
The OBO to OWL mapping, GO to OWL 1.1!

Christine Golbreich1 Ian Horrocks2

1University of Versailles-Saint Quentin
55 avenue des Etats-Unis, 78035 Versailles, France

Christine.Golbreich@uvsq.fr

2Department of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Abstract. A large library of biomedical ontologies has been developed
in the OBO format, including important ontologies such as the Gene
Ontology (GO). These resources have the potential to contribute to the
Semantic Web in the life sciences domain. In particular, they allow the
annotation of distributed experimental data in using a controlled and
shared vocabulary. As the Web Ontology Language OWL is the W3C rec-
ommended standard for ontologies, converting OBO ontologies to OWL
becomes an important need: it will facilitate the sharing and reuse of this
important resource and make the expanding range of OWL tools avail-
able for use with OBO ontologies. In order to achieve this, we propose a
formalisation of the OBO syntax in terms of a BNF style grammar, and
a formalisation of the semantics of (a large part of) OBO in terms of a
mapping to OWL 1.1. This demonstrates that the OWL 1.1 extension of
OWL allows nearly all of the OBO language to be captured.

1 Introduction

The “OBO” acronym refers to different types of resources and efforts. First,
OBO is the name of a large library of open biomedical ontologies known as
Open Biomedical Ontologies (http://www.bioontology.org/repositories.
html#obo), which is being built and hosted by the National Center for Biomed-
ical Ontology (NCBO). The OBO repository is intended to be accessed using a
Web application called BioPortal. The intention is to provide various ontology
repository services, including inference, alignment, version control services etc.

On the other hand, OBO refers to a format often used for describing biomedi-
cal ontologies (see http://www.geneontology.org/GO.format.obo-1_2.shtml).
The OBO “flat file format”, originated with the Gene Ontology (GO) and is
similar to the tag-value format of the GO definitions file, with a few modifi-
cations (there are also obvious similarities to the N3 syntax for RDF). There
are two types of OBO format, the older GO flat file format (The OBO Flat
File Format Specification, version 1.0) and the newer one (The OBO Flat File
Format Specification, version 1.2). The GO flat file format is now deprecated

2 C. Golbreich I. Horrocks

but will continue to be provided alongside the new format. According to its
authors, the OBO flat format main aims are to provide 1) human readabil-
ity, 2) ease of parsing, 3) extensibility and 4) minimal redundancy. The URL
http://obo.sourceforge.net/ is an umbrella web address allowing users to
view OBO ontologies in table form and to browse them. In this table, a subset
of the OBO ontologies have the tag candidate “OBO Foundry”. This designates
the ontology as a candidate for the “OBO Foundry” project, a new paradigm
for biomedical ontology development driven by a set of principles specifying best
developmental practices. In the following, OBO will refer to the OBO Flat File
Format Specification, version 1.2.

