
A Tableau Decision Procedure for SHOIQ

Ian Horrocks and Ulrike Sattler
School of Computer Science
University of Manchester, UK

July 23, 2007

Abstract. OWL DL, a new W3C ontology language recommendation, is based on the expres-
sive description logic SHOIN . Although the ontology consistency problem for SHOIN is
known to be decidable, up to now there has been no known “practical” decision procedure,
i.e., a goal directed procedure that is likely to perform well with realistic ontology derived
problems. We present such a decision procedure for SHOIQ, a slightly more expressive
logic than SHOIN , extending the well known algorithm for SHIQ, which is the basis for
several highly successful implementations.

Keywords: Description Logic, Decision Procedures

1. Introduction

Description Logics (DLs) are a family of logic based knowledge representa-
tion formalisms (Baader et al., 2003). Although they have a range of applica-
tions (e.g., configuration (McGuinness and Wright, 1998), and information
integration (Calvanese et al., 1998)), they are perhaps best known as the
basis for widely used ontology languages such as OIL, DAML+OIL and
OWL (Horrocks et al., 2003), the last of which is now a World Wide Web
Consortium (W3C) recommendation (Bechhofer et al., 2004).

The OWL specification describes three language “species”, OWL Lite,
OWL DL and OWL Full, two of which (OWL Lite and OWL DL) are based
on expressive description logics.1 The decision to base these languages on
DLs was motivated by a requirement that key inference problems (such as
ontology consistency) be decidable, and hence that it should be possible to
provide reasoning services to support ontology design and deployment (Hor-
rocks et al., 2003).

OWL Lite and OWL DL are based on the DLs SHIF and SHOIN ,
respectively—in fact, OWL Lite is just a syntactic subset of OWL DL (Hor-
rocks et al., 2003).2 Standard reasoning problems include the computation
of the subsumption hierarchy between concepts defined in a given ontology,

1 OWL Full uses the same language vocabulary as OWL DL, but does not restrict its use
to “well formed formulae”.

2 OWL also includes datatypes, a simple form of concrete domain (Baader and Hanschke,
1991). These can, however, be treated exactly as in SHOQ(D)/SHOQ(Dn) (Horrocks and
Sattler, 2001; Haarslev and Möller, 2001a; Pan and Horrocks, 2003), so we will not complicate
our presentation by considering them here.

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

shoiq-jar.tex; 23/07/2007; 15:15; p.1

2 Ian Horrocks and Ulrike Sattler

deciding the satisfiability of all concepts defined in a given ontology, and
retrieving all instances of a concept expression. In SHOIN , these standard
reasoning problems can all be reduced to the ontology consistency problem,
which is known to be decidable: this is a consequence of a reduction of
DLs with transitive roles to DLs without such roles (Tobies, 2001) and the
fact that applying this reduction to SHOIN yields a fragment of the two
variable fragment of first order logic with counting quantifiers (Pacholski
et al., 1997). To the best of our knowledge, however, the algorithm described
here is the first “practical” decision procedure for SHOIN , i.e., the first
goal-directed procedure that is likely to perform well with realistic ontology
derived problems (Tobies, 2001; Horrocks and Sattler, 2001).

In this paper, we present a goal-directed decision procedure for SHOIQ,
i.e., SHOIN extended with qualified number restrictions (Hollunder and
Baader, 1991). The algorithm extends the well-known tableau algorithm for
SHIQ (Horrocks et al., 1999), which is the basis for several highly suc-
cessful implementations (Horrocks and Patel-Schneider, 1998; Haarslev and
Möller, 2001b; Sirin et al., 2003).

As its name indicates, SHOIQ extends SHIQ with nominals,3 i.e., con-
cepts with a singleton extension (De Giacomo, 1995). Nominals are a promi-
nent feature of hybrid logics (Blackburn and Seligman, 1995), and can also
be viewed as a powerful generalisation of ABox individuals (Schaerf, 1994;
Baader et al., 2003). A form of nominals was already present in early DL sys-
tems such as CLASSIC (Brachman et al., 1991) and CRACK (Bresciani et al.,
1995), and they occur naturally in ontologies, e.g., when describing a con-
cept such as EUCountries by enumerating its members, i.e., {Austria, . . . ,
UnitedKingdom} (such an enumeration is equivalent to a disjunction of nom-
inals). This allows applications to infer, e.g., that persons who only visit
EUCountries can visit at most 15 countries.

It has long been recognised that there is a close connection between DLs
and propositional modal and dynamic logics (Schild, 1991; De Giacomo and
Lenzerini, 1994; Baader et al., 2003). One reason why all these logics enjoy
good computational properties, such as being robustly decidable, is that they
have some form of tree model property (Vardi, 1997; Grädel, 2001), i.e., if an
ontology is consistent, then it has a model whose relational structure forms a
tree or can be seen as a tree. This feature is crucial in the design of tableau
algorithms, allowing them to search only for tree-like models. More precisely,
DL tableau algorithms decide consistency of an ontology by trying to con-
struct an abstraction of a model for it, a so-called “completion graph”. For
logics with the tree model property, we can restrict our search/construction to
tree-shaped completion graphs. For expressive DLs, this restriction is crucial
since tableau algorithms for them employ a cycle detection technique called

3 For naming conventions of DLs, see the Appendix of (Baader et al., 2003).

shoiq-jar.tex; 23/07/2007; 15:15; p.2

A Tableau Decision Procedure for SHOIQ 3

blocking to ensure termination. This is of special interest for SHIQ, where
the interaction between inverse roles and number restrictions results in the
loss of the finite model property, i.e., there are consistent ontologies that only
admit infinite models (Schild, 1991; Baader et al., 2003). On such an input,
the SHIQ tableau algorithm generates a finite, tree-shaped completion graph
that can be “unravelled” into an infinite tree model, and where a node in the
completion graph may stand for infinitely many elements of the model (Hor-
rocks et al., 1999). Even when the language includes nominals, but excludes
one of number restrictions or inverse roles (De Giacomo, 1995; Horrocks
and Sattler, 2001; Hladik and Model, 2004), or if nominals are restricted to
ABox individuals (Donini et al., 1990; Baader and Hollunder, 1991; Buchheit
et al., 1993; Schaerf, 1994; De Giacomo and Lenzerini, 1996; Horrocks et al.,
2000), we can work on forest-shaped completion graphs, with each nominal
(individual) being the root of a tree-like section; this causes no inherent diffi-
culty as the size of the non-tree part of the graph is restricted by the number
of individuals/nominals in the input.

The difficulty in extending the SHOQ or SHIQ algorithms to SHOIQ
is due to the interaction between nominals, number restrictions, and inverse
roles, which leads to the almost complete loss of the tree model property,
and causes the complexity of the ontology consistency problem to jump from
ExpTime to NExpTime (Tobies, 2000). To see this interaction, consider an
ontology containing the following two axioms involving a nominal o and a
non-negative integer n:

> v̇ ∃U.o

o v̇ (6n U−.F)

The first statement requires that, in a model of this ontology, every element
has a U -edge leading to o; the second statement restricts the number of in-
verse U -edges going from o to instances of F to at most n. Thus the in-
teraction between the nominal and the number restriction on the inverse of
U imposes an upper bound of n on the number of instances of the concept
F . If we add further axioms, we might need to consider arbitrarily complex
relational structures amongst instances of F . For example, if we add the
following axiom, then each instance of F is necessarily R-related to every
instance of F , including itself:

F v̇ (>nR.F).

Similarly, the following axiom would enforce S-cycles over instances of F :

F v̇ (>1S.F) u (61S−.F).

Hence a tableau algorithm for SHOIQ needs to be able to handle arbitrarily
complex relational structures, and thus we cannot restrict our attention to
completion trees or forests.

shoiq-jar.tex; 23/07/2007; 15:15; p.3

4 Ian Horrocks and Ulrike Sattler

Matters are further complicated by the fact that SHOIQ does not enjoy
the finite model property, and hence there are SHOIQ axioms that enforce
the existence of an infinite number of instances of a concept. For example,
the concept ¬N u ∃P.N is satisfiable w.r.t. the following axiom, but only in
models with infinitely many instances of N :

N v̇ (61P−.>) u ∃P.N.

Now consider an ontology that contains, amongst others, all the above men-
tioned axioms. The consistency of this ontology then crucially depends on the
relations enforced between instances of F and N . For example, the additional
axioms

N v̇ ∃V.F and
F v̇ (6kV −.N)

yield an inconsistent ontology since our at most n instances of F cannot play
the rôle of V -fillers for infinitely many instances of N when each of them can
be the V -filler of at most k instances of N .

Summing up, a tableau algorithm for SHOIQ needs to be able to han-
dle both arbitrarily complex relational structures and finite tree structures
representing infinite trees, and to make sure that all constraints are satisfied—
especially number restrictions on relations between these two parts—while
still guaranteeing termination.

Two key intuitions have allowed us to devise a tableau algorithm that
meets all of these requirements. The first intuition is that, when extending
a SHOIQ completion graph, we can distinguish those nodes that may be
arbitrarily interconnected (so-called nominal nodes) from those nodes that
still form a tree structure (so-called blockable nodes). Fixing a (double expo-
nential) upper bound on the number of nominal nodes is crucial to proving
termination; it is not, however, enough to guarantee termination, as we may
repeatedly create and merge nominal nodes—a so-called “yo-yo”.4

The second intuition is that the yo-yo problem can be overcome by “guess-
ing” the exact number of new nominal nodes resulting from interactions
between existing nominal nodes, inverse roles, and number restrictions. This
guessing is implemented by a new expansion rule, the NN-rule, which, when
applied to a relevant (6nR.C) concept in the label of a nominal node, gener-
ates (non-deterministically) between 1 and n new nominal nodes, all of which
are pairwise disjoint. This prevents the repeated yo-yo construction, and ter-
mination is now guaranteed by the upper bound on the number of nominal

4 Franz Baader introduced this term for a similar problem that needs to be overcome in
similar algorithms such as those described in (Baader and Hanschke, 1991; Baader and Sattler,
2001).

shoiq-jar.tex; 23/07/2007; 15:15; p.4

A Tableau Decision Procedure for SHOIQ 5

nodes and the use of standard blocking techniques for the blockable nodes.
The non-determinism introduced by this rule will clearly be problematical for
large values of n, but large values in number restrictions are already known
to be problematical for SHIQ. Moreover, the rule has excellent “pay as you
go” characteristics:5 in case number restrictions are functional (i.e., where n
is 1),6 the new rule becomes deterministic; in case there are no interactions
between number restrictions, inverse roles, and nominals, the rule will never
be applied; in case there are no nominals, the new algorithm will behave
like the algorithm for SHIQ; and in case there are no inverse roles the new
algorithm will behave like the algorithm for SHOQ. The algorithm has, in
fact, already been implemented in the well known Fact++ and Pellet systems,
and has shown very promising behaviour with realistic ontologies (Tsarkov
and Horrocks, 2006; Sirin et al., 2006; Gardiner et al., 2006).

