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Abstract

Conjunctive queries play an important role as an expressive query language for Descrip-
tion Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive
query answering over DL knowledge bases is only poorly understood if transitive roles are
admitted in the query. In this paper, we consider unions of conjunctive queries over knowl-
edge bases formulated in the prominent DL SHIQ and allow transitive roles in both the
query and the knowledge base. We show decidability of query answering in this setting
and establish two tight complexity bounds: regarding combined complexity, we prove that
there is a deterministic algorithm for query answering that needs time single exponential
in the size of the KB and double exponential in the size of the query, which is optimal.
Regarding data complexity, we prove containment in co-NP.

1. Introduction

Description Logics (DLs) are a family of logic based knowledge representation formalisms
(Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003). Most DLs are fragments
of First-Order Logic restricted to unary and binary predicates, which are called concepts and
roles in DLs. The constructors for building complex expressions are usually chosen such that
the key inference problems, such as concept satisfiability, are decidable and preferably of low
computational complexity. A DL knowledge base (KB) consists of a TBox, which contains
intensional knowledge such as concept definitions and general background knowledge, and
an ABox, which contains extensional knowledge and is used to describe individuals. Using
a database metaphor, the TBox corresponds to the schema, and the ABox corresponds to
the data. In contrast to databases, however, DL knowledge bases adopt an open world
semantics, i.e., they represent information about the domain in an incomplete way.

Standard DL reasoning services include testing concepts for satisfiability and retrieving
certain instances of a given concept. The latter retrieves, for a knowledge base consisting of
an ABox A and a TBox T , all (ABox) individuals that are instances of the given (possibly
complex) concept expression C, i.e., all those individuals a such that T and A entail that a
is an instance of C. The underlying reasoning problems are well-understood, and it is known
that the combined complexity of these reasoning problems, i.e., the complexity measured in
the size of the TBox, the ABox, and the query, is ExpTime-complete for SHIQ (Tobies,
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2001). The data complexity of a reasoning problem is measured in the size of the ABox
only. Whenever the TBox and the query are small compared to the ABox, as is often the
case in practice, the data complexity gives a more useful performance estimate. For SHIQ,
instance retrieval is known to be data complete for co-NP (Hustadt, Motik, & Sattler,
2005).

Despite the high worst case complexity of the standard reasoning problems for very
expressive DLs such as SHIQ, there are highly optimized implementations available, e.g.,
FaCT++ (Tsarkov & Horrocks, 2006), KAON21, Pellet (Sirin, Parsia, Cuenca Grau, Kalyan-
pur, & Katz, 2006), and RacerPro2. These systems are used in a wide range of applications,
e.g., configuration (McGuinness & Wright, 1998), bio informatics (Wolstencroft, Brass,
Horrocks, Lord, Sattler, Turi, & Stevens, 2005), and information integration (Calvanese,
De Giacomo, Lenzerini, Nardi, & Rosati, 1998b). Most prominently, DLs are known for
their use as a logical underpinning of ontology languages, e.g., OIL, DAML+OIL, and
OWL (Horrocks, Patel-Schneider, & van Harmelen, 2003), which is a W3C recommenda-
tion (Bechhofer, van Harmelen, Hendler, Horrocks, McGuinness, Patel-Schneider, & Stein,
2004).

In data-intensive applications, querying KBs plays a central role. Instance retrieval
is, in some aspects, a rather weak form of querying: although possibly complex concept
expressions are used as queries, we can only query for tree-like relational structures, i.e.,
a DL concept cannot express arbitrary cyclic structures. This property is known as the
tree model property and is considered an important reason for the decidability of most
Modal and Description Logics (Grädel, 2001; Vardi, 1997). Conjunctive queries (CQs)
are well known in the database community and constitute an expressive query language
with capabilities that go well beyond standard instance retrieval. For an example, consider
a knowledge base that contains an ABox assertion (∃hasSon.(∃hasDaughter."))(Mary),
which informally states that the individual (or constant in FOL terms) Mary has a son
who has a daughter; hence, that Mary is a grandmother. Additionally, we assume that
both roles hasSon and hasDaughter have a transitive super-role hasDescendant. This im-
plies that Mary is related via the role hasDescendant to her (anonymous) grandchild. For
this knowledge base, Mary is clearly an answer to the conjunctive query hasSon(x, y) ∧
hasDaughter(y, z)∧hasDescendant(x, z), when we assume that x is a distinguished variable
(also called answer or free variable) and y, z are non-distinguished (existentially quantified)
variables.

If all variables in the query are non-distinguished, the query answer is just true or false
and the query is called a Boolean query. Given a knowledge base K and a Boolean CQ q, the
query entailment problem is deciding whether q is true or false w.r.t. K. If a CQ contains
distinguished variables, the answers to the query are those tuples of individual names for
which the knowledge base entails the query that is obtained by replacing the free variables
with the individual names in the answer tuple. The problem of finding all answer tuples is
known as query answering. Since query entailment is a decision problem and thus better
suited for complexity analysis than query answering, we concentrate on query entailment.
This is no restriction since query answering can easily be reduced to query entailment as
we illustrate in more detail in Section 2.2.

1. http://kaon2.semanticweb.org
2. http://www.racer-systems.com
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Devising a decision procedure for conjunctive query entailment in expressive DLs such as
SHIQ is a challenging problem, in particular when transitive roles are admitted in the query
(Glimm, Horrocks, & Sattler, 2006). In the conference version of this paper, we presented
the first decision procedure for conjunctive query entailment in SHIQ. In this paper, we
generalize this result to unions of conjunctive queries (UCQs) over SHIQ knowledge bases.
We achieve this by rewriting a conjunctive query into a set of conjunctive queries such that
each resulting query is either tree-shaped (i.e., it can be expressed as a concept) or grounded
(i.e., it contains only constants/individual names and no variables). The entailment of both
types of queries can be reduced to standard reasoning problems (Horrocks & Tessaris, 2000;
Calvanese, De Giacomo, & Lenzerini, 1998a).

The paper is organized as follows: in Section 2, we give the necessary definitions, followed
by a discussion of related work in Section 3. In Section 4, we motivate the query rewriting
steps by means of an example. In Section 5, we give formal definitions for the rewriting
procedure and show that a Boolean query is indeed entailed by a knowledge base K iff the
disjunction of the rewritten queries is entailed by K. In Section 6, we present a deterministic
algorithm for UCQ entailment in SHIQ that runs in time single exponential in the size of
the knowledge base and double exponential in the size of the query. Since the combined
complexity of conjunctive query entailment is already 2ExpTime-hard for the DL ALCI
(Lutz, 2007), it follows that this problem is 2ExpTime-complete for SHIQ. This shows
that conjunctive query entailment for SHIQ is strictly harder than instance checking,
which is also the case for simpler DLs such as EL (Rosati, 2007b). We further show that
(the decision problem corresponding to) conjunctive query answering in SHIQ is co-NP-
complete regarding data complexity, and thus not harder than instance retrieval.

The presented decision procedure gives not only insight into query answering; it also has
an immediate consequence on the field of extending DL knowledge bases with rules. From
the work by Rosati (2006a, Thm. 11), the consistency of a SHIQ knowledge base extended
with (weakly-safe) Datalog rules is decidable iff the entailment of unions of conjunctive
queries in SHIQ is decidable. Hence, we close this open problem as well.

This paper is an extended version of the conference paper: Conjunctive Query Answer-
ing for the Description Logic SHIQ. Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), Jan 06 - 12, 2007.

2. Preliminaries

We introduce the basic terms and notations used throughout the paper. In particular, we
introduce the DL SHIQ (Horrocks, Sattler, & Tobies, 2000) and (unions of) conjunctive
queries.

2.1 Syntax and Semantics of SHIQ

Let NC , NR, and NI be countably infinite sets of concept names, role names, and individual
names. We assume that the set of role names contains a subset NtR ⊆ NR of transitive role
names. A role is an element of NR ∪ {r− | r ∈ NR}, where roles of the form r− are called
inverse roles. A role inclusion is of the form r ' s with r, s roles. A role hierarchy R is a
finite set of role inclusions.
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An interpretation I = (∆I ,·I) consists of a non-empty set ∆I , the domain of I, and a
function ·I , which maps every concept name A to a subset AI ⊆ ∆I , every role name r ∈ NR

to a binary relation rI ⊆ ∆I ×∆I , every role name r ∈ NtR to a transitive binary relation
rI ⊆ ∆I × ∆I , and every individual name a to an element aI ∈ ∆I . An interpretation
I satisfies a role inclusion r ' s if rI ⊆ sI and a role hierarchy R if it satisfies all role
inclusions in R.

We use the following standard notation:

1. We define the function Inv over roles as Inv(r) := r− if r ∈ NR and Inv(r) := s if
r = s− for a role name s.

2. For a role hierarchy R, we define '*R as the reflexive transitive closure of ' over
R ∪ {Inv(r) ' Inv(s) | r ' s ∈ R}. We use r ≡R s as an abbreviation for r '*Rs and
s '*Rr.

3. For a role hierarchy R and a role s, we define the set TransR of transitive roles as
{s | there is a role r with r ≡R s and r ∈ NtR or Inv(r) ∈ NtR}.

4. A role r is called simple w.r.t. a role hierarchy R if, for each role s such that s '*Rr,
s /∈ TransR.

The subscript R of '*R and TransR is dropped if clear from the context. The set of SHIQ-
concepts (or concepts for short) is the smallest set built inductively from NC using the
following grammar, where A ∈ NC , n ∈ IN, r is a role and s is a simple role:

C ::= " | ⊥ | A | ¬C | C1 + C2 | C1 , C2 | ∀r.C | ∃r.C |! n s.C |" n s.C.

Given an interpretation I, the semantics of SHIQ-concepts is defined as follows:

"I = ∆I (C + D)I = CI ∩ DI (¬C)I = ∆I \ CI

⊥I = ∅ (C , D)I = CI ∪ DI

(∀r.C)I = {d ∈ ∆I | if (d, d′) ∈ rI , then d′ ∈ CI}
(∃r.C)I = {d ∈ ∆I | there is a (d, d′) ∈ rI with d′ ∈ CI}

(! n s.C)I = {d ∈ ∆I | !(sI(d, C)) ≤ n}
(" n s.C)I = {d ∈ ∆I | !(sI(d, C)) ≥ n}

where !(M) denotes the cardinality of the set M and sI(d, C) is defined as

{d′ ∈ ∆I | (d, d′) ∈ sI and d′ ∈ CI}.

A general concept inclusion (GCI) is an expression C ' D, where both C and D are
concepts. A finite set of GCIs is called a TBox. An interpretation I satisfies a GCI C ' D
if CI ⊆ DI , and a TBox T if it satisfies each GCI in T .

An (ABox) assertion is an expression of the form C(a), r(a, b), ¬r(a, b), or a 2
.
= b, where

C is a concept, r is a role, a, b ∈ NI . An ABox is a finite set of assertions. We use Inds(A) to
denote the set of individual names occurring in A. An interpretation I satisfies an assertion
C(a) if aI ∈ CI , r(a, b) if (aI , bI) ∈ rI , ¬r(a, b) if (aI , bI) /∈ rI , and a 2

.
= b if aI 2= bI . An
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interpretation I satisfies an ABox if it satisfies each assertion in A, which we denote with
I |= A.

A knowledge base (KB) is a triple (T , R, A) with T a TBox, R a role hierarchy, and A
an ABox. Let K = (T ,R,A) be a KB and I = (∆I ,·I) an interpretation. We say that I
satisfies K if I satisfies T , R, and A. In this case, we say that I is a model of K and write
I |= K. We say that K is consistent if K has a model.

2.1.1 Extending SHIQ to SHIQ$

In the following section, we show how we can reduce a conjunctive query to a set of ground
or tree-shaped conjunctive queries. During the reduction, we may introduce concepts that
contain an intersection of roles under existential quantification. We define, therefore, the
extension of SHIQ with role conjunction/intersection, denoted as SHIQ$ and, in the
appendix, we show how to decide the consistency of SHIQ$ knowledge bases.

In addition to the constructors introduced for SHIQ, SHIQ$ allows for concepts of
the form

C ::= ∀R.C | ∃R.C |! n S.C |" n S.C,

where R := r1 + . . . + rn, S := s1 + . . . + sn, r1, . . . , rn are roles, and s1, . . . , sn are simple
roles. The interpretation function is extended such that (r1 + . . . + rn)I = r1

I ∩ . . . ∩ rn
I .

2.2 Conjunctive Queries and Unions of Conjunctive Queries

We now introduce Boolean conjunctive queries since they are the basic form of queries we
are concerned with. We later also define non-Boolean queries and show how they can be
reduced to Boolean queries. Finally, unions of conjunctive queries are just a disjunction of
conjunctive queries.

For simplicity, we write a conjunctive query as a set instead of as a conjunction of atoms.
For example, we write the introductory example from Section 1 as

{hasSon(x, y), hasDaughter(y, z), hasDescendant(x, z)}.

For non-Boolean queries, i.e., when we consider the problem of query answering, the
answer variables are often given in the head of the query, e.g.,

(x1, x2, x3) ← {hasSon(x1, x2), hasDaughter(x2, x3), hasDescendant(x1, x3)}

indicates that the query answers are those tuples (a1, a2, a3) of individual names that,
substituted for x1, x2, and x3 respectively, result in a Boolean query that is entailed by the
knowledge base. For simplicity and since we mainly focus on query entailment, we do not
use a query head even in the case of a non-Boolean query. Instead, we explicitly say which
variables are answer variables and which ones are existentially quantified. We now give a
definition of Boolean conjunctive queries.

Definition 1. Let NV be a countably infinite set of variables disjoint from NC , NR, and NI .
A term t is an element from NV ∪NI . Let C be a concept, r a role, and t, t′ terms. An atom
is an expression C(t), r(t, t′), or t ≈ t′ and we refer to these three different types of atoms
as concept atoms, role atoms, and equality atoms respectively. A Boolean conjunctive query
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q is a non-empty set of atoms. We use Vars(q) to denote the set of (existentially quantified)
variables occurring in q, Inds(q) to denote the set of individual names occurring in q, and
Terms(q) for the set of terms in q, where Terms(q) = Vars(q) ∪ Inds(q). If all terms in q
are individual names, we say that q is ground. A sub-query of q is simply a subset of q
(including q itself). As usual, we use !(q) to denote the cardinality of q, which is simply the
number of atoms in q, and we use |q| for the size of q, i.e., the number of symbols necessary
to write q. A SHIQ conjunctive query is a conjunctive query in which all concepts C that
occur in a concept atom C(t) are SHIQ-concepts.

Since equality is reflexive, symmetric and transitive, we define ≈* as the transitive,
reflexive, and symmetric closure of ≈ over the terms in q. Hence, the relation ≈* is an
equivalence relation over the terms in q and, for t ∈ Terms(q), we use [t] to denote the
equivalence class of t by ≈* .

Let I = (∆I ,·I) be an interpretation. A total function π : Terms(q) → ∆I is an evalua-
tion if (i) π(a) = aI for each individual name a ∈ Inds(q) and (ii) π(t) = π(t′) for all t≈* t′.
We write

• I |=π C(t) if π(t) ∈ CI ;

• I |=π r(t, t′) if (π(t),π(t′)) ∈ rI ;

• I |=π t ≈ t′ if π(t) = π(t′).

If, for an evaluation π, I |=π at for all atoms at ∈ q, we write I |=π q. We say that I
satisfies q and write I |= q if there exists an evaluation π such that I |=π q. We call such a
π a match for q in I.

Let K be a SHIQ knowledge base and q a conjunctive query. If I |= K implies I |= q,
we say that K entails q and write K |= q. 6

The query entailment problem is defined as follows: given a knowledge base K and a
query q, decide whether K |= q.