As OBO is much used in the life sciences and supports important ontologies,
including GO, the Chemical Ontology (ChEBI), the Cell Ontology (CL) etc., a
mapping from OBO to OWL [1] is of primary importance for the life science
domain and for the adoption of Semantic Web technologies by the life science
community. Indeed, the OWL language offers several advantages:
Interoperability. Interoperability of Web ontologies is crucial for shared use
across different biomedical domains, as expected from the Open Biomedical On-
tologies library. OWL fosters integration of and interoperability between Web
biomedical ontologies. Once converted to OWL, OBO ontologies become easier
to integrate with other OWL biomedical ontologies. The conversion of several
major biomedical ontologies from other native languages to OWL is underway,
including the Systematized Nomenclature of Medicine Clinical Terms (SNOMED
CT) [2], the Foundational Model of Anatomy (FMA) [3], the Medical Subject
Headings (MeSH) [4] and the National Cancer Institute Thesaurus (NCI) [5].
The conversion of ontologies to OWL has also been investigated, or is being
invetigated e.g., the UMLS Metathesaurus and Semantic Network [6]; and some
more recent ontologies are directly developed in OWL e.g., the Biological Path-
ways Exchange ontology BioPAX (see http://www.biopax.org/).
Expressiveness. Also of interest is the higher expressiveness of OWL and OWL
1.1 [7] which allows for the representation not only of most of the OBO primitives
and the satisfaction of most of the requirements initially formulated by OBO
developers, but also provides significantly increased expressive power.
Semantics. Another major advantage of OWL and OWL 1.1 is their well
defined semantics (see http://www.w3.org/Submission/owl11-semantics/).
This prevents any ambiguity and/or misunderstanding of the biomedical on-
tology vocabulary. Moreover, the logical semantics provides the grounding of
powerful reasoning services supporting ontology engineering.
Tools and services. OWL provides access to an expanding range of tools and
services that facilitate both development and deployment of biomedical ontolo-
gies, namely building, maintaining and reusing ontologies. Biomedical ontolo-
gies are often huge and almost always evolving. For example, SNOMED [2] has
over 308,000 active concepts, the FMA [3] has over 75,000 anatomical classes,
has been under development at the University of Washington since 1994, and
is constantly being improved and extended. Automated tools are essential to
check the consistency of large ontologies. OWL DL (and OWL 1.1) reasoners,

OBO to OWL(1.1) mapping 3

e.g. RacerPro [8], Pellet [9] and Fact++ [10], enable the automatic detection
of inconsistencies caused by possible modelling errors, which may otherwise be
difficult to identify. OWL also supports tools for ontology debugging and mod-
ularity. Debugging tools [11, 12] allow for tracing the reasons for inconsistencies
identified by reasoners. Modularity tools [13, 14] allow for integrating and ex-
tracting different modules, e.g., extracting a module of brain anatomy from the
FMA ontology. Consistency checking, debugging and modularity services are of
primary importance for the OBO repository. Given a mapping to OWL, biomed-
ical ontologists can exploit all these services while still modelling in the familiar
OBO framework.

For all these reasons, converting OBO ontologies to OWL has become an im-
portant need. To this end we propose a formalisation of the OBO Flat File For-
mat Specification version 1.2, available at http://www.godatabase.org/dev/
doc/oboa_format_spec.html, in terms of a BNF style grammar, and a formal-
isation of the semantics of (a large part of) OBO in terms of a mapping to
OWL (1.1). The document that describes the grammar and mapping in detail
is available online at http://www.cs.man.ac.uk/~horrocks/obo/, and is open
for discussion.

The remainder of this paper is organised as follows: Section 2 gives an
overview of the syntax proposed for OBO; Section 3 presents the semantics
of (part of) OBO defined via its mapping to OWL (1.1); and Section 4 discusses
the main advantages of the approach.

2 OBO Syntax

This section presents a fragment of the BNF style syntax defined at http://
www.cs.man.ac.uk/~horrocks/obo/ to show the general idea. The grammar
of OBO is presented in the standard BNF notation. Nonterminal symbols are
denoted in bold (e.g., stanza), terminal symbols are written in single quotes
(e.g. ‘Term’), zero or more instances of a symbol is denoted with curly braces
(e.g., { stanza }), alternative productions are denoted with the vertical bar
(e.g., term-stanza | typedef-stanza), and zero ore one instance of a symbol
are denoted with square brackets (e.g., [‘is anonymous: true’]).

OBO File Structure. An OBO file consists of a header followed by zero or more
stanzas. Each stanza introduces and describes the properties of either a class
(a Term stanza), a property (a Typedef stanza) or an individual (an Instance
stanza). The syntax for OBO ontology files is defined as follows:

OBO-Doc := header { stanza }
stanza := term-stanza | typedef-stanza | instance-stanza

OBO Header. The header consists of a number of tag-value pairs (several
are ignored for the time being). Many of these e.g., <remark> could clearly
be treated as annotations; others (e.g., <data-version>, <saved-by>) would

4 C. Golbreich I. Horrocks

correspond to parts of an XML document preamble or to the default namespace
of an ontology (e.g., <idspace>).