2. Preliminaries

In this section, we introduce the DL SHOIQ. This includes the definition
of syntax, semantics, and inference problems. We start with SHOIQ-roles,
then introduce some abbreviations, and finally define SHOIQ-concepts.

Definition 1 Let R be a set of role names, with a set R+ ⊆ R of transitive
role names. The set of SHOIQ-roles (or roles for short) is R ∪ {R− | R ∈
R}. A role inclusion axiom is of the form R v S, for two roles R and S. A
role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the do-
main of I, and a function ·I which maps every role to a subset of ∆I ×∆I

such that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R v
S ∈ R; such an interpretation is called a model of R.

We introduce some notation to make the following considerations easier.

1. To avoid considering roles such as R−−, we define a function Inv which
returns the inverse of a role:

5 In the sense that the behaviour of the algorithm will depend on the expressive power
actually used in the input ontology (Patel-Schneider et al., 1990).

6 A feature of many realistic ontologies; see, e.g., the DAML ontology library at http:
//www.daml.org/ontologies/

shoiq-jar.tex; 23/07/2007; 15:15; p.5

6 Ian Horrocks and Ulrike Sattler

Inv(R) :=
{

R− if R is a role name,
S if R = S− for a role name S.

2. Since set inclusion is transitive and RI ⊆ SI implies Inv(R)I ⊆ Inv(S)I ,
for a role hierarchy R, we introduce v* R as the transitive-reflexive clo-
sure of v on R∪ {Inv(R) v Inv(S) | R v S ∈ R}. We use R ≡R S as
an abbreviation for R v* RS and S v* RR.

3. Obviously, a role R is transitive if and only if its inverse Inv(R) is tran-
sitive. However, in cyclic cases such as R ≡R S, S is transitive if R or
Inv(R) is a transitive role name. In order to avoid these case distinctions,
the function Trans returns true if R is a transitive role—regardless as to
whether it is a role name, the inverse of a role name, or equivalent to a
transitive role name (or its inverse): Trans(S,R) := true if, for some
P with P ≡R S, P ∈ R+ or Inv(P) ∈ R+; Trans(S,R) := false
otherwise. Note that the interpretation of S may be transitive even if
Trans(S,R) returns false; this could arise, e.g., if the TBox contains an
axiom > v ∀S.(∀S.⊥).

4. A role R is called simple w.r.t. R if Trans(S,R) = false for all S v* RR,
i.e., if it is neither transitive nor has a transitive sub-role. If a role is
non-simple, then it may lead to implicit role relationships as a result of
transitive (sub-) role chains. For example, if S v* RR and Trans(S,R),
then {〈x, y〉, 〈y, z〉} ⊆ SI implies 〈x, z〉 ∈ RI . Counting the num-
ber of fillers of a non-simple role is, therefore, rather tricky, and it is
known that allowing non-simple roles in number restrictions results in the
undecidability of standard reasoning problems (Horrocks et al., 1999).

5. In the following, if R is clear from the context, then we may abuse our
notation and use v* and Trans(S) instead of v* R and Trans(S,R).

Definition 2 Let C be a sets of concept names with a subset Co ⊆ C of
nominals. The set of SHOIQ-concepts (or concepts for short) is the smallest
set such that

1. every concept name C ∈ C is a concept,

2. if C and D are concepts and R is a role, then (C uD), (C tD), (¬C),
(∀R.C), and (∃R.C) are also concepts (the last two are called universal
and existential restrictions, resp.), and

3. if C is a concept, R is a simple role and n ∈ IN, then (6nR.C) and
(>nR.C) are also concepts (called atmost and atleast number restric-
tions).7

7 Since SHOIQ extends SHIN , we need to restrict roles in number restrictions to
simple ones in order to yield a decidable logic (Horrocks et al., 1999).

shoiq-jar.tex; 23/07/2007; 15:15; p.6

A Tableau Decision Procedure for SHOIQ 7

The interpretation function ·I of an interpretation I = (∆I , ·I) maps, addi-
tionally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
for all o ∈ Co,]oI = 1

(∃R.C)I = {x ∈ ∆I | There is a y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

(6nR.C)I = {x ∈ ∆I |]RI(x,C) 6 n},
(>nR.C)I = {x ∈ ∆I |]RI(x,C) > n},

where, for a set M , we denote the cardinality of M by]M and RI(x,C) is
defined as {y | 〈x, y〉 ∈ RI and y ∈ CI}.

For C and D (possibly complex) concepts, C v̇ D is called a general
concept inclusion (GCI), and a finite set of GCIs is called a TBox. An inter-
pretation I satisfies a GCI C v̇ D if CI ⊆ DI , and I satisfies a TBox T if
I satisfies each GCI in T ; such an interpretation is called a model of T .

A concept C is called satisfiable with respect to a role hierarchy R and a
TBox T if there is a model I ofR and T with CI 6= ∅. Such an interpretation
is called a model of C w.r.t. R and T . A pair (T ,R) is called a SHOIQ
knowledge base and is said to be consistent if there exists a model of T and
R. A concept D subsumes a concept C w.r.t. (T ,R) (written C vR,T D)
if CI ⊆ DI holds in every model I of (T ,R). Two concepts C,D are
equivalent w.r.t. (T ,R), (written C ≡R,T D) if they are mutually subsuming
w.r.t. (T ,R). For an interpretation I, an individual x ∈ ∆I is called an
instance of a concept C iff x ∈ CI .

Note that the above definition of a SHOIQ knowledge base does not
include an ABox, i.e., a set of assertions of the form a : C or (a, b) : R, for
a and b nominals, C a concept and R a role, where an interpretation I sat-
isfies a : C if aI ∈ CI , and satisfies (a, b) : R if 〈aI , bI〉 ∈ RI . This is
because, in the presence of nominals, such assertions can be transformed
into semantically equivalent TBox axioms: a : C is equivalent to a v̇ C, and
(a, b) : R is equivalent to a v̇ ∃R.b. An ABox A is consistent with respect
to a knowledge base (T ,R) (i.e., there exists a model of A, T and R) if and
only if (T ∪ {a v̇ C | a : C ∈ A} ∪ {a v̇ ∃R.b | (a, b) : R ∈ A}, R) is
consistent (Baader et al., 2003).

As for other propositionally closed logics, subsumption and satisfiability
can be reduced to each other. We can also reduce satisfiability of concepts
w.r.t. a knowledge base to knowledge base consistency: C is satisfiable w.r.t.
(T ,R) if and only if (T ∪ {o v̇ C},R) is consistent, for o a nominal that
does not occur in C or T . As a consequence, in the remainder of this paper
and without loss of generality, we will restrict our attention to knowledge
base consistency.

shoiq-jar.tex; 23/07/2007; 15:15; p.7

8 Ian Horrocks and Ulrike Sattler

Finally, we did not choose to make a unique name assumption, i.e., two
nominals might refer to the same individual. We can, however, use an axiom
oi v̇ ¬oj to assert that nominals oi and oj do not refer to the same individual,
and we can use a set of such axioms for each oi 6= oj occurring in T to mimic
the effect of the unique name assumption. Similarly, the inference algorithm
presented below can easily be adapted to the unique name case by a suitable
initialisation of the inequality relation 6 .=.

3. A Tableau for SHOIQ

For ease of presentation, we assume all concepts to be in negation normal
form (NNF). Each concept can be transformed into an equivalent one in NNF
by pushing negation inwards, making use of de Morgan’s laws and the duality
between existential and universal restrictions, and between atmost and atleast
number restrictions, (Horrocks et al., 2000). For a concept C, we use nnf(C)
to denote the NNF of C, we use ¬̇C for the NNF of ¬C, and we use sub(C)
to denote the set of all sub-concepts of C (including C). For a knowledge base
(T ,R), we define the set of “relevant sub-concepts” cl(T ,R) as follows:

cl(T ,R) :=
⋃

Cv̇D∈T

cl(nnf(¬C tD),R) where

cl(E,R) := sub(E) ∪ {¬̇C | C ∈ sub(E)} ∪
{∀S.C | ∀R.C ∈ sub(E) or ¬̇∀R.C ∈ sub(E)

and S occurs in T or R}

When R is clear from the context, we use cl(T) instead of cl(T ,R). Note
that the set of relevant sub-concepts is closely related to the Fischer-Ladner
closure (Fischer and Ladner, 1979; Baader et al., 2003), and extends the no-
tion of sub-concepts to take into account the fact that the tableau expansion
rules may introduce some new concepts that do not occur syntactically in the
input knowledge base.

Next, we define a tableau as a useful abstraction of a model to make the
correctness proof of our algorithm more readable. Intuitively, a tableau con-
tains all the relevant information from a model, with the possible exception
of transitive roles and their super-roles. That is, in a tableau, we represent the
fact that t is an R-successor of s as 〈s, t〉 ∈ E(R), but we do not impose
that, if Trans(R) and 〈s, t〉, 〈t, u〉 ∈ E(R), then 〈t, u〉 ∈ E(R). To compen-
sate for these possibly missing edges, (P6) ensures that value restrictions on
(super-roles of) transitive roles are “pushed” correctly over relevant edges.
Compared with a tableau for SHIQ, the only difference is the addition of
(P12) and (P13) which ensure that nominals are handled correctly. Please
note that, like models, tableaux may be infinite, and for some knowledge
bases may even be necessarily infinite.

shoiq-jar.tex; 23/07/2007; 15:15; p.8

A Tableau Decision Procedure for SHOIQ 9

Definition 3 If (T ,R) is a SHOIQ knowledge base, and RT ,R the set of
roles occurring in T orR together with their inverses, a tableau T for (T ,R)
is defined to be a triple (S,L,E) such that: S is a set of individuals, L : S →
2cl(T) maps each individual to a set of concepts which is a subset of cl(T),
E : RT ,R → 2S×S maps each role in RT ,R to a set of pairs of individuals.
For all s, t ∈ S, C,C1, C2 ∈ cl(T), and R,S ∈ RT ,R, it holds that:

(P0) if C v̇ D ∈ T , then nnf(¬C tD) ∈ L(s),

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t),

(P5) if ∃R.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(R) and
C ∈ L(t),

(P6) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R v* S with Trans(R), then
∀R.C ∈ L(t),

(P7) if (>nS.C) ∈ L(s), then]{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)} > n,

(P8) if (6nS.C) ∈ L(s), then]{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)} 6 n,

(P9) if (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S), then {C, ¬̇C} ∩ L(t) 6= ∅,

(P10) if 〈s, t〉 ∈ E(R) and R v* S, then 〈s, t〉 ∈ E(S),

(P11) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)),

(P12) if o ∈ L(s) ∩ L(t) for some o ∈ Co, then s = t, and

(P13) for each o ∈ Co occurring in T , there is some s ∈ S with o ∈ L(s).