For brevity and simplicity of notation, we define the relation ∈̄ over atoms in q as follows:
C(t) ∈̄ q if there is a term t′ ∈ Terms(q) such that t≈* t′ and C(t′) ∈ q, and r(t1, t2) ∈̄ q if
there are terms t′1, t

′
2 ∈ Terms(q) such that t1≈* t′1, t2≈* t′2, and r(t′1, t

′
2) ∈ q or Inv(r)(t′2, t

′
1) ∈ q.

This is clearly justified by definition of the semantics, in particular, because I |= r(t, t′)
implies that I |= Inv(r)(t′, t).

When devising a decision procedure for CQ entailment, most complications arise from
cyclic queries (Calvanese et al., 1998a; Chekuri & Rajaraman, 1997). In this context, when
we say cyclic, we mean that the graph structure induced by the query is cyclic, i.e., the graph
obtained from q such that each term is considered as a node and each role atom induces
an edge. Since, in the presence of inverse roles, a query containing the role atom r(t, t′) is
equivalent to the query obtained by replacing this atom with Inv(r)(t′, t), the direction of
the edges is not important and we say that a query is cyclic if its underlying undirected
graph structure is cyclic. Please note also that multiple role atoms for two terms are not
considered as a cycle, e.g., the query {r(t, t′), s(t, t′)} is not a cyclic query. The following is
a more formal definition of this property.

Definition 2. A query q is cyclic if there exists a sequence of terms t1, . . . , tn with n > 3
such that
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1. for each i with 1 ≤ i < n, there exists a role atom ri(ti, ti+1) ∈̄ q,

2. t1 = tn, and

3. ti 2= tj for 1 ≤ i < j < n.
6

In the above definition, Item 3 makes sure that we do not consider queries as cyclic just
because they contain two terms t, t′ for which there are more than two role atoms using the
two terms. Please note that we use the relation ∈̄ here, which implicitly uses the relation
≈* and abstracts from the directedness of role atoms.

In the following, if we write that we replace r(t, t′) ∈̄ q with s(t1, t2), . . . , s(tn−1, tn) for
t = t1 and t′ = tn, we mean that we first remove any occurrences of r(t̂, t̂′) and Inv(r)(t̂′, t̂)
such that t̂≈* t and t̂′≈* t′ from q, and then add the atoms s(t1, t2), . . . , s(tn−1, tn) to q.

W.l.o.g., we assume that queries are connected. More precisely, let q be a conjunctive
query. We say that q is connected if, for all t, t′ ∈ Terms(q), there exists a sequence t1, . . . , tn
such that t1 = t, tn = t′ and, for all 1 ≤ i < n, there exists a role r such that r(ti, ti+1) ∈̄ q.
A collection q1, . . . , qn of queries is a partitioning of q if q = q1 ∪ . . . ∪ qn, qi ∩ qj = ∅ for
1 ≤ i < j ≤ n, and each qi is connected.

Lemma 3. Let K be a knowledge base, q a conjunctive query, and q1, . . . , qn a partitioning
of q. Then K |= q iff K |= qi for each i with 1 ≤ i ≤ n.

A proof is given by Tessaris (2001, 7.3.2) and, with this lemma, it is clear that the
restriction to connected queries is indeed w.l.o.g. since entailment of q can be decided by
checking entailment of each qi at a time. In what follows, we therefore assume queries to
be connected without further notice.

Definition 4. A union of Boolean conjunctive queries is a formula q1∨ . . .∨ qn, where each
disjunct qi is a Boolean conjunctive query.

A knowledge base K entails a union of Boolean conjunctive queries q1 ∨ . . .∨ qn, written
as K |= q1 ∨ . . .∨ qn, if, for each interpretation I such that I |= K, there is some i such that
I |= qi and 1 ≤ i ≤ n. 6

W.l.o.g. we assume that the variable names in each disjunct are different from the
variable names in the other disjuncts. This can always be achieved by naming variables
apart. We further assume that each disjunct is a connected conjunctive query. This is
w.l.o.g. since a UCQ which contains unconnected disjuncts can always be transformed
into conjunctive normal form; we can then decide entailment for each resulting conjunct
separately and each conjunct is a union of connected conjunctive queries. We describe
this transformation now in more detail and, for a more convenient notation, we write a
conjunctive query {at1, . . . , atk} as at1∧ . . .∧atk in the following proof, instead of the usual
set notation.

Lemma 5. Let K be a knowledge base, q = q1∨ . . .∨ qn a union of conjunctive queries such
that, for 1 ≤ i ≤ n, q1

i , . . . , q
ki
i is a partitioning of the conjunctive query qi. Then K |= q iff

K |=
∧

(i1,...,in)∈{1,...,k1}×...×{1,...,kn}

(qi1
1 ∨ . . . ∨ qin

n ).
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Again, a detailed proof is given by Tessaris (2001, 7.3.3). Please note that, due to the
transformation into conjunctive normal form, the resulting number of unions of connected
conjunctive queries for which we have to test entailment can be exponential in the size of
the original query. When analysing the complexity of the decision procedures presented
in Section 6, we show that the assumption that each CQ in a UCQ is connected does not
increase the complexity.

We now make the connection between query entailment and query answering clearer. For
query answering, let the variables of a conjunctive query be typed: each variable can either
be existentially quantified (also called non-distinguished) or free (also called distinguished or
answer variables). Let q be a query in n variables (i.e., !(Vars(q)) = n), of which v1, . . . , vm

(m ≤ n) are answer variables. The answers of K = (T ,R,A) to q are those m-tuples
(a1, . . . , am) ∈ Inds(A)m such that, for all models I of K, I |=π q for some π that satisfies
π(vi) = ai

I for all i with 1 ≤ i ≤ m. It is not hard to see that the answers of K to q can be
computed by testing, for each (a1, . . . , am) ∈ Inds(A)m, whether the query q[v1,...,vm/a1,...,am]

obtained from q by replacing each occurrence of vi with ai for 1 ≤ i ≤ m is entailed by K.
The answer to q is then the set of all m-tuples (a1, . . . , am) for which K |= q[v1,...,vm/a1,...,am].
Let k = !(Inds(A)) be the number of individual names used in the ABox A. Since A is finite,
clearly k is finite. Hence, deciding which tuples belong to the set of answers can be checked
with at most km entailment tests. This is clearly not very efficient, but optimizations can
be used, e.g., to identify a (hopefully small) set of candidate tuples.

The algorithm that we present in Section 6 decides query entailment. The reasons for
devising a decision procedure for query entailment instead of query answering are two-
fold: first, query answering can be reduced to query entailment as shown above; second, in
contrast to query answering, query entailment is a decision problem and can be studied in
terms of complexity theory.

In the remainder of this paper, if not stated otherwise, we use q (possibly with subscripts)
for a connected Boolean conjunctive query, K for a SHIQ knowledge base (T , R, A), I for
an interpretation (∆I ,·I), and π for an evaluation.

3. Related Work

Very recently, an automata-based decision procedure for positive existential path queries
over ALCQIbreg knowledge bases has been presented (Calvanese, Eiter, & Ortiz, 2007).
Positive existential path queries generalize unions of conjunctive queries and since a SHIQ
knowledge base can be polynomially reduced to an ALCQIbreg knowledge base, the pre-
sented algorithm is a decision procedure for (union of) conjunctive query entailment in
SHIQ as well. The automata-based technique can be considered more elegant than our
rewriting algorithm, but it does not give an NP upper bound for the data complexity as
our technique.

Most existing algorithms for conjunctive query answering in expressive DLs assume,
however, that role atoms in conjunctive queries use only roles that are not transitive. As a
consequence, the example query from the introductory section cannot be answered. Under
this restriction, decision procedures for various DLs around SHIQ are known (Horrocks &
Tessaris, 2000; Ortiz, Calvanese, & Eiter, 2006b), and it is known that answering conjunctive
queries in this setting is data complete for co-NP (Ortiz et al., 2006b). Another common
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restriction is that only individuals named in the ABox are considered for the assignments
of variables. In this setting, the semantics of queries is no longer the standard First-Order
one. With this restriction, the answer to the example query from the introduction would be
false since Mary is the only named individual. It is not hard to see that conjunctive query
answering with this restriction can be reduced to standard instance retrieval by replacing
the variables with individual names from the ABox and then testing the entailment of
each conjunct separately. Most of the implemented DL reasoners, e.g., KAON2, Pellet,
and RacerPro, provide an interface for conjunctive query answering in this setting and
employ several optimizations to improve the performance (Sirin & Parsia, 2006; Motik,
Sattler, & Studer, 2004; Wessel & Möller, 2005). Pellet appears to be the only reasoner
that also supports the standard First-Order semantics for SHIQ conjunctive queries under
the restriction that the queries are acyclic.

To the best of our knowledge, it is still an open problem whether conjunctive query
entailment is decidable in SHOIQ. Regarding undecidability results, it is known that
conjunctive query entailment in the two variable fragment of First-Order Logic L2 is un-
decidable (Rosati, 2007a) and Rosati identifies a relatively small set of constructors that
causes the undecidability.

Query entailment and answering have also been studied in the context of databases
with incomplete information (Rosati, 2006b; van der Meyden, 1998; Grahne, 1991). In this
setting, DLs can be used as schema languages, but the expressivity of the considered DLs
is much lower than the expressivity of SHIQ. For example, the constructors provided by
logics of the DL-Lite family (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007)
are chosen such that the standard reasoning tasks are in PTime and query entailment
is in LogSpace with respect to data complexity. Furthermore, TBox reasoning can be
done independently of the ABox and the ABox can be stored and accessed using a standard
database SQL engine. Since the considered DLs are considerable less expressive than SHIQ,
the techniques used in databases with incomplete information cannot be applied in our
setting.

Regarding the query language, it is well known that an extension of conjunctive queries
with inequalities is undecidable (Calvanese et al., 1998a). Recently, it has further been
shown that even for DLs with low expressivity, an extension of conjunctive queries with
inequalities or safe role negation leads to undecidability (Rosati, 2007a).

A related reasoning problem is query containment. Given a schema (or TBox) S and
two queries q and q′, we have that q is contained in q′ w.r.t. S iff every interpretation I
that satisfies S and q also satisfies q′. It is well known that query containment w.r.t. a
TBox can be reduced to deciding query entailment for (unions of) conjunctive queries w.r.t.
a knowledge base (Calvanese et al., 1998a). Hence a decision procedure for (unions of)
conjunctive queries in SHIQ can also be used for deciding query containment w.r.t. to a
SHIQ TBox.

Entailment of unions of conjunctive queries is also closely related to the problem of
adding rules to a DL knowledge base, e.g., in the form of Datalog rules. Augmenting a
DL KB with an arbitrary Datalog program easily leads to undecidability (Levy & Rousset,
1998). In order to ensure decidability, the interaction between the Datalog rules and the
DL knowledge base is usually restricted by imposing a safeness condition. The DL+log
framework (Rosati, 2006a) provides the least restrictive integration proposed so far. Rosati
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presents an algorithm that decides the consistency of a DL+log knowledge base by reducing
the problem to entailment of unions of conjunctive queries, and he proves that decidability
of UCQs in SHIQ implies the decidability of consistency for SHIQ+log knowledge bases.

4. Query Rewriting by Example

In this section, we motivate the ideas behind our query rewriting technique by means of
examples. In the following section, we give precise definitions for all rewriting steps.

4.1 Forest Bases and Canonical Interpretations

The main idea is that we can focus on models of the knowledge base that have a kind of
tree or forest shape. It is well known that one reason for Description and Modal Logics
being so robustly decidable is that they enjoy some form of tree model property, i.e., every
satisfiable concept has a model that is tree-shaped (Vardi, 1997; Grädel, 2001). When going
from concept satisfiability to knowledge base consistency, we need to replace the tree model
property with a form of forest model property, i.e., every consistent KB has a model that
consists of a set of “trees”, where each root corresponds to a named individual in the ABox.
The roots can be connected via arbitrary relational structures, induced by the role assertions
given in the ABox. A forest model is, therefore, not a forest in the graph theoretic sense.
Furthermore, transitive roles can introduce “short-cut” edges between elements within a
tree or even between elements of different trees. Hence we talk of “a form of” forest model
property.

We now define forest models and show that, for deciding query entailment, we can
restrict our attention to forest models. The rewriting steps are then used to transform cyclic
subparts of the query into tree-shaped ones such that there is a “forest-shaped match” for
the rewritten query into the forest models.

In order to make the forest model property even clearer, we also introduce forest bases,
which are interpretations that interpret transitive roles in an unrestricted way, i.e., not
necessarily in a transitive way. For a forest base, we require in particular that all relation-
ships between elements of the domain that can be inferred by transitively closing a role are
omitted. In the following, we assume that the ABox contains at least one individual name,
i.e., Inds(A) is non-empty. This is w.l.o.g. since we can always add an assertion "(a) to the
ABox for a fresh individual name a ∈ NI . For readers familiar with tableau algorithms, it
is worth noting that forest bases can also be thought of as those tableaux generated from a
complete and clash-free completion tree (Horrocks et al., 2000).

Definition 6. Let IN denote the non-negative integers and IN∗ the set of all (finite) words
over the alphabet IN. A tree T is a non-empty, prefix-closed subset of IN∗. For w, w′ ∈ T ,
we call w′ a successor of w if w′ = w · c for some c ∈ IN, where “·” denotes concatenation.
We call w′ a neighbor of w if w′ is a successor of w or vice versa. The empty word ε is
called the root.

A forest base for K is an interpretation J = (∆J ,·J ) that interprets transitive roles in
an unrestricted (i.e., not necessarily transitive) way and, additionally, satisfies the following
conditions:

T1 ∆J ⊆ Inds(A)× IN∗ such that, for all a ∈ Inds(A), the set {w | (a, w) ∈ ∆J } is a tree;
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T2 if ((a, w), (a′, w′)) ∈ rJ , then either w = w′ = ε or a = a′ and w′ is a neighbor of w;

T3 for each a ∈ Inds(A), aJ = (a, ε);

An interpretation I is canonical for K if there exists a forest base J for K such that I is
identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s (*Rr, s∈TransR

(sJ )+

In this case, we say that J is a forest base for I and if I |= K we say that I is a canonical
model for K. 6

For convenience, we extend the notion of successors and neighbors to elements in canon-
ical models. Let I be a canonical model with (a, w), (a′, w′) ∈ ∆I . We call (a′, w′) a
successor of (a, w) if either a = a′ and w′ = w · c for some c ∈ IN or w = w′ = ε. We call
(a′, w′) a neighbor of (a, w) if (a′, w′) is a successor of (a, w) or vice versa.

Please note that the above definition implicitly relies on the unique name assumption
(UNA) (cf. T3). This is w.l.o.g. as we can guess an appropriate partition among the in-
dividual names and replace the individual names in each partition with one representative
individual name from that partition. In Section 6, we show how the partitioning of individ-
ual names can be used to simulate the UNA, hence, our decision procedure does not rely
on the UNA. We also show that this does not affect the complexity.

Lemma 7. Let K be a SHIQ knowledge base and q = q1 ∨ . . . ∨ qn a union of conjunctive
queries. Then K 2|= q iff there exists a canonical model I of K such that I 2|= q.

A detailed proof is given in the appendix. Informally, for the only if direction, we can
take an arbitrary counter-model for the query, which exists by assumption, and “unravel”
all non-tree structures. Since, during the unraveling process, we only replace cycles in the
model by infinite paths and leave the interpretation of concepts unchanged, the query is
still not satisfied in the unravelled canonical model. The if direction of the proof is trivial.

4.2 The Running Example

We use the following Boolean query and knowledge base as a running example:

Example 8. Let K = (T ,R,A) be a SHIQ knowledge base with r, t ∈ NtR, k ∈ IN

T = { Ck ' " k p.",
C3 ' " 3 p.",
D2 ' ∃s−." + ∃t."

}
R = { t ' t−,

s− ' r
}

A = { r(a, b),
(∃p.Ck + ∃p.C + ∃r−.C3)(a),
(∃p.D1 + ∃r.D2)(b)

}

and q = {r(u, x), r(x, y), t(y, y), s(z, y), r(u, z)} with Inds(q) = ∅ and Vars(q) = {u, x, y, z}.
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For simplicity, we choose to use a CQ instead of a UCQ. In case of a UCQ, the rewriting
steps are applied to each disjunct separately.

