
Individual Reuse in Description Logic Reasoning

Boris Motik and Ian Horrocks

University of Oxford, UK

Abstract. Tableau calculi are the state-of-the-art for reasoning in de-
scription logics (DL). Despite recent improvements, tableau-based rea-
soners still cannot process certain knowledge bases (KBs), mainly be-
cause they end up building very large models. To address this, we propose
a tableau calculus with individual reuse: to satisfy an existential asser-
tion, our calculus nondeterministically tries to reuse individuals from the
model generated thus far. We present two expansion strategies: one is ap-
plicable to the DL ELOH and gives us a worst-case optimal algorithm,
and the other is applicable to the DL SHOIQ. Using this technique, our
reasoner can process several KBs that no other reasoner can.

1 Introduction

Description Logics (DLs) [2] are used for conceptual modeling in diverse areas
of computer science. This is largely due to the practical support for automated
reasoning, which can help users during modeling. Practical DL reasoners are
mostly based on tableau calculi [2], which are essentially model building algo-
rithms. Tableau calculi, as well as the underlying computational problems, are
of high computational complexity, so various optimizations of the basic algo-
rithm have been developed [2, Chapter 9] and incorporated into reasoners such
as FaCT++ [16], Pellet [12], and RACER [8].

DLs are often used in life sciences, and this continuously poses new challenges
for DL research. For example, GALEN [13] and FMA [14]—detailed and com-
prehensive models of human anatomy—have both been translated into DLs, but
the resulting knowledge bases cannot be processed using existing DL reasoners.
To address this problem we recently proposed a novel DL reasoning algorithm
[10, 11] based on hypertableau [4]. Unlike the standard tableau calculi, the hy-
pertableau calculus is deterministic if a knowledge base can be translated into a
Horn theory; furthermore, it uses anywhere blocking, which can significantly re-
duce the sizes of the generated models. Our HermiT reasoner, which implements
the new calculus, was the first one to successfully process the original version of
GALEN—that is, the version from ten years ago.

Despite these improvements, many DL knowledge bases are still out of Her-
miT’s reach. The hypertableau calculus minimizes nondeterminism, so the re-
maining performance problems are due to the construction of very large models.
We therefore propose an extension to the hypertableau calculus based on individ-
ual reuse: to satisfy an existential assertion (∃R.C)(s), our calculus first tries to
reuse an individual from the model constructed thus far; if this fails, the calculus

then introduces a fresh individual. We focus here on the hypertableau calculus;
however, individual reuse could be applied in standard tableau calculi as well. In
Section 3, we discuss the practical rationale behind our approach. In particular,
we observe that, due to certain restrictions of DL languages, DL knowledge bases
are often underconstrained, thus naturally allowing for individual reuse.

If applied näıvely, individual reuse would yield a highly nondeterministic cal-
culus. We address this problem in two steps. First, we encapsulate the part of
the calculus that determines which individuals to reuse in an expansion strategy,
and we identify general conditions that a strategy must satisfy in order for the
algorithm to be sound, complete, and terminating.1 Second, we present two par-
ticular strategies. For knowledge bases expressed in ELOH—a fragment of the
tractable DL EL++ [1]—we show that individual reuse can be done determinis-
tically, yielding a polynomial algorithm, and we identify a close correspondence
between our calculus and the EL++ algorithm from [1]. For knowledge bases
expressed in SHOIQ—the DL underlying the Semantic Web ontology language
OWL—we present an expansion strategy that generalizes the ELOH one.

We have extended HermiT with individual reuse and have conducted a pre-
liminary evaluation on practical ontologies, of which several are used in life sci-
ences. Unlike FaCT++ and Pellet, HermiT can classify the BAMS ontology2 and
a particular fragment of FMA. Furthermore, HermiT can solve individual clas-
sification tests on a “hard” fragment of the current version of GALEN; however,
each test takes about 40 seconds, which makes classifying the knowledge base
infeasible given the large number of concepts. The new algorithm also improves
HermiT’s performance on complex ontologies such as DOLCE. Thus, individual
reuse seems to promise significant improvements in practical DL reasoning.

Please refer to [11] for nonessential technical details. All proofs are given in
Appendix A.

2 Preliminaries

The description logic SHOIQ is defined as follows. A SHOIQ signature is a
triple Σ = (NR, NC , NI) consisting of disjoint sets of atomic roles NR, atomic
concepts NC , and individuals NI . The set of roles is NR ∪ {R− | R ∈ NR}. For
R ∈ NR, let Inv(R) = R− and Inv(R−) = R. An RBox R is a finite set of role
inclusions R v S and transitivity axioms Trans(R) for R and S roles. Let v∗R be
the reflexive-transitive closure of {R v S, Inv(R) v Inv(S) | R v S ∈ R}. A role
R is transitive in R if a role S exists such that S v∗R R, R v∗R S, and either
Trans(S) ∈ R or Trans(Inv(S)) ∈ R; furthermore, R is simple if no transitive role
S exists such that S v∗R R. The set of concepts is the smallest set containing
concepts shown in the left-hand side of Table 1, for A ∈ NC , a ∈ NI , C and
D concepts, R a role, S a simple role, and n a nonnegative integer; concepts of
the form {a}, ≥ nS.C, and ≤ nS.C are called nominals, at-least, and at-most
1 We use “soundness” and “completeness” as in resolution theorem proving: a sound

calculus preserves satisfiability; a complete calculus correctly detects satisfiability.
2 http://brancusi.usc.edu/bkms/

