
longer decreases from a node to its successors.

To regain termination, we observe that, creating this infinite path, we keep repeating the same
actions. More precisely, the node labels of the nodes x1, x2, . . . are all identical. In the fol-
lowing, we show how we can prevent this “looping” using a cycle detection mechanism called
“blocking”. Intuitively, after the creation of x2 and the application of the 2-rule, we could have
noticed that L(x2) = {ψ, 〈i〉ψ} = L(x1), and decided to not apply the 3-rule to x2 because (i)
we would continue repeating ourselves and (ii) it is not necessary since L(x1) = L(x2) implies
that we can use (the world represented by) x1 for the world represented by x2. The latter means
that we can build a model M with (x1, x1) ∈ Ri in which M, x1 |= ψ and, from the semantics,
M, x1 |= 〈i〉ψ.

The other problem we have to overcome is how we are going to take care of Ri’s transitivity.
Consider an i-successor y of a node x. Now if y has in turn an i-successor z, then this situation
represents a model in which (x, z) ∈ Ri, i.e., z “should” also be an i-successor of x. That is, if
[i]ψ ∈ L(x), then ψ should be in L(z). One possible way to achieve this would be to give up
on working on completion trees, and instead work on graphs where we would add the additional
i-edge between x and z. For implementation purposes, however, trees are clearly advantagous,
and thus we choose to employ an alternative technique: the same effect as adding the additional
i-edge between x and z can be obtained by adding [i]ψ to L(y) for each [i]ψ ∈ L(x). This will

38 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

be realized in a modified 2-rule.
Now we formalise this in our tableau algorithm. First, we define the notion of a blocked node.

We use ancestors and offsprings in the usual way; a node x is directly blocked if it has an ancestor
x′ with L(x) ⊆ L(x′); a node is blocked if it is directly blocked or if it has an ancestor that is
directly blocked. Next, we take this notion into account in the K4n expansion rules, which are
given in Figure 11. Compared to the Kn expansion rules, these expansion rules only apply to
nodes that are not blocked (however, 2-rule can add formulae to the label of a directly blocked
node), and the 2−rule “pushes” box formulae in the way discussed above.

∧-rule: If there is a node x that is not blocked with ψ1 ∧ ψ2 ∈ L(x) and {ψ1, ψ2} 6⊆ L(x),
then L(x) := L(x) ∪ {ψ1, ψ2}.

∨-rule: If there is a node x that is not blocked with ψ1 ∨ ψ2 ∈ L(x) and {ψ1, ψ2} ∩ L(x) = ∅,
then L(x) := L(x) ∪ {ψi} for some i ∈ {1, 2}.

3-rule: If there is a node x that is not blocked with 〈i〉ψ ∈ L(x) and x has no i-successor y
with ψ ∈ L(y),

then create a new i-successor y of x with L(y) := {ψ}.
2-rule: If there is a node x that is not blocked with [i]ψ ∈ L(x) and x has an i-successor y

with ψ 6∈ L(y),
then L(y) := L(y) ∪ {ψ, [i]ψ}.

Figure 11. The expansion rules for K4n.

To convince ourselves that this algorithm indeed decides satisfiability of K4n formulae, we
sketch the same technical lemma as for Kn.

LEMMA 20. Let ψ be a K4n formula and T a completion tree generated by the tableau algo-
rithm for ψ.

1. When applied to ψ, the tableau algorithm terminates.

2. If M satisfies T via π and one of the expansion rules is applicable to T, then this rule can
be applied in such a way that it yields a T

′ satisfied by M via (possibly an extension of) π.

3. If T is complete, then there exists a model M and a mapping π such that M satisfies T via
π iff T is open.

Again, we only sketch the proof. Termination is due to the same three observations as in the
sketch of Lemma 18, but the reason for the bound of the depth of the tree is more involved (and
the bound is now quadratic). Consider three nodes x, y, and z where y is an i-successor of x
and z a j-successor of y. If i 6= j, then the maximal modal depth of formulae in the label of
z is strictly smaller than the one in the label of y. If i = j, then either L(z) ⊆ L(y) or y was
generated for a different different diamond formula in L(x) than z in L(y). In the former case,
z is blocked. The latter case can only occur linearly often in the length of the input formula. As
a consequence, paths in the completion tree are of length at most quadratic in the length of the
input formula. Lemma 20 (ii) is similar to the Kn case, but we have to exploit the transitivity of
Ri to explain why pushing [i]ψ from a node to its i-successor preserves M being a model via π.
Finally, the construction of a model from an open, complete completion tree in Lemma 20 (iii)
is slightly modified: firstly, only un-blocked nodes represent worlds in the model. Secondly, we
also add (x, y′) to Ri if x has an i-successor y which is blocked and y′ is an ancestor of y with

Computational Modal Logic 39

L(y) ⊆ L(y′). Thirdly, we extendRi so that it is transitively closed, i.e., if {(x, y), (y, z)} ⊆ Ri,
then we also have (x, z) ∈ Ri.

The same reasons as for Kn then yield the following theorem.

THEOREM 21. The K4n tableau algorithm decides K4n satisfiability and can be implemented
in polynomial space.

Implementation Issues

As we have seen, the main difference between the tableau algorithms for Kn and K4n is the
introduction of blocking. In fact the blocking condition described above, which specifies a subset
relationship between the labels of blocked and blocking nodes, is already optimised w.r.t. the one
originally described in [93], which specified label equality. The subset condition means that
blocking can occur sooner, thus avoiding possibly costly expansion.

Consider, for example, a node x labelled as follows:

(14) L(x) = {ρ, ψ, 〈i〉ψ, [i]〈i〉ψ},

With subset blocking, an i-successor y of x with L(y) = {ψ, 〈i〉ψ, [i]〈i〉ψ} would be blocked
by x; with equality blocking, a block would not be established until an i-successor z of y is
constructed, with L(z) = L(y). This may lead to significant additional work if ψ is itself a large
and/or complex formula.

Apart from blocking, the algorithm is very similar to the Kn case, and most of the optimi-
sation techniques described in Section 4.2 can be applied without modification. Blocking does,
however, mean that additional care is required when caching and re-using the satisfiability of a
set of formulae, because the satisfiability of the set of formulae in the label of a blocked node is
contingent on the satisfiability of the set of formulae in the label of the blocking node [103]. This
dependency also extends to the satisfiability of the sets of formulae in the labels of any nodes on
the path between the blocking node and the blocked node.

Consider, for example, a node x labelled as in 14 above, where ψ is unsatisfiable. As we
have seen, an application of the 3-rule to 〈i〉ψ ∈ L(x), followed by applications of the 2-
rule to [i]〈i〉ψ ∈ L(x), would lead to the creation of an i-successor y of x with L(y) =
{ψ, 〈i〉ψ, [i]〈i〉ψ}, and no expansion rule would be applicable to y as it would be blocked by
x. Updating the cache to indicate that the set of formulae L(y) is satisfiable would, however,
clearly be an error, as ψ is unsatisfiable.

4.4 Non-logical axioms and background theories

Now that we have understood how to handle transitivity in K4n, understanding how to handle
background theories is easy. Consider the satisfiability of a formula φ w.r.t. the background
theory Γ = {γ1, . . . , γn}, and remember that the nodes of our completion tree represent worlds
of the model we are trying to build, which has to be a common model of φ and Γ. Moreover,
ψ ∈ L(x) stands for the fact that ψ is true in the world (represented by) x. As before, at least one
node (the root node) will carry φ in its label. Additionally, we will make sure that all nodes will
carry each γi in their label. As a consequence, we will have a similar problem with termination as
we have seen for K4n, i.e., the maximal modal depth of formulae in node labels does no longer
decrease from a node to its successor. Fortunately, we can use the same blocking technique as for
K4n: a node x is directly blocked if it has an ancestor x′ with L(x) ⊆ L(x′), and it is blocked
if it is directly blocked or if it has an ancestor that is directly blocked. The expansion rules for

40 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Kn w.r.t. background theories are given in Figure 12: they contain the Kn 2−rule, an additional
Γ-rule that adds Γ to each node label, and the K4n restriction to blocked nodes. We call the
resulting algorithm the extended Kn tableau algorithm.

∧-rule: If there is a node x that is not blocked with ψ1 ∧ ψ2 ∈ L(x) and {ψ1, ψ2} 6⊆ L(x),
then L(x) := L(x) ∪ {ψ1, ψ2}.

∨-rule: If there is a node x that is not blocked with ψ1 ∨ ψ2 ∈ L(x) and {ψ1, ψ2} ∩ L(x) = ∅,
then L(x) := L(x) ∪ {ψi} for some i ∈ {1, 2}.

3-rule: If there is a node x that is not blocked with 〈i〉ψ ∈ L(x) and x has no i-successor y
with ψ ∈ L(y),

then create a new i-successor y of x with L(y) := {ψ}.
2-rule: If there is a node x that is not blocked with [i]ψ ∈ L(x) and x has an i-successor y

with ψ 6∈ L(y),
then L(y) := L(y) ∪ {ψ}.

Γ-rule: If there is a node x that is not blocked with Γ 6⊆ L(x),
then L(x) := L(x) ∪ Γ.

Figure 12. The expansion rules for Kn with background theories.

We can state and prove an analogous technical lemma as for Kn and K4n, and then use the
same reasons to conclude the following theorem.

THEOREM 22. The extended Kn tableau algorithm decides satisfiability w.r.t background the-
ories.

However, in contrast, we no longer can implement our tableau algorithm in polynomial space:
firstly, it is known that satisfiability of Kn formulae w.r.t. background theories is ExpTime-
complete (we can adapt the proofs in [68, 162]). Secondly, we can easily construct a formula
and a background theory such that each of their model contains a path of length exponential
in the input formulae: we can use propositional variables p1, . . . , p` as a “binary counter” for
numbers between 0 and 2` − 1, and non-logical axioms to enforce that, if the pi at a world w
represent a number k, then the pi at a world w′ with (w,w′) ∈ Ri represent the number k + 1
mod `. Thirdly, in the worst case, our algorithm indeed constructs completion trees that are of
depth exponential in the length of the input formulae: for K4n, we could argue that the maximal
modal depth decreases from a node to a j-successor of its i-successor (if i 6= j). For Kn with
background theories, this is no longer true. As a consequence of this exponential length and
the non-deterministic ∨-rule, our tableau algorithm runs, in the worst case, in non-deterministic
double exponential time—which is clearly sub-optimal. In [56], an optimal tableau algorithm for
(the description logic) variant of Kn with background theories was presented; however, to the
best of our knowledge, this algorithm has never been implemented, whereas the sub-optimal one
described here has proven to work surprisingly well in practice [159, 90].

Implementation Issues

One obvious consequence of the above algorithm is that expansion of the formulae in Γ oc-
curs in every node in the completion tree, and this can easily lead to an explosion in the size
of the completion tree or in the number of different possible completion trees that can be (non-
deterministically) constructed for a given input formula. For example, if Γ = {〈i〉ψ1, . . . , 〈i〉ψn},
a completion tree containing nn! + 1 nodes will be constructed. Similarly, if γ ∈ Γ, with

Computational Modal Logic 41

γ = ((p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn)), and the input formula leads to the construction of a com-
pletion tree containing k nodes, then there are 2kn different ways to apply the ∧- and ∨-rules
to the resulting k copies of γ. This explosion in the size of the search space can easily lead to
a catastrophic degradation in performance, even when optimisations such as backjumping and
caching are employed [102].

Fortunately, optimisations known as lazy unfolding and absorption have proved to be very
effective in reducing the size of the search space, particularly for background theories derived,
e.g., from class based knowledge representation formalisms.

Lazy Unfolding In background theories, formulae are often (restricted to be) of the form p→ ψ
or p↔ ψ for some propositional variable p. A theory

Γ = {p1 ↔ ψ1, . . . , p` ↔ ψ`, p`+1 → ψ`+1, . . . , p`+m → ψ`+m}

is said to be unfoldable, if it satisfies the following conditions.

• Formulae in Γ are unique. I.e., for each propositional variable p, Γ contains at most one
formula of the form p ↔ ψ (i.e., pi 6= pj for 1 6 i < j 6 `), and if it contains a formula
of the form p↔ ψ, then it does not contain any formulae of the form p→ ψ. (Note that an
arbitrary set of formulae {p → ψ1, . . . , p → ψn} can be combined into a single formula
p→ (ψ1 ∧ . . . ∧ ψn).)