Please note that, in (P1), we use ¬C and not ¬̇C: this suffices for the
following lemma and makes the proof of Lemma 7 easier.

Lemma 4 A SHOIQ knowledge base (T ,R) is consistent iff there exists a
tableau for (T ,R).

Proof (sketch): This proof is analogous to the proof found in (Horrocks et al.,
1999). As for SHIQ, we construct a model I from a tableau by taking S
as its interpretation domain and adding the missing role-successorships for
transitive roles. Then, by induction on the structure of formulae, we prove
that, if C ∈ L(s), then s ∈ CI . Due to the restriction to simple roles in

shoiq-jar.tex; 23/07/2007; 15:15; p.9

10 Ian Horrocks and Ulrike Sattler

number restrictions, these additional roles-successorships do not lead to any
violation of atmost number restrictions. (P0) ensures that I is indeed a model
of T . (P6) ensures, as for SHIQ, that the additional role-successorships can
be added without violating any value restrictions. (P12) and (P13) ensure that
nominals are indeed interpreted as singletons.

For the converse, we can easily view any model as a tableau. 2

4. A Tableau Algorithm for SHOIQ

From Lemma 4, an algorithm which constructs a (finite) representation of a
(possibly infinite) tableau for a SHOIQ knowledge base can be used as a
decision procedure for consistency of SHOIQ knowledge bases, and thus to
decide satisfiability and subsumption of SHOIQ-concepts w.r.t. knowledge
bases. Such an algorithm will now be described in detail.

We first define and comment on the underlying data structure and cor-
responding operations. Next, we provide an example of the algorithm’s be-
haviour, and explain the techniques we have chosen to design a terminating,
sound, and complete algorithm. Finally, we prove that our algorithm indeed
is terminating, sound, and complete.

4.1. DEFINITION OF THE ALGORITHM

Definition 5 Let (T ,R) be a SHOIQ knowledge base. A completion graph
for (T ,R) is a directed graph G = (V,E, L, 6 .=) where each node x ∈ V is
labelled with a set

L(x) ⊆ cl(T) ∪Co ∪ {(6mR.C) | (6nR.C) ∈ cl(T) and m ≤ n}
and each edge 〈x, y〉 ∈ E is labelled with a set of role names L(〈x, y〉)
containing (possibly inverse) roles occurring in T or R. Additionally, we
keep track of inequalities between nodes of the graph with a symmetric binary
relation 6 .= between the nodes of G.

In the following, we often use R ∈ L(〈x, y〉) as an abbreviation for
〈x, y〉 ∈ E and R ∈ L(〈x, y〉).

If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a predeces-
sor of y. Ancestor is the transitive closure of predecessor, and descendant
is the transitive closure of successor. A node y is called an R-successor
of a node x if, for some R′ with R′ v* R, R′ ∈ L(〈x, y〉); x is called an
R-predecessor of y if y is an Inv(R)-successor of x. A node y is called a
neighbour (R-neighbour) of a node x if y is either a successor (R-successor)
or a predecessor (R-predecessor) of x.

For a role S and a node x in G, we define the set of x’s S-neighbours with
C in their label, SG(x,C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

shoiq-jar.tex; 23/07/2007; 15:15; p.10

A Tableau Decision Procedure for SHOIQ 11

G is said to contain a clash if

1. for some concept name A ∈ C and node x of G, {A,¬A} ⊆ L(x), or

2. for some role S and node x of G, (6nS.C) ∈ L(x) and there are n + 1
S-neighbours y0, . . . , yn of x with C ∈ L(yi) for each 0 ≤ i ≤ n and
yi 6

.= yj for each 0 ≤ i < j ≤ n, or

3. for some o ∈ Co, there are nodes x 6 .= y with o ∈ L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring in T , then the tableau al-
gorithm starts with the completion graph G = ({r1 . . . , r`}, ∅,L, ∅) with
L(ri) = {oi} for 1 ≤ i ≤ `. For 0 ≤ i ≤ `, each ri is called an initial
node. G is then expanded by repeatedly applying the expansion rules given
in Figures 1 and 2, stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we define some
terms and operations used in the (application of the) expansion rules, and
directly comment on them:

Nominal Nodes and Blockable Nodes We distinguish two types of nodes
in G, nominal nodes and blockable nodes. A node x is a nominal node if
L(x) contains a nominal. A node that is not a nominal node is a blockable
node. A nominal o ∈ Co is said to be new in G if no node in G has o in its
label.
Comment: like ABox individuals, nominal nodes can be arbitrarily intercon-
nected. In contrast, blockable nodes are only found in tree-like structures
rooted in nominal nodes; a branch of such a tree may simply end, possibly
with a blocked node (defined below) as a leaf, or have an edge leading to
a nominal node. In case a branch ends in a blocked node, we use standard
“unravelling” to construct a tableau from the completion graph, and thus the
resulting tableau will contain infinitely many copies of the nodes on the path
from the blocking node to the blocked node. This is why there must be no
nominal nodes on this path.

In the NN-rule, we use new nominals to create new nominal nodes—
intuitively, to fix the identity of certain constrained neighbours of nominal
nodes. As we will show, it is possible to fix an upper bound on the number
of nominal nodes that can be generated in a given completion graph; this
is crucial for termination of the construction, given that blocking cannot be
applied to nominal nodes.

Blocking A node x is label blocked if it has ancestors x′, y and y′ such
that

1. x is a successor of x′ and y is a successor of y′,

2. y, x and all nodes on the path from y to x are blockable,

shoiq-jar.tex; 23/07/2007; 15:15; p.11

12 Ian Horrocks and Ulrike Sattler

3. L(x) = L(y) and L(x′) = L(y′), and

4. L(〈x′, x〉) = L(〈y′, y〉).

In this case, we say that y blocks x. A node is blocked if either it is label
blocked or it is blockable and its predecessor is blocked.
Comment: blocking is defined as for SHIQ, with the only difference being
that, in the presence of nominals, we must take care that none of the nodes
between a blocking and a blocked one is a nominal node.

Generating and Shrinking Rules and Safe Neighbours The >-, ∃- and
NN-rules are called generating rules, and the 6-, 6o- and the o-rule are called
shrinking rules. An R-neighbour y of a node x is safe if (i) x is blockable or
if (ii) x is a nominal node and y is not blocked.
Comment: generating rules add new nodes to the completion graph, whereas
shrinking rules remove nodes—they merge all information concerning one
node into another one (e.g., to satisfy atmost number restrictions), and then
remove the former node. We need the safety of R-neighbours to ensure that
enough R-neighbours are generated for nominal nodes.

Pruning When a node y is merged into a node x, we “prune” the com-
pletion graph by removing y and, recursively, all blockable successors of y.
More precisely, pruning a node y (written Prune(y)) in G = (V,E, L, 6 .=)
yields a graph that is obtained from G as follows:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is blockable,
Prune(z);

2. remove y from V .

Comment: the tree-like structure of the blockable parts of G ensure that prun-
ing only removes sub-trees. If blockable parts of G did not have a tree-like
structure, e.g., if they were cyclical, then pruning might remove y’s predeces-
sor, the node x into which y is being merged, and/or the node on whose label
the rule responsible for the merge is operating.

Merging In some rules, we “merge” one node into another node. Intu-
itively, when we merge a node y into a node x, we add L(y) to L(x), “move”
all the edges leading to y so that they lead to x and “move” all the edges
leading from y to nominal nodes so that they lead from x to the same nom-
inal nodes; we then remove y (and blockable sub-trees below y) from the
completion graph. More precisely, merging a node y into a node x (written
Merge(y, x)) in G = (V,E, L, 6 .=) yields a graph that is obtained from G as
follows:

1. for all nodes z such that 〈z, y〉 ∈ E

shoiq-jar.tex; 23/07/2007; 15:15; p.12

A Tableau Decision Procedure for SHOIQ 13

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈z, x〉 to E and set L(〈z, x〉) =
L(〈z, y〉),

b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),
c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈

L(〈z, y〉)}, and

d) remove 〈z, y〉 from E;

2. for all nominal nodes z such that 〈y, z〉 ∈ E

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈x, z〉 to E and set L(〈x, z〉) =
L(〈y, z〉),

b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),
c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈

L(〈y, z〉)}, and

d) remove 〈y, z〉 from E;

3. set L(x) = L(x) ∪ L(y);

4. add x 6 .= z for all z such that y 6 .= z; and

5. Prune(y).

If y was merged into x, we call x a direct heir of y, and we use being an heir
of another node for the transitive closure of being a “direct heir”.
Comment: merging is the generalisation of what is often done to satisfy an
atmost number restriction for a node x in case that x has too many neighbours.
However, since we might need to merge nominal nodes that are related in
some arbitrary, non-tree-like way, merging gets slightly more tricky since we
must take care of all incoming and outgoing edges. The usage of “heir” is
quite intuitive since, after y has been merged into x, x has “inherited” all of
y’s properties, i.e., its label, its inequalities, and its incoming and outgoing
edges (except for any outgoing edges removed by Prune).

Level (of Nominal Nodes) Recall that o1, . . . , o` are all the nominals oc-
curring in the input TBox T . We define the level of a node inductively as
follows:

− each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ `, is of level 0, and

− a nominal node x is of level i if x is not of some level j < i and x has a
neighbour that is of level i− 1.

Comment: if a node with a lower level is merged into another node, the level
of the latter node may be reduced, but it can never be increased because Merge

shoiq-jar.tex; 23/07/2007; 15:15; p.13

14 Ian Horrocks and Ulrike Sattler

preserves all edges connecting nominal nodes. The completion graph initially
contains only level 0 nodes.