Table 1: Model-Theoretic Semantics of SHOIQ

Semantics of Roles and Concepts Semantics of Axioms

>I = 4I ⊥I = ∅
{s}I = {sI} (¬C)I = 4I \ CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(R−)I = {〈b, a〉 | 〈a, b〉 ∈ RI}
(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(≤ nS.C)I = {x |]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
(≥ nS.C)I = {x |]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

C v D ⇒ CI ⊆ DI

R v S ⇒ RI ⊆ SI
Trans(R)⇒ (RI)+ ⊆ RI
C(a) ⇒ aI ∈ CI
R(a, b) ⇒ 〈aI , bI〉 ∈ RI
a ≈ b ⇒ aI = bI

a 6≈ b ⇒ aI 6= bI

Note:]N is the number of elements in N , and R+ is the transitive closure of R.

concepts, respectively. A TBox T is a finite set of general concept inclusions
(GCIs) C v D for C and D concepts. An ABox A is a finite set of assertions of
the form C(a), R(a, b), and (in)equalities a ≈ b and a 6≈ b, for C a concept, R a
role, and a and b individuals. A SHOIQ knowledge base K is a triple (R, T ,A).

An interpretation for K is a tuple I = (4I , ·I), where 4I is a nonempty set,
and ·I assigns an element aI ∈ 4I to each individual a, a set AI ⊆ 4I to each
atomic concept A, and a relation RI ⊆ 4I × 4I to each atomic role R. The
function ·I is extended to concepts and roles as shown in the left-hand side of
Table 1. I is a model of K, written I |= K, if it satisfies all axioms of K as shown
in the right-hand side of Table 1. The basic inference problem for SHOIQ is
checking satisfiability of K—that is, checking whether a model of K exists.

The DL ELOH [3] is obtained from SHOIQ by disallowing transitive and
inverse roles, and by allowing only concepts of the form >, ⊥, A, {a}, ∃R.C, and
C1 u C2. The DL SHIQ is obtained from SHOIQ by disallowing nominals.

3 Motivation

For a TBox T and an ABox A, a tableau calculus evolves A towards a represen-
tation of a model by applying derivation rules. The ∃-rule is found in virtually
all tableau calculi: given (∃R.C)(s) ∈ Ai, it introduces a fresh individual t and
derives the ABox Ai+1 := Ai ∪ {R(s, t), C(t)}. The rule is applied only if s is
not blocked in Ai; roughly speaking, this is the case if no individual u exists
such that D(s) ∈ Ai if and only if D(u) ∈ Ai for each concept D. Apart from
ensuring termination, blocking significantly reduces model sizes in practice [10].

DLs usually enjoy a tree model property : each satisfiable knowledge base has
a tree-shaped model. While this is useful for ensuring decidability [17], it also
prevents us from fully axiomatizing nontree structures. For example, a structure
such as the one shown in Figure 2a can only be approximated using the axioms
shown in Figure 2b. The axioms in Figure 2b have a model I corresponding to
Figure 2a; however, they also have an exponentially larger model I ′ obtained by
“unfolding” Figure 2a into a tree.

Consider now a run of our hypertableau algorithm on a knowledge base K
containing the axioms in Figure 2b and the axioms An+1 v E, ∃T.E v E, and

Fig. 1: Problems with Model Construction

A1

B1

C1

A2
R

S

T

T

An

Bn

Cn

An+1

R

S

T

T

(a) The Intended Structure

A1 v ∃R.B1 u ∃S.C1 An v ∃R.Bn u ∃S.Cn
B1 v ∃T.A2 . . . Bn v ∃T.An+1

C1 v ∃T.A2 Cn v ∃T.An+1

(b) The Axiomatization in DLs
∃R.E u ∃S.E v E. The algorithm exploits the tree model property by construct-
ing only (representations of) tree-shaped models. It will thus initially construct
a fragment of the exponential tree: the fragment will, for example, contain two
individuals labeled with A2 such that one blocks the other. But then E will
be added to all existing individuals, which will invalidate blocking. Thus, our
algorithm eventually constructs the entire exponential tree. Different blocking
and rule application strategies are known that might prevent the generation of
the exponential tree in this example; however, the example can be modified such
that the exponential tree is generated in spite of these optimizations.

Complex structures abound in life science ontologies; for example, GALEN
states that “the left ventricle is a solid division of the left side of the heart,”
“the left ventricle is a beta connection of the mitral valve,” “the mitral valve is
a structural component of the left side of the heart,” and so on. The intended
structure is much more complex than the one shown Figure 2a, and the axioms
are cyclic, so tableau reasoners generate very large tree models. It is reasonable,
however, to expect that GALEN is satisfied in a relatively small non-tree-shaped
model that contains only one left side, one left ventricle, and one mitral valve.

We use these observations in our new calculus: given (∃R.C)(s), instead of
always creating a fresh individual, our calculus first tries to reuse an individual
from the model generated thus far. Our calculus is similar to the tableau calculus
for first-order logic from [5]; however, the latter calculus is not a decision proce-
dure for DLs that lack the finite-model property and is unlikely to be suitable
for practice due to its very large degree of nondeterminism.

4 The Hypertableau Algorithm with Individual Reuse

Our calculus with individual reuse is based on the hypertableau calculi for SHIQ
[10] and SHOIQ [11]. Therefore, we first present an informal overview of these
calculi in Section 4.1, and then formally introduce the calculus with individual
reuse in Section 4.2.

4.1 The Standard Hypertableau Calculus for SHOIQ

Our hypertableau calculus is related to hyperresolution with splitting, which has
been used to obtain a decision procedure for several description and modal logics
[9, 6]. The algorithm consists of the preprocessing and the hypertableau phases.