• Γ is acyclic. I.e., there is no formula pi ↔ ψi ∈ Γ such that pi occurs either directly or
indirectly in ψi.3 A propositional variable p occurs indirectly in a formula ψ if there is a
propositional variable formula p′ such that p′ occurs directly in ψ, and there is a formula
p′ ↔ ψ′ ∈ Γ such that p occurs either directly or indirectly in ψ′.

Instead of being dealt with using the Γ-rule, such a set of formulae can be lazily unfolded
during the tableau expansion. I.e., for a formula p1 → ψ1 ∈ Γ, if pi is added to L(x) for some
node x, then ψi is also added to L(x), and for a formula pj ↔ ψj ∈ Γ, if pj (¬pj) is added to
L(x) for some node x, then ψj (resp. ¬ψj) is also added to L(x).

It is obvious that an arbitrary background theory Γ can be divided into an unfoldable part Γu
and a general part Γg such that Γu ∪ Γg = Γ and Γu ∩ Γg = ∅. The unfoldable part Γu can then
be dealt with using lazy unfolding while the general part Γg is dealt with using the Γ-rule.

In fact it has been shown that the definition of an unfoldable theory can be extended somewhat
while still allowing the use of the above lazy unfolding technique. In particular, the formulae
occurring on the left hand side of (bi-) implications can also be negated propositional variables,
and the acyclicity condition can be relaxed by distinguishing positive and negative occurrences
of propositional variables in a stratified theory [109, 132].

Absorption Given the effectiveness of lazy unfolding in dealing with the unfoldable part of a
background theory Γ, it makes sense to try to rewrite the formulae in Γ so that the size of Γg can
be reduced. Absorption is just such a rewriting optimisation.

The idea behind absorption derives from the observation that (apparently non-unfoldable)
formulae in Γg are often of the form p ∧ ρ→ ψ. This formula can be rewritten as p→ (ψ ∨ ¬ρ),
which allows it to be moved from Γg to Γu, provided that Γu does not already contain a formula
of the form p↔ ψ′. In case Γu does contain such a formula, then the technique can be extended
by using the formulae in Γu to perform further rewriting. E.g., if p↔ ψi ∈ Γu and p→ ψj ∈ Γg ,
then the second formula can be rewritten as ψi → ψj and, if ψi is of the form q ∧ ψ′i, the formula

3For the purposes of lazy unfolding, only cycles consisting entirely of ↔ axioms are problematical.

42 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

can be further rewritten as q → ψj ∨ ¬ψ
′
i. A more detailed description of the various re-writings

used in absorption can be found in [109].

4.5 Converse modalities

So far, our tableau algorithms only use expansions rules that are either local to a single node,
create new successors, or push formulae from a node label into the label of a successor. The ob-
jective of this section is to discuss a tableau algorithm for K

`

n , i.e., Kn with converse modalities.
It is well-known that satisfiability in K

`

n can be polynomially reduced to the satisfiability of Kn

w.r.t. background theories [43]. However, from an implementation perspective, this approach is
not feasible since it leads to a dramatic performance degradation, and we thus present a direct
algorithm.

As mentioned in Section 2, K
`

n requires reasoning in both ways over relations Ri. For our
tableau algorithm, this will simply mean that we push formulae up and down in a completion
tree. To realize this, we define the notion of an i-neighbour, which requires a few other concepts:
firstly, to avoid numerous case distinction, we introduce a function Cv(·) on modal parameters
as follows:4 Cv(i) = i` and Cv(i`) = i. Next, we consider completion trees where each edge
is labelled with a possibly converse modal parameter i or i`. Finally, for α a (possibly converse)
modal parameter, we call a node y an α-neighbour of a node x if y is an α-successor of x or if x is
a Cv(α)-successor of y. The expansion rules for K

`

n are identical to those for Kn, with the only
difference being that the 2- and the 3-rules now consider α-neighbours instead of α-successors
(but the 3-rule still generates an α-successor if no appropriate α-neighbour is available); they
can be found in Figure 13.

∧-rule: If there is a node x with ψ1 ∧ ψ2 ∈ L(x) and {ψ1, ψ2} 6⊆ L(x),
then L(x) := L(x) ∪ {ψ1, ψ2}.

∨-rule: If there is a node x with ψ1 ∨ ψ2 ∈ L(x) and {ψ1, ψ2} ∩ L(x) = ∅,
then L(x) := L(x) ∪ {ψi} for some i ∈ {1, 2}.

3-rule: If there is a node x with 〈α〉ψ ∈ L(x) and x has no α-neighbour y with ψ ∈ L(y),
then create a new α-successor y of x with L(y) := {ψ}.

2-rule: If there is a node x with [α]ψ ∈ L(x) and x has an α-neighbour y with ψ 6∈ L(y),
then L(y) := L(y) ∪ {ψ}.

Figure 13. The expansion rules for K
`

n .

We can state and prove an analogous technical lemma as for Kn, and then use similar reasons
to conclude the first part of following theorem.

THEOREM 23. The K
`

n tableau algorithm decides Kn satisfiability and can be implemented
in polynomial space.

To implement the K
`

n tableau algorithm in polynomial space, we can use the following
“restart” technique: for each node x, we first apply the ∧- and the ∨-rule exhaustively.5 Next,
if a formula is added to L(x) by the 2-rule for some [α]ψ in a Cv(α)-successor of x, then we
disregard the whole sub-tree below x and re-start its construction from scratch. As a consequence
of this “strategy”, all branches of a completion tree are independent, and we can still construct a
completion tree depth first.

4Remember that Kn with converse modalities provides modal parameters i and i` for 1 ≤ i ≤ m.
5Please note that we never made any assumptions or restrictions on the order in which the rules are to be applied.

Computational Modal Logic 43

Implementation Issues

Although the restart technique can be used to enable K
`

n completion trees to be constructed
using a depth first strategy, the technique is not used in practice as rebuilding discarded parts of
the completion tree can be very costly (and space usage is rarely a problem in practice). Without
this technique, however, extra care is required when using some of the optimisation techniques
described above.

Without the depth first strategy, the satisfiability of (the formula represented by) the label of
a node x can no longer be treated as an independent problem, because the results of expanding
x might affect its predecessor (unless x is the root node). This means that, although we can re-
use cached unsatisfiability results from the cache as before, we must either disregard satisfiable
results, or use more sophisticated caching techniques (e.g., storing additional information that
would allow us to check for possible interactions with the predecessor node) [103].

Computation of the dependencies used in backjumping is also made more difficult by the
loss of the depth first strategy. In particular we need to consider the dependency set of the 〈i〉
formula in x that led to the generation of an i-successor y in order to compute dep(ψ, y) when
ψ is added to L(y) as a result of a 2-rule application to a formula [i]ψ ∈ L(x). With depth
first expansion, this is usually accomplished by combining 3-rule applications with all relevant
2-rule applications. Without depth first expansion, this is usually achieved by extending the
labelling of either nodes or edges with the dependency set of the 3-formula that caused them to
be added to the completion tree.

Finally, without the depth first strategy it is necessary, in general, to save the state of the whole
completion tree at each ∨-rule application (as mentioned above, the depth first strategy allows
state saving and restoring to be restricted to a single node label). This problem can be ameliorated
by using a lazy state saving strategy, where node labels are only saved when they are about to be
extended by some rule application.

4.6 Converse modalities and background theories

In the last sections, we have seen how to extend the basic Kn tableau algorithm to a decision
procedure for K4n, for Kn with background theories, and for K

`

n . For the first two exten-
sions, we discussed a technique to “artificially” ensure termination while preserving soundness
and completeness. For the third extension, we introduced the concept of neighbours and mod-
ified the expansion rules as to work up and down the completion tree. In this section, we will
put these techniques and concepts together—and show that their combination requires a further
adjustment.

To be more precise, in this section, we discuss a tableau algorithm for K
`

n with background
theories, i.e., converse modal parameters can occur both in the input formula and in the formulae
of the background theory. Next, we discuss the expansion rules, which are given in Figure 14.
Clearly, in the presence of converse modal parameters, we use the notion of α-neighbours. Sim-
ilarly, in the presence of background theories, we use the Γ-rule, and we use blocking to ensure
termination. However, the combination of background theories with converse modal parameters
requires two modifications. Consider an i-successor y of x with [i`]ψ ∈ L(y), and assume that
y is blocked and x is not blocked. Hence there is some node y′ with L(y) ⊆ L(y′). In case the
tableau algorithm stops with an open, complete completion tree, we will try to construct a model
M from this tree, and we will have (x, y′) ∈ Ri. Now L(y) ⊆ L(y′) implies that [i`]ψ ∈ L(y′),
and we thus have to show that M, x |= ψ. However, if we would not apply the 2-rule to y

44 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

because y is blocked, we might not find ψ ∈ L(x), and thus our construction might fail. This
observations leads to the first modification:

1. we call a node indirectly blocked if it is blocked, and if its predecessor is blocked as well.
Then we apply all but the 3-rule to nodes that are not indirectly blocked.

In our example case, y was indirectly blocked, and thus the 2-rule would add ψ into L(x). Next,
consider some [i`]ψ′ ∈ L(y′) \ L(y). The same reasons as for [i`]ψ imply that we should find
ψ′ ∈ L(x)—which we would not since our blocking condition only requires L(y) ⊆ L(y′). This
observation leads to the second modification:

2. a node x is directly blocked if it has an ancestor x′ with L(x′) = L(x).

For obvious reasons, we refer to the former blocking condition as subset blocking, and to this new
condition as equality blocking. Please note that, in this setting, it is unavoidable that blocking
is “dynamic”, that is, a blocked node can later become not blocked. In contrast, with a certain
strategy for the order of rule applications, this can be avoided in the Kn case.

∧-rule: If there is a node x that is not indirectly blocked with ψ1 ∧ ψ2 ∈ L(x)
and {ψ1, ψ2} 6⊆ L(x),

then L(x) := L(x) ∪ {ψ1, ψ2}.
∨-rule: If there is a node x that is not indirectly blocked with ψ1 ∨ ψ2 ∈ L(x)

and {ψ1, ψ2} ∩ L(x) = ∅,
then L(x) := L(x) ∪ {ψi} for some i ∈ {1, 2}.

3-rule: If there is a node x that is not blocked with 〈α〉ψ ∈ L(x) and x has no α-neighbour y
with ψ ∈ L(y),

then create a new α-successor y of x with L(y) := {ψ}.
2-rule: If there is a node x that is not indirectly blocked with [α]ψ ∈ L(x) and

x has an α-neighbour y with ψ 6∈ L(y),
then L(y) := L(y) ∪ {ψ}.

Γ-rule: If there is a node x that is not indirectly blocked with Γ 6⊆ L(x),
then L(x) := L(x) ∪ Γ.

Figure 14. The expansion rules for K
`

n with background theories.

4.7 Other extensions (counting, nominals, transitive closure, and fixpoints)

In this section, we discuss two other extensions of our tableau algorithms. Firstly, we discuss
K

`,o
n , the extension of K

`

n with background theories and nominals. Secondly, we discuss K
c
n,

the extension of Kn with graded modalities, and also how to ensure termination in the additional
presence of background theories. Finally, we discuss modal logics with a transitive closure
operator and fixpoints.

Further add nominals to K
`

n with background theories

K
`,o
n with background theories is of interest because it lacks the tree models property and

because it requires another form of non-local reasoning. The former point was already dis-
cussed in Section 2. To see the latter point, consider the formula 〈i〉(p ∧ 〈`〉o) ∧ 〈j〉o ∧
[j][``]〈i〉(p ∧ 〈`〉o) ∧ 〈j〉(o ∧ [``]q). The first three conjuncts imply the existence of an infinite

Computational Modal Logic 45

(possibly cyclic) Ri-path w1, w2, . . . such that the world in which o is true is `-accessible from
each wk. The fourth conjunct implies that, in all wk, q is true—however, this is only “detected”
when the 3-rule is applied to the fourth conjunct.