D2

t, t− t, t−

t, t−

C3C

(a, 11) (a, 12) . . . (a, 1k)

pp p

(a, 2) (a, 3) (b, 2)

(a, ε)

p p r−

p p

(a, 33)(a, 32)(a, 31)

p

r
r

r

r
r

p

r
r

r, s−

(b, 21) (b, 22)

r

(b, ε)

(a, 1) (b, 1)D1Ck

Figure 1: A representation of a canonical interpretation I for K.

Figure 1 shows a representation of a canonical model I for the knowledge base K from
Example 8. Each labeled node represents an element in the domain, e.g., the individual
name a is represented by the node labeled (a, ε). The edges represent relationships between
individuals. For example, we can read the r-labeled edge from (a, ε) to (b, ε) in both

directions, i.e., (aI , bI) = ((a, ε), (b, ε)) ∈ rI and (bI , aI) = ((b, ε), (a, ε)) ∈ r−I . The
“short-cuts” due to transitive roles are shown as dashed lines, while the relationship between
the nodes that represent ABox individuals is shown in grey. Please note that we did not
indicate the interpretations of all concepts in the figure.

Since I is a canonical model for K, the elements of the domain are pairs (a, w), where
a indicates the individual name that corresponds to the root of the tree, i.e., aI = (a, ε)
and the elements in the second place form a tree according to our definition of trees. For
each individual name a in our ABox, we can, therefore, easily define the tree rooted in a as
{w | (a, w) ∈ ∆I}.

r

(a, 11) (a, 12) (a, 1k). . .

ppp

(a, 2)(a, 1) (a, 3) (b, 1) (b, 2)

(a, ε)

p p r−

p p p

(a, 32)(a, 31) (a, 33)

p

(b, ε)

r, s−
t, t−

(b, 21) (b, 22)

r

Figure 2: A forest base for the interpretation represented by Figure 1.

Figure 2 shows a representation of a forest base for the interpretation from Figure 1
above. For simplicity, the interpretation of concepts is no longer shown. The two trees,
rooted in (a, ε) and (b, ε) respectively, are now clear.

A graphical representation of the query q from Example 8 is shown in Figure 3, where
the meaning of the nodes and edges is analogous to the ones given for interpretations. We
call this query a cyclic query since its underlying undirected graph is cyclic (cf. Definition 2).

Figure 4 shows a match π for q and I and, although we consider only one canonical
model here, it is not hard to see that the query is true in each model of the knowledge base,
i.e., K |= q.
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Figure 3: A graph representation of the query from Example 8.
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Figure 4: A match π for the query q from Example 8 onto the model I from Figure 1.

The forest model property is also exploited in the query rewriting process. We want to
rewrite q into a set of queries q1, . . . , qn of ground or tree-shaped queries such that K |= q
iff K |= q1 ∨ . . . ∨ qn. Since the resulting queries are ground or tree-shaped queries, we can
explore the known techniques for deciding entailment of these queries. As a first step, we
transform q into a set of forest-shaped queries. Intuitively, forest-shaped queries consist
of a set of tree-shaped sub-queries, where the roots of these trees might be arbitrarily
interconnected (by atoms of the form r(t, t′)). A tree-shaped query is a special case of a
forest-shaped query. We will call the arbitrarily interconnected terms of a forest-shaped
query the root choice (or, for short, just roots). At the end of the rewriting process, we
replace the roots with individual names from Inds(A) and transform the tree parts into
a concept by applying the so called rolling-up or tuple graph technique (Tessaris, 2001;
Calvanese et al., 1998a).

In the proof of the correctness of our procedure, we use the structure of the forest bases
in order to explicate the transitive “short-cuts” used in the query match. By explicating we
mean that we replace each role atom that is mapped to such a short-cut with a sequence
of role atoms such that an extended match for the modified query uses only paths that are
in the forest base.

4.3 The Rewriting Steps

The rewriting process for a query q is a six stage process. At the end of this process, the
rewritten query may or may not be in a forest shape. As we show later, this “don’t know”
non-determinism does not compromise the correctness of the algorithm. In the first stage,
we derive a collapsing qco of q by adding (possibly several) equality atoms to q. Consider,
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for example, the cyclic query q = {r(x, y), r(x, y′), s(y, z), s(y′, z)} (see Figure 5), which can
be transformed into a tree-shaped one by adding the equality atom y ≈ y′.

y, y′y

z

y′

s s

r r

x

z

x

s

r

Figure 5: A representation of a cyclic query and of the tree-shaped query obtained by adding
the atom y ≈ y′ to the query depicted on the left hand side.

A common property of the next three rewriting steps is that they allow for substituting
the implicit short-cut edges with explicit paths that induce the short-cut. The three steps
aim at different cases in which these short-cuts can occur and we describe their goals and
application now in more detail:

The second stage is called split rewriting. In a split rewriting we take care of all role
atoms that are matched to transitive “short-cuts” connecting elements of two different trees
and by-passing one or both of their roots. We substitute these short-cuts with either one or
two role atoms such that the roots are included. In our running example, π maps u to (a, 3)
and x to (b, ε). Hence I |=π r(u, x), but the used r-edge is a transitive short-cut connecting
the tree rooted in a with the tree rooted in b, and by-passing (a, ε). Similar arguments hold
for the atom r(u, z), where the path that implies this short-cut relationship goes via the
two roots (a, ε) and (b, ε). It is clear that r must be a non-simple role since, in the forest
base J for I, there is no “direct” connection between different trees other than between the
roots of the trees. Hence, (π(u),π(x)) ∈ rI holds only because there is a role s ∈ TransR
such that s '*Rr. In case of our example, r itself is transitive. A split rewriting eliminates
transitive short-cuts between different trees of a canonical model and adds the “missing”
variables and role atoms matching the sequence of edges that induce the short-cut.

u

r

r r
t

r

s

ux x

y

z

Figure 6: A split rewriting qsr for the query shown in Figure 3.

Figure 6 depicts the split rewriting

qsr = { r(u, ux), r(ux, x), r(x, y), t(y, y), s(z, y),
r(u, ux), r(ux, x), r(x, z)}
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of q that is obtained from q by replacing (i) r(u, x) with r(u, ux) and r(ux, x) and (ii) r(u, z)
with r(u, ux), r(ux, x), and r(x, z). Please note that we both introduced a new variable (ux)
and re-used an existing variable (x). Figure 7 shows a match for qsr and the canonical model
I of K in which the two trees are only connected via the roots. For the rewritten query, we
also guess a set of roots, which contains the variables that are mapped to the roots in the
canonical model. For our running example, we guess that the set of roots is {ux, x}.
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(a, 31) (a, 32) (a, 33)

(a, 1) (b, 1)
r

(b, 22)

, t−

Figure 7: A split match πsr for the query qsr from Figure 6 onto the canonical interpretation
from Figure 1.

In the third step, called loop rewriting, we eliminate “loops” for variables v that do not
correspond to roots by replacing atoms r(v, v) with two atom r(v, v′) and r(v′, v), where v′

can either be a new or an existing variable in q. In our running example, we eliminate the
loop t(y, y) as follows:

q"r = { r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y),
r(u, ux), r(ux, x), r(x, z)}

is the query obtained from qsr (see Figure 6) by replacing t(y, y) with t(y, y′) and t(y′, y) for
a new variable y′. Please note that, since t is defined as transitive and symmetric, t(y, y)
is still implied, i.e., the loop is also a transitive short-cut. Figure 8 shows the canonical
interpretation I from Figure 1 with a match π"r for q"r. The introduction of the new variable
y′ is needed in this case since there is no variable that could be re-used and the individual
(b, 22) is not in the range of the match πsr.
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Figure 8: A loop rewriting q"r and a match for the canonical interpretation from Figure 1.

The forth rewriting step, called forest rewriting, allows again the replacement of role
atoms with sets of role atoms. This allows the elimination of cycles that are within a single
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tree. A forest rewriting qfr for our example can be obtained from q"r by replacing the role
atom r(x, z) with r(x, y) and r(y, z), resulting in the query

qfr = { r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y),
r(u, ux), r(ux, x), r(x, y), r(y, z)}.

Clearly, this results in tree-shaped sub-queries, one rooted in ux and one rooted in x.
Hence qfr is forest-shaped w.r.t. the root terms ux and x. Figure 9 shows the canonical
interpretation I from Figure 1 with a match πfr for qfr.
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Figure 9: A forest rewriting qfr and a forest match πfr for the canonical interpretation from
Figure 1.

In the fifth step, we use the standard rolling-up technique (Horrocks & Tessaris, 2000;
Calvanese et al., 1998a) and express the tree-shaped sub-queries as concepts. In order to
do this, we traverse each tree in a bottom-up fashion and replace each leaf (labeled with a
concept C, say) and its incoming edge (labeled with a role r, say) with the concept ∃r.C
added to its predecessor. For example, the tree rooted in ux (i.e., the role atom r(u, ux))
can be replaced with the atom (∃r−.")(ux). Similarly, the tree rooted in x (i.e., the role
atoms r(x, y), r(y, z), s(z, y), t(y, y′), and t(y′, y)) can be replaced with the atom

(∃r.((∃(r + Inv(s)).") + (∃(t + Inv(t))."))(x).

Please note that we have to use role conjunctions in the resulting query in order to capture
the semantics of multiple role atoms relating the same pair of variables.

Recall that, in the split rewriting, we have guessed that x and ux correspond to roots and,
therefore, correspond to individual names in Inds(A). In the sixth and last rewriting step,
we guess which variable corresponds to which individual name and replace the variables with
the guessed names. A possible guess for our running example would be that ux corresponds
to a and x to b. This results in the (ground) query

{(∃r−.")(a), r(a, b), (∃r.((∃(r + Inv(s)).") + (∃(t + Inv(t)).")))(b)},

which is entailed by K.
Please note that we focused in the running example on the most reasonable rewriting.

There are several other possible rewritings, e.g., we obtain another rewriting from qfr by
replacing ux with b and x with a in the last step. For a UCQ, we apply the rewriting steps
to each of the disjuncts separately.
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At the end of the rewriting process, we have, for each disjunct, a set of ground queries
and/or queries that were rolled-up into a single concept atom. The latter queries result from
forest rewritings that are tree-shaped and have an empty set of roots. Such tree-shaped
rewritings can match anywhere in a tree and can, thus, not be grounded. Finally, we check
if our knowledge base entails the disjunction of all the rewritten queries. We show that
there is a bound on the number of (forest-shaped) rewritings and hence on the number of
queries produced in the rewriting process.

Summing up, the rewriting process for a connected conjunctive query q involves the
following steps:

1. Build all collapsings of q.

2. Build all split rewritings of each collapsing w.r.t. a subset R of roots.

3. Build all loop rewritings of the split rewritings.

4. Build all (forest-shaped) forest rewritings of the loop rewritings.

5. Roll up each tree-shaped sub-query in a forest-rewriting into a concept atom and

6. replace the roots in R with individual names from the ABox in all possible ways.

Let q1, . . . , qn be the queries resulting from the rewriting process. In the next section, we
define each rewriting step and prove that K |= q iff K |= q1∨· · ·∨qn. Checking entailment for
the rewritten queries can easily be reduced to KB consistency and any decision procedure
for SHIQ$ KB consistency could be used in order to decide if K |= q. We present one such
decision procedure in Section 6.

5. Query Rewriting

In the previous section, we have used several terms, e.g., tree- or forest-shaped query,
rather informally. In the following, we give definitions for the terms used in the query
rewriting process. Once this is done, we formalize the query rewriting steps and prove the
correctness of the procedure, i.e., we show that the forest-shaped queries obtained in the
rewriting process can indeed be used for deciding whether a knowledge base entails the
original query. We do not give the detailed proofs here, but rather some intuitions behind
the proofs. Proofs in full detail are given in the appendix.

5.1 Tree- and Forest-Shaped Queries

In order to define tree- or forest-shaped queries more precisely, we use mappings between
queries and trees or forests. Instead of mapping equivalence classes of terms by ≈* to nodes
in a tree, we extend some well-known properties of functions as follows:

Definition 9. For a mapping f : A → B, we use dom(f) and ran(f) to denote f ’s domain
A and range B, respectively. Given an equivalence relation ≈* on dom(f), we say that f is
injective modulo ≈* if, for all a, a′ ∈ dom(f), f(a) = f(a′) implies a≈* a′ and we say that f
is bijective modulo ≈* if f is injective modulo ≈* and surjective. Let q be a query. A tree
mapping for q is a total function f from terms in q to a tree such that
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1. f is bijective modulo ≈* ,

2. if r(t, t′) ∈̄ q, then f(t) is a neighbor of f(t′), and,

3. if a ∈ Inds(q), then f(a) = ε.

The query q is tree-shaped if !(Inds(q)) ≤ 1 and there is a tree mapping for q.
A root choice R for q is a subset of Terms(q) such that Inds(q) ⊆ R and, if t ∈ R and

t≈* t′, then t′ ∈ R. For t ∈ R, we use Reach(t) to denote the set of terms t′ ∈ Terms(q) for
which there exists a sequence of terms t1, . . . , tn ∈ Terms(q) such that

1. t1 = t and tn = t′,

2. for all 1 ≤ i < n, there is a role r such that r(ti, ti+1) ∈̄ q, and,

3. for 1 < i ≤ n, if ti ∈ R, then ti≈* t.

We call R a root splitting w.r.t. q if either R = ∅ or if, for ti, tj ∈ R, ti 2 ≈* tj implies that
Reach(ti) ∩ Reach(tj) = ∅. Each term t ∈ R induces a sub-query

subq(q, t) := {at ∈̄ q | the terms in at occur in Reach(t)}\
{r(t, t) | r(t, t) ∈̄ q}.

A query q is forest-shaped w.r.t. a root splitting R if either R = ∅ and q is tree-shaped or
each sub-query subq(q, t) for t ∈ R is tree-shaped. 6

For each term t ∈ R, we collect the terms that are reachable from t in the set Reach(t).
By Condition 3, we make sure that R and ≈* are such that each t′ ∈ Reach(t) is either not in
R or t≈* t′. Since queries are connected by assumption, we would otherwise collect all terms
in Reach(t) and not just those t′ /∈ R. For a root splitting, we require that the resulting sets
are mutually disjoint for all terms t, t′ ∈ R that are not equivalent. This guarantees that all
paths between the sub-queries go via the root nodes of their respective trees. Intuitively, a
forest-shaped query is one that can potentially be mapped onto a canonical interpretation
I = (∆I ,·I) such that the terms in the root splitting R correspond to roots (a, ε) ∈ ∆I .
In the definition of subq(q, t), we exclude loops of the form r(t, t) ∈̄ q, as these parts of
the query are grounded later in the query rewriting process and between ground terms, we
allow arbitrary relationships.

Consider, for example, the query qsr of our running example from the previous section
(cf. Figure 6). Let us again make the root choice R := {ux, x} for q. The sets Reach(ux)
and Reach(x) w.r.t. qsr and R are {ux, u} and {x, y, z} respectively. Since both sets are
disjoint, R is a root splitting w.r.t. qsr. If we choose, however, R := {x, y}, the set R is not
a root splitting w.r.t. qsr since Reach(x) = {ux, u, z} and Reach(y) = {z} are not disjoint.

5.2 From Graphs to Forests

We are now ready to define the query rewriting steps. Given an arbitrary query, we ex-
haustively apply the rewriting steps and show that we can use the resulting queries that are
forest-shaped for deciding entailment of the original query. Please note that the following
definitions are for conjunctive queries and not for unions of conjunctive queries since we
apply the rewriting steps for each disjunct separately.
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Definition 10. Let q be a Boolean conjunctive query. A collapsing qco of q is obtained by
adding zero or more equality atoms of the form t ≈ t′ for t, t′ ∈ Terms(q) to q. We use co(q)
to denote the set of all queries that are a collapsing of q.