The preprocessing phase translates a SHOIQ knowledge base K into a nor-
malized ABox ΞA(A) and a set ΞT R(K) of DL-clauses—universally quantified
first-order implications of the form

∧
Ui →

∨
Vj where Ui and Vj are atoms of the

form R(x, y), C(x), and x ≈ y, for x and y variables, R an atomic role, C a con-
cept, and ≈ the equality predicate. This transformation is an optimized version
of the well-known structural transformation followed by a translation of certain
concepts into first-order logic; please refer to [11, Section 4.1] for details. The
translation produces HT-clauses—syntactically restricted DL-clauses on which
our hypertableau calculus is guaranteed to terminate. A precise definition of HT-
clauses is given in [11, Definition 7]. Roughly speaking, HT-clauses can have the
form (1), whereRi and Si are (not necessarily atomic) roles, Ai andBi are atomic
concepts, and Ci and Di are either atomic or concepts of the form ≥ nR.A
or ≥ nR.¬A. Furthermore, ar is a function defined as ar(R, s, t) = R(s, t) and
ar(R−, s, t) = R(t, s) for R an atomic role and s and t individuals or variables.∧

Ai(x) ∧
∧

ar(Ri, x, yi) ∧
∧
Bi(yi) ∧

∧
Oai(yai)→∨

Ci(x) ∨
∨
Di(yi) ∨

∨
ar(Si, x, yi) ∨

∨
x ≈ yai

∨
∨
yi ≈ yj @x

≤nR.C
(1)

The atoms of the form x ≈ yai
stem from nominals; for example, C v {a} is

translated into an HT-clause C(x) ∧Oa(ya)→ x ≈ ya and an assertion Oa(a).
A concept Oa is uniquely associated with each nominal {a} and it is called a
nominal guard concept ; such concepts are used to “push” all individuals from
DL-clauses into the ABox. Finally, the at-most equalities yi ≈ yj @x

≤nR.C stem
from the translation of at-most concepts; for example, > v ≤ 1R.> is translated
into R(x, y1) ∧R(x, y2)→ y1 ≈ y2 @x

≤1R.>. The annotation @x
≤1R.> does not

affect the meaning of the equality; it merely records its provenance, and we shall
discuss the usage of this provenance information shortly. The concept ∃R.C is
used in the rest of this paper as an abbreviation for ≥ 1R.C.

The hypertableau phase decides satisfiability of a set of HT-clauses C and
an ABox A. The main derivation rule is similar to the one of the hypertableau
calculus for first order logic [4]: given an HT-clause

∧m
i=1 Ui →

∨n
j=1 Vj and an

ABox A, the Hyp-rule tries to unify the atoms U1, . . . , Um with a subset of
the assertions in A; if a unifier σ is found, the rule nondeterministically derives
σ(Vj) for some 1 ≤ j ≤ n. For example, given R(x, y)→ ∃R.C(x) ∨D(y) and
an assertion R(a, b), the Hyp-rule derives either ∃R.C(a) or D(b). The ≥-rule
deals with existential quantifiers: given ∃R.C(a), the rule introduces a fresh
individual t and derives R(a, t) and C(t). The ≈-rule deals with equality: given
a ≈ b, the rule replaces the individual a in all assertions with the individual
b, and it introduces a renaming a 7→ b in order to keep track of the merging.
We take ≈ to have built-in symmetry; thus, a ≈ b should also be read as b ≈ a.
Finally, the ⊥-rule detects contradictions such as A(a) and ¬A(a), or a 6≈ a.

Termination of the calculus is ensured through blocking, which is based on the
key concept of forest-shaped ABoxes. We discuss here just the intuition behind
the concept; please refer to [11, Definition 11] for details. A forest-shaped ABox
is shown in Figure 2, where nodes and edges correspond to individuals and role
assertions, respectively. Individuals in such an ABox can be separated into two

a

s t

bc

u v d
R R

Fig. 2: Forest-Shaped ABoxes

Aε

A1

reuse a

A2

use ∗

Fig. 3: Example Derivation

sets. Named individuals (shown as black nodes) originate from the input ABox,
and they can be connected in arbitrary ways. Blockable individuals (shown as
white nodes) are introduced by the ≥-rule, and they can be connected either to
arbitrary named individuals, or to other blockable individuals in a tree-like way.
Blockable individuals are represented as strings; for example, s = a.1 denotes
that s is the first successor of a. These notions can be used to identify certain
individuals as blocked. The ≥-rule is applied only to nonblocked individuals, and
this ensures termination without affecting completeness.

As shown in [11, Lemma 12], applications of most derivation rules preserve
the forest shape of an ABox; however, inverse roles, nominals, and number re-
strictions cause subtle problems. Consider again Figure 2 and assume that d
must satisfy an at-most restriction ≤ 1R−.>. This implies v ≈ s, so one indi-
vidual should be merged into the other; however, this can compromise the tree
shape of the ABox. The NI -rule deals with this problem by promoting one of v or
s into a root individual : such individuals can be connected in arbitrary ways even
if they do not occur in the input ABox. Thus, an application of the Hyp-rule to
the ABox in Figure 2 and the HT-clause R(y1, x) ∧R(y2, x)→ y1 ≈ y2 @x

≤1R−.>
derives the at-most equality v ≈ s@d

≤1R−.>. By examining the annotation on the
equality, the NI -rule can see that the equality stems from an at-most concept,
so it turns either v or s into a root individual. It is possible to establish a bound
on the number of the introduced root individuals and thus ensure termination.

4.2 Introducing Individual Reuse

In this section, we extend the hypertableau calculus with individual reuse.