To handle, additionally, nominals, we can further modify our extended K
`

n tableau algorithm
as follows. Firstly, we give up completion trees. More precisly, if o1, . . . , o` are all nominals
occurring in φ and Γ, we start our tableau with ` + 1 root nodes xi, where L(x0) = {φ} and
L(xi) = {oi}, for each 1 ≤ i ≤ `. Then, whenever we find a nominal oi in a node x 6= xi,
we merge x into xi; that is, we merge x and xi’s labels and incoming and outgoing edges.
As a consequence of this merging, we will possibly find several edges going into a nominal
node xi; however, removing these edges clearly yields a forest structure. Correctness is then
straightforward, and termination is due to the fact that (a) each path starting at some xj is of
bounded length because of blocking, and (b) if a successor node was created for some 3iψ ∈
L(x), then we will not create it “again”, even if x was merged into another node. For details, see
[5, 106].

Further add graded modalities to Kn

In this section, we will discuss, on a rather abstract level, what modifications are necessary to
handle graded modalities 〈i〉nφ and [i]nφ; for a more detailed description, see [108, 101].

Firstly, following our previous approach, it is quite obvious that, when we find 〈i〉nψ ∈ L(x),
we should make sure that we find n+ 1 i-successors yj of x with ψ ∈ L(yj). Usually, when we
do not find them, we create them all in a single step. Similarly, if we find [i]nψ ∈ L(x), we must
make sure that we do not find more than n i-successors yj of x with ψ ∈ L(yj). Thus, if there
are more such i-successors, we merge two of them, say yj and yk, i.e., we merge yk’s node label
and outgoing edges into yj’s and remove yk, thus reducing the number of such i-successors by
one.

Secondly, in the presence of contradicting graded modalities 〈i〉nψ and [i]n′ψ′ with ψ → ψ′

and n′ ≤ n in the label of a node x, the above naive approach would lead to the repeated
generation and merging of i-successors of x, and thus to non-termination. To prevent this “yoyo”-
effect, when introducing n+1 i-successors for some 〈i〉nψ ∈ L(x), we use an explicit inequality
relation between these i-successors, do not merge “explicitly unequal” nodes, and extend the
notion of a clash to also cover the case where [i]nψ ∈ L(x) but x has more than n “explicitly
unequal” i-successors with ψ in their label.

Thirdly, these modification yield a terminating yet unsound decision procedure: consider, for
example, the formula [i]1p ∧ [i]1¬p ∧ 〈i〉2q. With the modifications made so far, our tableau
algorithm would generate three (explicitly unequal) i-successors yj of a root node x0 with q ∈
L(yj), stop, and return “satisfiable”, which is clearly the wrong answer. The reason for this
incorrect answer is that we only merge surplus i-successors for some [i]nψ if we already know
that they must satisfy ψ, i.e., if ψ is found in their label. However, as the previous example
shows, this is not enough: if [i]nψ ∈ L(x), we must determine, for each i-successor yj , whether
it does or does not satisfy ψ. We can do this using an additional, non-deterministic choose-rule
that adds, to each such i-successor, either ψ or the negation normal form of ¬ψ.

For Kn, these modifications lead to a decision procedure for satisfiability, even in the presence
of either background theories or converse modalities (where we only have to take care to count
and merge i-neighbours correctly). However, for K

`

n with background theories, we need a fur-
ther modification, namely one to the blocking condition: otherwise, the algorithm is not correct
(see, e.g., the example in [105]). Since this logic lacks the finite model property, a construction

46 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

of a model from a completion tree uses standard unravelling where, instead of a path going to a
blocked node, it goes to the node blocking it. Now, in the presence of graded modalities, we must
make sure that this does not lead to additional i-accessible worlds which thus would violate some
graded modal formulae. Roughly speaking, we ensure this using double blocking, i.e., instead of
a node being blocked by an ancestor, a node and its predecessor is blocked by an ancestor and its
respective predecessor. For details, see [105, 108].

Implementation Issues

As we have seen, the tableau algorithm K
`

n requires a more complex blocking condition in order
to ensure that a completion tree can be unravelled into an infinite tableau. This can adversely
affect performance, because blocks can take (much) longer to establish, and the completion tree
can thus grow (much) larger. The problem can be ameliorated by using a more precise (weaker)
blocking condition that identifies the cases where double blocking is really needed (i.e., where
a cyclical model cannot be built from a branch of the completion tree blocked using the original
single blocking condition), and compares only those parts of the node label pairs that are relevant
to determining if the completion tree could be unravelled to give an infinite tableau [107].

Transitive Closure and Fixpoints

There are various extension of modal logics with transitive closure operators and general fix-
points, see Chapter ??. However, there are only few “practicable” satisfiability algorithms in the
sense that one could dare to implement them and expect a reasonable behaviour in any non-trivial
case.6 To the best of our knowledge, there are only two such algorithms based on tableau, namely
the ones described in [11, 45] for extensions of Kn with transitive closure, and there has only
been a single attempt at an implementation, namely in the system DLP [159]. For this kind of
extensions, automata-based techniques (see 5.1) seem to be suited best: for example, the only
known decision procedure for the µ-calculus is based on automata, see ??.

5 OTHER COMPUTATIONAL APPROACHES

5.1 Automata-based algorithms

Roughly speaking, automata-based algorithms work as follows. To decide the satisfiability of a
logic L, we first show an appropriate tree-model property for L, i.e., prove that each satisfiable L
formula is satisfiable in a model (or an abstraction of a model) whose relational structure forms
a tree. For example, it is well-known that each satisfiable Kn formula is satisfiable in a tree
model which is, additionally, finite [93]. For other logics, e.g., K4n, we can easily show that
each satisfiable formula has a model with an infinite tree abstraction, where we can obtain a
model from such an abstraction by transitively closing the accessibility relations [93]. Secondly,
for an L formula φ, we define an automaton Aφ such that Aφ accepts all tree models of φ (or
abstractions thereof). Depending on the logic and its model properties, we use automata on finite
or on infinite trees. Thus we have reduced the satisfiability of formulae in L to the emptiness
problem of a certain class of automata, and we can use well-known algorithms to decide these
emptiness problems.

6For other reasoning problems such as model checking, these algorithms exist and have been implemented success-
fully, see Chapter ??.

Computational Modal Logic 47

For a variety of logics, this approach has several of advantages. Consider, for example, Kn

with background theories. It can easily be seen that this logic enjoys the tree model property,
and thus we only need to devise the construction of an automaton Aφ. Using alternating au-
tomata, this construction is quite straightforward and yields, surprisingly, a (worst-case) optimal
decision procedure (for a similar construction for a more powerful logic see, e.g., [188]): the
automaton Aφ is of size polynomial in the input tree, and testing its emptiness can be done in
deterministic exponential time [128]. Thus, in contrast to the tableau algorithm described in Sec-
tion 4.4, we effortlessly obtain a deterministic algorithm, and do not even need to take care of
termination or finite models: using automata on infinite trees makes this unnecessary.

Concerning the implementability of automata-based approaches, we observe that their worst-
case complexity often coincides with their best-case complexity: to decide the emptiness of
alternating automata, we first translate them into non-deterministic ones that are then tested for
emptiness, i.e., we first build a structure of exponential size, for which we then decide emptiness
in polynomial time [128]. In case we directly use non-deterministic automata, they tend to be
of size exponential in the size of the input formula, and we are thus confronted with the same
problem. Thus, any naive implementation is doomed to failure. However, there are at least two
ways out: in [158], it was shown how BDDs can be used to efficiently represent and handle large
automata, thus proving that (variations of) automata-based algorithms can be implemented effi-
ciently using appropriate data structures. In [12], it was shown how an automata-based approach
can be transformed mechanically into a tableau-based decision procedure: as a consequence, we
only need to “hand-craft” the automata-based algorithm, and then get both a (possibly optimal)
worst-case upper bound and a (possibly practicable) tableau-based algorithm for free.

5.2 Modal resolution

In the late 1980s and early 1990s various direct resolution methods for modal logics have been
investigated [1, 10, 33, 46, 59, 61, 72, 79, 126, 139, 140]. According to [139] a resolution method
for a logic L is determined by specifying (i) a class of formulae called clauses, (ii) a reduction
method which allows us to transform any formula of L into a finite set of clauses, (iii) a calculus
consisting of a set of resolution rules for deriving clauses (and possibly redundancy elimination
and simplification rules), and (iv) a derivation process which starts from an initial set of clauses
and constructs a sequence of derivable clauses. One can then define a modal resolution method to
be a resolution method in which clauses are formulae of the modal logic L under consideration.
This definition excludes methods which do not use a clausal form from the outset, e.g. destructive
modal resolution [72], or methods which use auxiliary labels, e.g. prefixed resolution [6] and
labelled modal resolution [7]. Methods which use additional modal operators like the resolution
calculus for temporal logics of knowledge presented in [54] can be considered to be borderline
cases.

In the following we focus on the modal resolution method of [59] but follow the presentation
in the survey paper [64], where a more complete overview of various direct resolution methods
and other methods can be found.

A modal formula of K is in disjunctive normal form iff it is a (possibly empty) disjunction of
the form

∨

Li ∨
∨

2Dj ∨
∨

3Ak where each Li is a propositional literal, each Dj is a modal
formula in disjunctive normal form, and each Ak is a modal formula in conjunctive normal
form. A modal formula is in conjunctive normal form iff it is a conjunction

∧

Dl where each
Dl is a modal formula in disjunctive normal form. A formula in disjunctive normal form is also
called a (modal) clause. Any modal formula ϕ can be transformed into an equivalent formula in

48 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Axioms
axiom1: p,¬p⇒ ⊥ axiom2: ⊥, A⇒ ⊥

Resolution rules
∨-rule1: A ∨ D,B ∨ D′ ⇒ C ∨ D ∨ D′ if A,B ⇒ C
∨-rule2: A ∨ C ⇒ B ∨ C if A⇒ B
3-rule1: 3(A,B,N) ⇒ 3(A,B,C,N) if A,B ⇒ C
3-rule2: 3(A,N) ⇒ 3(B,A,N) if A⇒ B
K-rule1: 2A,3(B,N) ⇒ 3(B,C,N) if A,B ⇒ C
K-rule2: 2A,2B ⇒ 2C if A,B ⇒ C
2-rule: 2A⇒ 2B if A⇒ B

Simplification rules
∨-simp1: ⊥ ∨ D → D 3-simp: 3⊥ → ⊥
∨-simp2: A ∨ A ∨ D → A ∨ D ∧-simp: ⊥, N → ⊥

Figure 15. Modal resolution rules of [59] for K. (The symbols A, B, C, D, D′ denote clauses,
N denotes a set of clauses, and (A,N) denotes the union of {A} and N . No distinction is made
between a set N of clauses and the conjunction of its elements.)

conjunctive normal form cnf(ϕ). In the following, we do not distinguish between a conjunction
of clauses and a set of clauses.

The calculusCK of [59] is given by the set of axioms, resolution rules, and simplification rules
shown in Figure 15. The intended meaning of A,B ⇒ C and A⇒ C is that the conjunction of
the formulae on the left-hand side of⇒ implies the formula on its right-hand side. In contrast, the
meaning of A,B → C is that occurrences of A and B in a conjunction can be simplified to, that
is, replaced by, C. Analogously, A → C, means that occurrences of A can be replaced by C.
Every formula A has a unique normal form nf(A) under the simplification rules of Figure 15
(modulo commutativity and associativity of ∨ and ∧).

Various extensions of K have been considered, including extensions by the axiom schemas D,
T, and 4. For each of these axiom schemas the calculus CK needs to be extended with additional
rules: for D with 2⊥ ⇒ ⊥, for T with 2A,B ⇒ C if A,B ⇒ C, while for 4 with the two
rules 2A,2B ⇒ 2C if 2A,B ⇒ C and 2A,3(B,N) ⇒ 3(B,C,N) if 2A,B ⇒ C. We
denote the calculi obtained by adding these rules to CK by CKD, CKT, and CK4, respectively.

Let L be one of K, KD, KT, K4. Given sets of clauses N and (C,N) we say (C,N) can be
derived in one step from N in CL iff either there are clauses A and B in N such that A,B ⇒ C ′

in CL or there is a clause A in N such that A⇒ C ′ in CL, and C = nf(C ′) in CL. A derivation
of N ′ from N in CL is a sequence N = N0, N1, . . . , Nn = N ′ such that for every i, 0 ≤ i < n,
Ni+1 can be derived from Ni in one step. A refutation of N in CL is a derivation of ⊥ from N
in CL. If a refutation of N exists, then N is CL-refutable.

In [59] it is shown that a modal formula ϕ is valid in L iff cnf(¬ϕ) is CL-refutable. This
soundness and completeness result is shown in [10] to also hold for a number of refinements of
this modal resolution method and the extension by subsumption deletion.