Strategy (of Rule Application) The expansion rules are applied according
to the following strategy:

1. the o-rule is applied with highest priority,

2. next, the 6o- and the NN-rule are applied, and they are applied first to
nominal nodes with lower levels (before they are applied to nodes with
higher levels).

3. all other rules are applied with a lower priority.

Comment: this strategy is necessary for termination, and in particular to en-
sure that the blockable parts of the completion graph remain tree-shaped.
In practice, more elaborate strategies may be used for efficiency reasons
(Horrocks and Patel-Schneider, 1999; Tsarkov and Horrocks, 2005).

We will now describe the tableau expansion rules and discuss the intuition
behind their definitions. Please note that the definition of successor and pre-
decessor and the way in which the expansion rules introduce new nodes make
sure that these relations reflect the origin of a node.

The rules in Figure 1 are very similar to the expansion rules for SHIQ
(Horrocks et al., 1999). The v̇-rule reflects the semantics of GCIs and corre-
sponds to (P0) of Definition 3 (of a SHOIQ tableau); the u-, t-, ∃- and
∀-rules directly reflect the semantics of the relevant concept constructors
and correspond to (P2)–(P5). A new feature of the ∃-rule with respect to
its SHIQ counterpart is that only safe S-neighbours are considered. This is
because a nominal node might have an unsafe S-neighbour (i.e., a blocked
S-predecessor) that would not correspond to an individual in the tableau and
so would not satisfy (P5).

The ∀+-rule corresponds to (P6) of Definition 3, and ensures that the
effects of universal restrictions are propagated as necessary in the presence
of non-simple roles.

The >-, 6- and ch-rules correspond to (P7)–(P9) of Definition 3. For a
concept (>nS.C) ∈ L(x), if x does not already have n suitable S-neighbours
(note that, as for the ∃-rule, only safe S-neighbours are considered), then the
>-rule generates them. To prevent the 6-rule from merging the new nodes,
it sets yi 6

.= yj for each 1 ≤ i < j ≤ n. Conversely, if (6nS.C) ∈ L(x)
and x has more than n S-neighbours that are labelled with C, then the 6-
rule chooses two of them that are not in 6 .= and merges them. Part (2) of the
definition of a clash takes care of the situation where the 6 .= relation makes
it impossible to merge any two S-neighbours of x, while the ch-rule ensures
that all S-neighbours of x are labelled with either C or ¬̇C.

shoiq-jar.tex; 23/07/2007; 15:15; p.14

A Tableau Decision Procedure for SHOIQ 15

v̇-rule: if C v̇ D ∈ T , and nnf(¬C tD) 6∈ L(x)
then set L(x) = L(x) ∪ {nnf(¬C tD)}

u-rule: if C1 u C2 ∈ L(x), and {C1, C2} 6⊆ L(x)
then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safe S-neighbour y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), and
2. there is an S-neighbour y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), and
2. there is some R with Trans(R) and R v* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then set L(y) = L(y) ∪ {∀R.C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(x), and
2.]SG(x, C) > n and there are two S-neighbours y, z of x with

C ∈ L(y) ∩ L(z), and not y 6 .= z

then 1. if y is a nominal node, then Merge(z, y)
2. else if z is a nominal node or an ancestor of y, then Merge(y, z)
3. else Merge(z, y)

ch-rule: if 1. (6nS.C) ∈ L(x), and
2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅

then set L(y) = L(y) ∪ {E} for some E ∈ {C, ¬̇C}

Figure 1. The tableau expansion rules for SHIQ.

Note that the generating rules are not applicable to blocked nodes. This
prevents the algorithm attempting to generate an infinite completion graph,
e.g., when {> v̇ ∃S.>} ⊆ T . The other rules are applicable to all nodes,

shoiq-jar.tex; 23/07/2007; 15:15; p.15

16 Ian Horrocks and Ulrike Sattler

o-rule: if for some o ∈ Co there are 2 nodes x, y with o ∈ L(x) ∩ L(y)
and not x 6 .= y,

then 1. if y is an initial node, then Merge(x, y)
2. else Merge(y, x).

NN-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is a blockable
S-predecessor y of x such that C ∈ L(y), and

2. there is no (6`S.C) ∈ L(x) such that ` 6 n

and there exist ` nominal S-neighbours z1, . . . , z` of x

with C ∈ L(zi) and zi 6
.= zj for all 1 ≤ i < j ≤ `.

then 1. guess m with 1 6 m 6 n and set L(x) = L(x) ∪ {(6mS.C)}
2. create m new nodes z1, . . . , zm with L(〈x, zi〉) = {S},

L(zi) = {C, oi} with oi ∈ Co new in G,
and zi 6

.= zj for 1 ≤ i < j ≤ m.

6o-rule: if 1. (6mS.C) ∈ L(x), x is a nominal node, and there is a blockable
S-neighbour y of x such that C ∈ L(y),

2. there exist m nominal S-neighbours z1, . . . , zm of x

with C ∈ L(zi) and zi 6
.= zj for all 1 ≤ i < j ≤ m, and

3. there is a nominal S-neighbour z of x

with C ∈ L(z), and not y 6 .= z

then Merge(y, z)

Figure 2. The three new expansion rules for SHOIQ.

even blocked nodes. This is necessary because, in the presence of inverse
roles, applying expansion rules to blocked nodes could result in information
being added to the labels of unblocked nodes, possibly resulting in a clash or
in previously blocked nodes becoming unblocked (Horrocks et al., 1999).

The rules in Figure 2 deal with nominals. The o-rule corresponds to (P12)
of Definition 3, and ensures that any two nodes having the same nominal in
their label are immediately merged. The combination of the NN-rule and the
6o-rule ensure that the blockable parts of the completion graph are always
tree shaped (which is necessary in order to ensure that pruning can only re-
move blockable sub-trees), and prevent the repeated generation and merging
of new nominal nodes. The blockable part of the graph could become non-
tree shaped if a blockable predecessor of a nominal node were merged with
another blockable neighbour. In order to prevent this situation arising, if a
nominal node x has a blockable S-predecessor y such that C ∈ L(y) and
(6nS.C) ∈ L(x), then the NN-rule guesses the exact number m 6 n of
S-neighbours of x with C in their label. It then generates m new nominal

shoiq-jar.tex; 23/07/2007; 15:15; p.16

A Tableau Decision Procedure for SHOIQ 17

S-neighbours z1, . . . , zm of x, with L(zi) = {C, oi}, where oi ∈ Co is a
new nominal, i.e., a nominal not already occurring in G. Finally, to prevent
these new nodes from being merged, it additionally sets zi 6

.= zj for each
1 ≤ i < j ≤ m. The 6o-rule ensures that each blockable S-neighbour of x
with C in its label is merged with one of the new nominal S-neighbours of
x. The 6o-rule is applied with a higher priority than the 6-rule, ensuring that
blockable neighbours of x cannot be merged with each other before being
merged into the new nominal nodes. An extended example of the action of
these rules, and the need for them, will be presented in Section 4.2.

We are now ready to finish the description of the tableau algorithm: A
completion graph is complete if it contains a clash, or when none of the rules
is applicable. If the expansion rules can be applied to G in such a way that
they yield a complete, clash-free completion graph, then the algorithm returns
“(T ,R) is consistent”, and “(T ,R) is inconsistent” otherwise.

4.2. EXAMPLE APPLICATION OF THE ALGORITHM

We consider three examples, starting with a rather easy one. First, consider
the TBox

T = {A v̇ ∃R.(A u ∃R.A),
A v̇ o
o v̇ A}.

Our tableau algorithm starts with a completion graph consisting of a single
node, r, with L(r) = {o}. After three applications of the v̇-rule, we obtain a
completion graph with

L(r) = {o,¬A t ∃R.(A u ∃R.A),¬A t o,¬o tA}.

The only way to apply thet-rule without causing clashes adds A and ∃R.(Au
∃R.A) to L(r). Next, we can choose to apply the ∃-rule, the u-rule and the ∃-
rule again, which yields two new nodes x0 and x1, where x0 is an R-successor
of r and x1 is an R-successor of x0, with

L(x0) = {A u ∃R.A,A,∃R.A},
L(x1) = {A}.

To these nodes, we can apply the v̇-, u-, and the t-rule, and we are free to
choose where we apply them first. If we apply these rules to x0 first, and in
such a way as to avoid clashes, the result is that

L(x0) ⊇ {A u ∃R.A,A,∃R.A, o,∃R.(A u ∃R.A)}.

Following our rule application strategy, we now need to apply the o-rule.
This rule merges x0 into r, makes r an R-neighbour of itself, and removes x1

shoiq-jar.tex; 23/07/2007; 15:15; p.17

18 Ian Horrocks and Ulrike Sattler

through pruning. As a result, we have a clash-free and complete completion
graph, and thus our algorithm returns “satisfiable”. Indeed, it corresponds to a
model I with a single element r, RI = {(r, r)}, and AI = oI = {r}. Please
note that, for termination, it was crucial that we removed x1: otherwise, we
could have generated an R-successor of x1 before adding o to L(x1) and
merging x1 with r, and we could have repeated this “generate-and-merge”
action without ever terminating.

Alternatively, we could have chosen to apply the v̇-rule to xi only w.r.t.
A v̇ ∃R.(A u ∃R.A), along with applications of the ∃-, u- and t-rules
such that clashes are avoided. This will lead to the generation of one or more
sequences of R-successor nodes that will eventually give rise to blocking
conditions. At this point, (clash avoiding) applications of the v̇- and t-rules
will lead to the addition of o to the label of some node, followed by an
application of the o-rule. Pruning will ensure that this does not lead to any
further applications of the ∃-rule, and further (clash avoiding) applications of
the v̇-, t- and o-rules will eventually cause all the nodes to collapse into a
clash-free and complete completion graph consisting, as before, of a single
node that is an R-neighbour of itself.

Finally, note that the eager application of the o-rule is necessary for ter-
mination in this latter case because adding o to a node label might prevent
blocking (there can be no nominal nodes on the path between blocking and
blocked nodes), and thus would allow us to continue with applications of the
∃-rule.

Our second example is motivated by the observation that the above men-
tioned “generate-and-merge” problem is very similar to the well-known “yo-
yo” effect,8 but that it was solved in a different manner: we use pruning to
prevent “yo-yo”-ing whereas, in other tableau algorithms such as the one
described in (Baader and Sattler, 2001), a strategy of rule applications suf-
ficed. Since pruning means discarding work which may subsequently need to
be repeated, we present the next example to demonstrate that it is indeed
necessary. Consider the following TBox, which is similar to the previous
one, but with the difference that, due to the universal value restriction, we
do not find the nominal o in a node’s label until after we have generated an
R-successor, by which time it is already too late to prevent a repetition of the
generate-and-merge cycle.