Definition 1 (Hypertableau with Individual Reuse).
Individuals. Given a set of named individuals NI , the set of root in-

dividuals NO is the smallest set such that NI ⊆ NO and, if x ∈ NO, then
x.〈R,B, i〉 ∈ NO for each role R, each integer i, and each B of the form A
or ¬A with A an atomic concept. The set of all individuals NA is the smallest
set such that NO ⊆ NA and, if x ∈ NA, then x.i ∈ NA for each integer i. The
individuals in NA \NO are blockable individuals. A blockable individual x.i is a
successor of x, and x is a predecessor of x.i. Descendant and ancestor are the
transitive closures of successor and predecessor, respectively.

ABoxes. An ABox that contains only named individuals and no at-most
equalities is called an input ABox. The hypertableau algorithm works with gen-
eralized ABoxes, which can contain assertions using the individuals from NA, a

special assertion ⊥ that is false in all interpretations, and an acyclic and con-
fluent relation 7→ on root individuals called renaming. The canonical name of a
root individual a ∈ NO w.r.t. A, written ‖a‖A, is the normal form of a w.r.t. 7→
in A. If a occurs in A, then the relation 7→ must be such that ‖a‖A = a.

Pairwise Anywhere Blocking. The label of an individual is defined as
LA(s) = {C | C(s) ∈ A and C is of the form A,≥ nR.A or ≥ nR.¬A}, and of
an individual pair as LA(s, t) = {R | R(s, t) ∈ A}. Let ≺ be a transitive and
irreflexive relation on NA such that, if s′ is an ancestor of s, then s′ ≺ s. By
induction on ≺, we assign to each individual in A a status as follows: a blockable
individual s with a predecessor s′ is directly blocked by a blockable individual t
with a predecessor t′ iff t is not blocked, t ≺ s, LA(s) = LA(t), LA(s′) = LA(t′),
LA(s, s′) = LA(t, t′), and LA(s′, s) = LA(t′, t); s is indirectly blocked iff it has a
predecessor that is blocked; and s is blocked iff it is directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
containing a descendent of s.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing
the individual s with the individual t in all assertions (but not in the renaming
relation 7→) and, if both s and t are root individuals, adding the renaming s 7→ t.

Expansion Strategy. An expansion strategy is a function that, for each
concept ≥ nR.C, individual s, and ABox A, returns a k-tuple of n-tuples of
the form iexp(≥ nR.C, s,A) = [(γ1,1, . . . , γ1,n), . . . , (γk,1, . . . , γk,n)], where k ≥ 1
and, for each 1 ≤ i ≤ k and 1 ≤ j ≤ n, γi,j is a special symbol ∗, a predecessor
or a successor of s, or a root individual (which may or may not occur in A).

Derivation Rules. Table 2 specifies rules that, for A an ABox, C a set of
HT-clauses, and iexp an expansion strategy, derive the ABoxes A1, . . . ,A`.

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equal-
ity s ≈ t in an ABox A only if A does not contain an equality of the form
s ≈ t@u

≤nR.B to which the NI-rule is applicable.
Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.
Derivation. A derivation D = (T, λ) for a set of HT-clauses C, an ABox

A, and an expansion strategy iexp consists of a finitely branching tree T and
a function λ labeling the nodes of T with ABoxes such that (i) λ(ε) = A for
ε the root of T , (ii) t ∈ T is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is
applicable to λ(t) and C, and (iii) otherwise, t ∈ T has children t1, . . . , t` such
that λ(t1), . . . , λ(t`) are exactly the results of applying one (arbitrarily chosen, but
respecting the precedence) applicable derivation rule to λ(t) and C. The derivation
D is successful if it contains a leaf node labeled with a clash-free ABox.

The main difference to the hypertableau calculus from [11, Definition 10]
is in the ≥-rule and the notion of an expansion strategy. Intuitively, given an
assertion ≥ nR.C(s) ∈ A, the new ≥-rule consults the expansion strategy iexp to
determine the possible ways of satisfying the assertion. The strategy can identify
k different ways to do this; if k > 1, the ≥-rule becomes nondeterministic. The
i-th variant is described as an n-tuple (γi,1, . . . , γi,n), in which γi,j specifies how
to obtain the j-th of the n required individuals. For each γi,j , the strategy can
cause the ≥-rule to either (i) reuse an existing individual from A, (ii) introduce

Table 2: Derivation Rules of the Tableau Calculus

Hyp-
rule

If 1. U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn ∈ C, and
2. a mapping σ of variables to the individuals of A exists such that
2.1 σ(x) is not indirectly blocked for each variable x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 := A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-
rule

If 1. ≥ nR.C(s) ∈ A,
2. s is not blocked in A,
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 either s is blockable or no ui, 1 ≤ i ≤ n, is indirectly blocked in A, and
4. iexp(≥ nR.C, s,A) = [(γ1,1, . . . , γ1,n), . . . , (γk,1, . . . , γk,n)]

then for each 1 ≤ i ≤ k,
Ai := A ∪ {ar(R, s, ti,j), C(ti,j) | 1 ≤ j ≤ n} ∪ {ti,j 6≈ ti,k | 1 ≤ j < k ≤ n}
where ti,j is a fresh successor of s if γi,j = ∗, and ti,j = γi,j if γi,j 6= ∗.

≈-
rule

If 1. s ≈ t ∈ A (the equality can possibly be annotated), and
2. s 6= t

then A1 := mergeA(s→ t) if t is a named individual, or t is a root
individual and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t→ s) otherwise.

⊥-
rule

If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A
then A1 := A ∪ {⊥}.