So far, little work seems to have been conducted on devising specialised and efficient data
structures and algorithms for modal resolution methods. Due to the extra structural information
that modal formulae carry, which is reflected in the more complicated clausal form, the data
structures and algorithms developed for efficient propositional and first-order resolution provers

Computational Modal Logic 49

cannot be utilised easily to implement modal resolution methods.

5.3 Sequent-based approaches

Sequent calculi were introduced by Gentzen [80] as a tool for studying natural deduction. The
central property of sequent calculi is cut elimination which usually yields consistency as an
easy corollary. The first sequent calculi and cut elimination results for modal logics have been
established in the early fifties [39], see [89] for further historic references.

A sequent is a structure of the form Γ ` ∆, where Γ and ∆ are (finite) lists, multisets, or sets of
formulae; ∆ is also quite often restricted to be a singleton set or the empty set. A sequent calculus
for a logic L consists of two parts: (i) a finite set of axioms, (ii) a finite set of rules of the form
S1

S
or S1 S2

S
with conclusion S and premises S1 and S2, where S, S1, and S2 denote sequents.

The rules can usually be divided into two major groups: logical rules, which introduce a new
logical formula either on the left or on the right of the turnstile `, and structural rules, which
operate on the structure of the sequents. Of particular interest, both from a proof-theoretical and
a computational point of view is the cut rule, a rule of the form

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2

where, in general, A is an arbitrary formula, called the cut formula. A sequent calculus proof
of a goal sequent S is a tree whose nodes are labelled with sequents, such that (i) the root of
the tree is labelled with S, (ii) each leaf node is an instance of an axiom of the calculus, and
(iii) each sequent labelling a non-leaf node n follows by one of the rules of the calculus from
the sequents labelling the children of n. This notion of a proof does not prescribe a particular
approach to the construction of the proof of a sequent S. However, it is quite natural to proceed
by backward reasoning, that is, to start with a tree consisting only of the root node labelled with
S and to apply rules from bottom to top, taking the sequent labelling a node of the tree to be
the conclusion of a rule and adding children to the tree labelled with the premises of the rule.
The construction is complete if all the current leaf nodes are labelled with instances of axioms.
In contrast, in forward reasoning one would start with one or more leaf nodes labelled with
instances of axioms and build the tree toward its root node labelled with S. This approach is
basically taken in the inverse method, see Section 5.4. For further details on sequent calculi see
Chapter ?? and Chapter ??.

From a computational point of view, sequent calculi pose several challenges and also provide
insights that can help to improve systems based on tableau calculi or the inverse method.

First, the cut rule is problematic for backward reasoning, since we can choose an arbitrary
formula to be the cut formula. We can try to show that we can restrict ourselves to cut formulae
which are subformulae of formulae in the goal sequent S while retaining completeness of the
calculus. The result would be a calculus with analytic cut. However, from a practical point
of view, while for analytic cuts we can only choose finitely many different cut formulae, the
search space may still be too large. Alternatively, one can try to show that for any sequent S
there exists a proof without any application of the cut rule. In such a case, we can omit the cut
rule from the calculus and obtain a cut-free sequent calculus. While for some modal logics it is
rather straightforward to devise cut-free sequent calculi, for others it is much more challenging,
for example, for S5 [30, 151, 152], and for some it is an open problem, for example, for PDL

and converse PDL [127]. We are also not aware of cut-free systems for modal logics with the
common knowledge operator.

50 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Second, in the presence of the axiom schema 4, systems based on sequent calculi face the
same non-termination problems as systems based on tableau calculi. Recall from Chapter ?? one
of the additional rules required for K4,

2Y1, . . . ,2Ym, Y1, . . . , Ym, A ` 3Z1, . . . ,3Zn, Z1, . . . , Zn
Γ,2Y1, . . . ,2Ym,3A ` 3Z1, . . . ,3Zn,∆

where Γ and ∆ are sequences of formulae not containing a 2-formula and 3-formula, respec-
tively. Here, the premise is not necessarily ‘simpler’ than the conclusion which can lead to
situations in which this rule can be applied infinitely many times when using backward reason-
ing. To ensure termination a form of loop-check has to be used, that is, a check which detects
whenever the ‘same’ sequent occurs twice on a branch of a proof. If in turn we would like to
formulate the rules of our calculus in such a way that the applicability of rules does not depend
on information about the whole branch of a proof or even the whole proof, additional history
information has to accompany each sequent in a proof. What minimal history information for
loop-checks is necessary to ensure termination on a variety of modal logics, including KT and
S4, is investigated in [96, 98]. These results transfer directly to tableau calculi.

Finally, sequent-based systems face the same problems as tableau-based systems when trying
to prove formulae involving disjunctions on the left or conjunctions on the right of the turnstile.
Naturally, similar solutions as presented in Section 4, in particular, simplification and forms of
intelligent backtracking, have also been considered in the context of sequent-based systems, most
notably in the work of [25, 96, 97].

5.4 Inverse method

The inverse method is a variant of the sequent calculus [51, 135] which carries its name because
it works from sub-goals to goals, whereas standard sequent-based approaches work in the other
direction. For example, if it has already been proven that φ is false and ψ is true, then the inverse
method will deduce from this that φ → ψ is true. For this kind of forward reasoning to work,
we need to be able to focus on an acceptably small set of axioms, and an acceptably small set
of goals and sub-goals. For many modal logics, we can restrict our attention to such ‘acceptably
small’ sets of formulae since they enjoy the sub-formula property, i.e. every valid formula φ
has a derivation in which only (negated or unnegated) sub-formulae of φ occur [51]. Calculi
for modal logics using the inverse method have been developed in [139, 140, 190]. The inverse
method has been shown to be suitable for efficient modal logic theorem proving and is amenable
to optimisations [190].

Interestingly, the inverse method is closely related to automata-based approaches [13]. More
precisely, the algorithm that decides emptiness of automata (the problem to which satisfiability
of a variety of modal logics can be reduced, see Section 5.1) can be viewed as being a notational
variant of the inverse method. Both start with propositional axioms (in the automata emptiness
test, these correspond to unreachable states), and saturate these axioms using basically the same
deduction rules. As a consequence, it should be possible to translate a variety of automata-based
decision procedures into the inverse method, thus obtaining an efficient implementation (or a
good starting point for its implementation) basically for free.

Computational Modal Logic 51

6 OTHER REASONING PROBLEMS

In this chapter, we have focused on one specific reasoning problem, satisfiability or, dually,
validity. There are, however, other interesting reasoning problems for modal logics that are
useful for certain applications. We will discuss some of them in this section and we refer the
reader to Section 5 of Chapter ?? for reasoning problems that are motivated by applications of
description logics.

6.1 Model checking

Model checking is the problem of deciding whether M, w |= ϕ for a given Kripke structure M, a
world w, and a modal formula ϕ. It is used for system verification, e.g. to verify a piece of soft-
or hardware, as follows:

• M represents the system: worlds are viewed as states the systems can be in,

• modal parameters represent actions which take the system from one state into another (or
several others),

• w is some initial state, and

• ϕ is a temporal logic formula describing a desired behaviour of the system.

Whereas satisfiability algorithms have to reason w.r.t. all structures (possibly from a given class),
model checking is concerned with a single structure, and thus quite different: model checking is
often less complex than satisfiability, and there are industrial strength implementations of model
checking algorithms capable of handling large systems and formulae from rather expressive log-
ics. We refer the interested reader to Chapter ?? and [34, 35].

6.2 Proof checking

Proof checking is the problem of deciding whether a given derivation P is a proof of a given
formula ϕ, commonly with respect to a fixed calculus C for a logic L. It requires a language
in which we are able to formalise derivations. The formalisation of a derivation may simply be
a sequence or a tree-structure of formulae, but may also contain additional information about
which and how inference rules of the calculus C have been used in each step of the derivation.

The motivation for proof checking is the fact that advanced theorem proving systems are
rarely verified. Thus, like any other piece of software they invariably include errors which can
lead the system to provide incorrect answers, including, providing an incorrect proof P for a
given formula ϕ. Simplifying theorem proving systems to an extend that would allow their
verification in all likelihood results in systems which are too slow to be useful. However, such
system may still be sufficiently powerful to check the correctness of a given derivation P . Thus,
a natural approach is to use a highly optimised but unverified system to find a proof P for a given
formula ϕ which is then independently checked for correctness by a slower, verified system.

Proof checking has received considerable attention in the context of higher-order logic [155,
195] and is taken seriously in the context of first-order logic [136]. However, we are not aware
of any work in this direction in the context of modal logics, although the problem of incorrect
theorem provers also exists in this field. Note that in the context of the translation approach we
can rely on first-order proof checkers augmented with a verified program for translating modal
formulae into first-order clause sets.

52 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

Even more complex is the problem of verifying the non-existence of a proof. For the modal
logics we have considered in this chapter we would also expect decision procedures to correctly
determine in finite time that a given formula ϕ has no proof. A justification for this can be
given by a model or representation of a model M for ¬ϕ, produced by the decision procedure.
A verified model checker could then be used to independently verify that M is indeed a model
of ¬ϕ.

6.3 Computing correspondences

Recall from Chapter ?? the notion of a modal formula ϕ(p1, . . . , pn) over propositional variables
p1, . . . , pn being true in frame F iff for every world w and every valuation mapping V for its
propositional variables we have (F, V), w |= ϕ, and the notion of a modal formula ϕ defining
a class of frames iff ϕ is true in precisely the frames in the class. It straightforward to see that
a modal formula ϕ over p1, . . . , pn is true in a frame F iff the monadic second-order formula
∀Pp1 . . . Ppn

∀xπr(ϕ, x) is true in the class of all models over the frame F. There are methods
for reducing such second-order formulae to equivalent first-order formulae and there are methods
for reducing the second-order logic formulation of modal axioms to the corresponding frame
properties. Computing the first-order equivalents of modal formulae (if they exists) amounts to
the elimination of the universal or existential monadic second-order quantifiers. For example,
if we are interested in establishing the relational frame properties corresponding to a modal
formula ϕ, then we either have to eliminate the universal monadic second-order quantifiers from
∀Pp1 . . . Ppn

∀xπr(ϕ, x), or, equivalently, the existential monadic second-order quantifiers from
∃Pp1 . . . Ppn

∃xπr(¬ϕ, x). There can be no algorithm which is guaranteed to find a first-order
equivalent formula if there exists one. Still, a number of automated algorithms are known which
provide a partial solution to the quantifier elimination problem, namely SCAN [75, 58], DLS [55,
185] and SQEMA [37]. SCAN and DLS are based on a form of resolution while SQEMA can be
viewed as a modalized DLS algorithm. Here we briefly review the SCAN algorithm, but more
details of DLS and other quantifier elimination algorithms can be found in [36, 147].

The SCAN algorithm involves three stages:

(i) transformation to clausal form and (inner) Skolemisation;

(ii) C-resolution;

(iii) reverse Skolemisation (unskolemisation).

The input of SCAN is a second-order formula of the form ∃Q1 . . . ∃Qk ψ, where theQi are unary
predicate variables and ψ is a first-order formula. In the first stage SCAN converts ψ into clausal
normal form by transformation into conjunctive normal form, Skolemisation, and clausifying the
Skolemised formula. In the second stage SCAN performs a special kind of constraint resolution,
called C-resolution, the two main inference rules are given in Figure 16. It generates all and only
resolvents and factors with the second-order variables that are to be eliminated, which in the case
of computing frame correspondence properties includes all existentially quantified second-order
variables. When all C-resolvents and C-factors with respect to a particular Qi-literal and the rest
of the clause set have been generated, purity deletion removes all clauses in which this literal
occurs. The subsumption deletion rule is optional for the sake of soundness, but helps simplify
clause sets in the derivation.

If the C-resolution stage terminates, it yields a set N of clauses in which the specified second-
order variables are eliminated. This set is satisfiability equivalent to the original second-order

Computational Modal Logic 53

formula. If no clauses remain after purity deletion, then the original formula is a tautology; if C-
resolution produces the empty clause, then it is unsatisfiable. If N is non-empty, finite and does
not contain the empty clause, then in the third stage, SCAN attempts to restore the quantifiers
from the Skolem functions by reversing Skolemisation. This is not always possible, for instance
if the input formula is not first-order definable.