The syntax for OBO header is defined as follows:

header :=
<format-version>
[<data-version>]
[<date>]
[<saved-by>]
[<auto-generated-by>]
[<subsetdef>]
{ import }
{ <synonymtypedef> }
{ <idspace> }
[<default-relationship-id>]
{ <idmapping> }
[<remark>]

import := ‘import:’ <URL>

Term Stanzas. Term stanzas introduce and define the meaning of terms (AKA
concepts, classes and unary predicates). For example, in the OBO ontology
CARO (Common Anatomy Reference Ontology)1 being developed, the concept
anatomical structure is specified by:

[Term]
id: CARO:0000003
name: anatomical structure
def: “Material anatomical entity that has inherent 3D shape and is generated by

coordinated expression of the organism’s own genome.” [CARO:MAH]
is a: CARO:0000006

The syntax for OBO Term is defined as follows:

term-stanza :=
‘[Term]’
termid-TVP
‘name:’<string>
[<namespace>]
{ <alt id> }
[<def>]
[<comment>]
{ <subset> }
{ <synonym> }
{ <xref> }
{ isa-TVP }
{ intersection-TVP }
{ union-TVP }
{ disjoint-TVP }

1 http://purl.org/obo/owl/CARO

OBO to OWL(1.1) mapping 5

{ relationship-TVP }
[<is obsolete>]
[<replaced by>]
{ <consider>

termid-TVP :=
‘id:’ term-id
[‘is anonymous: true’]

term-id := <string>

isa-TVP :=
‘is a:’ term-id
[‘namespace=’ <namespace-id>]
[‘derived=true’ | ‘derived=false’]

intersection-TVP :=
‘intersection of:’ termOrRestr
[‘namespace=’ <namespace-id>]

termOrRestr := term-id | restriction
restriction := relationship-id term-id
relationship-id := <string>

union-TVP :=
‘union of:’ termOrRestr
[‘namespace=’ <namespace-id>]

disjoint-TVP :=
‘disjoint from:’ term-id
[‘namespace=’ <namespace-id>]
[‘derived=true’ | ‘derived=false’]

relationship-TVP :=
‘relationship:’ restriction
[‘not necessary=true’ | ‘not necessary=false’]
[‘inverse necessary=true’ | ‘inverse necessary=false’]
[‘cardinality=’ <non-neg-int>]
[‘maxCardinality=’ <non-neg-int>]
[‘minCardinality=’ <non-neg-int>]

Typedef Stanzas and Instances stanzas. Typedef stanzas introduce and de-
fine the meaning of relations (AKA roles, properties and binary predicates). For
example, the relation part of is specified in the OBO ontology CARO by:

[Typedef]
id: part of
name: part of
is transitive:true

6 C. Golbreich I. Horrocks

An extract of the syntax for OBO Typedef stanzas, introducing the main tags
that have been mapped to OWL, is given below (for details about Typedef and
Instance Stanzas, see [15]):

typedef-stanza :=
‘[Typedef]’
typedef-TVP
. . .
[domain-TVP]
[range-TVP]
{ meta-property-TVP }
{ r-isa-TVP }
[inverse-TVP]
[transover-TVP]
. . .

Instance stanzas introduce and define the meaning of instances (AKA individu-
als, individual names, constants); as we are mainly interested in “schema-level”
ontologies, we won’t discuss them further in this paper.

3 OBO semantics and mapping to OWL(1.1)

The semantics for (part of) the OBO language, given via its translation to the
OWL DL abstract syntax, is presented in [15]. This section presents the seman-
tics of an even larger subset of OBO via a mapping to OWL 1.1, and shows that
the OWL 1.1 extension allows nearly all of the OBO language to be captured.