Let K be a SHIQ knowledge base. A query qsr is called a split rewriting of q w.r.t. K
if it is obtained from q by choosing, for each atom r(t, t′) ∈̄ q, to either:

1. do nothing,

2. choose a role s ∈ TransR such that s '*Rr and replace r(t, t′) with s(t, u), s(u, t′), or

3. choose a role s ∈ TransR such that s '*Rr and replace r(t, t′) with s(t, u), s(u, u′),
s(u′, t′),

where u, u′ ∈ NV are possibly fresh variables. We use srK(q) to denote the set of all pairs
(qsr, R) for which there is a query qco ∈ co(q) such that qsr is a split rewriting of qco and R
is a root splitting w.r.t. qsr.

A query q"r is called a loop rewriting of q w.r.t. a root splitting R and K if it is obtained
from q by choosing, for all atoms of the form r(t, t) ∈̄ q with t /∈ R, a role s ∈ TransR such
that s '*Rr and by replacing r(t, t) with two atoms s(t, t′) and s(t′, t) for t′ ∈ NV a possibly
fresh variable. We use lrK(q) to denote the set of all pairs (q"r, R) for which there is a tuple
(qsr, R) ∈ srK(q) such that q"r is a loop rewriting of qsr w.r.t. R and K.

For a forest rewriting, fix a set V ⊆ NV of variables not occurring in q such that
!(V ) ≤ !(Vars(q)). A forest rewriting qfr w.r.t. a root splitting R of q and K is obtained
from q by choosing, for each role atom r(t, t′) such that either R = ∅ and r(t, t′) ∈̄ q or
there is some tr ∈ R and r(t, t′) ∈̄ subq(q, tr) to either

1. do nothing, or

2. choose a role s ∈ TransR such that s '*Rr and replace r(t, t′) with $ ≤ !(Vars(q)) role
atoms s(t1, t2), . . . , s(t", t"+1), where t1 = t, t"+1 = t′, and t2, . . . , t" ∈ Vars(q) ∪ V .

We use frK(q) to denote the set of all pairs (qfr, R) for which there is a tuple (q"r, R) ∈ lrK(q)
such that qfr is a forest-shaped forest rewriting of q"r w.r.t. R and K. 6

If K is clear from the context, we say that q′ is a split, loop, or forest rewriting of
q instead of saying that q′ is a split, loop, or forest rewriting of q w.r.t. K. We assume
that srK(q), lrK(q), and frK(q) contain no isomorphic queries, i.e., differences in (newly
introduced) variable names only are neglected.

In the next section, we show how we can build a disjunction of conjunctive queries
q1 ∨ · · · ∨ q" from the queries in frK(q) such that each qi for 1 ≤ i ≤ $ is either of the form
C(v) for a single variable v ∈ Vars(qi) or qi is ground, i.e., qi contains only constants and
no variables. It then remains to show that K |= q iff K |= q1 ∨ · · · ∨ q".

5.3 From Trees to Concepts

In order to transform a tree-shaped query into a single concept atom and a forest-shaped
query into a ground query, we define a mapping f from the terms in each tree-shaped sub-
query to a tree. We then incrementally build a concept that corresponds to the tree-shaped
query by traversing the tree in a bottom-up fashion, i.e., from the leaves upwards to the
root.
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Definition 11. Let q be a tree-shaped query with at most one individual name. If a ∈
Inds(q), then let tr = a otherwise let tr = v for some variable v ∈ Vars(q). Let f be a tree
mapping such that f(tr) = ε. We now inductively assign, to each term t ∈ Terms(q), a
concept con(q, t) as follows:

• if f(t) is a leaf of ran(f), then con(q, t) :=
!

C(t)∈̄q C,

• if f(t) has successors f(t1), . . . , f(tk), then

con(q, t) :=
!

C(t)∈̄q C +
!

1≤i≤k ∃
( !

r(t,ti)∈̄q r
)

.con(q, ti).

Finally, the query concept of q w.r.t. tr is con(q, tr). 6

Please note that the above definition takes equality atoms into account. This is because
the function f is bijective modulo ≈* and, in case there are concept atoms C(t) and C(t′)
for t≈* t′, both concepts are conjoined in the query concept due to the use of the relation ∈̄.
Similar arguments can be applied to the role atoms.

The following lemma shows that query concepts indeed capture the semantics of q.

Lemma 12. Let q be a tree-shaped query with tr ∈ Terms(q) as defined above, Cq =
con(q, tr), and I an interpretation. Then I |= q iff there is a match π and an element
d ∈ Cq

I such that π(tr) = d.

The proof given by Horrocks, Sattler, Tessaris, and Tobies (1999) easily transfers from
DLR to SHIQ. By applying the result from the above lemma, we can now transform a
forest-shaped query into a ground query as follows:

Definition 13. Let (qfr, R) ∈ frK(q) for R 2= ∅, and τ : R → Inds(A) a total function such
that, for each a ∈ Inds(q), τ(a) = a and, for t, t′ ∈ R, τ(t) = τ(t′) iff t≈* t′. We call such a
mapping τ a ground mapping for R w.r.t. A. We obtain a ground query ground(qfr, R, τ)
of qfr w.r.t. the root splitting R and ground mapping τ as follows:

• replace each t ∈ R with τ(t), and,

• for each a ∈ ran(τ), replace the sub-query qa = subq(qfr, a) with con(qa, a).

We define the set groundK(q) of ground queries for q w.r.t. K as follows:

groundK(q) := {q′ | there exists some (qfr, R) ∈ frK(q) with R 2= ∅
and some ground mapping τ w.r.t. A and R
such that q′ = ground(qfr, R, τ)}

We define the set of treesK(q) of tree queries for q as follows:

treesK(q) := {q′ | there exists some (qfr, ∅) ∈ frK(q) and
v ∈ Vars(qfr) such that q′ = (con(qfr, v))(v)} 6
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Going back to our running example, we have already seen that (qfr, {ux, x}) belongs to
the set frK(q) for

qfr = {r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y), r(y, z)}.

There are also several other queries in the set frK(q), e.g., (q, {u, x, y, z}), where q is the
original query and the root splitting R is such that R = Terms(q), i.e., all terms are in the
root choice for q. In order to build the set groundK(q), we now build all possible ground
mappings τ for the set Inds(A) of individual names in our ABox and the root splittings for
the queries in frK(q). The tuple (qfr, {ux, x}) ∈ frK(q) contributes two ground queries for
the set groundK(q):

ground(qfr, {ux, x}, {ux 8→ a, x 8→ b}) =
{r(a, b), (∃Inv(r).")(a), (∃r.((∃(r + Inv(s)).") + (∃(t + Inv(t)).")))(b)},

where ∃Inv(r)." is the query concept for the (tree-shaped) sub-query subq(qfr, ux) and
∃r.((∃(r + Inv(s)).") + (∃(t + Inv(t)).") is the query concept for subq(qfr, x) and

ground(qfr, {ux, x}, {ux 8→ b, x 8→ a}) =
{r(b, a), (∃Inv(r).")(b), (∃r.((∃(r + Inv(s)).") + (∃(t + Inv(t)).")))(a)}.

The tuple (q, {u, x, y, z}) ∈ frK(q), however, does not contribute a ground query since, for
a ground mapping, we require that τ(t) = τ(t′) iff t≈* t′ and there are only two individual
names in Inds(A) compared to four terms q that need a distinct value. Intuitively, this is
not a restriction, since in the first rewriting step (collapsing) we produce all those queries
in which the terms of q have been identified with each other in all possible ways. In our
example, K |= q and K |= q1 ∨ · · ·∨ q", where q1 ∨ · · ·∨ q" are the queries from treesK(q) and
groundK(q) since each model I of K satisfies qi = ground(qfr, {ux, x}, {ux 8→ a, x 8→ b}).

5.4 Query Matches

Even if a query is true in a canonical model, it does not necessarily mean that the query
is tree- or forest-shaped. However, a match π for a canonical interpretation can guide the
process of rewriting a query. Similarly to the definition of tree- or forest-shaped queries, we
define the shape of matches for a query. In particular, we introduce three different kinds
of matches: split matches, forest matches, and tree matches such that every tree match is
a forest match, and every forest match is a split match. The correspondence to the query
shapes is as follows: given a split match π, the set of all root nodes (a, ε) in the range
of the match define a root splitting for the query, if π is additionally a forest match, the
query is forest-shaped w.r.t. the root splitting induced by π, and if π is additionally a tree
match, then the whole query can be mapped to a single tree (i.e., the query is tree-shaped
or forest-shaped w.r.t. an empty root splitting). Given an arbitrary query match into a
canonical model, we can first obtain a split match and then a tree or forest match, by using
the structure of the canonical model for guiding the application of the rewriting steps.

Definition 14. Let K be a SHIQ knowledge base, q a query, I = (∆I ,·I) a canonical
model of K, and π : Terms(q) → ∆I an evaluation such that I |=π q. We call π a split match
if, for all r(t, t′) ∈̄ q, one of the following holds:
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1. π(t) = (a, ε) and π(t′) = (b, ε) for some a, b ∈ Inds(A); or

2. π(t) = (a, w) and π(t′) = (a, w′) for some a ∈ Inds(A) and w, w′ ∈ IN∗.

We call π a forest match if, additionally, for each term tr ∈ Terms(q) with π(tr) = (a, ε)
and a ∈ Inds(A), there is a total and bijective mapping f from {(a, w) | (a, w) ∈ ran(π)} to
a tree T such that r(t, t′) ∈̄ subq(q, tr) implies that f(π(t)) is a neighbor of f(π(t′)). We
call π a tree match if, additionally, there is an a ∈ Inds(A) such that each element in ran(π)
is of the form (a, w).

A split match π for a canonical interpretation induces a (possibly empty) root splitting
R such that t ∈ R iff π(t) = (a, ε) for some a ∈ Inds(A). We call R the root splitting induced
by π. 6

For two elements (a, w) and (a, w′) in a canonical model, the path from (a, w) to (a, w′)
is the sequence (a, w1), . . . , (a, wn) where w = w1, w′ = wn, and, for 1 ≤ i < n, wi+1 is a
successor of wi. The length of the path is n. Please note that, for a forest match, we do
not require that w is a neighbor of w′ or vice versa. This still allows to map role atoms to
paths in the canonical model of length greater than two, but such paths must be between
ancestors and not between elements in different branches of the tree. The mapping f to a
tree also makes sure that if R is the induced root splitting, then each sub-query subq(q, t)
for t ∈ R is tree-shaped. For a tree match, the root splitting is either empty or t≈* t′ for
each t, t′ ∈ R, i.e., there is a single root modulo ≈* , and the whole query is tree-shaped.

5.5 Correctness of the Query Rewriting

The following lemmas state the correctness of the rewriting step by step for each of the
rewriting stages. Full proofs are given in the appendix. As motivated in the previous
section, we can use a given canonical model to guide the rewriting process such that we
obtain a forest-shaped query that also has a match into the model.

Lemma 15. Let I be a model for K.

1. If I |= q, then there is a collapsing qco of q such that I |=πco qco for πco an injection
modulo ≈* .

2. If I |=πco qco for a collapsing qco of q, then I |= q.

Given a model I that satisfies q, we can simply add equality atoms for all pairs of terms
that are mapped to the same element in I. It is not hard to see that this results in a
mapping that is injective modulo ≈* . For the second part, it is easy to see that a model that
satisfies a collapsing also satisfies the original query.

Lemma 16. Let I be a model for K.

1. If I is canonical and I |=π q, then there is a pair (qsr, R) ∈ srK(q) and a split match
πsr such that I |=πsr qsr, R is the induced root splitting of πsr, and πsr is an injection
modulo ≈* .

2. If (qsr, R) ∈ srK(q) and I |=πsr qsr for some match πsr, then I |= q.
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For the first part of the lemma, we proceed exactly as illustrated in the example section
and use the canonical model I and the match π to guide the rewriting steps. We first build
a collapsing qco ∈ co(q) as described in the proof of Lemma 15 such that I |=πco qco for πco

an injection modulo ≈* . Since I is canonical, paths between different trees can only occur
due to non-simple roles, and thus we can replace each role atom that uses such a short-cut
with two or three role atoms such that these roots are explicitly included in the query (cf.
the query and match in Figure 4 and the obtained split rewriting and with a split match
in Figure 7). The second part of the lemma follows immediately from the fact that we use
only transitive sub-roles in the replacement.

Lemma 17. Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (q"r, R) ∈ lrK(q) and a mapping π"r

such that I |=π!r q"r, π"r is an injection modulo ≈* , R is the root splitting induced by
π"r and, for each r(t, t) ∈̄ q"r, t ∈ R.

2. If (q"r, R) ∈ lrK(q) and I |=π!r q"r for some match π"r, then I |= q.

The second part is again straightforward, given that we can only use transitive sub-roles
in the loop rewriting. For the first part, we proceed again as described in the examples
section and use the canonical model I and the match π to guide the rewriting process. We
first build a split rewriting qsr and its root splitting R as described in the proof of Lemma 16
such that (qsr, R) ∈ srK(q) and I |=πsr qsr for a split match πsr. Since I is a canonical
model, it has a forest base J . In a forest base, non-root nodes cannot be successors of
themselves, so each such loop is a short-cut due to some transitive role. An element that
is, say, r-related to itself has, therefore, a neighbor that is both an r- and Inv(r)-successor.
Depending on whether this neighbor is already in the range of the match, we can either
re-use an existing variable or introduce a new one, when making this path explicit (cf. the
loop rewriting depicted in Figure 8 obtained from the split rewriting shown in Figure 7).

Lemma 18. Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (qfr, R) ∈ frK(q) such that I |=πfr qfr

for a forest match πfr, R is the induced root splitting of πfr, and πfr is an injection
modulo ≈* .

2. If (qfr, R) ∈ frK(q) and I |=πfr qfr for some match πfr, then I |= q.

The main challenge is again the proof of (1) and we just give a short idea of it here.
At this point, we know from Lemma 17 that we can use a query q"r for which there is a
root splitting R and a split match π"r. Since π"r is a split match, the match for each such
sub-query is restricted to a tree and thus we can transform each sub-query of q"r induced
by a term t in the root choice separately. The following example is meant to illustrate why
the given bound of !(Vars(q)) on the number of new variables and role atoms that can be
introduced in a forest rewriting suffices. Figure 10 depicts the representation of a tree from
a canonical model, where we use only the second part of the names for the elements, e.g.,
we use just ε instead of (a, ε). For simplicity, we also do not indicate the concepts and
roles that label the nodes and edges, respectively. We use black color to indicate the nodes
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and edges that are used in the match for a query and dashed lines for short-cuts due to
transitive roles. In the example, the grey edges are also those that belong to the forest base
and the query match uses only short-cuts.

ε

1

111

1211

Figure 10: A part of a representation of a canonical model, where the black nodes and
edges are used in a match for a query and dashed edges indicate short-cuts due
to transitive roles.

The forest rewriting aims at making the short-cuts more explicit by replacing them with
as few edges as necessary to obtain a tree match. In order to do this, we need to include
the “common ancestors” in the forest base between each two nodes used in the match. For
w, w′ ∈ IN∗, we therefore define the longest common prefix (LCP) of w and w′ as the longest
ŵ ∈ IN∗ such that ŵ is a prefix of both w and w′. For a forest rewriting, we now determine
the LCPs of any two nodes in the range of the match and add a variable for those LCPs
that are not yet in the range of the match to the set V of new variables used in the forest
rewriting. In the example from Figure 10 the set V contains a single variable v1 for the
node 1.