NI -
rule

If 1. s ≈ t@u
≤nR.B ∈ A or t ≈ s@u

≤nR.B ∈ A,
2. u is a root individual,
3. s is a blockable individual and it is not a successor of u, and
4. t is a blockable individual

then Ai := mergeA(s→ ‖u.〈R,B, i〉‖A) for each 1 ≤ i ≤ n.

a fresh root individual, or (iii) resort to the standard tableau behavior and
introduce a fresh distinct blockable successor of s (when γi,j = ∗).

To preserve the forest shape of ABoxes, iexp cannot reuse an arbitrary indi-
vidual from A. For example, if the strategy reused u when expanding ∃R.C(s)
in the ABox shown in Figure 2, the resulting ABox would not be tree-shaped.
Therefore, if γi,j 6= ∗, then γi,j must be either a root individual, a predecessor
of s, or a successor of s, thus ensuring that the resulting ABox is tree-shaped. A
typical expansion strategy will use this definition as follows: the strategy will first
introduce fresh root individuals and designate them as possible “reuse targets”;
in subsequent inferences, the strategy will try to reuse these targets; finally, if
such reuse fails, the strategy will resort to the standard behavior.

A strategy can thus introduce an unbounded number of root individuals;
since these do not participate in blocking, the calculus is not guaranteed to
terminate. Therefore, we require a strategy to be bounded—that is, to introduce
a finite number of fresh individuals in each possible derivation.

Definition 2 (Bounded Strategy). A strategy iexp is bounded if the number
of individuals γi,j such that γi,j occurs in iexp(≥ nR.C, s,A) but not in A for
some concept ≥ nR.C, individual s ∈ NO, and ABox A is finite.

Since individual reuse preserves the forest shape of ABoxes, given a clash-free
ABox A to which no derivation rule is applicable, we can construct a model for
A just like in [11, Lemma 14]. In contrast, individual reuse is unsound : an ap-
plication of the ≥-rule to a satisfiable ABox can result in an unsatisfiable ABox.
The following definition introduces derivations in which reusing individuals does
not lead to unsoundness.

Definition 3 (Safe Derivation). Let D = (T, λ) be a derivation for C, A, and
iexp. The set of safe nodes of T is inductively defined such that ε ∈ T is safe, and
t.i ∈ T is safe if t is safe and (i) λ(t.i) has not been obtained from λ(t) by the ≥-
rule, or (ii) λ(t.i) has been obtained by applying the ≥-rule to ≥ nR.C(s) ∈ λ(t),
and (γi,1, . . . , γi,n) is the i-th n-tuple of iexp(≥ nR.C, s,A) such that, for each
1 ≤ j ≤ n, either γi,j = ∗ or γi,j is a named individual not occurring in λ(t).
The derivation D is safe if every nonleaf safe node has at least one safe child.

Definition 3 might seem unnecessarily complex: soundness is ensured if we re-
quire each iexp(≥ nR.C, s,A) to contain a tuple (∗, . . . , ∗), thus always allowing
for the standard existential expansion. This is, however, unnecessarily restric-
tive. Consider the derivation shown in Figure 3, in which the ≥-rule is applied
to Aε, deriving A1 via individual reuse and A2 using the standard expansion.
The first derivation is possibly unsound, so the second derivation is necessary in
order to guarantee soundness; but then, there is no need to enforce soundness in
the inferences below A1: applications of the ≥-rule below A1 can be performed
in a way that can, but does not need to include (∗, . . . , ∗) in iexp(≥ nR.C, s,A).
Definition 3 formalizes this intuition: starting from the root ε, each derivation
node that is obtained via a sound sequence of inferences must have at least one
child obtained by a sound inference. The strategy that we present in Section 5.2
uses this definition: the first time a “reuse target” t is introduced, this is done
nondeterministically; however, all subsequent reuses of t are deterministic. In
other words, once our strategy nondeterministically decides to reuse t, it stays
committed to this choice. We now present the main result of this section.

Theorem 1. For C a set of HT-clauses, A an input ABox, and iexp a bounded
expansion strategy, (1) each derivation for C, A, and iexp is finite; (2) if a
successful derivation for C, A, and iexp exists, then (C,A) is satisfiable; and (3) if
(C,A) is satisfiable, then each safe derivation for C, A, and iexp is successful.

As discussed in [11], the NI -rule is not needed on HT-clauses obtained from
SHIQ knowledge bases. With individual reuse, however, this is not the case:
reusing a root individual c when expanding ∃R.C(s) in Figure 2 can clearly
trigger the NI -rule if c must satisfy an at-most restriction on R−.

The NI -rule can introduce a performance penalty in practice, so we identify
the class of NI -free strategies on which the rule is not needed even with indi-
vidual reuse. Intuitively, an NI -free strategy can satisfy existential restrictions

on root individuals either by introducing fresh root individuals or by reusing
existing ones; however, it always applies the standard expansion for blockable
individuals. For example, such a strategy might at first introduce and reuse only
root individuals; if this proves ineffective and the models get large, it might then
decide not to reuse individuals in further applications of the ≥-rule.

Definition 4 (NI -free Strategies). An expansion strategy iexp is NI-free if
iexp(≥ nR.C, s,A) = [(∗, . . . , ∗)] whenever s is a blockable individual.

Proposition 1. In a derivation where C is a set of HT-clauses not containing
equalities of the form x ≈ yi and yi ≈ x, A is an ABox, and iexp is an NI-free
expansion strategy, the precondition of the NI-rule is never satisfied.

5 Two Expansion Strategies

5.1 The ELOH Case

In this section we present an expansion strategy for the DL ELOH—a logic
obtained from EL++ [1] by disallowing role composition axioms R ◦ S v T and
concrete domains. We leave these constructors out because they are not avail-
able in SHOIQ; however, our results can be straightforwardly extended to full
EL++. The expansion strategy for ELOH will provide us with an intuition on
how to approach the general case. Furthermore, these results establish a relation-
ship between model construction algorithms and the implication sets reasoning
algorithm from [1]. Thus, tableau DL reasoners can be easily modified to obtain
a worst-case optimal decision procedure for ELOH knowledge bases simply by
choosing a suitable individual reuse strategy.