T = {A v̇ ∃R.(A u ∃R.(A u ∀R−.o)),
o v̇ A}.

Similarly to the first example, we start with a single node r with L(r) = {o}
and, after the application of a few rules, we have expanded our completion

8 For example, this effect led to the introduction of “fork elimination” in (Baader and
Hanschke, 1991) and is described in detail in (Baader and Sattler, 2001).

shoiq-jar.tex; 23/07/2007; 15:15; p.18

A Tableau Decision Procedure for SHOIQ 19

m2

x1

x′1

r1 r2

n1 n2x0x′0 x2m1

Figure 3. Completion graph of the third example.

graph to contain a chain r, x0, and x1 of R-successors with

L(r) ⊇ {o,A,∃R.(A u ∃R.(A u ∀R−.o))},
L(x0) ⊇ {A,∃R.(A u ∀R−.o)},
L(x1) ⊇ {A,∀R−.o}.

Application of the ∀-rule to x1 adds o to L(x0), and thus leads immediately to
the o-rule merging x0 into r and removing x1. Please note that not removing
x1 would potentially lead to non-termination: we could apply the v̇- and the
t-rule to x1, and thus find ∃R.(Au∀R−.o) in L(x1). Hence we would apply
the ∃-rule again, create an R-successor x2 of x1 with (A u ∀R−.o) ∈ L(x2),
and could continue this generation and merging forever.

Our third example is presented to demonstrate that the NN-rule is indeed
needed. Assume we want to decide the consistency of the following TBox:

T = {o1 v̇ (62R−
1 .A) u ∀R−

1 .∃S1.∃S−2 .(A u ∃R2.o2) u ∃R−
1 .A,

o2 v̇ (62R−
2 .A) u ∀R−

2 .∃S2.∃S−1 .(A u ∃R1.o1)}

We start the algorithm with two nodes, say r1 and r2, with oi ∈ L(ri). After
a few applications of the v̇- and the u-rule, we find

L(r1) ⊇ {o1, (62R−
1 .A),∀R−

1 .∃S1.∃S−2 .(A u ∃R2.o2),∃R−
1 .A, },

L(r2) ⊇ {o2, (62R−
2 .A),∀R−

2 .∃S2.∃S−1 .(A u ∃R1.o1)}.

Next, we apply the ∃-rule to ∃R−
1 .A ∈ L(r1). This creates an R−

1 -successor
x0 of r1, and we can thus apply the ∀-rule to ∀R−

1 .∃S1.∃S−2 .(Au ∃R2.o2) ∈
L(r1). Next, we can apply the ∃-rule three more times, and obtain a chain of
the following form: r1 has an R−

1 -successor x0, which has an S1-successor
x1, which has an S−2 -successor x2, which has an R2-successor x3 with o2 ∈
L(x3). Thus we need to apply the o-rule and merge x3 into r2, which becomes
an R2-successor of x2. As a consequence, the NN-rule becomes applicable

shoiq-jar.tex; 23/07/2007; 15:15; p.19

20 Ian Horrocks and Ulrike Sattler

r1

x1

x′1

n2m2 m1 x0x′0

x4

x3

n1x2

r2

Figure 4. Final completion graph of the third example.

and has highest priority. We guess m = 2 and create two new R−
2 -successors

n1, n2 of r2 with L(ni) = {ôi} and n1 6 .= n2. Now r2 has three R−
2 -

neighbours, and we apply the 6o-rule to r2 and choose to merge x2 into n1.
Figure 3 shows the completion graph in a slightly later stage, with arrows
that indicate successorship rather than whether a role name or an inverse
role labels an edge, and where an edge is dotted to indicate that it has been
removed during merging.

Since n1 is an R−
2 -neighbour of r2, the ∀-rule adds ∃S2.∃S−1 .∃R1.o1 to

L(n1). Three more applications of the ∃-rule yield a chain similar to the first
one: r2 has an R−

2 -successor n1, which has an S2-successor x′1, which has
an S−1 -successor x′0, which has an R1-successor y with o1 ∈ L(y). Next,
y is merged with r1, and thus r1 is an R1-successor of x′0. Again, as a
consequence, the NN-rule becomes applicable, and we guess again m = 2
and create two new R−

1 -successors m1, m2 of r1 with L(mi) = {õi} and
m1 6

.= m2; the resulting completion graph is shown in Figure 3. We apply
the 6o-rule to r1 and choose to merge both x′0 and x0 into m1.9 Please note
that the 6o-rule makes us indeed merge the blockable nodes x0 and x′0 into
nominal nodes.

After this, we can apply the ∀-rule to add ∃S1.∃S−2 .(Au∃R2.o2) to L(m2)
and ∃S2.∃S−1 .(A u ∃R1.o1) to L(n2). This yields two more chains between
r1 and r2, but then the tableau algorithm stops with a complete and clash-free
completion graph. This graph is shown in Figure 4, where the successors of
x3 and x4 are not shown explicitly, and we assume that the 6o-rule-rule has
merged x3’s successor into m2 and x4’s successor into n1.

9 Moreover, pruning causes x1 to be removed, but a similar path will be re-built and merged
into r2 and either n1 or n2.

shoiq-jar.tex; 23/07/2007; 15:15; p.20

A Tableau Decision Procedure for SHOIQ 21

Let us point out three important properties of our algorithm that were
crucial for correctness and termination in this last example: (1) As we have il-
lustrated in the introduction, we need to take care of the relations between the
finite, arbitrarily complex relational structure around instances of the “origi-
nal” nominals oi and the tree-like structure induced by blockable nodes. This
is due to the facts that a blocking situation represents an infinite tree, and that
we need to take care that atmost restrictions on nominal nodes are satisfied
even when considering this infinite tree explicitly. The details will become
more clear in the proof of Lemma 7 when we construct a tableau from a
complete and clash-free completion graph. We have chosen the NN-rule as a
means to take care of these relations. (2) We can apply the NN-rule only to a
nominal node r and some (6nR.C) ∈ L(r) if there is a blockable node x that
has r as its R−-successor. Hence we could only apply it to r1 after we merged
the blockable node y into it. Also, the resulting new nominal nodes will never
be pruned since pruning only removes blockable nodes, and they will never
be merged due to the use of 6 .=. (3) The newly created nominal nodes n` and
mj made us merge existing and newly created R−

i -neighbours of ri imme-
diately into n` and mj . The explicit inequalities between these new nominal
nodes n`, mj and the 6o-rule are crucial to prevent another kind of “yo-
yo” effect: without them, when applying the 6-rule to (62R−

i .A) ∈ L(ri),
we could have merged n2 into n1 and m2 into m1 and—even with some
modifications to our algorithm, e.g., to make the blockable sibling node of
n` and mj a nominal node—the ∀-rule would add ∃Si.∃S−j .(A u ∃Rj .oj) to
each Ri-neighbour of ri, thereby continuously causing new paths to be built
from ri to rj , which we could have merged in a similar way, thus causing
non-termination.

4.3. PROOF OF THE ALGORITHM’S CORRECTNESS AND TERMINATION

Lemma 6 When started with a SHOIQ knowledge base (T ,R), the tableau
algorithm terminates.

Proof: Let

− m := |cl(T)|,

− k the number of roles and their inverses in T and R,

− n the maximal number in number restrictions occurring in cl(T)

− λ := 22m+k, and

− o1, . . . , o` be all the nominals occurring in T .

The algorithm constructs a graph that consists of a set of arbitrarily intercon-
nected nominal nodes, and “trees” of blockable nodes with each such tree

shoiq-jar.tex; 23/07/2007; 15:15; p.21

22 Ian Horrocks and Ulrike Sattler

rooted in a nominal node, and where branches of these trees might end in an
edge leading to a nominal node.

Termination is a consequence of the usual SHIQ conditions with respect
to the blockable tree parts of the graph, plus the fact that there is a bound on
the number of new nominal nodes that can be added to G by the NN-rule.
More precisely, termination is due to the following five properties, the first
of which establishes that the blockable parts of the graph are indeed tree-
shaped, the second, third and fourth of which are very similar to those used in
the termination proof for SHIQ given in (Horrocks et al., 1999), and the last
of which establishes an upper bound on the number of new nominal nodes
generated by the NN-rule.

1. The structure among blockable nodes is tree-shaped. More precisely, no
blockable node can have more than one predecessor node.

Let us assume that at some stage during rule application the structure
among blockable nodes is indeed tree-shaped but that, after applying one
of the rules, there is some blockable node x with predecessors y1 and y2

such that y1 6= y2. This can only happen as a result of an application of a
shrinking rule: the generating rules always generate new “leaf” nodes,
and the remaining rules do not change the structure of the graph. In
fact, it is easy to see that this can only happen if y1 and y2 each have
blockable successors, one of which is x and one of which is, say, x′, and
an application of the 6-rule causes x′ to be merged into x; this in turn
implies the existence of some node z and role R such that both x and
x′ are R-neighbours of z (6nR.C) ∈ L(z), and C ∈ L(x) ∩ L(x′).
Moreover, z must be a

− nominal node: otherwise the structure among blockable nodes is
already non-tree-shaped; and

− z must be a successor of at least one of x or x′: otherwise, either
y1 = y2 = z or the structure among blockable nodes is already
non-tree-shaped since x or x′ has two different predecessors.

As a consequence, there must be some m 6 n such that (6mR.C) ∈
L(z) and z has m nominal R-neighbours z1, . . . , zm with C ∈ L(zi)
and zi 6

.= zj for all 1 ≤ i < j ≤ m: otherwise the NN-rule would be
applicable to z and, according to our strategy would be applied before
the 6-rule could merge x and x′. Next, the 6o-rule would be applicable
with highest priority and would merge both x and x′ in one or other
of z1, . . . , zm. Thus, the 6o-rule together with the high priority of the
NN-rule and the 6o-rule ensure that the tree shape among blockable is
preserved.

shoiq-jar.tex; 23/07/2007; 15:15; p.22

A Tableau Decision Procedure for SHOIQ 23

2. All but the shrinking rules strictly extend the completion graph by adding
new nodes (and edges) or extending node labels, while neither removing
nodes (or edges) nor removing elements from node labels. This is an
obvious consequence of the definition of the rules.