Mapping. The translation is defined using a translation function T which trans-
lates (a fragment of) OBO into OWL 1.1, according to the mapping described
in Table 1. The definition of T is often recursive, but it will eventually “ground
out” in (a fragment of) OWL 1.1. A number of simplifying assumptions are made
in order to improve readability:

– Syntax related declarations (namespace, etc.) are largely ignored.
– OBO identifiers/names are translated “as is”.
– Annotations to entities are added using the OWL 1.1 Entity Annotation

facility.2

– The “false” cases of relation qualifying tags are ignored, although they
could be translated into OWL “facts” that assert counter-examples, if this is
deemed to be appropriate. E.g., given a relation R with “is transitive: false”
in its Typedef stanza, we could introduce new individuals x, y and z, and
assert R(x, y), R(y, z) and ¬R(x, z).

– According to the translation, OBO relations are translated as OWL object
properties; it is assumed that, in practice, OBO relations would be translated

2 http://www.w3.org/Submission/2006/SUBM-owl11-owl_

specification-20061219/#4.4

OBO to OWL(1.1) mapping 7

into OWL datatype properties if either the Typedef stanza specifies a range
that is an XML datatype or if some super relation was translated into a
datatype property.

– Relation qualifying tags, reflexive, irreflexive, transitive over etc., are han-
dled using the extra features offered by OWL 1.1 to assert reflexive, ir-
reflexive, asymmetric properties etc., and in particular the new possibility
of expressing property chain inclusion axioms.

– Relationships in Typedef stanzas are ignored due to uncertainty as to the
intended semantics.

OBO syntax (fragment) — S Translation — T(S)
header stanza 1 . . . stanza n T(header) T(stanza 1) . . . T(stanza n)
[Term] Declaration(OWLClass(term-id))
id:term-id
name:name-string EntityAnnotation(OWLClass(term-id) Label(name-string))
isa:isa-term 1 SubClassOf(term-id isa-term 1)

.
isa:isa-term i SubClassOf(term-id isa-term i)
intersection of:int-termOrRestr 1 EquivalentClasses(term-id

. . . ObjectIntersectionOf(T(intersection of:int-termOrRestr 1)
intersection of:int-termOrRestr j . . . T(intersection of:int-termOrRestr j)))
union-of:union-termOrRestr 1 EquivalentClasses(term-id

. . . ObjectUnionOf(T(union-of:union-termOrRestr 1)
union-of:union-termOrRestr k . . . T(union-of:union-termOrRestr k)))
disjoint from:disjoint-term 1 DisjointClasses(term-id disjoint-term 1)

.
disjoint from:disjoint-term m DisjointClasses(term-id disjoint-term m)
relationship-TVP 1 SubClassOf(term-id T(relationship-TVP 1))

.
relationship-TVP n SubClassOf(term-id T(relationship-TVP n))
intersection of:term-id term-id
intersection of:relationship-id term-id ObjectSomeValuesFrom(relationship-id term-id)
union of:term-id term-id
union of:relationship-id term-id ObjectSomeValuesFrom(relationship-id term-id)
relationship:relationship-id term-id ObjectSomeValuesFrom(relationship-id term-id)
relationship:relationship-id term-id ObjectExactCardinality(card relationship-id term-id)

cardinality=card
relationship:relationship-id term-id ObjectMaxCardinality(max relationship-id term-id)

maxCardinality=max
relationship:relationship-id term-id ObjectMinCardinality(min relationship-id term-id)

minCardinality=min

[Typedef] Declaration(ObjectProperty(relationship-id))
id:relationship-id
name:name-string EntityAnnotation(ObjectProperty(relationship-id) Label(name-string))
domain:domain-id ObjectPropertyDomain(relationship-id domain-id)
range:range-id ObjectPropertyRange(relationship-id range-id)
meta-property-TVP 1 T(relationship-id meta-property-TVP 1)