If the input formula is not first-order definable and stage two terminates successfully yielding
a non-empty set not containing the empty clause then SCAN produces equivalent second-order
formulae in which the specified second-order variables are eliminated but quantifiers involving
Skolem functions occur and the reverse Skolemisation typically produces Henkin quantifiers. If
SCAN terminates and reverse Skolemisation is successful, then the result is a first-order formula
logically equivalent to the second-order input formula.

SCAN can compute the frame correspondence properties for very many well-known axioms
including T, 4, and 5. Recent work has in fact shown that the SCAN algorithm is complete
for the class of all Sahlqvist formulae, in the sense that, when given a Sahlqvist formula it will
successfully compute an equivalent first-order formula for it [88].

6.4 Model generation

A problem closely related to the satisfiability problem is the problem of generating (counter-)
models. Ideally we want to construct finite models if they exist. It is possible to use both
tableau and resolution methods to prove that logics have the finite model property and also to
give procedures for constructing standard Kripke models.

Although tableau provers do not always output models, it is well-known that tableau proce-
dures implicitly generate models (of some kind) for satisfiable input problems. This is especially
true for semantic tableau procedures which are defined by structural rules and use explicit ac-
cessibility relations. Modal tableau procedures of the kind described in Section 4 which use
propagation rules for handling the additional axioms do construct models but often they are just
skeleton models which need to be completed with respect to the relational correspondence prop-
erties and then give standard Kripke models.

In first-order logic it is well-known that hyperresolution like tableau methods can be employed
both as a reasoning method and a Herbrand model builder [31, 65]. It has been shown that the
methods using Rhyp and the relational translation described in Section 3 require hardly any extra
effort to construct a modal model [49, 121, 180]. It is usually a simple matter to read off a
Kripke model from the saturated set of ground unit clauses which represents a Herbrand model.
In general this set will be infinite in the limit, but when Rhyp is a decision procedure then the set
is finitely bounded and consequently a finite Kripke model can be defined.

In more detail, a Herbrand interpretation is a set of ground atoms. By definition a ground
atom A is true in an interpretation H iff A ∈ H and it is false in H iff A 6∈ H . Now, extend the

C-Resolution:
C ∨ Q(s1, . . . , sn) ¬Q(t1, . . . , tn) ∨ D

C ∨ D ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn
provided the two premises have no variables in common and are distinct clauses

C-Factoring:
C ∨ Q(s1, . . . , sn) ∨ Q(t1, . . . , tn)

C ∨ Q(s1, . . . , sn) ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn

Figure 16. The calculus of SCAN

54 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

definition as expected to the Boolean combination of ground atoms. A clause C is true in H iff
for all ground substitutions σ there is a literal L in Cσ which is true in H . A set N of clauses is
true in H iff all clauses in N are true in H . If a set N of clauses is true in an interpretation H
then H is referred to as a Herbrand model of N . It is proved in [49, 121] that the combination of
the relational translation and Rhyp can be used as a finite Herbrand model generator for the modal
logics Kn, K`

n and the extensions with T, D, B (actually more general results are proved).
In general Herbrand models are not unique and can be large. Therefore it is useful to have a

method for generating minimal Herbrand models. An interpretation H is a minimal Herbrand
model for a set N of clauses iff H is a Herbrand model of N and for no Herbrand model H ′ of
N , H ′ ⊂ H holds. Various approaches to generating minimal Herbrand models with hyperreso-
lution are known [26, 31, 94, 144]. It follows from [31] and investigations of GF

− and the class
BU in [81, 82] that with a moderate extension of Rhyp, denoted here by Rhyp

min
, it is possible to

guarantee the generation of all and only minimal Herbrand models for any modal and description
logic reducible to a decidable class of range restricted clauses. It is necessary to use a depth-first
strategy, a complement splitting rule should be used so that the first model generated is a minimal
Herbrand model, and a model constraint propagation rule is necessary to prevent the generation
of non-minimal Herbrand models (see Figure 17). The procedure Rhyp

min
is generally sound and

complete and is a minimal Herbrand model building procedure for range-restricted clauses [31].
An alternative is to use the generalisation [81, 82] of an approach of [144].

It is not difficult to see that model generation procedures and the mentioned minimal Herbrand
model generation procedures can be developed by using hyperresolution and the other translation
methods. Because of the close connection to tableau, corresponding tableau procedures can be
defined and all results carry over to the tableau setting (see [49, 121]).

6.5 Bisimulation

Chapter ?? has introduced the notion of a bisimulation between two Kripke models. A bisimula-
tion between models M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 is a binary relation E ⊆W ×W ′

such that whenever E(w,w′) the following three properties hold:

Atomic: for all propositional variables p, w ∈ V (p) iff w ∈ V ′(p);

Zig: if Ri(w, v) for some i, then there exists v′ in M′ such that E(v, v′) and R′i(w
′, v′); and

Zag: if R′
i(w

′, v′) for some i, then there exists v in M such that E(v, v′) and Ri(w, v).

Complement splitting:
N ∪ {C ∨D}

N ∪ {C,¬D} | N ∪ {D}
where D is a ground clause.

Model constraint propagation:
N

N ∪ {¬A1 ∨ . . . ∨ ¬An}
where {A1, . . . , An} is the finite Herbrand model of an open branch which is complete
with respect to Rhyp. The model constraint propagation rule extends all branches in the
derivation tree (to the right) which are not complete with respect to Rhyp

min
.

Figure 17. Additional rules for minimal Herbrand model generation

Computational Modal Logic 55

One important property of bisimilar models is that they satisfy the same µ-calculus formulae,
that is, let E(w,w′) hold then a µ-calculus formula ϕ is true at w in M iff ϕ is true at w′ in M′.
The notion of bisimulation not only plays an important rôle in modal logic, as an equivalence
principle between Kripke models, but also in other fields, for example, concurrency theory, set
theory, and formal verification. An algorithm for ‘on the fly’ verification of bisimulations is
presented in [66].

A related problem is that of bisimulation minimisation, that is, the problem of finding the
minimal Kripke model bisimilar to a given Kripke model. In particular, in the context of formal
verification by model checking (see Section 6.1 and Chapter ?? for further details), bisimulation
minimisation provides an easily and automatically computable way to reduce the number of
states of a model while preserving the truth and falsehood of the formulae that hold in it.

Let M = 〈W,R, V 〉 be a Kripke model and E be an equivalence relation on W . Let [w]E
denote the equivalence class of a world w ∈ W with respect to E. The set of all equivalence
classes is a partition of W and M. The bisimulation minimisation of a Kripke model M is the
quotient M/E = 〈W ′, R′, V ′〉 where

W ′ = {[w]E | w ∈W},
R′ = {([w]E , [w

′]E) | w,w′ ∈W ∧R′(w,w′)}, and
V ′(p) = {[w]E | w ∈ V (p)}

for every propositional variable p such that E is the maximal equivalence relation on W which
is also a bisimulation between M and itself. A partition P is stable with respect to E iff for
each pair [w]E , [w′]E of equivalence classes with respect to E either [w]E ⊆ E−1([w′]E) or
[w]E ∩ E−1([w′]E) = ∅.

In the computation of the bisimulation minimisation of a Kripke model we can basically fol-
low two strategies. One is a negative strategy in which we start with the coarsest partition P such
that E(w,w′) iff w ∈ V (p) iff w′ ∈ V (p) for every positional variable p and split classes when-
ever P is not stable. Another is a positive strategy in which we start with the finest partition P
in which each equivalence class consists of a single world and the bisimulation minimisation
is constructed via a sequence of steps in which we merge two or more classes. An algorithm
following the negative strategy is presented in [156] which has the optimal worst-case running
time, namely O(|R|log|W |). An implementation of this algorithm is presented in [67]. Other
algorithms following a negative strategy are presented in [28, 130]. They take advantage of the
fact that in a number of applications we are only interested in the part of a Kripke model reach-
able from a designated start world. In this case, equivalence classes associated with unreachable
worlds need not be taken into account when considering the stability of an equivalence class
associated with a reachable world. An algorithm following the positive strategy is presented
in [157]. Recently, [57] has introduced an algorithm combines both the positive and negative
strategy by using the algorithms of [156] and [157] as subroutines. For a range of special cases
this algorithm terminates in time O(|R|+ |W |).

Finally, [71] presents on-the-fly model checkers for invariant properties incorporating the
bisimulation minimisation algorithms of [28, 130, 156]. From an empirical comparison they
draw the conclusion that in this context an optimised version of the algorithm of [156] performs
better than the other two.

56 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

6.6 Modal logic programming

The problem of extending logic programming languages with modal operators has received a
lot of attention in the late 1980s and early 1990s, at about the same time most of the direct
resolution methods mentioned in Section 5.2 were developed and also work on the translation
methods described in Section 3 intensified. Consequently, work in this area can again be divided
between direct approaches and translation approaches.

Following the direct approach, [21, 20] presents a declarative semantics and an SLD resolution
calculus for a class of modal logic programs in modal logics KD, KT, and S4, while [22, 23]
present a framework for developing the fixpoint and operational semantics of a class of multi-
modal logic programs where additional properties of modal operators can be described by axiom
schemas of the form [i1][i2] · · · [im]p → [j1][j2] · · · [jn]p, so-called inclusion axioms. More
recent work includes [142] presenting a fixpoint semantics, least model semantics, and an SLD
resolution calculus for modal logic programs in modal logics extending K with a non-empty
selection of the axiom schemas B, D, T, 4 and 5. Also, modal logic programs in [142] are as
expressive as the general modal Horn fragment which allows arbitrary occurrences of the modal
operators 2 and 3 in programs clauses and goals.

Following the translation approach, [50] applies the functional translation to multi-modal logic
programs in the modal logics KD, KT, KD4, KT4, KF (F is the functionality axiom), and
simple inclusion axioms of the form [i]p → [j]p. In these logics, the functional translation of
goals and program clauses in the general modal Horn fragment are in the first-order Horn frag-
ment. For computations SLD resolution extended by theory unification is used. In [146] presents
an application of the semi-functional translation [145, 148] to modal logic programs in modal
logics KB and KDB, as well as KD, KT, and their extension by one or both of the axiom
schemas 4 and 5. The semi-functional translation combines features of the relational and func-
tional translation. For modal formulae in negation normal form, subformulae of the form 2ϕ are
translated using the relational translation, while subformulae of the form 3ϕ are translated us-
ing the functional translation. A functional simulator axiom needs to be added to the translation
to link the relational and functional aspects of the translation. The semi-functional translation
has the advantage over the functional translation that the frame properties of many modal log-
ics, including the ones listed above, can be specified by simple first-order Horn theories without
equality. Consequently, the use of theory unification and theory resolution can be avoided. Fur-
thermore, if the semi-functional translation is applied to goals and program clauses in the general
modal Horn fragment, then the resulting first-order clauses are themselves Horn. Together with
the fact that the frame properties are expressed by Horn clauses, this implies that unmodified
SLD resolution can be used to execute the translated modal logic programs.

The functional and semi-functional translation have been incorporated into MSPASS [120,
174]. Implementations of systems based on the direct approach include MOLOG [62, 63], MPro-
log [141, 143], and TIM [21]. However, just as for the direct resolution approaches described
in Section 5.2, little work seems to have been conducted on developing specialised and efficient
data structures and algorithms for such systems, with the exception of [2] which describes an
abstract machine model for MOLOG, in analogue to the Warren Abstract Machine model for
Prolog [191].

There has also been considerable work on temporal logic programming. For surveys on this
work which also cover some of the approaches to modal logic programming mentioned above
see [154, 70, 84].

There is currently renewed interest in modal and temporal logic programming in the context
of multi-agent system development [24, 53, 69] and related areas.

Computational Modal Logic 57

7 REVIEW AND DISCUSSION

In this chapter we have examined computational approaches to modal logics. Although we have
considered a variety of computational approaches and reasoning problems, we have focused
on the use of translation-based and tableau-based algorithms for deciding the satisfiability of a
formula, both with and without reference to a background theory. This focus was motivated by
the dominance of translation-based and tableau-based approaches in implemented systems, and
by the importance of satisfiability testing in applications such as the verification of multi-agent
systems and ontology engineering.