3. New nodes are only added by the generating rules, and each of these rules
can be triggered at most once for a given concept in the label of a given
node x.

This is obvious if no shrinking rule is applied. If such a rule is applied,
then, intuitively, this observation is due to the fact that, if an S-neighbour
y of x is merged into a node z, then L(y) is added to L(z), z “inherits”
all of the inequalities from y, and either z is an S-neighbour of x (if
x is a nominal node or if y is a successor of x), or x is removed from
the graph by an application of Prune(x) (if x is a blockable node and
x is a successor of y). Since pruning only removes blockable nodes,
and since these form a tree-structure (as we have shown in property 1
above), we remove neither x nor any of its predecessors. More precisely,
we distinguish the following three cases.

− For the ∃-rule, if it is applied to a concept ∃S.C ∈ L(x), then a
new node y of x is created with L(〈x, y〉) = S and L(y) = C.
Subsequently, either x is removed from the graph, or x has an S-
neighbour y′ which is an heir of y, i.e., with C ∈ L(y′). Hence the
∃-rule is no longer applicable to ∃S.C ∈ L(x).

− For the >-rule, if it is applied to a concept (>nS.C) ∈ L(x), then n
new nodes y1, . . . , yn are created with L(〈x, yi〉) = {S}, L(yi) =
{C}, and yi 6

.= yj for 1 ≤ i < j ≤ n. Subsequently, either x is
removed from the graph, or x has n S-neighbours y′1, . . . , y

′
n which

are heirs of the yi, i.e., C ∈ L(y′i) and y′i 6
.= y′j for 1 ≤ i < j ≤ n.

Hence the >-rule is no longer applicable to (>nS.C) ∈ L(x).

− For the NN-rule, if it is applied to a concept (6nS.C) ∈ L(x), then
for some m with 1 6 m 6 n, m new nominal nodes y1, . . . , ym

are created with L(〈x, yi〉) = {S}, L(yi) = {C}, yi 6
.= yj for

1 ≤ i < j ≤ m, and (6mS.C) ∈ L(x). Subsequently, either x is
removed from the graph, or (6mS.C) remains in L(x) and x has m
S-neighbours y′1, . . . , y

′
m which are heirs of the yi, i.e., C ∈ L(y′i)

and y′i 6
.= y′j for 1 ≤ i < j ≤ m. Hence the NN-rule is no longer

applicable to (6nS.C) ∈ L(x).

As for the SHIQ case, a generating rule being applied to a concept in the
label of a node x can generate at most n blockable successors. As there
are at most m concepts in L(x), a node can have at most mn blockable
successors.

shoiq-jar.tex; 23/07/2007; 15:15; p.23

24 Ian Horrocks and Ulrike Sattler

4. If a node x has a blockable successor y, then y was added through the
application of a generating rule to x. That is, blockable nodes are not
inherited.

This is a direct consequence of the usage of pruning in the definition of
merging.

(3+4) together imply that, over time, each node can have at most mn blockable
successors. That is, at any time during a run of the algorithm, for each
node x, there are at most mn nodes that have, at some point, been a
blockable successor of x.

5. As for SHIQ (Horrocks et al., 1999), the blocking condition ensures that
the length of a path consisting entirely of blockable nodes is bounded by
λ. This is due to the fact that, for x a blockable node, L(x) ⊆ cl(T) and
thus does not contain any nominals, neither those contained in the input
nor those added later by the NN-rule.

6. Let us use root node for those nominal nodes that are initial nodes or
that are generated by the NN-rule. The number of root nodes generated is
bounded by O(`(mn)λ).

Firstly, we observe that new nominals are only introduced by the NN-rule,
and that the NN-rule is only applicable after a nominal has been added to
the label of a blockable node x in a branch of one of the blockable “trees”
rooted in a nominal node; otherwise, it is not possible that a blockable
node has a nominal node as a successor. The only nominals that can be
added to the label of a blockable node are those that occur in cl(T), i.e.,
o1, . . . , o`, and such an addition is the only way we can have nominal
nodes that are not root nodes.

Secondly, we observe that root nodes are never “indirectly” removed
through pruning: a root node y can be merged into another node z, but
only if z is a root node, and then z inherits y’s root node neighbours.

Now let us consider the blockable node x to whose label one of the oi

was added: by definition, x is a level 0 node, and the o-rule—which is
applied with top priority—will ensure that x is immediately merged with
a root node, i.e., an existing level 0 node ri having the same nominal in
its label.

As a consequence of this merging of x with ri, two things might happen:
(a) the NN-rule might become applicable to ri, and (b) the predecessor
x′ of x might be merged into a neighbour of ri by the 6o-rule—please
note that, due to the pruning part of merging, this cannot happen to a
successor of x and, by definition of the 6o-rule, x′ is merged into a nom-
inal neighbour of ri, say n1. Repeating this argument, it is possible that

shoiq-jar.tex; 23/07/2007; 15:15; p.24

A Tableau Decision Procedure for SHOIQ 25

all ancestors of x are merged into root nodes. Moreover, as the maximum
length of a sequence of blockable nodes is λ, blockable ancestors of x can
only be merged into root nodes of level below λ. This together with the
precondition of the NN-rule implies that we can only apply the NN-rule
to root nodes of level below λ.

Concerning (a), as we have seen above, the strategy of rule application
implies that the NN-rule is applied to ri before the 6- or the 6o-rule,
thereby ensuring that any predecessor x′ of x is indeed merged into a
nominal node. Moreover, when the NN-rule has been applied to a concept
(6nR.C) in the label of a node y, the way in which edges are “inherited”
in the definition of merging and the fact that nominal nodes are not pruned
ensures that it can never be applied again to (6nR.C) in the label of y or
an heir of y.

The remainder is a simple counting exercise: the NN-rule can be applied
at most m times to a given root node, and each such application can gen-
erate at most n new (root) nodes. As G was initialised with ` (root) nodes,
the NN-rule can be applied at most m times to each level 0 node, and each
application generates at most n new (root) nodes, we can generate at most
`mn level 1 (root) nodes; similarly, the NN-rule can be applied at most
m times to each level i root node to generate n new (root) nodes, thereby
generating at most `(mn)i+1 level i + 1 (root) nodes. As the NN-rule is
only applicable to root nodes with level < λ and the level of a node or its
heirs can only decrease, this gives an upper bound of

`m
∑

06i<λ

(mn)i = `m
1−mnλ

1−mn

on the number of times that the NN-rule can be applied, and an upper
bound of

`
∑

0<i6λ

(mn)i = `
1−mnλ+1

1−mn
− `

on the number of root nodes that can be generated.

To sum up, there is a bound O(`(mn)λ) on the number of root nodes
that can be generated, and this, along with the fact that, over time, they can
have only a bounded number of blockable successors and with the usual
argument for the tree-shaped, blockable parts of G, implies a bound on the
number of blockable nodes that can be generated. Hence any sequence of rule
applications must eventually result in G being complete. 2

Lemma 7 If, when started with a SHOIQ knowledge base (T ,R), the ex-
pansion rules can be applied in such a way as to yield a complete and clash-
free completion graph, then there exists a tableau for (T ,R).

shoiq-jar.tex; 23/07/2007; 15:15; p.25

26 Ian Horrocks and Ulrike Sattler

Proof: Let G = (V,E, L, 6 .=) be a complete and clash-free completion graph
yielded by the expansion rules when started with (T ,R). We can obtain a
tableau T = (S,L′,E) for (T ,R) from G as described below.

First, let us define paths. For a label blocked node x ∈ V , let b(x) de-
note a node that blocks x. A path is a sequence of pairs of blockable nodes
of G of the form p = 〈(x0, x

′
0), . . . , (xn, x′n)〉. For such a path, we de-

fine Tail(p) := xn and Tail′(p) := x′n. With 〈p|(xn+1, x
′
n+1)〉 we denote

the path 〈(x0, x
′
0), . . . , (xn, x′n), (xn+1, x

′
n+1)〉. The set Paths(G) is defined

inductively as follows:

− For each blockable node x of G that is a successor of a nominal node,
〈(x, x)〉 ∈ Paths(G), and

− For a path p ∈ Paths(G) and a blockable successor y of Tail(p):

• if y is not blocked, then 〈p|(y, y)〉 ∈ Paths(G), and

• if y is blocked, then 〈p|(b(y), y)〉 ∈ Paths(G).

Please note that, due to the construction of Paths, all nodes occurring in a
path are blockable and, for p ∈ Paths(G) with p = 〈p′|(x, x′)〉, x is not
blocked, x′ is blocked iff x 6= x′, and the predecessor of x′ in G is not
blocked. Furthermore, the blocking condition implies L(x) = L(x′).

It is easy to see that, when G does not contain any blocks, the elements
of Paths(G) are in direct correspondence with the blockable nodes in V : for
each blockable node x ∈ V there is exactly one path p ∈ Paths(G) such that
Tail(p) = Tail′(p) = x. When G contains one or more blocks, it constitutes a
finite representation of an infinite tableau: we can think of each blocked node
x as being identified with the node b(x) that is blocking x, and Paths(G) as
being obtained by repeatedly “unravelling” the resulting cycles. This is made
possible by the fact that both x and b(x) must occur in the same blockable
tree-shaped part of the graph.

The reason for using pairs of nodes in a path is that there might be a
node z with two successors x and y, both of which are blocked by the same
node, i.e., b(x) = b(y). If paths only mentioned the blocking node, then the
paths corresponding to the two successors would be the same, and (P7) of
Definition 3 might not be satisfied in the resulting tableau (e.g., if x and y are
both S-successors of z, with C ∈ L(x), C ∈ L(y) and (>2S.C) ∈ L(z)).

Next, we use Nom(G) for the set of nominal nodes in G, and define a
tableau T = (S,L′,E) from G as follows.

shoiq-jar.tex; 23/07/2007; 15:15; p.26

A Tableau Decision Procedure for SHOIQ 27

S=Nom(G) ∪ Paths(G)

L′(p) =
{

L(Tail(p)) if p ∈ Paths(G)
L(p) if p ∈ Nom(G)

E(R) = {〈p, q〉 ∈ Paths(G)× Paths(G) |
q = 〈p|(x, x′)〉 and x′ is an R-successor of Tail(p) or
p = 〈q|(x, x′)〉 and x′ is an Inv(R)-successor of Tail(q)} ∪

{〈p, x〉 ∈ Paths(G)× Nom(G) | x is an R-neighbour of Tail(p)} ∪
{〈x, p〉 ∈ Nom(G)× Paths(G) | Tail(p) is an R-neighbour of x} ∪
{〈x, y〉 ∈ Nom(G)× Nom(G) | y is an R-neighbour of x}

We already commented above on S, and L′ is straightforward. Unfor-
tunately, E is slightly cumbersome because we must distinguish between
blockable and nominal nodes.
CLAIM: T is a tableau for (T ,R).