.
meta-property-TVP k T(relationship-id meta-property-TVP k)
r-isa:isa-id 1 SubObjectPropertyOf(relationship-id isa-id 1)

.
r-isa:isa-id m SubObjectPropertyOf(relationship-id isa-id m)
inverse:inv-id InverseObjectProperties(relationship-id inv-id)
transitive over:tr-over-id SubObjectPropertyOf(

SubObjectPropertyChain(relationship-id tr-over-id)
relationship-id)

relationship-id is anti symmetric:true AntisymmetricObjectProperty(relationship-id)
relationship-id is anti symmetric:false Declaration(ObjectProperty(relationship-id)

comment(is anti symmetric:false))
relationship-id is cyclic:true Declaration(ObjectProperty(relationship-id)

comment(is cyclic:true))
relationship-id is cyclic:false Declaration(ObjectProperty(relationship-id)

comment(is cyclic:false))
relationship-id is reflexive:true ReflexiveObjectProperty(relationship-id)
relationship-id is reflexive:false Declaration(ObjectProperty(relationship-id)

comment(is reflexive:false))
relationship-id is symmetric:true SymmetricObjectProperty(relationship-id)
relationship-id is symmetric:false Declaration(ObjectProperty(relationship-id)

comment(is symmetric:false))
relationship-id is transitive:true TransitiveObjectProperty(relationship-id)
relationship-id is transitive:false Declaration(ObjectProperty(relationship-id)

comment(is transitive:false))

Fig. 1. Translation to OWL 1.1

8 C. Golbreich I. Horrocks

Example. According to the OWL 1.1 mapping described, the OWL 1.1 Class
for the CARO:0000003 Term given section 2 is:

Declaration(OWLClass(CARO:0000003))
EntityAnnotation(OWLClass(CARO:0000003)

Label(“anatomical structure”))
EntityAnnotation(OWLClass(CARO:0000003)

Annotation(OBO:def “Material anatomical entity that has inherent 3D shape and
is generated by coordinated expression of the organisms own genome.
[CARO:MAH]”))

SubClassOf (CARO:0000003 CARO:0000006)

Because of space limitation, it is not possible to show examples of Typedef,
though OWL 1.1 features are essential for representing the various aspects of re-
lations, e.g., SubObjectPropertyOf(SubObjectPropertyChain(located in part of)

located in) (see section 4).

4 Discussion

Other groups have proposed a mapping between the OBO 1.2 file format and
OWL. A summary of various conversion efforts from OBO to OWL can be found
as an online Google spreadsheet available at http://spreadsheets.google.
com/ccc?key=pWN_4sBrd9l1Umn1LN8WuQQ. Among them a mapping developped
by Chris Mungall (Common Mapping) is available as a XSLT file at http:
//www.godatabase.org/dev/xml/xsl/oboxml_to_owl.xsl. A Protégé plugin
based on it has recently been developed at Stanford. It allows to convert OBO
files to OWL, from the OBO Converter Protégé tab. Another proposal for a
“minimal OWL Full Ontology for OBO and the Gene Ontology” is available
at http://www.aiai.ed.ac.uk/resources/go. According to the authors, this
proposal aims at defining a very simple ontology of Objects, Events and part-of
relations, and at axiomatising their semantics.

Providing OBO with a BNF syntax and a semantics via a mapping to
OWL(1.1) has several advantages. On the one hand, the BNF style grammar for
OBO helps to make the structure more precise and to clarify some ambiguities
and/or misunderstandings of the OBO Flat File Format Specification, version
1.2. Indeed, the original OBO specification was not completely clear with re-
spect to some details of syntax and semantics. Some of these have been resolved
by communications from the OBO developers (in particular Chris Mungall), for
example:

– An OBO file may include zero stanzas (e.g., a file of standard idspaces in
obo format).

– In OBO, name is purely documentary (like RDF labels), and the id is what is
used to refer to a term in other stanzas (although it is strongly encouraged,
and may even be enforced, that names uniquely identify a class, relation or
instance within an ontology or OBO namespace).