We start by defining ELOH-clauses—the fragment of HT-clauses on which
the ELOH-strategy guarantees soundness. By inspecting the translation opera-
tor Ξ from [11, Section 4.1], it is easy to see that, if K is an ELOH knowledge
base, then ΞT R(K) is a set of ELOH-clauses.

Definition 5 (ELOH-Clause). An ELOH-clause is an HT-clause r of the
form (2), (3), (4), or (5) such that yi 6= yj for i 6= j; Rj and S are atomic
roles; C is of the form ⊥, A, or ∃S.A; A, Ai, and Bj are either > or atomic but
not nominal guard concepts; and Oa is a nominal guard concept.∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ C(x)(2)

Oa(ya) ∧
∧
Ai(x) ∧

∧
[Rj(x, yj) ∧Bj(yj)]→ x ≈ ya(3) ∧

Ai(x) ∧
∧

[Rj(x, yj) ∧Bj(yj)]→ S(x, yj)(4)

Oa(ya) ∧
∧
Ai(x) ∧

∧
[Rj(x, yj) ∧Bj(yj)]→ S(x, ya)(5)

We now define the expansion strategy for ELOH.

Definition 6 (ELOH-Strategy). We assume that, for A an atomic concept,
>, or ⊥, the set of named individuals NI contains a distinct representative in-
dividual αA. The ELOH-strategy is defined as iexpEL(∃R.A, s,A) = [(‖αA‖A)],
for each concept ∃R.A, individual s, and ABox A.

Since iexpEL deterministically reuses ‖αA‖A, derivations created using this
strategy are typically not safe, so Theorem 1 does not apply. Nonetheless, the
strategy always produces sound derivations on ELOH-clauses.

Theorem 2. For C a set of ELOH-clauses and A an initial ABox not contain-
ing representative individuals, if (C,A) is satisfiable, then each derivation for C,
A, and iexpEL is successful.

This theorem can be intuitively understood as follows. Let C be a set of DL-
clauses of the form (2) (we do not consider other types for simplicity) and A an
ABox such that (C,A) is satisfiable. Assume now that we apply the standard
hypertableau calculus without individual reuse and without blocking to C and A.
Since blocking is not used, and because all DL-clauses from C are Horn clauses,
this will produce a possibly infinite canonical ABox A∞ which naturally defines
a model of (C,A). Consider now how individuals are introduced into A∞. In
particular, assume that an assertion ∃R.A(s) is expanded into assertions R(s, t)
and A(t) for t a fresh successor of s. The key observation is that, if the Hyp-
rule were to additionally derive C(t), then this assertion depends only on the
successors of t: a DL-clause of the form (2) can only check properties of successors
of the individual mapped to x and not of its predecessors. In other words, the
ELOH-clauses do not allow for DL-clauses such as R(y, x)→ C(x), which might
derive C for an individual x based on the properties of its predecessor y. Thus,
if in some other part of the model construction we expand ∃S.A(u) into S(u, v)
and A(v), the assertions derived for v will depend only on the successors of v.
The application of the derivation rules to t and v and their descendants is thus
fully determined by the initial “seed” concept A, so t and v will occur in A∞ in
exactly the same concept assertions (i.e., C(t) ∈ A∞ iff C(v) ∈ A∞). There is,
therefore, no need to create distinct individuals t and v at all: we can fold A∞
into a model that contains exactly one individual αA for each “seed” concept A.
Effectively, if (C,A) is satisfiable, then it has such a folded model. It is easy to
see that iexpEL essentially constructs exactly this folded model.

The number of representative individuals is linear in the number of the atomic
concepts, so the ABoxes constructed in a derivation are polynomial in size. To
obtain a polynomial decision procedure, we must be careful in how we apply the
Hyp-rule to ELOH-clauses: with i individuals and v variables in a DL-clause, a
näıve application of the Hyp-rule (for each x, for each y1, for each y2, and so on)
examines iv combinations. Note, however, that yi occur in the antecedent only
in a tree-like way and that they do not occur in the consequent; hence, we can
match each yi independently, thus giving rise to v · i combinations.

Theorem 3. A derivation for a set of ELOH-clauses C, an initial ABox A
not containing representative individuals, and iexpEL can be constructed in time
polynomial in |C,A|.

5.2 The General Case

In this section we define an expansion strategy that is applicable to SHOIQ. The
strategy tries to mimic the ELOH case: it expands ∃R.A(s) into R(s, αA) and
A(αA) for αA the representative individual, but it also allows for the default
expansion (∗) as well. Our idea is that, whenever u and v are introduced by
expanding concepts ∃R.A and ∃S.A, respectively, the individuals u and v should
not differ greatly—that is, the derivation rules applied to u and v should be
largely the same. For example, it is reasonable to expect that all individuals
representing a heart in a model of GALEN should have the same properties.
This basic idea has been refined in several ways.

Our experiments have shown that assertions of the form ∃R.A(s), where A
is a concept introduced by the structural transformation in the preprocessing
phase, are best expanded without individual reuse. Such concepts correspond to
complex formulae identifying sets of objects with certain properties, so they are
unlikely to have singleton extensions.

Our experiments have also shown that, given C v ∃R.D and D v ∃S.C, the
instance of C implied by the second axiom is usually the instance of C from
the first axiom. For example, in GALEN “each artery has a tunica intima as its
part,” and “each tunica intima is a layer of an artery”; clearly, the second artery
is the same as the first one. Therefore, when expanding ∃S.C(s), our strategy
tries to reuse the parent t of s if C(t) has already been derived.