It suffices to prove that T satisfies each (Pi) of Definition 3

− (P0) to (P3) are trivially implied by the definition of L′ and the fact that
G is a complete completion graph (CCG).

− for (P4), consider a tuple 〈s, t〉 ∈ E(R) with ∀R.C ∈ L′(s). We distin-
guish four different cases:

• if 〈s, t〉 ∈ Paths(G) × Paths(G), then ∀R.C ∈ L(Tail(s)) and
either

1. Tail′(t) is an R-successor of Tail(s), and G being a CCG im-
plies C ∈ L(Tail′(t)), and either Tail′(t) = Tail(t) or the
blocking condition implies L(Tail′(t)) = L(Tail(t)); or

2. Tail′(s) is an Inv(R)-successor of Tail(t), and hence either
Tail′(t) = Tail(t) or the blocking condition implies ∀R.C ∈
L(Tail′(s)), and thus G being a CCG implies that C ∈ L(Tail(t)).

• if 〈s, t〉 ∈ Nom(G) × Nom(G), then ∀R.C ∈ L(s) and t is an
R-neighbour of s. Hence G being a CCG implies C ∈ L(t).

• if 〈s, t〉 ∈ Nom(G)×Paths(G), then ∀R.C ∈ L(s) and Tail(t) is
an R-neighbour of s. Hence G being a CCG implies C ∈ L(Tail(t)).

• if 〈s, t〉 ∈ Paths(G)×Nom(G), then ∀R.C ∈ L(Tail(s)) and t is
an R-neighbour of Tail(s). Hence non-applicability of the ∀-rule
implies C ∈ L(t).

In all four cases, by definition of L′, we have C ∈ L′(t).

shoiq-jar.tex; 23/07/2007; 15:15; p.27

28 Ian Horrocks and Ulrike Sattler

− for (P5), consider some s ∈ S with ∃R.C ∈ L′(s).

• If s ∈ Paths(G), then ∃R.C ∈ L(Tail(s)), Tail(s) is not blocked,
and G being a CCG implies the existence of an R-neighbour y of
Tail(s) with C ∈ L(y).

∗ If y is a nominal node, then y ∈ S, C ∈ L′(y), and 〈s, y〉 ∈
E(R).

∗ If y is blockable and a successor of Tail(s), then 〈s|(ỹ, y)〉 ∈
S, for ỹ = y or ỹ = b(y), C ∈ L′(〈s|(ỹ, y)〉), and 〈s, 〈s|(ỹ, y)〉〉
∈ E(R).

∗ If y is blockable and a predecessor of Tail(s), then s = 〈p|(y, y)|
(Tail(s),Tail′(s))〉, C ∈ L′(〈p|(y, y)〉), and 〈s, 〈p|(y, y)〉〉 ∈
E(R).

• If s ∈ Nom(G), then G being a CCG implies the existence of
some R-successor x of s with C ∈ L(x).

∗ If x is a nominal node, then 〈s, x〉 ∈ E(R) and C ∈ L′(x).
∗ If x is a blockable node, then x is a safe R-neighbour of s and

thus not blocked. Hence there is a path p ∈ Paths(G) with
Tail(p) = x, 〈s, p〉 ∈ E(R) and C ∈ L′(p).

− (P6) is analogous to (P4).

− for (P7), consider some s ∈ S with (>nR.C) ∈ L′(s).

• if s ∈ Nom(G), then G being a CCG implies the existence of n
safe R-neighbours y1, . . . , yn of s, with yj 6= yj for each i 6= j,
and C ∈ L(yi) for each 1 ≤ i ≤ n. By construction, each yi

corresponds to a ti ∈ S with ti 6= tj , for each i 6= j:

∗ if yi is blockable, then it cannot be blocked since it is a safe
R-neighbour of s. Hence there is a path 〈p|(yi, yi)〉 ∈ S and
〈s, 〈p|(yi, yi)〉〉 ∈ E(R).

∗ if yi is a nominal node, then 〈s, yi〉 ∈ E(R).

• if s ∈ Paths(G), then G being a CCG implies the existence of n
R-neighbours y1, . . . , yn of Tail(s), with yj 6= yj for each i 6= j,
and C ∈ L(yi) for each 1 ≤ i ≤ n. By construction, each yi

corresponds to a ti ∈ S, with ti 6= tj for each i 6= j:

∗ if yi is blockable, then it can be blocked if it is a successor of
Tail(s). In this case, the “pair” construction in our definition
of paths ensures that, even if b(yi) = b(yj), for some i 6= j,
we still have 〈p|(b(yi), yi)〉 6= 〈p|(b(yj), bj)〉.

∗ if yi is a nominal node, then 〈s, yi〉 ∈ E(R).

shoiq-jar.tex; 23/07/2007; 15:15; p.28

A Tableau Decision Procedure for SHOIQ 29

Hence all ti are different and, by construction, C ∈ L′(ti), for each
1 ≤ i ≤ n.

− for (P8), consider some s ∈ S with (6nR.C) ∈ L′(s). Clash-freeness
implies the existence of atmost n R-neighbours yi of s with C ∈ L(yi).
By construction, each t ∈ S with 〈s, t〉 ∈ E(R) corresponds to an
R-neighbour yi of s or Tail(s), and none of these R-neighbours gives
raise to more than one such yi. Moreover, since L′(t) = L(yi), (P8) is
satisfied.

− (P9) is satisfied due to G being a CCG and the fact that each t ∈ S
with 〈s, t〉 ∈ E(R) corresponds to an R-neighbour of s (in case s ∈
Nom(G)) or of Tail(s) (in case s ∈ Paths(G)).

− (P10) and (P11) are immediate consequences of the definition of “R-
successor” and “R-neighbour”.

− (P12) is due to G being a CCG and the fact that nominal nodes are not
“unravelled”.

− (P13) is due to the way in which G was initialised, the fact that nominal
nodes are never removed through pruning, and the fact that the labels of
merged nodes are merged. 2

Lemma 8 If there exists a tableau of a SHOIQ knowledge base (T ,R),
then, when started with (T ,R), the expansion rules can be applied in such a
way as to yield a complete and clash-free completion graph.

Proof: Given a tableau T = (S,L′,E) for (T ,R), we can apply the non-
deterministic rules, i.e., the t-, choose-, 6-, 6o-, and NN-rule, in such a
way that we obtain a complete and clash-free completion graph: inductively
with the generation of new nodes, we define a mapping π from nodes in the
completion graph to individuals in S in such a way that the following four
properties hold throughout the run of the tableau algorithm:

(C1) for each node x, L(x) ∩ cl(T ,R) ⊆ L′(π(x)),

(C2) for each pair of nodes x, y and each role R, if y is an R-successor of x,
then 〈π(x), π(y)〉 ∈ E(R),

(C3) x 6 .= y implies π(x) 6= π(y), and

(C4) if (6nS.C) ∈ L(x) \ cl(T ,R), then]ST (π(x), C) = n,

where ST (s, C) = {t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L′(t)}.
We first explain why a completion graph satisfying (C1) to (C4) is clash-

free: due to (C1), (P1), and the fact that node labels outside of cl(T ,R) are

shoiq-jar.tex; 23/07/2007; 15:15; p.29

30 Ian Horrocks and Ulrike Sattler

either new nominals or atmost number restrictions, the completion graph does
not contain a clash of the first kind; as a consequence of (C1) to (C3) and (P8)
or as a consequence of (C2) to (C4), the completion graph does not contain a
clash of the second kind; and as a consequence of (C1), (C3) and (P12), the
completion graph does not contain a clash of the third kind.

Next, we show by induction on the number of rule applications how the
expansion rules can be applied in such a way that (C1) to (C4) are preserved.
We initialise π as follows: the initial completion graph contains, for each
nominal oi in T , a node ri with L(ri) = {oi}, and thus we set π(ri) = si

for si ∈ S with oi ∈ L′(si). (P13) ensures that such si do indeed exist.
Obviously, π satisfies (C1) to (C4).

For the induction step, it is not hard to see that (C4) may only be violated
through an application of the NN-rule. By definition of the semantics, the
application of the u- and the v̇-rule preserve (C1), and all other conditions
are preserved trivially. By definition of the semantics, we can choose to apply
the t-rule such that (C1) is preserved, and again all other conditions are
preserved trivially. For the ∃- and the >-rule, we need to extend π to the
newly introduced nodes—by definition of the semantics, this is possible in
such a way that (C1) to (C3) are preserved, and the proof is analogous to
the one in (Horrocks et al., 1999). Similarly, the fact that we can apply all
remaining rules from Figure 1 without violating (C1) to (C3) can be found in
(Horrocks et al., 1999). Thus we concentrate on the new rules in Figure 2.

If the o-rule is applied to x and y with o ∈ L(x) ∩ L(y), the fact that
the NN-rule is the only one introducing new nominals and that it always
introduces only new ones implies that o ∈ cl(T ,R). Hence (C1) implies
that o ∈ L′(π(x)) ∩ L′(π(y)), and thus (P12) implies π(x) = π(y). As a
consequence, applying the o-rule preserves (C1) to (C3).

If the NN-rule is applied to x with (6nS.C) ∈ L(x), let m′ =]ST (π(x),
C) and note that the preconditions of the NN-rule imply that it has not been
applied before to (6nS.C) ∈ L(x). As a consequence, (6nS.C) ∈ cl(T ,R),
and thus (C1) and (P8) imply that m′ ≤ n. Hence we can apply it with
m := m′ and extend π in the obvious way to map each newly introduced
node to a different member of ST (π(x), C) without violating (C1) to (C4).

If the 6o-rule is applied to (6nS.C) ∈ L(x), y, and zi as in the pre-
condition of the 6o-rule, then (C1) together with (P8) or (C4) imply that
n ≤]ST (π(x), C). Hence (C2) and the inequalities zi 6

.= zj for all i < j ≤ n
together with (C3) imply π(y) = π(zi) for some 1 ≤ i ≤ m, and thus we
can apply the 6o-rule in such a way that it preserves (C1) to (C4).