We now explicate the short-cuts as follows: for any edge used in the match, e.g., the
edge from ε to 111 in the example, we define its path as the sequence of elements on the
path in the forest base, e.g., the path for the edge from ε to 111 is ε, 1, 11, 111. The relevant
path is obtained by dropping all elements from the path that are not in the range of the
mapping or correspond to a variable in the set V , resulting in a relevant path of ε, 1, 111
for the example. We now replace the role atom that was matched to the edge from ε to 111
with two role atoms such that the match uses the edge from ε to 1 and from 1 to 111. An
appropriate transitive sub-role exists since otherwise there could not be a short-cut. Similar
arguments can be used to replace the role atom mapped to the edge from 111 to 12 and
for the one that is mapped to the edge from ε to 12, resulting in a match as represented
by Figure 11. The given restriction on the cardinality of the set V is no limitation since
the number of LCPs in the set V is maximal if there is no pair of nodes such that one is
an ancestor of the other. We can see these nodes as n leaf nodes of a tree that is at least
binarily branching. Since such a tree can have at most n inner nodes, we need at most n
new variables for a query in n variables.
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ε

111

1211

1

Figure 11: The match for a forest rewriting obtained from the example given in Figure 10.

For the bound on the number of role atoms that can be used in the replacement of a
single role atom, consider, for example, the cyclic query

q = {r(x1, x2), r(x2, x3), r(x3, x4), t(x1, x4)},

for the knowledge base K = (T ,R,A) with T = ∅,R = {r ' t} with t ∈ TransR and
A = {(∃r.(∃r.(∃r.")))(a)}. It is not hard to check that K |= q. Similarly to our running
example from the previous section, there is also a single rewriting that is true in each
canonical model of the KB, which is obtained by building only a forest rewriting and doing
nothing in the other rewriting steps, except for choosing the empty set as root splitting in
the split rewriting step. In the forest rewriting, we can explicate the short-cut used in the
mapping for t(x1, x4) by replacing t(x1, x4) with t(x1, x2), t(x2, x3), t(x3, x4).

By using Lemmas 15 to 18, we get the following theorem, which shows that we can use
the ground queries in groundK(q) and the queries in treesK(q) in order to check whether K
entails q, which is a well understood problem.

Theorem 19. Let K be a SHIQ knowledge base, q a Boolean conjunctive query, and
{q1, . . . , q"} = treesK(q) ∪ groundK(q). Then K |= q iff K |= q1 ∨ . . . ∨ q".

We now give upper bounds on the size and number of queries in treesK(q) and groundK(q).
As before, we use !(S) to denote the cardinality of a set S. The size |K| (|q|) of a knowledge
base K (a query q) is simply the number of symbols needed to write it over the alphabet
of constructors, concept names, and role names that occur in K (q), where numbers are
encoded in binary. Obviously, the number of atoms in a query is bounded by its size, hence
!(q) ≤ |q| and, for simplicity, we use n as the size and the cardinality of q in what follows.

Lemma 20. Let q be a Boolean conjunctive query, K = (T ,R,A) a SHIQ knowledge base,
|q| := n and |K| := m. Then there is a polynomial p such that

1. !(co(q)) ≤ 2p(n) and, for each q′ ∈ co(q), |q′| ≤ p(n),

2. !(srK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ srK(q), |q′| ≤ p(n),

3. !(lrK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ lrK(q), |q′| ≤ p(n),
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4. !(frK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ frK(q), |q′| ≤ p(n),

5. !(treesK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ treesK(q), |q′| ≤ p(n), and

6. !(groundK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ groundK(q), |q′| ≤ p(n).

As a consequence of the above lemma, there is a bound on the number of queries in
groundK(q) and treesK(q) and it is not hard to see that the two sets can be computed in
time polynomial in m and exponential in n.

In the next section, we present an algorithm that decides entailment of unions of con-
junctive queries, where each of the queries is either a ground query or consists of a single
concept atom C(x) for an existentially quantified variable x. By Theorem 19 and Lemma 20,
such an algorithm is a decision procedure for arbitrary unions of conjunctive queries.

5.6 Summary and Discussion

In this section, we have presented the main technical foundations for answering (unions
of) conjunctive queries. It is known that queries that contain non-simple roles in cycles
among existentially quantified variables are difficult to handle. By applying the rewriting
steps from Definition 10, we can rewrite such cyclic conjunctive queries into a set of acyclic
and/or ground queries. Both types of queries are easier to handle and algorithms for both
types exist. At this point, any reasoning algorithm for SHIQ$ knowledge base consistency
can be used for deciding query entailment. In order to obtain tight complexity results, we
present in the following section a decision procedure that is based on an extension of the
translation to looping tree automata given by Tobies (2001).

It is worth mentioning that, for queries with only simple roles, our algorithm behaves
exactly as the existing rewriting algorithms (i.e., the rolling-up and tuple graph technique)
since, in this case, only the collapsing step is applicable. The need for identifying variables
was first pointed out in the work of Horrocks et al. (1999) and is also required (although
not mentioned) for the algorithm proposed by Calvanese et al. (1998a).

The new rewriting steps (split, loop, and forest rewriting) are only required for and
applicable to non-simple roles and, when replacing a role atom, only transitive sub-roles of
the replaced role can be used. Hence the number of resulting queries is in fact not determined
by the size of the whole knowledge base, but by the number of transitive sub-roles for the
non-simple roles in the query. Therefore, the number of resulting queries really depends on
the number of transitive roles and the depth of the role hierarchy for the non-simple roles
in the query, which can, usually, expected to be small.

6. The Decision Procedure

We now devise a decision procedure for entailment of unions of Boolean conjunctive queries
that uses, for each disjunct, the queries obtained in the rewriting process as defined in the
previous section. Detailed proofs for the lemmas and theorems in this section can again be
found in the appendix. For a knowledge base K and a union of Boolean conjunctive queries
q1 ∨ . . .∨ q", we show how we can use the queries in treesK(qi) and groundK(qi) for 1 ≤ i ≤ $
in order to build a set of knowledge bases K1, . . . ,Kn such that K |= q1 ∨ . . . ∨ q" iff all the
Ki are inconsistent. This gives rise to two decision procedures: a deterministic one in which
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we enumerate all Ki, and which we use to derive a tight upper bound for the combined
complexity; and a non-deterministic one in which we guess a Ki, and which yields a tight
upper bound for the data complexity. Recall that, for combined complexity, the knowledge
base K and the queries qi both count as input, whereas for the data complexity only the
ABox A counts as an input, and all other parts are assumed to be fixed.

6.1 A Deterministic Decision Procedure for Query Entailment in SHIQ

We first define the deterministic version of the decision procedure and give an upper bound
for its combined complexity. The given algorithm takes as input a union of connected
conjunctive queries and works under the unique name assumption (UNA). We show after-
wards how it can be extended to an algorithm that does not make the UNA and that takes
arbitrary UCQs as input, and that the complexity results carry over.

We construct a set of knowledge bases that extend the original knowledge base K both
w.r.t. the TBox and ABox. The extended knowledge bases are such that a given KB K
entails a query q iff all the extended KBs are inconsistent. We handle the concepts obtained
from the tree-shaped queries differently to the ground queries: the axioms we add to the
TBox prevent matches for the tree-shaped queries, whereas the extended ABoxes contain
assertions that prevent matches for the ground queries.

Definition 21. Let K = (T ,R,A) be a SHIQ knowledge base and q = q1∨ . . .∨q" a union
of Boolean conjunctive queries. We set

1. T := treesK(q1) ∪ . . . ∪ treesK(q"),

2. G := groundK(q1) ∪ . . . ∪ groundK(q"), and

3. Tq := {" ' ¬C | C(v) ∈ T}.

An extended knowledge base Kq w.r.t. K and q is a tuple (T ∪ Tq,R,A ∪Aq) such that Aq

contains, for each q′ ∈ G, at least one assertion ¬at with at ∈ q′. 6

Informally, the extended TBox T ∪ Tq ensures that there are no tree matches. Each
extended ABox A∪Aq contains, for each ground query q′ obtained in the rewriting process,
at least one assertion ¬at with at ∈ q′ that “spoils” a match for q′. A model for such an
extended ABox can, therefore, not satisfy any of the ground queries. If there is a model for
any of the extended knowledge bases, we know that this is a counter-model for the original
query.

We can now use the extended knowledge bases in order to define the deterministic
version of our algorithm for deciding entailment of unions of Boolean conjunctive queries in
SHIQ.

Definition 22. Given a SHIQ knowledge base K = (T ,R,A) and a union of connected
Boolean conjunctive queries q as input, the algorithm answers “K entails q” if each extended
knowledge base w.r.t. K and q is inconsistent and it answers “K does not entail q” otherwise.

6

The following lemma shows that the above described algorithm is indeed correct.
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Lemma 23. Let K be a SHIQ knowledge base and q a union of connected Boolean con-
junctive queries. Given K and q as input, the algorithm from Definition 22 answers “K
entails q” iff K |= q under the unique name assumption.

In the proof of the if direction for the above lemma, we can use a canonical model I
of K in order to guide the rewriting process. For the only if direction, we assume to the
contrary of what is to be shown that there is no consistent extended knowledge base, but
K 2|= q. We then use a model I of K such that I 2|= q, which exists by assumption, and
show that I is also a model of some extended knowledge base.

6.1.1 Combined Complexity of Query Entailment in SHIQ

According to the above lemma, the algorithm given in Definition 22 is correct. We now
analyse its combined complexity and thereby prove that it is also terminating.

For the complexity analysis, we assume, as usual (Hustadt et al., 2005; Calvanese,
De Giacomo, Lembo, Lenzerini, & Rosati, 2006; Ortiz et al., 2006b), that all concepts in
concept atoms and ABox assertions are literals, i.e., concept names or negated concept
names. If the input query or ABox contains non-literal atoms or assertions, we can easily
transform these into literal ones in a truth preserving way: for each concept atom C(t) in
the query where C is a non-literal concept, we introduce a new atomic concept AC ∈ NC ,
add the axiom C ' AC to the TBox, and replace C(t) with AC(t); for each non-literal
concept assertion C(a) in the ABox, we introduce a new atomic concept AC ∈ NC , add
an axiom AC ' C to the TBox, and replace C(a) with AC(a). Such a transformation is
obviously polynomial, so without loss of generality, it is safe to assume that the ABox and
query contain only literal concepts. This has the advantage that the size of each atom and
ABox assertion is constant.

Since our algorithm involves checking the consistency of a SHIQ$ knowledge base,
we analyse the complexity of this reasoning service. Tobies (2001) shows an ExpTime

upper bound for deciding the consistency of SHIQ knowledge bases (even with binary
coding of numbers) by translating a SHIQ KB to an equisatisfiable ALCQIb knowledge
base. The b stands for safe Boolean role expressions built from ALCQIb roles using the
operator + (role intersection), , (role union), and ¬ (role negation/complement) such that,
when transformed into disjunctive normal form, every disjunct contains at least one non-
negated conjunct. Given a query q and a SHIQ knowledge base K = (T ,R,A), we reduce
query entailment to deciding knowledge base consistency of an extended SHIQ$ knowledge
base Kq = (T ∪ Tq,R,A ∪ Aq). Recall that Tq and Aq are the only parts that contain
role conjunctions and that we use role negation only in ABox assertions. We extend the
translation given for SHIQ so that it can be used for deciding the consistency of SHIQ$

KBs. Although the translation works for all SHIQ$ KBs, we assume the input KB to be
of exactly the form of extended knowledge bases as described above. This is so because the
translation for unrestricted SHIQ$ is no longer polynomial, as in the case of SHIQ, but
exponential in the size of the longest role conjunction under a universal quantifier. Since
role conjunctions occur only in the extended ABox and TBox, and since the size of each role
conjunction is, by Lemma 20, polynomial in the size of q, the translation is only exponential
in the size of the query in the case of extended knowledge bases.
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We assume here, as usual, that all concepts are in negation normal form (NNF); any
concept can be transformed in linear time into an equivalent one in NNF by pushing negation
inwards, making use of de Morgan’s laws and the duality between existential and universal
restrictions, and between atmost and atleast number restrictions (! n r.C and " n r.C
respectively) (Horrocks et al., 2000). For a concept C, we use ¬̇C to denote the NNF of
¬C.

We define the closure cl(C,R) of a concept C w.r.t. a role hierarchy R as the smallest
set satisfying the following conditions:

• if D is a sub-concept of C, then D ∈ cl(C,R),

• if D ∈ cl(C,R), then ¬̇D ∈ cl(C,R),

• if ∀r.D ∈ cl(C,R), s '*Rr, and s ∈ TransR, then ∀s.D ∈ cl(C,R).

We now show how we can extend the translation from SHIQ to ALCQIb given by
Tobies. We first consider SHIQ$-concepts and then extend the translation to KBs.

Definition 24. For a role hierarchy R and roles r, r1, . . . , rn, let

↑(r,R) =
"

r (*Rs

s and ↑(r1 + . . . + rn,R) =↑(r1,R) + . . .+ ↑(rn,R).
6

Please note that, since r '*Rr, r occurs in ↑(r,R).

Lemma 25. Let R be a role hierarchy, and r1, . . . , rn roles. For every interpretation I
such that I |= R, it holds that (↑(r1 + . . . + rn,R))I = (r1 + . . . + rn)I .

With the extended definition of ↑ on role conjunctions, we can now adapt the definition
(Def. 6.22) that Tobies provides for translating SHIQ-concepts into ALCQIb-concepts.

Definition 26. Let C be a SHIQ$-concept in NNF and R a role hierarchy. For every
concept ∀(r1 + . . . + rn).D ∈ cl(C,R), let Xr1$...$rn,D ∈ NC be a unique concept name that
does not occur in cl(C,R). Given a role hierarchy R, we define the function tr inductively
on the structure of concepts by setting

tr(A,R) = A for all A ∈ NC

tr(¬A,R) = ¬A for all A ∈ NC

tr(C1 + C2,R) = tr(C1,R) + tr(C2,R)
tr(C1 , C2,R) = tr(C1,R) , tr(C2,R)

tr(&' n(r1 + . . . + rn).D,R) = (&' n ↑(r1 + . . . + rn,R).tr(D,R))
tr(∀(r1 + . . . + rn).D,R) = Xr1$...$rn,D

tr(∃(r1 + . . . + rn).D,R) = ¬(Xr1$...$rn,¬̇D)

where &' stands for ! or ". Set tc((r1 + . . . + rn),R) := {(t1 + . . . + tn) | ti '*Rri and ti ∈
TransR for each i such that 1 ≤ i ≤ n} and define an extended TBox TC,R as

TC,R={Xr1$...$rn,D ≡ ∀ ↑(r1 + . . . + rn,R).tr(D,R)| ∀(r1 + . . . + rn).D ∈ cl(C,R)} ∪
{Xr1$...$rn,D ' ∀ ↑(T,R).XT,D | T ∈ tc(r1 + . . . + rn,R)} 6

Lemma 27. Let C be a SHIQ$-concept in NNF, R a role hierarchy, and tr and TC,R

as defined in Definition 26. The concept C is satisfiable w.r.t. R iff the ALCQIb-concept
tr(C,R) is satisfiable w.r.t. TC,R.
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Given Lemma 25, the proof of Lemma 27 is a long, but straightforward extension of the
proof given by Tobies (2001, Lemma 6.23).

We now analyse the complexity of the above described problem. Let m := |R| and
r1 + . . . + rn the longest role conjunction occurring in C, i.e., the maximal number of roles
that occur in a role conjunction in C is n. The TBox TC,R can contain exponentially
many axioms in n since the cardinality of the set tc((r1 + . . . + rn),R) for the longest role
conjunction can only be bounded by mn because each ri can have more than one transitive
sub-role. It is not hard to check that the size of each axiom is polynomial in |C|. Since
deciding whether an ALCQIb concept C is satisfiable w.r.t. an ALCQIb TBox T is an
ExpTime-complete problem (even with binary coding of numbers) (Tobies, 2001, Thm.

4.42), the satisfiability of a SHIQ$-concept C can be checked in time 2p(m)2p(n)
.