DL knowledge bases often contain concepts that should be expanded without
reuse—that is, whose expansion using representative individuals usually fails.
This can introduce unnecessary nondeterminism, so our strategy learns from
failed choices: if an expansion of ∃R.A by reusing αA fails, our strategy does not
reuse αA in future expansions. The main problem is, once a clash is detected,
to determine whether individual reuse caused the inconsistency and, if so, which
individual αA is the culprit. To solve this problem, we construct derivations
by depth-first search with dependency-directed backtracking [2, Chapter 9]—a
search technique used in most tableau-based reasoners. Roughly speaking, each
nondeterministic choice in the derivation is numbered, and each assertion is
annotated with a set of choices it depends on. When ⊥ is derived, the set of
choices S⊥ associated with ⊥ tells us which choices are conflicting. Let m⊥ be
the maximal choice from S⊥. Backtracking any choice below m⊥ will invariably
lead to a clash; thus, m⊥ identifies the failed choice at which we can safely
continue the search. If m⊥ corresponds to a nondeterministic expansion of ∃R.A
by reusing αA, then we consider the reuse of αA as failed; therefore, we add A to
a special no-good set of concepts, which ensures that αA is not reused in future
expansions of concepts of the form ∃S.A.

Definition 7. We assume that derivations are constructed by depth-first search
and dependency-directed backtracking [2, Chapter 9], and that a set NG of no-
good concepts is maintained in the process as discussed next. For R a role, B
a possibly negated atomic concept, s an individual, and A an ABox, the gen-
eral strategy iexpDL returns the first result from the following list for which the
condition is satisfied.

– iexpDL(∃R.B, s,A) = [(t), (∗)] if t is the parent of s and B(t) ∈ A.
– iexpDL(∃R.B, s,A) = [(∗)] if B has been introduced by the structural trans-

formation during preprocessing.
– iexpDL(∃R.B, s,A) = [(αB), (∗)] if αB does not occur in A and B is not

contained in the current set NG. Whenever an expansion using αB is back-
tracked as per dependency-directed backtracking, the concept B is added to
the no-good set NG.

– iexpDL(∃R.B, s,A) = [(αB)] if αB occurs in A.
– iexpDL(≥ nR.B, s,A) = [(∗, . . . , ∗)] in all other cases.

Clearly, iexpDL is bounded. Furthermore, the first time ∃R.B is expanded,
iexpDL nondeterministically introduces αB as a target for future reuse; in all sub-
sequent expansions of ∃S.B, iexpDL stays committed to this choice and reuses αB
deterministically. These observations allow us to prove the following proposition.

Proposition 2. For C a set of HT-clauses and A an initial ABox not containing
representative individuals, each derivation for C, A, and iexpDL is safe.

6 Evaluation

We have implemented individual reuse in HermiT, and have compared its per-
formance with FaCT++ v1.1.10 [16] and Pellet 1.5.1 [12]. When parameterized
with iexpEL, the hypertableau calculus becomes quite similar to the implication
sets algorithm [1], so any difference in the performance between HermiT and the
EL++-specific reasoner CEL is likely to be caused by engineering, rather than
algorithmic issues. Therefore, we focus here on evaluating iexpDL.

We have selected several test ontologies commonly used in practice, and have
tried to classify them (i.e., to compute K |= C v D for all atomic concepts C and
D) using HermiT with and without individual reuse, FaCT++, and Pellet. The
results are summarized in Table 3. Most unsuccessful tests failed because the
reasoners ran out of memory. Several tests were interrupted after 30 minutes; in
all such cases, the reasoner got stuck in the first nontrivial subsumption test, so it
is unlikely that more time would allow the reasoner to complete the classification.
Tests were conducted on a standard laptop PC with 1 GB of RAM running
Windows XP. We used Java 1.6.0 04 for Java-based reasoners allowing 600 MB
of heap space in each test. All ontologies are available from HermiT’s Web page.

Wine. The Wine ontology has often been used to demonstrate the features of
description logics. Classifying it was initially a challenge for tableau reasoners,
but current reasoners can routinely process it.

FMA-fragment and BAMS. FMA [14] is a large ontology that was not
originally developed using a DL, and various translations of different fragments
of FMA into DLs have been produced. We used a translation from the Bio-
Health Informatics Group at the University of Manchester; it contains 6,487
atomic concepts, 165 atomic roles, 98 individuals, and 18,678 axioms in total. The
Brain Architecture Management System (BAMS) is a brain anatomy ontology

Table 3: Summary of Test Results

Ontology HermiT HermiT FaCT++ Pellet
(with reuse) (no reuse)

Wine classified in 37 s classified in 36 s classified in 316 s classified in 25 s
FMA-fragment classified in 680 s — — —

BAMS classified in 19 s — — —
DOLCE classified in 103 s — classified in 12 s —

GALEN-original classified in 275 s classified in 26 s — —
GALEN-module — — — —

GALEN-module-no-inv solves individual tests — — —

produced at the University of Southern California. We used the translation of
the 1998 version of BAMS into OWL, which contains 1,110 atomic concepts, 13
atomic roles, 999 individuals, and 20,176 axioms in total. Both ontologies are
nontrivial, as they use inverse and functional roles, disjunctions, and nominals.

Without individual reuse, no tool can classify either ontology: reasoners end
up constructing large models and quickly exhaust the available memory. In con-
trast, individual reuse makes these ontologies easy: the models constructed by
HermiT consist of a couple of thousands of individuals at most.