The reason for the dominance of these two approaches is that they have proved amenable to
implementation and optimisation techniques that dramatically improve typical case performance;
the use of such techniques is crucial if reasoning systems are to be effective in applications. The
applicability and effectiveness of optimisation techniques and refinements is, however, highly de-
pendent on the logic under consideration and on the class of problem being solved. For example,
in the context of tableau-based algorithms, caching must be used with care in the presence of con-
verse modalities, and semantic branching search, while highly effective for randomly generated
problems, may be ineffective (and perhaps even counter productive) for problems derived from
ontology engineering applications. Similarly, in the context of translation-based algorithms, hy-
perresolution may be the most suitable approach for randomly generated problems in the modal
logic Kn, while ordered resolution is more effective for problems derived from ontology engi-
neering applications.

Regarding the two approaches, both have advantages and disadvantages. Tableau-based meth-
ods generally require full implementation, but this allows the implementor to choose and fine-
tune the optimisations, data structures, and algorithms for effective operation in the intended
application. In contrast, no major implementation effort is needed for translation-based meth-
ods, but a careful choice of translation, refinement of resolution, and operational parameters is
required to guarantee termination and effectiveness of the first-order logic prover on the class
of problems being solved. The choice of approach may ultimately depend on the logic in ques-
tion: tableau-based methods seem to have some advantages in the presence of graded modalities
(counting), for example, whereas translation-based methods can handle and may be better for
boolean modal logics (role negation). Currently, tableau-based approaches are the most widely
used in ontology applications, with description logic systems such as FaCT++, Racer and Pellet
[159, 90, 160]. In contrast, translation-based methods have a number of other uses, for example,
computing correspondence properties and modal logic programming.

The use of implemented systems in realistic applications brings with it new challenges, both
with respect to the expressive power of the logics being used, and the size and complexity of
the problems to be solved. The W3C standard ontology language OWL, for example, corre-
sponds to a logic with transitive, converse and graded modalities, as well as nominals, and
ontology applications may call for reasoning with respect to very large background theories.
For the logic corresponding to OWL, a tableau-based algorithm has only recently been intro-
duced [110], a translation-based algorithm using the basic superposition calculus is still under
development [112], and the development of computational and optimisation techniques is the
subject of considerable ongoing research. Similarly, as mentioned in the introduction, agent
frameworks consist of complex multi-modal logics, typically including a dynamic component,
allowing the representation of dynamic activity via a temporal or a dynamic logic. Ongoing re-
search is focusing on developing advanced computational methods and optimisation techniques
for such frameworks.

58 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

BIBLIOGRAPHY

[1] M. Abadi and Z. Manna. Modal theorem proving. In J. H. Siekmann, editor, Proceedings of the 8th International
Conference on Automated Deduction (CADE-8), volume 230 of Lecture Notes in Computer Science, pages 172–189.
Springer, 1986.

[2] J.-M. Alliot, A. Herzig, and M. Lima Marques. Implementing Prolog extensions: a parallel inference machine. In
Proceedings of the International Conference on Fifth Generation Computer Systems ’92, pages 833–842. IOS Press,
1992.

[3] H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of predicate logic. Journal of
Philosophical Logic, 27(3):217–274, 1998.

[4] C. Areces. Logic Engineering. The Case of Description and Hybrid Logics. PhD thesis, ILLC, University of Ams-
terdam, 2000.

[5] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid logics. In Annual Conference of the
European Association for Computer Science Logic (CSL’99), volume 1683 of Lecture Notes in Computer Science,
pages 307–321. Springer, 1999.

[6] C. Areces, H. De Nivelle, and M. de Rijke. Prefixed resolution: A resolution method for modal and description
logics. In H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated Deduction (CADE-
16), volume 1632 of Lecture Notes in Artificial Intelligence, pages 187–201. Springer, 1999.

[7] C. Areces, M. de Rijke, and H. De Nivelle. Resolution in modal, description and hybrid logic. Journal of Logic and
Computation, 11(5):717–736, 2001.

[8] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. A simple ordering for deciding modal logic. Forthcoming.
[9] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-based heuristic in modal theorem proving. In W. Horn,

editor, Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), pages 199–203. IOS
Press, 2000.

[10] Y. Auffray, P. Enjalbert, and J.-J. Hebrard. Strategies for modal resolution: Results and problems. Journal of
Automated Reasoning, 6:1–38, 1990.

[11] F. Baader. Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles.
Technical Report RR-90-13, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Ger-
many, 1990. An abridged version appeared in Proceedings of IJCAI-91, pp. 446–451.

[12] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for description logics. Fundamenta Infor-
maticae, 57(2-4):247–279, 2003.

[13] F. Baader and S. Tobies. The inverse method implements the automata approach for modal satisfiability. In Proceed-
ings of the International Joint Conference on Automated Reasoning (IJCAR-01), volume 2083 of Lecture Notes in
Artificial Intelligence, pages 92–106. Springer, 2001.

[14] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and simplification. Journal
of Logic and Computation, 4(3):217–247, 1994.

[15] L. Bachmair and H. Ganzinger. Ordered chaining calculi for first-order theories of transitive relations. Journal of the
ACM, 45(6):1007–1049, 1998.

[16] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 2, pages 19–99. Elsevier, 2001.

[17] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation. Information and Computation,
121(2):172–192, 1995.

[18] L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification as a decision procedure for the
monadic class with equality. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Proceedings of the Third Kurt Gödel
Colloquium (KGC’93), volume 713 of Lecture Notes in Computer Science, pages 83–96. Springer, 1993.

[19] A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experimental and Theoretical Results.
PhD thesis, University of Oregon, 1995.

[20] P. Balbiani, L. Farinas del Cerro, and A. Herzig. Declarative semantics for modal logic programs. In Proceedings of
the 1988 International Conference on Fifth Generation Computer Systems, pages 507–514. ICOT, 1988.

[21] P. Balbiani, A. Herzig, and M. Lima Marques. TIM: The Toulouse Inference Machine for non-classical logic pro-
gramming. In H. Boley and M. M. Richter, editors, Proceedings of the International Workshop on Processing Declar-
ative Knowledge (PDK’91), volume 567 of Lecture Notes in Computer Science, pages 366–382. Springer, 1991.

[22] M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis,
Dipartimento di Informatica, Universit degli Studi di Torino, Torino, Italy, April 1998.

[23] M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic programming. In M. J. Maher, editor, Joint
International Conference and Symposium on Logic Programming, pages 52–66. MIT Press, 1996.

[24] M. Baldoni, A. Martelli, V. Patti, and L. Giordano. Programming rational agents in a modal action logic. Annals of
Mathematics and Artificial Intelligence, 41(2-4):207–257, 2004.

[25] P. Balsiger, A. Heuerding, and S. Schwendimann. Logics Workbench 1.0. In H. de Swart, editor, Automated reasoning
with analytic tableaux and related methods: international conference (TABLEAUX ’98), volume 1397 of Lecture
Notes in Artificial Intelligence, pages 35–35. Springer, 1998.

Computational Modal Logic 59

[26] P. Baumgartner, J. D. Horton, and B. Spencer. Merge path improvements for minimal model hyper tableaux. In N. V.
Murray, editor, Proceedings of the 8th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX’99), volume 1617 of Lecture Notes in Artificial Intelligence, pages 51–65. Springer,
1999.

[27] P. Baumgartner and R. A. Schmidt. Improved bottom-up model generation. Submitted for publication, 2006.
[28] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation. In E. M. Clarke and R. P. Kurshan,

editors, Proceedings of the 2nd International Workshop on Computer Aided Verification (CAV ’90), volume 531 of
Lecture Notes in Computer Science, pages 197–203. Springer, 1991.

[29] T. Boy de la Tour. An optimality result for clause form translation. Journal of Symbolic Computation, 14:283–301,
1992.

[30] T. Braüner. A cut-free Gentzen formulation of the modal logic S5. Logic Journal of the IGPL, 8(5):629–643, 2000.
[31] F. Bry and A. Yahya. Positive unit hyperresolution tableaux for minimal model generation. Journal of Automated

Reasoning, 25(1):35–82, 2000.
[32] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo Rosati. Description logic

framework for information integration. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Proceedings of
the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13.
Morgan Kaufmann, 1998.

[33] M. Cialdea. Resolution for some first order modal systems. Theoretical Computer Science, 85:213–229, 1991.
[34] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[35] E. M. Clarke and B.-H. Schlingloff. Model checking. In A. Robinson and A. Voronkov, editors, Handbook of

Automated Reasoning, volume II, chapter 24, pages 1635–1790. Elsevier, 2001.
[36] W. Conradie, V. Goranko, and D. Vakarelov. Elementary canonical formulae: a survey on syntactic, algorithmic, and

model-theoretic aspects. In R. A. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in
Modal Logic, Volume 5, pages 17–51. King’s College Publications, London, 2005.

[37] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and completeness in modal logic. i. the
core algorithm SQEMA. Logical Methods in Computer Science, 2(1:5):1–26, 2006.

[38] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic,
44(1):36–50, 1979.

[39] H. B. Curry. The elimination theorem when modality is present. Journal of Symbolic Logic, 17:249–265, 1952.
[40] M. D’Agostino. Are tableaux an improvement on truth-tables? Journal of Logic, Language, and Information,

1:235–252, 1992.
[41] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM,

5:394–397, 1962.
[42] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7:201–215, 1960.
[43] G. De Giacomo. Eliminating ‘converse’ from converse PDL. Journal of Logic, Language and Information, 5(2):193–

208, 1996.
[44] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics and propositional dy-

namic logics (extended abstract). In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
pages 205–212. AAAI Press, 1994.

[45] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and algorithms for
converse-pdl. Information and Computation, 160(1–2):117–137, 2000.

[46] H. De Nivelle. Ordering refinements of resolution. PhD thesis, Technische Universiteit Delft, The Netherlands, 1996.
[47] H. De Nivelle. Splitting through new proposition symbols. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings

of the 8th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001),
volume 2250 of Lecture Notes in Artificial Intelligence, pages 172–185. Springer, 2001.

[48] H. De Nivelle and M. de Rijke. Deciding the guarded fragment by resolution. Journal of Symbolic Computation,
35(1):21–58, 2003.

[49] H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic Journal of the
IGPL, 8(3):265–292, 2000.

[50] F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using equational and order-sorted logic.
Theoretical Computer Science, 105(1):141–166, 1992.

[51] A. Degtyarev and A. Voronkov. The inverse method. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, number I, chapter 21, pages 179–272. Elsevier Science, 2001.

[52] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 9, pages 533–607. Elsevier, 2001.

[53] J. Dix, S. Kraus, and V. S. Subrahmanian. Temporal Agent Reasoning. Artificial Intelligence, 127(1):87–135, 2001.
[54] C. Dixon, M. Fisher, and M. Wooldridge. Resolution for temporal logics of knowledge. Journal of Logic and

Computaton, 8(3):345–372, 1998.
[55] P. Doherty, W. Lukaszewics, and A. Szalas. Computing circumscription revisited: A reduction algorithm. Journal of

Automated Reasoning, 18(3):297–336, 1997.
[56] F. M. Donini and F. Massacci. Exptime tableaux for ALC. Artificial Intelligence, 124(1):87–138, 2000.
[57] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing bisimulation equivalence. Theoretical

Computer Science, 311(1-3):221–256, 2004.

60 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

[58] T. Engel. Quantifier elimination in second-order predicate logic. Diplomarbeit, Fachbereich Informatik, Universität
des Saarlandes, Saarbrücken, 1996.

[59] P. Enjalbert and L. Fariñas del Cerro. Modal resolution in clausal form. Theoretical Computer Science, 65(1):1–33,
1989.

[60] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press, 1996.
[61] L. Fariñas del Cerro. A simple deduction method for modal logic. Information Processing Letters, 14(2):49–51,

April 1982.
[62] L. Fariñas del Cerro. MOLOG: A system that extends PROLOG with modal logic. New Generation Computing,

4:35–50, 1986.
[63] L. Fariñas del Cerro and A. Herzig. MOLOG. http://www.irit.fr/ACTIVITES/EQ ALG/Herzig/

molog.html.
[64] L. Fariñas del Cerro and A. Herzig. Modal deduction with applications in epistemic and temporal logics. In D. M.

Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Program-
ming: Epistemic and Temporal Reasoning, volume 4, pages 499–594. Clarendon Press, Oxford, 1995.

[65] C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision procedures. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 25, pages 1791–1849. Elsevier, 2001.

[66] J. Fernandez and L. Mounier. Verification bisimulations ‘on the fly’. In J. Quemada, J. A. Mañas, and E. Vázquez,
editors, In Proceedings of the Third International Conference on Formal Description Techniques (FORTE’90), pages
95–110. North-Holland, 1990.