We now extend the translation from concepts to knowledge bases. Tobies assumes that
all role assertions in the ABox are of the form r(a, b) with r a role name or the inverse of a
role name. Extended ABoxes contain, however, also negated roles in role assertions, which
require a different translation. A positive role assertion such as r(a, b) is translated in the
standard way by closing the role upwards. The only difference of using ↑ directly is that we
additionally split the conjunction (↑(r,R))(a, b) = (r1 + . . . + rn)(a, b) into n different role
assertions r1(a, b), . . . , rn(a, b), which is clearly justified by the semantics. For negated roles
in a role assertion such as ¬r(a, b), we close the role downwards instead of upwards and add
a role atom ¬s(a, b) for each sub-role s of r. This is again justified by the semantics. Let
K = (T ∪ Tq,R,A ∪Aq) be an extended knowledge base. More precisely, we set

tr(T ∪ Tq,R) := {tr(C,R) ' tr(D,R) | C ' D ∈ T ∪ Tq},

tr(A ∪Aq,R) := {(tr(C,R))(a) | C(a) ∈ A ∪Aq} ∪
{s(a, b) | r(a, b) ∈ A ∪Aq and r '*Rs} ∪
{¬s(a, b) | ¬r(a, b) ∈ A ∪Aq and s '*Rr},

and we use tr(K,R) to denote the ALCQIb knowledge base (tr(T ∪ Tq,R), tr(A ∪Aq,R)).
For the complexity of deciding the consistency of a translated SHIQ$ knowledge base,

we can apply the same arguments as above for concept satisfiability, which gives the follow-
ing result:

Lemma 28. Given a SHIQ$ knowledge base K = (T ,R,A) where m := |K| and the size
of the longest role conjunction is n, we can decide consistency of K in deterministic time
2p(m)2p(n)

with p a polynomial.

We are now ready to show that the algorithm given in Definition 22 runs in deterministic
time single exponential in the size of the input KB and double exponential in the size of
the input query.

Lemma 29. Let K = (T ,R,A) be a SHIQ knowledge base with m = |K| and q a union
of connected Boolean conjunctive queries with n = |q|. Given K and q as input, the algo-
rithm given in Definition 22 decides whether K |= q under the unique name assumption in

deterministic time in 2p(m)2p(n)
.
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In the proof of the above lemma, we show that there is some polynomial p such that we
have to check at most 2p(m)2p(n)

extended knowledge bases for consistency and that each
consistency check can be done in this time bound as well.

More precisely, let q = q1∨. . .∨q", T = treesK(q1)∪. . .∪treesK(q"), and G = groundK(q1)∪
. . . ∪ groundK(q"). Together with Lemma 20, we get that !(T ) and !(G) are bounded by
2p(n)·log p(m) for some polynomial p and that the size of each query in G and T is polynomial
in n. Each of the 2p(n)·log p(m) ground queries in G contributes at most p(n) negated assertion

to an extended ABox Aq. Hence, there are at most 2p(m)2p(n)
extended ABoxes Aq and,

therefore, 2p(m)2p(n)
extended knowledge bases that have to be tested for consistency.

Given the bounds on the cardinalities of T and G and the fact that the size of each
query in T and G is polynomial in n, it is not hard to check that the size of each extended
knowledge base Kq = (T ∪ Tq,R,A ∪ Aq) is bounded by 2p(n)·log p(m) and that each Kq

can be computed in this time bound as well. Since only the extended parts contain role
conjunctions and the number of roles in a role conjunction is polynomial in n, there is a
polynomial p such that

1. |tr(T ,R)| ≤ p(m),

2. |tr(Tq,R)| ≤ 2p(n)·log p(m),

3. |tr(A,R)| ≤ p(m),

4. |tr(Aq,R)| ≤ 2p(n)·log p(m), and, hence,

5. |tr(Kq,R)| ≤ 2p(n)·log p(m).

By Lemma 28, each consistency check can be done in time 2p(m)2p(n)
for some polynomial

p. Since we have to check at most 2p(m)2p(n)
extended knowledge bases for consistency, and

each check can be done in time 2p(m)2p(n)
, we obtain the desired upper bound.

We now show that this result carries over even when we do not restrict interpretations
to the unique name assumption.

Definition 30. Let K = (T ,R,A) be a SHIQ knowledge base and q a SHIQ union
of Boolean conjunctive queries. For a partition P of Inds(A), a knowledge base KP =
(T ,R,AP) and a query qP are called an A-partition w.r.t. K and q if AP and qP are
obtained from A and q as follows:
For each P ∈ P

1. Choose one individual name a ∈ P .

2. For each b ∈ P , replace each occurrence of b in A and q with a.
6

Please note that w.l.o.g. we assume that all constants that occur in the query occur
in the ABox as well and that thus a partition of the individual names in the ABox also
partitions the query.

Lemma 31. Let K = (T ,R,A) be a SHIQ knowledge base and q a union of Boolean
conjunctive queries. K 2|= q without making the unique name assumption iff there is an
A-partition KP = (T ,R,AP) and qP w.r.t. K and q such that KP 2|= qP under the unique
name assumption.
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Let K = (T ,R,A) be a knowledge base in a Description Logic DL, C be the complexity
class such that deciding whether K |= q under the unique name assumption is in C, and let
n = 2|A|. Since the number of partitions for an ABox is at most exponential in the number
of individual names that occur in the ABox, the following is a straightforward consequence
of the above lemma: for a Boolean conjunctive DL query q, deciding whether K |= q without
making the unique name assumption can be reduced to deciding n times a problem in C.

In order to extend our algorithm to unions of possibly unconnected Boolean conjunctive
queries, we first transform the input query q into conjunctive normal form (CNF). We
then check entailment for each conjunct qi, which is now a union of connected Boolean
conjunctive queries. The algorithm returns “K entails q” if each entailment check succeeds
and it answers “K does not entail q” otherwise. By Lemma 5 and Lemma 23, the algorithm
is correct.

Let K be a knowledge base in a Description Logic DL, q a union of connected Boolean
conjunctive DL queries, and C the complexity class such that deciding whether K |= q is in
C. Let q′ be a union of possibly unconnected Boolean conjunctive queries and cnf(q′) the
CNF of q′. Since the number of conjuncts in cnf(q′) is at most exponential in |q′|, deciding
whether K |= q′ can be reduced to deciding n times a problem in C, with n = 2p(|q′|) and p
a polynomial.

The above observation together with the results from Lemma 29 gives the following
general result:

Theorem 32. Let K = (T ,R,A) be a SHIQ knowledge base with m = |K| and q a union
of Boolean conjunctive queries with n = |q|. Deciding whether K |= q can be done in

deterministic time in 2p(m)2p(n)
.

A corresponding lower bound follows from the work by Lutz (2007). Hence the above
result is tight. The result improves the known co-3NExpTime upper bound for the setting
where the roles in the query are restricted to simple ones (Ortiz, Calvanese, & Eiter, 2006a).

Corollary 33. Let K be a SHIQ knowledge base with m = |K| and q a union of Boolean
conjunctive queries with n = |q|. Deciding whether K |= q is a 2ExpTime-complete problem.

Regarding query answering, we refer back to the end of Section 2.2, where we explain
that deciding which tuples belong to the set of answers can be checked with at most mk

A
entailment tests, where k is the number of answer variables in the query and mA is the
number of individual names in Inds(A). Hence, at least theoretically, this is absorbed by
the combined complexity of query entailment in SHIQ.

6.2 A Non-Deterministic Decision Procedure for Query Entailment in SHIQ

In order to study the data complexity of query entailment, we devise a non-deterministic
decision procedure which provides a tight bound for the complexity of the problem. Actually,
the devised algorithm decides non-entailment of queries: we guess an extended knowledge
base Kq, check whether it is consistent, and return “K does not entail q” if the check succeeds
and “K entails q” otherwise.

Definition 34. Let T be a SHIQ TBox, R a SHIQ role hierarchy, and q a union of
Boolean conjunctive queries. Given a SHIQ ABox A as input, the algorithm guesses an
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A-partition KP = (T ,R,AP) and qP w.r.t. K = (T , R, A) and q. The query qP is then
transformed into CNF and one of the resulting conjuncts, say qPi , is chosen. The algorithm
then guesses an extended knowledge base KP

qi
= (T ∪ Tqi ,R,AP ∪ AP

qi
) w.r.t. KP and qPi

and returns “K does not entail q” if KP
qi

is consistent and it returns “K entails q” otherwise.
6

Compared to the deterministic version of the algorithm given in Definition 22, we do not
make the UNA but guess a partition of the individual names. We also non-deterministically
choose one of the conjuncts that result from the transformation into CNF. For this conjunct,
we guess an extended ABox and check whether the extended knowledge base for the guessed
ABox is consistent and, therefore, a counter-model for the query entailment.

In its (equivalent) negated form, Lemma 23 says that K 2|= q iff there is an extended
knowledge base Kq w.r.t. K and q such that Kq is consistent. Together with Lemma 31 it
follows, therefore, that the algorithm from Definition 34 is correct.

6.2.1 Data Complexity of Query Entailment in SHIQ

We now analyze the data complexity of the algorithm given in Definition 34 and show that
deciding UCQ entailment in SHIQ is indeed in co-NP for data complexity.

Theorem 35. Let T be a SHIQ TBox, R a SHIQ role hierarchy, and q a union of
Boolean conjunctive queries. Given a SHIQ ABox A with ma = |A|, the algorithm from
Definition 34 decides in non-deterministic polynomial time in ma whether K 2|= q for K =
(T , R, A).

Clearly, the size of an ABox AP in an A-partition is bounded by ma. Since the query
is no longer an input, its size is constant and the transformation to CNF can be done in
constant time. We then non-deterministically choose one of the resulting conjuncts. Let
this conjunct be qi = q(i,1) ∨ . . .∨ q(i,"). As established in Lemma 32, the maximal size of an

extended ABox AP
qi

is polynomial in ma. Hence, |AP ∪AP
qi
| ≤ p(ma) for some polynomial

p. Due to Lemma 20 and since the size of q, T , and R is fixed by assumption, the sets
treesKP (q(i,j)) and groundKP (q(i,j)) for each j such that 1 ≤ j ≤ $ can be computed in time
polynomial in ma. From Lemma 29, we know that the translation of an extended knowledge
base into an ALCQIb knowledge base is polynomial in ma and a close inspection of the
algorithm by Tobies (2001) for deciding consistency of an ALCQIb knowledge base shows
that its runtime is also polynomial in ma.

The bound given in Theorem 35 is tight since the data complexity of conjunctive query
entailment is already co-NP-hard for the ALE fragment of SHIQ (Schaerf, 1993).

Corollary 36. Conjunctive query entailment in SHIQ is data complete for co-NP.

Due to the correspondence between query containment and query answering (Calvanese
et al., 1998a), the algorithm can also be used to decide containment of two unions of
conjunctive queries over a SHIQ knowledge base, which gives the following result:

Corollary 37. Given a SHIQ knowledge base K and two unions of conjunctive queries q
and q′, the problem whether K |= q ⊆ q′ is decidable.
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By using the result of Rosati (2006a, Thm. 11), we further show that the consistency of
a SHIQ knowledge base extended with (weakly-safe) Datalog rules is decidable.

Corollary 38. The consistency of SHIQ+log-KBs (both under FOL semantics and under
NM semantics) is decidable.

7. Conclusions

With the decision procedure presented for entailment of unions of conjunctive queries in
SHIQ, we close a long standing open problem. The solution has immediate consequences
on related areas, as it shows that several other open problems such as query answering,
query containment and the extension of a knowledge base with weakly safe Datalog rules
for SHIQ are decidable as well. Regarding combined complexity, we present a deterministic
algorithm that needs time single exponential in the size of the KB and double exponential
in the size of the query, which gives a tight upper bound for the problem. This result
shows that deciding conjunctive query entailment is strictly harder than instance checking
for SHIQ. We further prove co-NP-completeness for data complexity. Interestingly, this
shows that regarding data complexity deciding UCQ entailment is (at least theoretically)
not harder than instance checking for SHIQ, which was also a previously open question.

It will be part of our future work to extend this procedure to SHOIQ, which is the
DL underlying OWL DL. We will also attempt to find more implementable algorithms for
query answering in SHIQ. Carrying out the query rewriting steps in a more goal directed
way will be crucial to achieving this.
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Appendix A. Complete Proofs

Lemma (7). Let K be a SHIQ knowledge base and q = q1 ∨ . . .∨ qn a union of conjunctive
queries, then K 2|= q iff there exists a canonical model I of K such that I 2|= q.

Proof of Lemma 7. The “if” direction is trivial.
For the “only if” direction, since an inconsistent knowledge base entails every query, we

can assume that K is consistent. Hence, there is an interpretation I ′ = (∆I′

, ·I
′

) such that
I ′ |= K and I ′ 2|= q. From I ′, we construct a canonical model I for K and its forest base J
as follows: we define the set P ⊆ (∆I′

)∗ of paths to be the smallest set such that

• for all a ∈ Inds(A), aI
′

is a path;

• d1 · · · dn · d is a path, if

– d1 · · · dn is a path,

– (dn, d) ∈ rI
′

for some role r,

– if there is an a ∈ Inds(A) such that d = aI
′

, then n > 2.

For a path p = d1 · · · dn, the length len(p) of p is n. Now fix a set S ⊆ Inds(A) × IN∗ and a
bijection f : S → P such that

(i) Inds(A) × {ε} ⊆ S,

(ii) for each a ∈ Inds(A), {w | (a, w) ∈ S} is a tree,

(iii) f((a, ε)) = aI
′

,

(iv) if (a, w), (a, w′) ∈ S with w′ a successor of w, then f((a, w′)) = f((a, w)) · d for some
d ∈ ∆I′

.

For all (a, w) ∈ S, set Tail((a, w)) := dn if f((a, w)) = d1 · · · dn. Now, define a forest base
J = (∆J ,·J ) for K as follows:

(a) ∆J := S;

(b) for each a ∈ Inds(A), aJ := (a, ε) ∈ S;

(c) for each b ∈ NI \ Inds(A), bJ = aJ for some fixed a ∈ Inds(A);

(d) for each C ∈ NC , (a, w) ∈ CJ if (a, w) ∈ S and Tail((a, w)) ∈ CI′

;

(e) For all roles r, ((a, w), (b, w′)) ∈ rJ if either

(I) w = w′ = ε and (aI
′

, bI
′

) ∈ rI
′

or

(II) a = b, w′ is a neighbor of w and (Tail((a, w)), Tail((b, w′))) ∈ rI
′

.
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It is clear that J is a forest base for K due to the definition of S and the construction
of J from S.

Let I = (∆I ,·I) be an interpretation that is identical to J except that, for all non-simple
roles r, we set

rI = rJ ∪
⋃

s (*Rr, s∈TransR

(sJ )+

It is tedious but not too hard to verify that I |= K and that J is a forest base for I. Hence
I is a canonical model for K.

Therefore, we only have to show that I 2|= q. Assume to the contrary that I |= q.
Then there is some π and i with 1 ≤ i ≤ n such that I |=π qi. We now define a mapping
π′ : Terms(qi) → ∆I′

by setting π′(t) := Tail(π(t)) for all t ∈ Terms(qi). It is not difficult to
check that I ′ |=π′

qi and hence I ′ |=π′

q, which is a contradiction.

Lemma (15). Let I be a model for K.

1. If I |= q, then there is a collapsing qco of q such that I |=πco qco for πco an injection
modulo ≈* .

2. If I |=πco qco for a collapsing qco of q, then I |= q.

Proof of Lemma 15. For (1), let π be such that I |=π q, let qco be the collapsing of q that
is obtained by adding an atom t ≈ t′ for all terms t, t′ ∈ Terms(q) for which π(t) = π(t′).
By definition of the semantics, I |=π qco and π is an injection modulo ≈* .

Condition (2) trivially holds since q ⊆ qco and hence I |=πco q.

Lemma (16). Let I be a model for K.

1. If I is canonical and I |=π q, then there is a pair (qsr, R) ∈ srK(q) and a split match
πsr such that I |=πsr qsr, R is the induced root splitting of πsr, and πsr is an injection
modulo ≈* .