OBO to OWL(1.1) mapping 9

– The sets of Typedef (relationship) IDs, Term IDs and Instance IDs must be
pairwise disjoint.

– The minimum and maximum number of occurrences of each tag type in a
given stanza has now been explicated. For example, an OBO Typedef stanza
may contain at most one of each of the following tags: range, domain, inverse,
transitive over and comment.

– OBO may adopt an OWL style import semantics in order to avoid potential
problems with the existing “append document at parse time” semantics in
case of cyclical imports statements.

– The not necessary and inverse necessary modifiers are likely to be depre-
cated, with their meaning being encoded in the semantics of relevant rela-
tions. Future versions of OBO may allow existential and universally quanti-
fied relationships to be distinguished.

– The relationship tag may be banned in Typedef stanzas as its meaning there
is not clear.

However, OBO still needs a more precise specification, and as noticed in [15]
a few points remain to be clarified:

– The derived modifier could lead to some strange situations, e.g., there could
be two facts such that either can be derived, but not both. It isn’t clear what
the status of an OBO ontology would be if derived modifiers are “inconsis-
tent”. (This will be clarified in future versions of OBO.)

– It isn’t clear if there is any restriction on mixing datatypes and classes, e.g.,
in intersection and union.

– It isn’t clear if cardinality tags are meant to signify a qualified or unqualified
restriction.

– It isn’t clear if OBO built-in objects are semantically meaningful. This does
not seem obviously useful, and might be potentially problematical (requiring
a higher order language).

– It isn’t clear what the “false” cases of the relation qualifiers (is symmetric
etc.) mean: for example, does “is symmetric false” in the Typedef stanza
signify that it is possible to have for some individuals x, y both R(x, y) and
¬R(y, x), or that when R(x, y) is true then R(y, x) is necessarily false? At
the moment, they are translated by OWL 1.1 annotations.

Defining the syntax using a BNF also means that the grammar may be used
as an input to parser generator tools such as JavaCC. Using this approach, a
parser based on the previously described BNF and semantic mapping has been
developed at Manchester as a module to the OWL API [16]. The parser is capable
of parsing all well formed ontologies of the sourceforge repository (http://obo.
sourceforge.net/), including GO, into OWL 1.1 data structures. It uses a plug-
gable tag-value-pair handler in order to provide semantic aware translations of
the tags which have an OWL 1.1 mapping and to also be extensible in case
of future evolutions of OBO format or OWL. On the other hand, a precise and
rigourous mapping from OBO to OWL(1.1), defined as suggested, gives the OBO
language a well-defined semantics. The other very important point to underline,

10 C. Golbreich I. Horrocks

is that OWL 1.1 extensions for properties are really needed for representing
the various aspects of Typedef, e.g.; transitive over. In particular, Property
chain inclusion axioms is of primary importance for life sciences ontologies in
general. It is precisely why OBO and other biomedical ontologies, for example
SNOMED, include such features. Our next step will be to refine and complement
the OBO language and its mapping to OWL 1.1., and to investigate the benefits
of translating GO and other OBO ontologies to OWL1.1.

Similarly to OBO, “semi-formal” languages have often been defined in indus-
try, where ISO standards are widely used. Using a BNF grammar for clarifying
the syntax of such (ISO) languages and using a mapping to OWL(1.1) for defin-
ing their semantics, seem to be a promising approach for technical and engineer-
ing domains. In particular, the same “mapping to OWL” approach might be
applied to the Parts Library (PLIB)—ISO 13584 Standard—initially dedicated
to electronic and mechanic components specification and catalogues storage and
exchange [17]. In each particular engineering domain, e.g., electronic components
and process instruments (IEC 61360-4), measuring instruments (ISO 13584-501),
machining tools (ISO 13399), mechanics (ISO/TC 10) NWI), optics and pho-
tonics (ISO/TC 172 NWI) etc., PLIB ontologies of Products are defined and are
used in particular to create “e-business” catalogues. A mapping from PLIB to
OWL 1.1 would allow the PLIB library to benefit of OWL tools and services
to build and maintain the Products ontologies and for querying the catalogues
supported by PLIB standard.