[67] J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science of Computer
Programming, 13(2–3):219–236, 1990.

[68] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and System
Science, 18:194–211, 1979.

[69] M. Fisher, C. Ghidini, and B. Hirsch. Organising logic-based agents. In M. G. Hinchey, J. L. Rash, W.t Truszkowski,
C. Rouff, and D. F. Gordon-Spears, editors, Revised Papers of the Second International Workshop on Formal Ap-
proaches to Agent-Based Systems (FAABS 2002), volume 2699 of Lecture Notes in Computer Science, pages 15–27.
Springer, 2003.

[70] M. Fisher and R. Owens. An introduction to executable modal and temporal logics. In Proceedings of the IJCAI’93
Workshop on Executable Modal and Temporal Logics, volume 897 of Lecture Notes in Artificial Intelligence, pages
1–20. Springer, 1995.

[71] K. Fisler and M. Y. Vardi. Bisimulation and model checking. In L. Pierre and T. Kropf, editors, Proceedings of the
10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods
(CHARME ’99), volume 1703 of Lecture Notes in Computer Science, pages 338–341. Springer, 1999.

[72] M. Fitting. Destructive modal resolution. Journal of Logic and Computation, 1(1):83–97, 1990.
[73] E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling. In Working Notes of the ECAI2000

Workshop on Knowledge Representation Meets Databases (KRDB2000), pages 45–53. CEUR, 2000.
[74] J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis, Department of Computer

and Information Science, University of Pennsylvania, 1995.
[75] D. M. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate logic. South African Computer

Journal, 7:35–43, 1992. Also published in B. Nebel, C. Rich, W. R. Swartout, editors, Proceedings of the Third Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR ’92), pages 425–436. Morgan
Kaufmann, 1992.

[76] H. Ganzinger and H. De Nivelle. A superposition decision procedure for the guarded fragment with equality. In
Proceedings of the Fourteenth Annual IEEE Symposium on Logic in Computer Science (LICS’99), pages 295–303.
IEEE Computer Society Press, 1999.

[77] H. Ganzinger, U. Hustadt, C. Meyer, and R. A. Schmidt. A resolution-based decision procedure for extensions of
K4. In M. Zakharyaschev, K. Segerberg, M. de Rijke, and H. Wansing, editors, Advances in Modal Logic, Volume 2,
volume 119 of Lecture Notes, chapter 9, pages 225–246. CSLI Publications, Stanford, 2001.

[78] J. Gaschnig. Performance measurement and analysis of certain search algorithms. Technical report CMU-CS-79-124,
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA, 1979.

[79] C. Geissler and K. Konolige. A resolution method for quantified modal logics of knowledge and belief. In J. Y.
Halpern, editor, Proceedings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge, pages
309–324. Morgan Kaufmann, 1986.

[80] G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431, 1935.
English translation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland,
1969.

[81] L. Georgieva, U. Hustadt, and R. A. Schmidt. Computational space efficiency and minimal model generation for
guarded formulae. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of the 8th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001), volume 2250 of Lecture Notes in
Artificial Intelligence, pages 85–99. Springer, 2001.

Computational Modal Logic 61

[82] L. Georgieva, U. Hustadt, and R. A. Schmidt. A new clausal class decidable by hyperresolution. In A. Voronkov, ed-
itor, Proceedings of the 18th International Conference on Automated Deduction (CADE-18), volume 2392 of Lecture
Notes in Artificial Intelligence, pages 260–274. Springer, 2002. The long version is Preprint CSPP-18, University of
Manchester, UK.

[83] L. Georgieva, U. Hustadt, and R. A. Schmidt. Hyperresolution for guarded formulae. Journal of Symbolic Computa-
tion, 36(1–2):163–192, 2003.

[84] M. Gergatsoulis. Temporal and modal logic programming languages. In A. Kent and J. G. Williams, editors, Ency-
clopedia of Microcomputers, chapter Volume 27, Supplement 6, pages 393–408. Marcel Dekker, 2001.

[85] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. Sat vs. translation based decision procedures for
modal logics: A comparative evaluation. Journal of Applied Non-Classical Logics, 10(2):145–172, 2000.

[86] E. Giunchiglia and A. Tacchella. A subset-matching size-bounded cache for satisfiability in modal logics. In
R. Dyckhoff, editor, Proceedings of the 4th International Conference on Analytic Tableaux and Related Methods
(TABLEAUX 2000), number 1847 in Lecture Notes in Artificial Intelligence, pages 237–251. Springer, 2000.

[87] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propositional decision proce-
dures - the case study of modal K. In M. McRobbie and J. K. Slaney, editors, Proceedings of the 13th Conference
on Automated Deduction (CADE-13), volume 1104 of Lecture Notes in Artificial Intelligence, pages 583–597, New
Brunswick, NJ, USA, 1996. Springer.

[88] V. Goranko, U. Hustadt, R. Schmidt, and D. Vakarelov. SCAN is complete for all Sahlqvist formulae. In R. Bergham-
mer, B. Möller, and G. Struth, editors, Revised Selected Papers of the 7th International Seminar on Relational Meth-
ods in Computer Science and the 2nd International Workshop on Kleene Algebra, volume 3051 of Lecture Notes in
Computer Science, pages 149–162. Springer, 2004.

[89] R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga,
editors, Handbook of Tableau Methods, pages 297–396. Kluwer, 1999.

[90] V. Haarslev and R. Möller. Consistency testing: The RACE experience. In R. Dyckhoff, editor, Proceedings of the
Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2000), volume 1847
of Lecture Notes in Artificial Intelligence, pages 1–18. Springer, 2000.

[91] Volker Haarslev and Ralf Möller. High performance reasoning with very large knowledge bases: A practical case
study. In Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 161–
168. Morgan Kaufmann, 2001.

[92] R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, chapter 3, pages 101–178. Elsevier Science Publishers (North-Holland), Amsterdam, 2001.

[93] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logic of knowledge and belief.
Artificial Intelligence, 54:319–379, 1992.

[94] R. Hasegawa, H. Fujita, and M. Koshimura. Efficient minimal model generation using branching lemmas. In
D. McAllester, editor, Proceedings of the 17th International Conference on Automated Deduction (CADE-17), vol-
ume 1831 of Lecture Notes in Artificial Intelligence, pages 184–199. Springer, 2000.

[95] A. Herzig. A new decidable fragment of first order logic, June 1990. In Abstracts of the 3rd Logical Biennial,
Summer School & Conference in honour of S. C. Kleene, Varna, Bulgaria.

[96] A. Heuerding. Sequent Calculi for Proof Search in Some Modal Logics. PhD thesis, Universität Bern, Switzerland,
1996.

[97] A. Heuerding, G. Jäger, S. Schwendimann, and M. Seyfried. The Logics Workbench LWB: A snapshot. Euromath
Bulletin, 2(1):177–186, 1996.

[98] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward proof search in some non-
classical propositional logics. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the
5th International Conference on Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX ’96),
volume 1071 of Lecture Notes in Artificial Intelligence, pages 210–225. Springer, 1996.

[99] J. Hladik. Implementation and optimisation of a tableau algorithm for the guarded fragment. In U. Egly and
C. G. Fermüller, editors, Proceedings of the International Conference on Analytic Tableaux and Related Methods
(TABLEAUX 2002), volume 2381 of Lecture Notes in Artificial Intelligence, pages 145–159. Springer, 2002.

[100] Jörg Hoffmann and Jana Koehler. A new method to index and query sets. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-99), pages 462–467. Morgan Kaufmann, 1999.

[101] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In Proceedings of the 2nd Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning (KR-91), pages 335–346. Morgan
Kaufmann, 1991.

[102] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester,
1997.

[103] I. Horrocks. Implementation and optimisation techniques. In Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors, The Description Logic Handbook: Theory, Implementation, and
Applications, pages 306–346. Cambridge University Press, 2003.

[104] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption. Journal of Logic and Computation,
9(3):267–293, 1999.

[105] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies. Journal of Logic
and Computation, 9(3), 1999.

62 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

[106] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In B. Nebel, editor, Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages 199–204. Morgan Kaufmann,
2001.

[107] I. Horrocks and U. Sattler. Optimised reasoning for SHIQ. In F. van Harmelen, editor, Proceedings of the 15th
European Conference on Artificial Intelligence (ECAI 2002), pages 277–281. IOS Press, July 2002.

[108] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceedings of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR’99), volume 1705 of Lecture Notes in Artificial Intelligence, pages 161–180. Springer, 1999.

[109] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In A. G. Cohn, F. Giunchiglia, and
B. Selman, editors, Proceedings of the 7th International Conference on the Principles of Knowledge Representation
and Reasoning (KR-00), pages 285–296. Morgan Kaufmann, 2000.

[110] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005), pages 448–453, 2005.

[111] U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Univ. d. Saar-
landes, Saarbrücken, Germany, 1999.

[112] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− description logic to disjunctive datalog programs. In
D. Dubois, C. Welty, and M.-A. Williams, editors, Proceedings of the 9th International Conference on Knowledge
Representation and Reasoning (KR2004), pages 152–162. AAAI Press, 2004.

[113] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision procedures by resolution-based calculi. In
F. Baader and A. Voronkov, editors, Proceedings of the 11th International Conference on Logic for Programming,
Artificial Intelligence (LPAR 2004), volume 3452 of Lecture Notes in Artificial Intelligence, pages 21–35. Springer,
2005.

[114] U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic. In M. E. Pollack, editor, Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI-97), pages 202–207. Morgan Kaufmann,
1997.

[115] U. Hustadt and R. A. Schmidt. Simplification and backjumping in modal tableau. In H. de Swart, editor, Pro-
ceedings of the 7h International Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’98), volume 1397 of Lecture Notes in Artificial Intelligence, pages 187–201. Springer, 1998.

[116] U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. Journal of Applied Non-Classical
Logics, 9(4):479–522, 1999.

[117] U. Hustadt and R. A. Schmidt. Maslov’s class K revisited. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence,
pages 172–186. Springer, 1999.

[118] U. Hustadt and R. A. Schmidt. On the relation of resolution and tableaux proof systems for description logics. In
T. Dean, editor, Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), pages
110–115. Morgan Kaufmann, 1999.

[119] U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the framework of resolution. In
R. Caferra and G. Salzer, editors, Automated Deduction in Classical and Non-Classical Logics, volume 1761 of
Lecture Notes in Artificial Intelligence, pages 191–205. Springer, 2000.

[120] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-order resolution. In R. Dyckhoff,
editor, Proceedings of the 9th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages 67–71. Springer, 2000.

[121] U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability and building models. Journal of
Automated Reasoning, 28(2):205–232, 2002.

[122] U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order fragments and description logics.
Journal of Relational Methods in Computer Science, 1:251–276, 2004.

[123] W. H. Joyner Jr. Resolution strategies as decision procedures. Journal of the ACM, 23(3):398–417, 1976.
[124] Y. Kazakov and H. De Nivelle. A resolution decision procedure for the guarded fragment with transitive guards. In

D. A. Basin and M. Rusinowitch, editors, Proceedings of the Second International Joint Conference on Automated
Reasoning (IJCAR 2004), volume 3097 of Lecture Notes in Computer Science, pages 122–136. Springer, 2004.

[125] Holger Knublauch, Ray Fergerson, Natalya Noy, and Mark Musen. The protégé OWL plugin: An open development
environment for semantic web applications. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen,
editors, Proceedings of the 2004 International Semantic Web Conference (ISWC 2004), number 3298 in Lecture
Notes in Computer Science, pages 229–243. Springer, 2004.

[126] K. Konolige. Resolution and quantified epistemic logics. In J. H. Siekmann, editor, Proceedings of the 8th Inter-
national Conference on Automated Deduction (CADE-8), volume 230 of Lecture Notes in Computer Science, pages
199–208. Springer, 1986.

[127] M. Kracht. Tools and Techniques in Modal Logic, volume 142 of Studies in Logic and the Foundations of Mathemat-
ics. Elsevier, 1999.

[128] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness. In Proceedings of the 30th
ACM SIGACT Symposium on Theory of Computing (STOC-98), pages 224–233. ACM Press, 1998.

[129] R. E. Ladner. The computational complexity of provability in systems of modal propositional logic. SIAM Journal
of Computing, 6(3):467–480, 1977.