2. If (qsr, R) ∈ srK(q) and I |=πsr qsr for some match πsr, then I |= q.

Proof of Lemma 16. The proof of the second claim is relatively straightforward: since
(qsr, R) ∈ srK(q), there is a collapsing qco of q such that qsr is a split rewriting of qco.
Since all roles replaced in a split rewriting are non-simple and I |= qsr by assumption, we
have that I |= qco. By Lemma 15 (2), we then have that I |= q as required.

We go through the proof of the first claim in more detail: let qco be in co(q) such
that I |=πco qco for a match πco that is injective modulo ≈* . Such a collapsing qco and
match πco exist due to Lemma 15. If πco is a split match w.r.t. q and I already, we are
done, since a split match induces a root splitting R and (qco, R) is trivially in srK(q). If
πco is not a split match, there are at least two terms t, t′ with r(t, t′) ∈̄ qco such that
πco(t) = (a, w),πco(t′) = (a′, w′), a 2= a′, and w 2= ε or w′ 2= ε. We distinguish two cases:
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1. Both t and t′ are not mapped to roots, i.e., w 2= ε and w′ 2= ε. Since I |=πco r(t, t′),
we have that (πco(t),πco(t′)) ∈ rI . Since I is a canonical model for K, there must be
a role s with s '*Rr and s ∈ TransR such that

{(πco(t), (a, ε)), ((a, ε), (a′, ε)), ((a′, ε),πco(t
′))} ⊆ sI .

If there is some t̂ ∈ Terms(qco) such that πco(t̂) = (a, ε), then let u = t̂, otherwise let u
be a fresh variable. Similarly, if there is some t̂′ ∈ Terms(qco) such that πco(t̂′) = (a′, ε),
then let u′ = t̂′, otherwise let u′ be a fresh variable. Hence, we can define a split
rewriting qsr of qco by replacing r(t, t′) with s(t, u), s(u, u′), and s(u′, t′). We then
define a new mapping πsr that agrees with πco on all terms that occur in qco and that
maps u to (a, ε) and u′ to (a′, ε).

2. Either t or t′ is mapped to a root. W.l.o.g., let this be t, i.e., π(t) = (a, ε). We can use
the same arguments as above: since I |=πco r(t, t′), we have that (π(t),π(t′)) ∈ rI and,
since I is a canonical model for K, there must be a role s with s '*Rr and s ∈ TransR
such that {(π(t), (a′, ε)), ((a′, ε),π(t′))} ⊆ sI . If there is some t̂ ∈ Terms(qco) such
that πco(t̂) = (a′, ε), then let u = t̂, otherwise let u be a fresh variable. We then define
a split rewriting qsr of qco by replacing r(t, t′) with s(t, u), s(u, t′)and a mapping πsr

that agrees with πco on all terms that occur in qco and that maps u to (a′, ε).

It immediately follows that I |=πsr qsr. We can proceed as described above for each role
atom r(t, t′) for which π(t) = (a, w) and π(t′) = (a′, w′) with a 2= a′ and w 2= ε or w′ 2=
ε. This will result in a split rewriting qsr and a split match πsr such that I |=πsr qsr.
Furthermore, πsr is injective modulo ≈* since we only introduce new variables, when the
variable is mapped to an element that is not yet in the range of the match. Since πsr is a
split match, it induces a root splitting R and, hence, (qsr, R) ∈ srK(q) as required.

Lemma (17). Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (q"r, R) ∈ lrK(q) and a mapping π"r

such that I |=π!r q"r, π"r is an injection modulo ≈* , R is the root splitting induced by
π"r and, for each r(t, t) ∈̄ q"r, t ∈ R.

2. If (q"r, R) ∈ lrK(q) and I |=π!r q"r for some match π"r, then I |= q.

Proof of Lemma 17. The proof of (2) is analogous to the one given in Lemma 16 since, by
definition of loop rewritings, all roles replaced in a loop rewriting are again non-simple.

For (1), let (qsr, R) ∈ srK(q) be such that I |=πsr qsr, πsr is a split match, and R is
the root splitting induced by πsr. Such a split rewriting qsr and match πsr exist due to
Lemma 16 and the canonicity of I.

Let r(t, t) ∈̄ qsr for t /∈ R. Since R is the root splitting induced by πsr and since
t /∈ R, πsr(t) = (a, w) for some a ∈ Inds(A) and w 2= ε. Now, let J be a forest base for
I. We show that there exists a neighbor d of πsr(t) and a role s ∈ TransR such that s '*Rr
and (πsr(t), d) ∈ sI ∩ Inv(s)I . Since I |=πsr qsr, we have (πsr(t),πsr(t)) ∈ rI . Since J
is a forest base and since w 2= ε, we have (πsr(t),πsr(t)) /∈ rJ . It follows that there is a
sequence d1, . . . , dn ∈ ∆I and a role s ∈ TransR such that s '*Rr, d1 = πsr(t) = dn, and
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(di, di+1) ∈ sJ for 1 ≤ i < n and di 2= d1 for each i with 1 < i < n. Then it is not hard
to see that, because {w′ | (a, w′) ∈ ∆I} is a tree and w 2= ε, we have d2 = dn−1. Since
(d1, d2) ∈ sJ and (dn−1, dn) ∈ sJ with dn−1 = d2 and dn = d1, the role s and the element
d = d2 is as required. For each r(t, t) ∈̄ qsr with t /∈ R, select an element dr,t and a role
sr,t as described above. Now let q"r be obtained from qsr by doing the following for each
r(t, t) ∈̄ qsr with t /∈ R:

• if dr,t = πsr(t′) for some t′ ∈ Terms(qsr), then replace r(t, t) with sr,t(t, t′) and sr,t(t′, t);

• otherwise, introduce a new variable vr,t ∈ NV and replace r(t, t) with sr,t(t, vr,t) and
sr,t(vr,t, t).

Let π"r be obtained from πsr by extending it with π"r(vr,t) = dr,t for each newly introduced
variable vr,t. By definition of q"r and π"r, q"r is connected, π"r is injective modulo ≈* , and
I |=π!r q"r.

Lemma (18). Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (qfr, R) ∈ frK(q) such that I |=πfr qfr

for a forest match πfr, R is the induced root splitting of πfr, and πfr is an injection
modulo ≈* .

2. If (qfr, R) ∈ frK(q) and I |=πfr qfr for some match πfr, then I |= q.

Proof of Lemma 18. The proof of (2) is again analogous to the one given in Lemma 16. For
(1), let (q"r, R) ∈ lrK(q) be such that I |=π!r q"r, R is the root splitting induced by π"r, π"r

is injective modulo ≈* and, for each r(t, t) ∈̄ q"r, t ∈ R. Such a loop rewriting and match π"r

exist due to Lemma 17 and the canonicity of I. By definition, R is a root splitting w.r.t.
q"r and K.

For w, w′ ∈ IN∗, the longest common prefix (LCP) of w, w′ is the longest w∗ ∈ IN∗ such
that w∗ is prefix of both w and w′. For the match π"r we now define the set D as follows:

D := ran(π"r) ∪ {(a, w) ∈ ∆I | w is the LCP of some w, w′

with (a, w′), (a, w′′) ∈ ran(π"r)}.

Let V ⊆ NV \ Vars(q"r) be such that, for each d ∈ D \ ran(π"r), there is a unique vd ∈ V .
We now define a mapping πfr as π"r ∪ {vd ∈ V 8→ d}. By definition of V and vd, πfr is a
split match as well. The set V ∪Vars(q"r) will be the set of variables for the new query qfr.
Note that ran(πfr) = D.

Fact (a) if (a, w), (a, w′) ∈ ran(πfr), then (a, w′′) ∈ ran(πfr), where w′′ is the LCP of w
and w′;

Fact (b) !(V ) ≤ !(Vars(q"r)) (Because, in the worst case, all (a, w) in ran(π"r) are “incom-
parable” and can thus be seen as leaves of a binarily branching tree. Now, a tree that
has n leaves and is at least binarily branching at every non-leaf has at most n inner
nodes, and thus !(V ) ≤ !(Vars(q"r)).
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For a pair of individuals d, d′ ∈ ∆I , the path from d to d′ is the (unique) shortest sequence
of elements d1, . . . , dn ∈ ∆I such that d1 = d, dn = d′, and di+1 is a neighbor of di for all
1 ≤ i < n. The length of a path is the number of elements in it, i.e., the path d1, . . . , dn is
of length n. The relevant path d′1, . . . , d

′
" from d to d′ is the sub-sequence of d1, . . . , dn that

is obtained by dropping all elements di /∈ D.

Claim 1. Let r(t, t′) ∈̄ subq(q"r, tr) for some tr ∈ R and let d′1, . . . , d
′
" be the relevant path

from d = d′1 = π"r(t) to d′ = d′" = π"r(t′). If $ > 2, there is a role s ∈ TransR such that
s '*Rr and (d′i, d

′
i+1) ∈ sI for all 1 ≤ i < $.

Proof. Let d1, . . . , dn be the path and d′1, . . . , d
′
" the relevant path from π"r(t) to π"r(t′).

Then $ > 2 implies n > 2. We have to show that there is a role s as in the claim. Let J
be a forest base for I. Since I |=π!r q"r, n > 2 implies (π"r(t),π"r(t′)) ∈ rI \ rJ . Since I is
based on J , it follows that there is an s ∈ TransR such that s '*Rr, and (di, di+1) ∈ sJ for
all 1 ≤ i < n. By construction of I from J , it follows that (d′i, d

′
i+1) ∈ sI for all 1 ≤ i < $,

which finishes the proof of the claim.
Now let qfr be obtained from q"r as follows: for each role atom r(t, t) ∈̄ subq(q"r, tr) with

tr ∈ R, if the length of the relevant path d′1, . . . , d
′
" from d = d′1 = π"r(t) to d′ = d′" = π"r(t′)

is greater than 2, then select a role s and variables tj ∈ D such that πfr(tj) = d′j as in
Claim 1 and replace the atom r(t, t′) with s(t1, t2), . . . , s(t"−1, t"), where t = t1, t′ = t".
Please note that these tj can be chosen in a “don’t care” non-deterministic way since πfr is
injective modulo ≈* , i.e., if πfr(tj) = dj = πfr(t′j), then tj≈* t′j and we can pick any of these.

We now have to show that

(i) I |=πfr qfr, and

(ii) πfr is a forest match.

For (i), let r(t, t′) ∈̄ q"r \ qfr and let s(t1, t2), . . . , s(t"−1, t") be the atoms that replaced
r(t, t′). Since I |=π!r q"r, I |=π!r r(t, t′) and (π"r(t),π"r(t′)) ∈ rI . Since r(t, t′) was replaced
in qfr, the length of the relevant path from π"r(t) to π"r(t′) is greater than 2. Hence, it must
be the case that (π"r(t),π"r(t′)) ∈ rI \ rJ . Let d1, . . . , dn with d1 = π"r(t) and dn = π"r(t′)
be the path from π"r(t) to π"r(t′) and d′1, . . . , d

′
" the relevant path from π"r(t) to π"r(t′). By

construction of I from J , this means that there is a role s ∈ TransR such that s '*Rr and
(di, di+1) ∈ sJ for all 1 ≤ i < n. Again by construction of I, this means (d′i, d

′
i+1) ∈ sI for

1 ≤ i < $ as required. Hence I |=πfr s(ti, ti+1) for each i with ≤ i < $ by definition of πfr.
For (ii): the mapping πfr differs from π"r only for the newly introduced variables.

Furthermore, we only introduced new role atoms within a sub-query subq(q"r, tr) and π"r

is a split match by assumption. Hence, πfr is trivially a split match and we only have to
show that πfr is a forest match. Since πfr is a split match, we can do this “tree by tree”.

For each a ∈ Inds(A), let Ta := {w | (a, w) ∈ ran(πfr)}. We need to construct a mapping
f as specified in Definition 14, and we start with its root tr. If Ta 2= ∅, let tr ∈ Terms(q)
be the unique term such that πfr(tr) = (a, wr) and there is no t ∈ Terms(q) such that
πfr(t) = (a, w) and w is a proper prefix of wr. Such a term exists since πfr is a split match
and it is unique due to Fact (a) above. Define a trace to be a sequence w̄ = w1 · · ·wn ∈ T+

a

such that

• w1 = wr;
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• for all 1 ≤ i < n, wi is the longest proper prefix of wi+1.

Since I is canonical, each wi ∈ Ta is in IN. It is not hard to see that T = {w̄ | w̄ is a trace}∪
{ε} is a tree. For a trace w̄ = w1 · · ·wn, let Tail(w̄) = wn. Define a mapping f that maps
each term t with πfr(t) = (a, w) ∈ Ta to the unique trace w̄t such that w = Tail(w̄t). Let
r(t, t′) ∈ qfr such that πfr(t),πfr(t′) ∈ Ta. By construction of qfr, this implies that the
length of the relevant path from πfr(t) to πfr(t′) is exactly 2. Thus, f(t) and f(t′) are
neighbors in T and, hence, πfr is a forest match as required.

Theorem (19). Let K be a SHIQ knowledge base, q a Boolean conjunctive query, and
{q1, . . . , q"} = treesK(q) ∪ groundK(q). Then K |= q iff K |= q1 ∨ . . . ∨ q".

Proof of Theorem 19. For the “if” direction: let us assume that K |= q1 ∨ . . . ∨ q". Hence,
for each model I of K, there is a query qi with 1 ≤ i ≤ $ such that I |= qi. We distinguish
two cases: (i) qi ∈ treesK(q) and (ii) qi ∈ groundK(q).

For (i): qi is of the form C(v) where C is the query concept for some query qfr w.r.t.
v ∈ Vars(qfr) and (qfr, ∅) ∈ frK(q). Hence I |=π qi for some match π, and thus I |=π C(v).
Let d ∈ ∆I with d = π(v) ∈ CI . By Lemma 12, we then have that I |= qfr and, by
Lemma 18, we then have that I |= q as required.

For (ii): since qi ∈ groundK(q), there is some pair (qfr, R) ∈ frK(q) such that qi =
ground(qfr, R, τ). We show that I |=πfr qfr for some match πfr. Since I |= q1, there
is a match πi such that I |=πi qi. We now construct the match πfr. For each t ∈ R,
qi contains a concept atom C(τ(t)) where C = con(subq(qfr, t), t) is the query concept of
subq(qfr, t) w.r.t. t. Since I |=πi C(τ(t)) and by Lemma 12, there is a match πt such that
I |=πt subq(qfr, t). We now define πfr as the union of πt, for each t ∈ R. Please note that
πfr(t) = πi(τ(t)). Since Inds(qfr) ⊆ R and τ is such that, for each a ∈ Inds(qfr), τ(a) = a
and τ(t) = τ(t′) iff t≈* t′, it follows that I |=πfr at for each atom at ∈̄ qfr such that at
contains only terms from the root choice R and hence I |=πfr qfr as required.

For the “only if” direction we have to show that, if K |= q, then K |= q1 ∨ . . .∨ q", so let
us assume that K |= q. By Lemma 7 in its negated form we have that K |= q iff all canonical
models I of K are such that I |= q. Hence, we can restrict our attention to the canonical
models of K. By Lemma 18, I |= K and I |= q implies that there is a pair (qfr, R) ∈ frK(q)
such that I |=πfr qfr for a forest match πfr, R is the induced root splitting of πfr, and πfr

is an injection modulo ≈* . We again distinguish two cases:

(i) R = ∅, i.e., the root splitting is empty and πfr is a tree match, and

(ii) R 2= ∅, i.e., the root splitting is non-empty and πfr is a forest match but not a tree
match.

For (i): since (qfr, ∅) ∈ frK(q), there is some v ∈ Terms(qfr) such that C = con(qfr, v) and
qi = C(v). By Lemma 12 and, since I |= qfr, there is an element d ∈ ∆I such that d ∈ CI .
Hence I |=π C(v) with π : v 8→ d as required.