Summing up, we can use T to steer the application of the non-deterministic
rules to preserve (C1) to (C4), thereby avoiding clashes. Due to Lemma 6, this
leads to a complete and clash-free completion graph. 2

shoiq-jar.tex; 23/07/2007; 15:15; p.30

A Tableau Decision Procedure for SHOIQ 31

As an immediate consequence of Lemmas 4, 6, 7, and 8, the tableau algo-
rithm always terminates, and answers with “(T ,R) is consistent” iff (T ,R)
is consistent. As mentioned in Section 2, satisfiability and (non)subsumption
can be reduced to knowledge base consistency.

Theorem 9 The tableau algorithm presented in Definition 5 is a decision
procedure for consistency of SHOIQ knowledge bases, and for satisfiability
and subsumption of SHOIQ concepts w.r.t. knowledge bases.

5. Outlook

In this paper, we have presented what is, to the best of our knowledge, the
first goal-directed decision procedure for SHOIQ (and so SHOIN). Given
that SHOIQ is NExpTime-complete (Tobies, 2000; Pacholski et al., 1997),
it is clear that, in the worst case, any decision procedure will behave very
badly, i.e., not terminate in practice. Our algorithm is far from being optimal
in the worst case: it creates, in a non-deterministic way, a structure of size
double exponential in the size of the input. However, it is designed to behave
well in many typically encountered cases, and to exhibit a “pay as you go”
behaviour: if an input knowledge base and concept(s) do not involve any one
of inverse roles, number restrictions, or nominals, then the NN-rule will not
be applied, and the corresponding non-deterministic guessing is avoided. This
is even true for inputs that do involve all of these three constructors, but only
in a “harmless” way. Hence, our SHOIQ algorithm can be implemented to
perform just as well on SHIQ knowledge bases as state-of-the-art DL rea-
soners for SHIQ (Horrocks and Patel-Schneider, 1998; Haarslev and Möller,
2001b); it has, in fact, already been implemented in the well known Fact++
and Pellet systems, and has been shown to work well in practice (Tsarkov and
Horrocks, 2006; Sirin et al., 2006; Gardiner et al., 2006).

References

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (eds.): 2003,
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press.

Baader, F. and P. Hanschke: 1991, ‘A Schema for Integrating Concrete Domains into Concept
Languages’. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91). pp.
452–457.

Baader, F. and B. Hollunder: 1991, ‘A Terminological Knowledge Representation System with
Complete Inference Algorithm’. In: Proc. of the Workshop on Processing Declarative
Knowledge (PDK’91), Vol. 567 of Lecture Notes in Artificial Intelligence. pp. 67–86,
Springer.

shoiq-jar.tex; 23/07/2007; 15:15; p.31

32 Ian Horrocks and Ulrike Sattler

Baader, F. and U. Sattler: 2001, ‘An Overview of Tableau Algorithms for Description Logics’.
Studia Logica 69(1), 5–40.

Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein: 2004, ‘OWL Web Ontology Language Reference’. W3C
Recommendation. Available at http://www.w3.org/TR/owl-ref/.

Blackburn, P. and J. Seligman: 1995, ‘Hybrid Languages’. J. of Logic, Language and
Information 4, 251–272.

Brachman, R. J., D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and A. Borgida:
1991, ‘Living with CLASSIC: When and how to Use a KL-ONE-like Language’. In: J. F.
Sowa (ed.): Principles of Semantic Networks. Morgan Kaufmann, Los Altos, pp. 401–456.

Bresciani, P., E. Franconi, and S. Tessaris: 1995, ‘Implementing and Testing Expressive De-
scription Logics: Preliminary Report’. In: Proc. of the 1995 Description Logic Workshop
(DL’95). pp. 131–139.

Buchheit, M., F. M. Donini, and A. Schaerf: 1993, ‘Decidable Reasoning in Terminological
Knowledge Representation Systems’. J. of Artificial Intelligence Research 1, 109–138.

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati: 1998, ‘Description
Logic Framework for Information Integration’. In: Proc. of the 6th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’98). pp. 2–13.

De Giacomo, G.: 1995, ‘Decidability of Class-Based Knowledge Representation Formalisms’.
Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La
Sapienza”.

De Giacomo, G. and M. Lenzerini: 1994, ‘Boosting the correspondence between description
logics and propositional dynamic logics (extended abstract)’. In: Proc. of the 12th Nat.
Conf. on Artificial Intelligence (AAAI-94). AAAI Press.

De Giacomo, G. and M. Lenzerini: 1996, ‘TBox and ABox Reasoning in Expressive Descrip-
tion Logics’. In: Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’96). pp. 316–327.

Donini, F. M., M. Lenzerini, and D. Nardi: 1990, ‘Using Terminological Reasoning in Hybrid
Systems’. AI Communications—The Eur. J. on Artificial Intelligence 3(3), 128–138.

Fischer, M. J. and R. E. Ladner: 1979, ‘Propositional Dynamic Logic of Regular Programs’.
J. of Computer and System Sciences 18, 194–211.

Gardiner, T., D. Tsarkov, and I. Horrocks: 2006, ‘Framework For an Automated Compari-
son of Description Logic Reasoners’. In: Proc. of the 2006 International Semantic Web
Conference (ISWC 2006), Vol. 4273 of Lecture Notes in Computer Science. pp. 654–667,
Springer.

Grädel, E.: 2001, ‘Why are modal logics so robustly decidable?’. In: G. Paun, G. Rozenberg,
and A. Salomaa (eds.): Current Trends in Theoretical Computer Science. Entering the 21st
Century. World Scientific, pp. 393–408.

Haarslev, V. and R. Möller: 2001a, ‘The Description Logic ALCNHR+ Extended with Con-
crete Domains: A Practically Motivated Approach’. In: Proc. of the Int. Joint Conf. on
Automated Reasoning (IJCAR 2001), Vol. 2083 of Lecture Notes in Artificial Intelligence.
pp. 29–44, Springer.

Haarslev, V. and R. Möller: 2001b, ‘RACER System Description’. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), Vol. 2083 of Lecture Notes in Artificial
Intelligence. pp. 701–705, Springer.

Hladik, J. and J. Model: 2004, ‘Tableau Systems for SHIO and SHIQ’. In: Proc. of the
2004 Description Logic Workshop (DL 2004). CEUR. Available from ceur-ws.org.

Hollunder, B. and F. Baader: 1991, ‘Qualifying Number Restrictions in Concept Languages’.
Technical Report RR-91-03, Deutsches Forschungszentrum für Künstliche Intelligenz
(DFKI), Kaiserslautern (Germany). An abridged version appeared in Proc. of the 2nd
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91).

shoiq-jar.tex; 23/07/2007; 15:15; p.32

A Tableau Decision Procedure for SHOIQ 33

Horrocks, I. and P. F. Patel-Schneider: 1998, ‘FaCT and DLP: Automated Reasoning with
Analytic Tableaux and Related Methods’. In: Proc. of the 2nd Int. Conf. on Analytic
Tableaux and Related Methods (TABLEAUX’98). pp. 27–30.

Horrocks, I. and P. F. Patel-Schneider: 1999, ‘Optimizing Description Logic Subsumption’. J.
of Logic and Computation 9(3), 267–293.

Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen: 2003, ‘From SHIQ and RDF to
OWL: The Making of a Web Ontology Language’. J. of Web Semantics 1(1), 7–26.

Horrocks, I. and U. Sattler: 2001, ‘Ontology Reasoning in the SHOQ(D) Description Logic’.
In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). pp. 199–204.

Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Expressive Description
Logics’. In: H. Ganzinger, D. McAllester, and A. Voronkov (eds.): Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99). pp. 161–180,
Springer.

Horrocks, I., U. Sattler, and S. Tobies: 2000, ‘Reasoning with Individuals for the Descrip-
tion Logic SHIQ’. In: D. McAllester (ed.): Proc. of the 17th Int. Conf. on Automated
Deduction (CADE 2000), Vol. 1831 of Lecture Notes in Computer Science. pp. 482–496,
Springer.

McGuinness, D. L. and J. R. Wright: 1998, ‘An Industrial Strength Description Logic-based
Configuration Platform’. IEEE Intelligent Systems pp. 69–77.

Pacholski, L., W. Szwast, and L. Tendera: 1997, ‘Complexity of Two-Variable Logic with
Counting’. In: Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97). pp.
318–327, IEEE Computer Society Press.

Pan, J. and I. Horrocks: 2003, ‘Web Ontology Reasoning with Datatype Groups’. In: D.
Fensel, K. Sycara, and J. Mylopoulos (eds.): Proc. of the 2003 International Semantic
Web Conference (ISWC 2003). pp. 47–63, Springer.

Patel-Schneider, P. F., B. Owsnicki-Klew, A. Kobsa, N. Guarino, R. MacGregor, W. S. Mark,
D. McGuinness, B. Nebel, A. Schmiedel, and J. Yen: 1990, ‘Term Subsumption Languages
in Knowledge Representation’. AI Magazine 11(2), 16–23.

Schaerf, A.: 1994, ‘Reasoning with Individuals in Concept Languages’. Data and Knowledge
Engineering 13(2), 141–176.

Schild, K.: 1991, ‘A Correspondence Theory for Terminological Logics: Preliminary Report’.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91). pp. 466–471.

Sirin, E., B. C. Grau, and B. Parsia: 2006, ‘From Wine to Water: Optimizing Description Logic
Reasoning for Nominals’. In: Proc. of the 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2006). pp. 90–99, AAAI Press.

Sirin, E., B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz: 2003, ‘Pellet: A Practical
OWL-DL Reasoner’. Submitted for publication to Journal of Web Semantics.

Tobies, S.: 2000, ‘The Complexity of Reasoning with Cardinality Restrictions and Nominals
in Expressive Description Logics’. J. of Artificial Intelligence Research 12, 199–217.

Tobies, S.: 2001, ‘Complexity Results and Practical Algorithms for Logics in Knowledge
Representation’. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany.

Tsarkov, D. and I. Horrocks: 2005, ‘Ordering Heuristics for Description Logic Reasoning’.
In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 609–614.

Tsarkov, D. and I. Horrocks: 2006, ‘FaCT++ Description Logic Reasoner: System Descrip-
tion’. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), Vol. 4130
of Lecture Notes in Artificial Intelligence. pp. 292–297, Springer.

Vardi, M. Y.: 1997, ‘Why Is Modal Logic so Robustly Decidable’. In: DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 31. pp. 149–184, American
Mathematical Society.

shoiq-jar.tex; 23/07/2007; 15:15; p.33

shoiq-jar.tex; 23/07/2007; 15:15; p.34