5 Conclusion

This paper has presented a precise and comprehensive mapping from OBO to
OWL (1.1). The approach has several advantages. On the one hand, the BNF
syntax and the semantics of OBO defined via a mapping to OWL (1.1) allow
precision and coverage. Indeed, the BNF style grammar helps to make the struc-
ture more precise and to clarify some ambiguities and/or misunderstandings of
the OBO Flat File Format Specification, version 1.2. It also allows the grammar
to be automatically checked and to create a parser. Moreover, using OWL 1.1
allowed nearly all of OBO to be captured. As a result, it gives a well-defined
semantics to a (large) part of OBO. On the other hand, this mapping of OBO to
OWL 1.1 will provide biomedical users with all the available reasoning services
supported by OWL, in particular to design, construct, maintain or reuse their
ontologies, while still using their preferred language framework.

References

1. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7–26, 2003.

2. SNOMED Clinical Terms. Northfield, IL: College of American Pathologists, 2007.

OBO to OWL(1.1) mapping 11

3. Christine Golbreich, Songmao Zhang, and Olivier Bodenreider. The foundational
model of anatomy in OWL: Experience and perspectives. J. of Web Semantics,
4(3), 2006.

4. Lina Fatima Soualmia, Christine Golbreich, and Stéfan Jacques Darmoni. Repre-
senting the mesh in owl: Towards a semi-automatic migration. In KR-MED, pages
81–87, 2004.

5. Sherri de Coronado, Margaret W. Haber, Nicholas Sioutos, Mark S. Tuttle, and
Lawrence W. Wright. NCI thesaurus: Using science-based terminology to integrate
cancer research results. In Proc. of MEDINFO 2004. IOS Press, 2004.

6. V. Kashyap and A. Borgida. Representing the umls semantic network using owl:
Or ”what’s in a semantic web link?”. In Mylopoulos J Fensel D, Sycara K, editor,
Proc. of the 2003 International Semantic Web Conference (ISWC 2003), Lecture
Notes in Computer Science, pages 1–16. Springer, 2003.

7. Peter Patel-Schneider and Ian Horrocks. OWL 1.1 Web Ontology Language
overview. W3C Member Submission, 19 December 2006. Available at http:

//www.w3.org/Submission/owl11-overview/.
8. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.

Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence, pages 701–705. Springer, 2001.

9. Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of the 2004
Description Logic Workshop (DL 2004), 2004.

10. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

11. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and James
Hendler. SWOOP: a web ontology editing browser. J. of Web Semantics, 4(2),
2005.

12. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-
satisfiable classes in owl ontologies. J. of Web Semantics, 3(4):243–366, 2005.

13. Bernardo Cuenca Grau, Yevgeny Kazakov, Ian Horrocks, and Ulrike Sattler. A
logical framework for modular integration of ontologies. In Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2007), 2007.

14. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Just
the right amount: Extracting modules from ontologies. In Proc. of the Sixteenth
International World Wide Web Conference (WWW 2007), 2007.

15. Ian Horrocks. Obo flat file format syntax and semantics and mapping to OWL
Web Ontology Language. Editor’s draft, 4 March 2007. Available at http://www.
cs.man.ac.uk/~horrocks/obo/.

16. Matthew Horridge, Sean Bechhofer, and Olaf Noppens. Igniting the OWL 1.1
Touch Paper: The OWL API. OWLED 2007 (submitted), 2007.

17. ISO 13584-42. Industrial automation systems and intregration - Parts Library -
part 42: Description methodology: Methodology for structuring parts families, iso,
1998.