For (ii): since R is the root splitting induced by πfr, for each t ∈ R there is some
at ∈ Inds(A) such that πfr(t) = (at, ε). We now define the mapping τ : R → Inds(A) as
follows: for each t ∈ R, τ(t) = at iff πfr(t) = (at, ε). By definition of ground(qfr, R, τ),
qi = ground(qfr, R, τ) ∈ groundK(q). Since I |=πfr qfr, I |= subq(qfr, t) for each t ∈ R.
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Since qfr is forest-shaped, each subq(qfr, t) is tree-shaped. Then, by Lemma 12, I |= q′i,
where q′i is the query obtained from qfr by replacing each sub-query subq(qfr, t) with C(t)
for C the query concept of subq(qfr, t) w.r.t. t. By definition of τ from the forest match
πfr, it is clear that I |= ground(qfr, R, τ) as required.

Lemma (20). Let q be a Boolean conjunctive query, K = (T ,R,A) a SHIQ knowledge
base, |q| := n and |K| := m. Then there is a polynomial p such that

1. !(co(q)) ≤ 2p(n) and, for each q′ ∈ co(q), |q′| ≤ p(n),

2. !(srK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ srK(q), |q′| ≤ p(n),

3. !(lrK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ lrK(q), |q′| ≤ p(n),

4. !(frK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ frK(q), |q′| ≤ p(n),

5. !(treesK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ treesK(q), |q′| ≤ p(n), and

6. !(groundK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ groundK(q), |q′| ≤ p(n).

Proof of Lemma 20.

1. The set co(q) contains those queries obtained from q by adding at most n equality
atoms to q. The number of collapsings corresponds, therefore, to building all equiv-
alence classes over the terms in q by ≈* . Hence, the cardinality of the set co(q) is at
most exponential in n. Since we add at most one equality atom for each pair of terms,
the size of a query q′ ∈ co(q) is at most n + n2, and |q′| is, therefore, polynomial in n.

2. For each of the at most n role atoms, we can choose to do nothing, replace the
atom with two atoms, or with three atoms. For every replacement, we can choose to
introduce a new variable or re-use one of the existing variables. If we introduce a new
variable every time, the new query contains at most 3n terms. Since K can contain at
most m non-simple roles that are a sub-role of a role used in role atoms of q, we have
at most m roles to choose from when replacing a role atom. Overall, this gives us at
most 1 + m(3n) + m(3n)(3n) choices for each of the at most n role atoms in a query
and, therefore, the number of split rewritings for each query q′ ∈ co(q) is polynomial
in m and exponential in n. In combination with the results from (1), this also shows
that the overall number of split rewritings is polynomial in m and exponential in n.

Since we add at most two new role atoms for each of the existing role atoms, the size
of a query q′ ∈ srK(q) is linear in n.

3. There are at most n role atoms of the form r(t, t) in a query q′ ∈ srK(q) that could
give rise to a loop rewriting, at most m non-simple sub-roles of r in K that can be
used in the loop rewriting, and we can introduce at most one new variable for each
role atom r(t, t). Therefore, for each query in srK(q), the number of loop rewritings
is again polynomial in m and exponential in n. Combined with the results from (2),
this bound also holds for the cardinality of lrK(q).

In a loop rewriting, one role atom is replaced with two role atoms, hence, the size of
a query q′ ∈ lrK(q) at most doubles.
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4. We can use similar arguments as above in order to derive a bound that is exponential
in n and polynomial in m for the number of forest rewritings in frK(q).

Since the number of role atoms that we can introduce in a forest rewriting is polyno-
mial in n, the size of each query q′ ∈ frK(q) is at most quadratic in n.

5. The cardinality of the set treesK(q) is clearly also polynomial in m and exponential in
n since each query in frK(q) can contribute at most one query to the set treesK(q). It
is not hard to see that the size of a query q′ ∈ treesK(q) is polynomial in n.

6. By (1)-(4) above, the number of terms in a root splitting is polynomial in n and there
are at most m individual names occurring in A that can be used for the mapping τ
from terms to individual names. Hence the number of different ground mappings τ is
at most polynomial in m and exponential in n. The number of ground queries that a
single tuple (qfr, R) ∈ frK(q) can contribute is, therefore, also at most polynomial in m
and exponential in n. Together with the bound on the number of forest rewritings from
(4), this shows that the cardinality of groundK(q) is polynomial in m and exponential
in n. Again it is not hard to see that the size of each query q′ ∈ groundK(q) is
polynomial in n.

Lemma (23). Let K be a SHIQ knowledge base and q a union of connected Boolean
conjunctive queries. The algorithm from Definition 22 answers “K entails q” iff K |= q
under the unique name assumption.

Proof of Lemma 23. For the “only if”-direction: let q = q1 ∨ . . . ∨ q". We show the contra-
positive and assume that K 2|= q. We can assume that K is consistent since an inconsistent
knowledge base trivially entails every query. Let I be a model of K such that I 2|= q. We
show that I is also a model of some extended knowledge base Kq = (T ∪ Tq,R,A ∪ Aq).
We first show that I is a model of Tq. To this end, let " ' ¬C in Tq. Then C(v) ∈ T
and C = con(qfr, v) for some pair (qfr, ∅) ∈ frK(q1) ∪ . . . ∪ frK(q") and v ∈ Vars(qfr). Let i
be such that (qfr, ∅) ∈ frK(qi). Now CI 2= ∅ implies, by Lemma 12, that I |= qfr and, by
Lemma 18, I |= qi and, hence, I |= q, contradicting our assumption. Thus I |= " ' ¬C
and, thus, I |= Tq.

Next, we define an extended ABox Aq such that, for each q′ ∈ G,

• if C(a) ∈ q′ and aI ∈ ¬CI , then ¬C(a) ∈ Aq;

• if r(a, b) ∈ q′ and (aI , bI) /∈ rI , then ¬r(a, b) ∈ Aq.

Now assume that we can have a query q′ = ground(qfr, R, τ) ∈ groundK(q1)∪. . .∪groundK(q")
such that there is no atom at ∈ q′ with ¬at ∈ Aq. Then trivially I |= q′. Let i be such that
(qfr, R) ∈ frK(qi). By Theorem 19, I |= qi and thus I |= q, which is a contradiction. Hence
Kq is an extended knowledge base and I |= Kq as required.

For the “if”-direction, we assume that K |= q, but the algorithm answers “K does not
entail q”. Hence there is an extended knowledge base Kq = (T ∪ Tq,R,A ∪ Aq) that is
consistent, i.e., there is a model I such that I |= Kq. Since Kq is an extension of K,
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I |= K. Moreover, we have that I |= Tq and hence, for each d ∈ ∆I , d ∈ ¬CI for each
C(v) ∈ treesK(q1) ∪ . . . ∪ treesK(q"). By Lemma 12, we then have that I 2|= q′ for each
q′ ∈ treesK(q1) ∪ . . . ∪ treesK(q") and, by Lemma 18, I 2|= qi for each i with 1 ≤ i ≤ $.

By definition of extended knowledge bases, Aq contains an assertion ¬at for at least one
atom at in each query q′ = ground(qfr, R, τ) from groundK(q1) ∪ . . . ∪ groundK(q"). Hence
I 2|= q′ for each q′ ∈ groundK(q1) ∪ . . . ∪ groundK(q"). Then, by Theorem 19, I 2|= q, which
contradicts our assumption.

Lemma (25). Let R be a role hierarchy, and r1, . . . , rn roles. For every interpretation I
such that I |= R, it holds that (↑(r1 + . . . + rn,R))I = (r1 + . . . + rn)I .

Proof of Lemma 25. The proof is a straightforward extension of Lemma 6.19 by Tobies
(2001). By definition, ↑ (r1 + . . . + rn,R) =↑ (r1,R) + . . .+ ↑ (rn,R) and, by defini-
tion of the semantics of role conjunctions, we have that (↑(r1,R) + . . .+ ↑(rn,R))I =
↑(r1,R)I ∩ . . . ∩ ↑(rn,R)I . If s '*Rr, then {s′ | r '*Rs′} ⊆ {s′ | s '*Rs′} and hence
↑(s,R)I ⊆ ↑(r,R)I . If I |= R, then rI ⊆ sI for every s with r '*Rs. Hence, ↑(r,R)I = rI

and (↑(r1 + . . . + rn,R))I = (↑(r1,R) + . . .+ ↑(rn,R))I = ↑(r1,R)I ∩ . . . ∩ ↑(rn,R)I =
r1

I ∩ . . . ∩ rn
I = (r1 + . . . + rn)I as required.

Lemma (28). Given a SHIQ$ knowledge base K = (T ,R,A) where m := |K| and the size
of the longest role conjunction is n, we can decide consistency of K in deterministic time
2p(m)2p(n)

with p a polynomial.

Proof of Lemma 28. We first translate K into an ALCQIb knowledge base tr(K,R) =
(tr(T ,R), tr(A,R)). Since the longest role conjunction is of size n, the cardinality of each
set tc(R,R) for a role conjunction R is bounded by mn. Hence, the TBox tr(T ,R) can
contain exponentially many axioms in n. It is not hard to check that the size of each axiom
is polynomial in m. Since deciding whether an ALCQIb KB is consistent is an ExpTime-
complete problem (even with binary coding of numbers) (Tobies, 2001, Theorem 4.42), the

consistency of tr(K,R) can be checked in time 2p(m)2p(n)
.

Lemma (29). Let K = (T ,R,A) be a SHIQ knowledge base with m := |K| and q a
union of connected Boolean conjunctive queries with n := |q|. The algorithm given in
Definition 22 decides whether K |= q under the unique name assumption in deterministic

time in 2p(m)2p(n)
.

Proof of Lemma 29. We first show that there is some polynomial p such that we have
to check at most 2p(m)2p(n)

extended knowledge bases for consistency and then that each
consistency check can be done in time 2p(m)2p(n)

, which gives an upper bound of 2p(m)2p(n)

on the time needed for deciding whether K |= q.
Let q := q1 ∨ . . . ∨ q". Clearly, we can use n as a bound for $, i.e., $ ≤ n. Moreover, the

size of each query qi with 1 ≤ i ≤ $ is bounded by n. Together with Lemma 20, we get that
!(T ) and !(G) are bounded by 2p(n)·log p(m) for some polynomial p and it is clear that the
sets can be computed in this time bound as well. The size of each query q′ ∈ G w.r.t. an
ABox A is polynomial in n and, when constructing Aq, we can add a subset of (negated)
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atoms from each q′ ∈ G to Aq. Hence, there are at most 2p(m)2p(n)
extended ABoxes Aq

and, therefore, 2p(m)2p(n)
extended knowledge bases that have to be tested for consistency.

Due to Lemma 20 (5), the size of each query q′ ∈ T is polynomial in n. Computing a
query concept Cq′ of q′ w.r.t. some variable v ∈ Vars(q′) can be done in time polynomial
in n. Thus the TBox Tq can be computed in time 2p(n)·log p(m). The size of an extended
ABox Aq is maximal if we add, for each of the 2p(n)·log p(m) ground queries in G, all atoms
in their negated form. Since, by Lemma 20 (6), the size of these queries is polynomial in n,
the size of each extended ABox Aq is bounded by 2p(n)·log p(m) and it is clear that we can
compute an extended ABox in this time bound as well. Hence, the size of each extended
KB Kq = (T ∪Tq,R,A∪Aq) is bounded by 2p(n)·log p(m). Since role conjunctions occur only
in Tq or Aq, and the size of each concept in Tq and Aq is polynomial in n, the length of the
longest role conjunction is also polynomial in n.

When translating an extended knowledge base into an ALCQIb knowledge base, the
number of axioms resulting from each concept C that occurs in Tq or Aq can be exponential
in n. Thus, the size of each extended knowledge base is bounded by 2p(n)·log p(m).

Since deciding whether an ALCQIb knowledge base is consistent is an ExpTime-
complete problem (even with binary coding of numbers) (Tobies, 2001, Theorem 4.42),

it can be checked in time 2p(m)2p(n)
if K is consistent or not.

Since we have to check at most 2p(m)2p(n)
knowledge bases for consistency, and each

check can be done in time 2p(m)2p(n)
, we obtain the desired upper bound of 2p(m)2p(n)

for
deciding whether K |= q.

Lemma (31). Let K = (T ,R,A) be a SHIQ knowledge base and q a union of Boolean
conjunctive queries. K 2|= q without making the unique name assumption iff there is an
A-partition KP = (T ,R,AP) and qP w.r.t. K and q such that KP 2|= qP under the unique
name assumption.

Proof of Lemma 31. For the “only if”-direction: Since K 2|= q, there is a model I of K
such that I 2|= q. Let f : Inds(A) → Inds(A) be a total function such that, for each set of
individual names {a1, . . . , an} for which a1

I = ai
I for 1 ≤ i ≤ n, f(ai) = a1. Let AP and

qP be obtained from A and q by replacing each individual name a in A and q with f(a).

Clearly, KP = (T ,R,AP) and qP are an A-partition w.r.t. K and q. Let IP = (∆I , ·I
P

)
be an interpretation that is obtained by restricting ·I to individual names in Inds(AP). It
is easy to see that IP |= KP and that the unique name assumption holds in IP . We now
show that IP 2|= qP . Assume, to the contrary of what is to be shown, that IP |=π′

qP for
some match π′. We define a mapping π : Terms(q) → ∆I from π′ such π(a) = π′(f(a)) for
each individual name a ∈ Inds(q) and π(v) = π′(v) for each variable v ∈ Vars(q). It is easy
to see that I |=π q, which is a contradiction.

For the “if”-direction: Let IP = (∆I , ·I
P

) be such that IP |= KP under UNA and
IP 2|= qP and let f : Inds(A) → Inds(AP) be a total function such that f(a) is the individual
that replaced a in AP and qP . Let I = (∆I ,·I) be an interpretation that extends IP such

that aI = f(a)I
P

. We show that I |= K and that I 2|= q. It is clear that I |= T . Let
C(a) be an assertion in A such that a was replaced with aP in AP . Since IP |= C(aP)

and aI = f(a)I
P

= aP
IP

∈ CIP

, I |= C(a). We can use a similar argument for (possibly
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negated) role assertions. Let a 2
.
= b be an assertion in A such that a was replaced with aP

and b with bP in AP , i.e., f(a) = aP and f(b) = bP . Since IP |= aP 2
.
= bP , aI = f(a)I

P

=

aP
IP

2= bP
IP

= f(b)I
P

= bI and I |= a 2
.
= b as required. Therefore, we have that I |= K as

required.
Assume that I |=π q for a match π. Let πP : Terms(qP) → ∆I be a mapping such that

πP(v) = π(v) for v ∈ Vars(qP) and πP(aP) = π(a) for aP ∈ Inds(qP) and some a such that
aP = f(a). Let C(aP) ∈ qP be such that C(a) ∈ q and a was replaced with aP , i.e., f(a) =

aP . By assumption, π(a) ∈ CI , but then π(a) = aI = f(a)I
P

= aP
IP

= πP(aP) ∈ CIP

and IP |= C(aP). Similar arguments can be used to show entailment for role and equality
atoms, which yields the desired contradiction.

Theorem (35). Let K = (T ,R,A) be a SHIQ knowledge base with m := |K| and q :=
q1 ∨ . . . ∨ q" a union of Boolean conjunctive queries with n := |q|. The algorithm given in
Definition 34 decides in non-deterministic time p(ma) whether K 2|= q for ma := |A| and p
a polynomial.

Proof of Theorem 35. Clearly, the size of an ABox AP in an A-partition is bounded by ma.
As established in Lemma 32, the maximal size of an extended ABox AP

q is polynomial in

ma. Hence, |AP ∪ AP
q | ≤ p(ma) for some polynomial p. Due to Lemma 20 and since the

size of q, T , and R is fixed by assumption, the sets treesKP (qi) and groundKP (qi) for each
i such that 1 ≤ i ≤ $ can be computed in time polynomial in ma. From Lemma 29, we
know that the translation of an extended knowledge base into an ALCQIb knowledge base
is polynomial in ma and a close inspection of the algorithm by Tobies (2001) for deciding
consistency of an ALCQIb knowledge base shows that its runtime is also polynomial in
ma.
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