Computational Modal Logic 63

[130] D. Lee and M. Yannakakis. Online minimization of transition systems (extended abstract). In Proceedings of the
24th Annual ACM symposium on Theory of Computing, pages 264–274. ACM Press, 1992.

[131] Thorsten Liebig and Olaf Noppens. Ontotrack: Combining browsing and editing with reasoning and explaining for
OWL Lite ontologies. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, Proceedings of
the 2004 International Semantic Web Conference (ISWC 2004), number 3298 in Lecture Notes in Computer Science,
pages 244–258. Springer, 2004.

[132] C. Lutz. Complexity of terminological reasoning revisited. In H. Ganzinger, D. A. McAllester, and A. Voronkov,
editors, Proceedings of the 6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), volume
1705 of Lecture Notes in Artificial Intelligence, pages 181–200. Springer, 1999.

[133] C. Lutz. NExpTime-complete description logics with concrete domains. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Proceedings of the International Joint Conference on Automated Reasoning (IJCAR-01), number 2083 in
Lecture Notes in Artificial Intelligence, pages 45–60. Springer, 2001.

[134] C. Lutz, U. Sattler, and S. Tobies. A suggestion of an n-ary description logic. In P. Lambrix, A. Borgida, M. Lenzerini,
R. Möller, and P. Patel-Schneider, editors, Proceedings of the 1999 International Workshop on Description Logics
(DL’99), pages 81–85. Linköping University, 1999.

[135] S. Ju. Maslov. The inverse method for establishing deducibility for logical calculi. In V. P. Orevkov, editor, The Calculi
of Symbolic Logic I: Proc. of the Steklov Institute of Mathematics edited by I. G. Petrovskiı̌ and S. M. Nikol’skiı̌, Nr.
98 (1968), pages 25–96. Amer. Math. Soc., Providence, Rhode Island, 1971.

[136] W. McCune and O. Shumsky. Ivy: A preprocessor and proof checker for first-order logic. In M. Kaufmann, P. Mano-
lios, and J. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, pages 265–282. Kluwer, 2000.

[137] Deborah L. McGuinness and Jon R. Wright. An industrial strength description logic-based configuration platform.
IEEE Intelligent Systems, pages 69–77, 1998.

[138] P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for service ontologies: Aligning OWL-S to dolce. In
S.I. Feldman, M. Uretsky, M. Najork, and C.E. Wills, editors, Proceedings of the Thirteenth International World Wide
Web Conference (WWW 2004), pages 563–572. ACM Press, 2004.

[139] G. Mints. Gentzen-type systems and resolution rules. Part I: Propositional lo gic. In Proceedings of COLOG-88,
volume 417 of Lecture Notes in Computer Science, pages 198–231. Springer, 1990.

[140] G. Mints, V. Orevkov, and T. Tammet. Transfer of sequent calculus strategies to resolution for S4. In H. Wansing,
editor, Proof Theory of Modal Logic, volume 2 of Applied Logic Series, pages 17–31. Kluwer, 1996.

[141] L. Nguyen. MProlog. http://www.mimuw.edu.pl/∼nguyen/mprolog/.
[142] L. Nguyen. A fixpoint semantics and an sld-resolution calculus for modal logic programs. Fundamenta Informaticae,

55(1):63–100, 2003.
[143] L. A. Nguyen. The modal logic programming system MProlog. In J. J. Alferes and J. A. Leite, editors, Proceedings

of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004), volume 3229 of Lecture Notes in
Artificial Intelligence, pages 266–278. Springer, 2004.

[144] I. Niemelä. A tableau calculus for minimal model reasoning. In Proceedings of the 5th International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX ’96), volume 1071 of Lecture Notes
in Artificial Intelligence, pages 278–294. Springer, 1996.

[145] A. Nonnengart. First-order modal logic theorem proving and functional simulation. In R. Bajcsy, editor, Proceedings
of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), pages 80–85. Morgan Kaufmann,
1993.

[146] A. Nonnengart. How to use modalities and sorts in prolog. In C. MacNish, D. Pearce, and L. M. Pereira, editors,
Proceedings of the European Workshop on Logics in Artificial Intelligence (JELIA ’94), volume 838 of Lecture Notes
in Computer Science, pages 365–378. Springer, 1994.

[147] A. Nonnengart, H. J. Ohlbach, and A. Szalas. Quantifier elimination for second-order predicate logic. To appear in
Logic, Language and Reasoning: Essays in honour of Dov Gabbay, Part I, Kluwer.

[148] H. J. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding two-valued nonclassical logics in classical
logic. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 21, pages
1403–1486. Elsevier Science, 2001.

[149] H. J. Ohlbach and R. A. Schmidt. Functional translation and second-order frame properties of modal logics. Journal
of Logic and Computation, 7(5):581–603, 1997.

[150] H. J. Ohlbach, R. A. Schmidt, and U. Hustadt. Translating graded modalities into predicate logic. In H. Wansing,
editor, Proof Theory of Modal Logic, volume 2 of Applied Logic Series, pages 253–291. Kluwer, 1996.

[151] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi. Osaka Mathematical Journal, 9:113–130, 1957.
[152] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II. Osaka Mathematical Journal, 11:115–120,

1959.
[153] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of Automated Reasoning, 4:69–100,

1988.
[154] M. A. Orgun and W. Ma. An overview of temporal and modal logic programming. In D. M. Gabbay and H. J.

Ohlbach, editors, Proceedings of the First International Conference on Temporal Logic (ICTL’94), volume 827 of
Lecture Notes in Artificial Intelligence, pages 445–479. Springer, 1994.

64 Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt

[155] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining specification, proof checking,
and model checking. In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International Conference
on Computer-Aided Verification (CAV ’96), volume 1102 of Lecture Notes in Computer Science, pages 411–414.
Springer, 1996.

[156] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):973–989, 1987.
[157] R. Paige, R. E. Tarjan, and R. Bonic. A linear time solution to the single function coarsest partition problem. Theo-

retical Computer Science, 40:67–84, 1985.
[158] G. Pan and M. Y. Vardi. Optimizing a BDD-based modal solver. In F. Baader, editor, Proceedings of the 19th Inter-

national Conference on Automated Deduction (CADE-19), volume 2741 of Lecture Notes in Artificial Intelligence,
pages 75–89. Springer, 2003.

[159] P. F. Patel-Schneider and I. Horrocks. DLP and FaCT. In Proceedings of the Int. Conf. on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX-99), volume 1397 of Lecture Notes in Artificial Intelligence,
pages 19–23. Springer, 1999.

[160] Pellet OWL reasoner. Maryland Information and Network Dynamics Lab, 2003.
[161] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. Journal of Symbolic Computation,

2:293–304, 1986.
[162] V. R. Pratt. Models of program logics. In Proceedings of the 20th Annual Symposium on Foundations of Computer

Science, 1979.
[163] A. Prior. Past, Present and Future. Oxford University Press, 1967.
[164] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9(3):268–299,

1993.
[165] W. V. Quine. Variables explained away. In Proceedings of the American Philosophy Society, volume 104, pages

343–347, 1960.
[166] W. V. Quine. Algebraic logic and predicate functors. In R. Rudner and I. Scheffler, editors, Logic and Art: Esssays

in Honor of Nelson Goodman. Bobbs-Merrill, 1971.
[167] A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept representation in the GALEN project. In Proceedings

of the 17th Annual Symposium on Computer Applications in Medical Care (SCAMC’93), pages 414–418, 1993.
[168] A. Riazanov and A. Voronkov. Splitting without backtracking. In B. Nebel, editor, Proceedings of the 17th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2001), pages 611–617. Morgan Kaufmann, 2001.
[169] A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI Communications, 15(2–3):91–110,

2002.
[170] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23–41, 1965.
[171] U. Sattler. Description logics for the representation of aggregated objects. In W. Horn, editor, Proceedings of the

14th European Conference on Artificial Intelligence (ECAI 2000), pages 239–243. IOS Press, 2000.
[172] W. J. Savitch. Relationsship between nondeterministic and deterministic tape complexities. Journal of Computer and

System Science, 4:177–192, 1970.
[173] K. Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th

International Joint Conference on Artificial Intelligence (IJCAI-91), pages 466–471. Morgan Kaufmann, 1991.
[174] R. A. Schmidt. MSPASS. http://www.cs.man.ac.uk/∼schmidt/mspass.
[175] R. A. Schmidt. Optimised Modal Translation and Resolution. PhD thesis, Universität des Saarlandes, Saarbrücken,

Germany, 1997.
[176] R. A. Schmidt. E-unification for subsystems of S4. In T. Nipkow, editor, Proceedings of the 9th International

Conference on Rewriting Techniques and Applications (RTA’98), volume 1379 of Lecture Notes in Computer Science,
pages 106–120. Springer, 1998.

[177] R. A. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated Reasoning,
22(4):379–396, 1999.

[178] R. A. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated Reasoning,
22(4):379–396, 1999.

[179] R. A. Schmidt and U. Hustadt. A resolution decision procedure for fluted logic. In D. McAllester, editor, Proceedings
of the 17th International Conference on Automated Deduction (CADE-17), volume 1831 of Lecture Notes in Artificial
Intelligence, pages 433–448. Springer, 2000.

[180] R. A. Schmidt and U. Hustadt. Mechanised reasoning and model generation for extended modal logics. In H. C. M.
de Swart, E. Orlowska, G. Schmidt, and M. Roubens, editors, Theory and Applications of Relational Structures as
Knowledge Instruments, volume 2929 of Lecture Notes in Computer Science, pages 38–67. Springer, 2003.

[181] R. A. Schmidt and U. Hustadt. A principle for incorporating axioms into the first-order translation of modal formulae.
In F. Baader, editor, Proceedings of the 19th International Conference on Automated Deduction (CADE-19), volume
2741 of Lecture Notes in Artificial Intelligence, pages 412–426. Springer, 2003. The long version is Preprint CSPP-
22, University of Manchester, UK.

[182] R. A. Schmidt and U. Hustadt. First-order resolution methods for modal logics. In A. Podelski, A. Voronkov, and
R. Wilhelm, editors, Volume in memoriam of Harald Ganzinger, Lecture Notes in Computer Science. Springer, 2006.
To appear.

[183] S. Schulz. E: A Brainiac theorem prover. Journal of AI Communications, 15(2/3):111–126, 2002.
[184] E. Spaan. Complexity of Modal Logics. PhD thesis, University of Amsterdam, 1993.

Computational Modal Logic 65

[185] A. Szalas. On the correspondence between modal and classical logic: An automated approach. Journal of Logic and
Computation, 3(6):605–620, 1993.

[186] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH
Aachen, 2001.

[187] J. van Benthem. Temporal logic. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 4, pages 241–350. Oxford Scientific Publishers, 1996.

[188] M. Y. Vardi. Reasoning about the past with two-way automata. In Proceedings of the 25th Int. Colloq. on Automata,
Languages, and Programming, volume 1443 of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.

[189] U. Visser, H. Stuckenschmidt, G. Schuster, and T. Vögele. Ontologies for geographic information processing. Com-
puters & Geosciences, 28(1):103–117, 2002.

[190] A. Voronkov. Theorem proving in non-standard logics based on the inverse method. In Proceedings of the 11th
Conference on Automated Deduction (CADE-11), volume 607 of Lecture Notes in Artificial Intelligence, pages 648–
662. Springer, 1992.

[191] D. H. D. Warren. An abstract prolog instruction set. Technical Note 309, SRI International, Menlo Park, CA, USA,
1983.

[192] C. Weidenbach. SPASS. http://spass.mpi-sb.mpg.de.
[193] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and A. Voronkov, editors, Handbook

of Automated Reasoning, volume II, chapter 27, pages 1965–2013. Elsevier, 2001.
[194] C. Weidenbach et al. System description: SPASS version 1.0.0. In H. Ganzinger, editor, Proceedings of the 16th In-

ternational Conference on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence,
pages 378–382. Springer, 1999.

[195] W. Wong. Validation of HOL proofs by proof checking. Formal Methods in System Design, 14(2):193–212, 1999.
[196] M. Wooldridge. Reasoning about rational agents. MIT Press, 2000.
[197] C. Wroe, C. A. Goble, A. Roberts, and M. Greenwood. A suite of DAML+OIL ontologies to describe bioinformatics

web services and data. International Journal of Cooperative Information Systems, March 2003. Special Issue on
Bioinformatics.