DOLCE. DOLCE3 is a foundational ontology developed in the WonderWeb
project, and it is quite complex: it uses disjunctions, nominals, and number
restrictions. It is, however, relatively small, containing 211 atomic concepts,
317 atomic roles, 39 individuals, and 1,797 axioms in total. As Table 3 shows,
FaCT++ can process DOLCE even without individual reuse, whereas Pellet and
HermiT cannot. We conjecture that this is due to ordering optimizations [15],
which can have a significant impact on the performance of reasoning. HermiT
can process DOLCE provided that individual reuse is turned on. This suggests
that individual reuse might compensate for the lack of an optimal ordering,
which can be difficult to find in practice.

GALEN. GALEN-original is a version of GALEN dating from about 10 years
ago. HermiT is currently the only reasoner that can classify this ontology, and it
can do so even without individual reuse [10]. The good performance of HermiT in
this case is mainly due to the fact that, after computing a model, HermiT caches
the labels of all unblocked individuals and uses them subsequently as potential
blockers [11]. Thus, only the first test is hard (it takes about 90% of the total
time), and all subsequent tests are easy due to caching. With individual reuse,
however, this optimization is ineffective, as most individuals in the model are
root individuals that cannot be used as blockers. Each subsumption test takes
typically an order of magnitude less time with individual reuse than the “hard”
test without reuse; however, the cumulative slowdown due to the lack of caching
is detrimental. Caching should be possible, however, with individual reuse as
well: we can cache the model constructed in different runs and reuse individuals
from it as needed. We shall investigate such a technique in our future work.
3 http://www.loa-cnr.it/DOLCE.html

GALEN was significantly extended in the past 10 years, and the current
version of it consists of more than 38,000 concepts, so we have extracted a
module from it using the algorithm from [7]. The module is still quite large: it
contains 6,362 atomic concepts, 162 atomic roles, and 14,783 axioms in total.
None of the reasoners were able to deal with the GALEN-module. We therefore
tried removing all axioms of the form R v S−, effectively eliminating the link
between a role and its inverse. After this transformation, HermiT was able to
solve individual subsumption tests; however, each test took about 40 s, which
made classification of the entire ontology infeasible. We believe that this can be
significantly improved using the above mentioned caching technique.

Individual reuse is ineffective on GALEN mainly because the ontology con-
tains numerous functional and inverse-functional roles, which makes identifying
concepts suitable for individual reuse difficult. For example, the axiom “each
nerve has exactly one axon and vice versa” clearly prevents the reuse of the
axon concept. We tried to address this problem by selecting manually the con-
cepts that should be reused, but even this was to no avail. In fact, it seems to
us that inverse properties in GALEN are sometimes overconstrained (e.g., w.r.t.
functionality). The tools used to develop GALEN largely ignore the semantics of
inverse roles, so modeling errors of this kind might easily have gone unnoticed.

7 Conclusion

We have presented a novel calculus for DL reasoning based on individual reuse:
instead of always introducing a fresh individual in order to satisfy an existen-
tial restriction, our calculus tries to reuse an individual from a model created
thus far. Furthermore, we have shown that individual reuse can be done deter-
ministically for ELOH—an expressive but yet tractable DL. Finally, we have
implemented our calculus in the reasoner HermiT and have evaluated its per-
formances. The empirical results suggest that individual reuse can mean the
difference between success and failure on practical ontologies. The main chal-
lenge for our future research is to devise an expansion strategy that will allow
us to classify GALEN—the nemesis of DL reasoners.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In L. Pack Kael-
bling and A. Saffiotti, editors, Proc. of the 19th Int. Joint Conference on Artificial
Intelligence (IJCAI 2005), pages 364–369, Edinburgh, UK, July 30–August 5 2005.
Morgan Kaufmann Publishers.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2nd edition, August 2007.

3. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—A Polynomial-Time Reasoner
for Life Science Ontologies. In U. Furbach and N. Shankar, editors, Proc. of the 3rd
Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of LNCS,
pages 287–291, Seattle, WA, USA, August 17–20 2006. Springer.

4. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. of the
European Workshop on Logics in Artificial Intelligence (JELIA ’96), number 1126
in LNAI, pages 1–17, Évora, Portugal, September 30–October 3 1996. Springer.

5. F. Bry and S. Torge. A Deduction Method Complete for Refutation and Finite
Satisfiability. In J. Dix, L. F. del Cerro, and U. Furbach, editors, Proc. European
Workshop on Logics in Artificial Intelligence (JELIA ’98), volume 1489 of LNCS,
pages 122–138, Dagstuhl, Germany, October 12–15 1998. Springer.

6. L. Georgieva, U. Hustadt R. A., and Schmidt. Hyperresolution for Guarded For-
mulae. Journal of Symbolic Computation, 36(1–2):163–192, 2003.

7. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the Right Amount:
Extracting Modules from Ontologies. In Proc. of the 16th Int. Conf. on World
Wide Web (WWW 2007), pages 717–726, Banff, AB, Canada, May 8–12 2007.
ACM Press.

8. V. Haarslev and R. Möller. RACER System Description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proc. of the 1st Int. Joint Conf. on Automated Reasoning
(IJCAR 2001), volume 2083 of LNAI, pages 701–706, Siena, Italy, June 18–23
2001. Springer.

9. U. Hustadt and R. A. Schmidt. Issues of Decidability for Description Logics in the
Framework of Resolution. In R. Caferra and G. Salzer, editors, Selected Papers
from Automated Deduction in Classical and Non-Classical Logics, volume 1761 of
LNAI, pages 191–205. Springer, 1999.

10. B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in Description Logics
using Hypertableaux. In F. Pfenning, editor, Proc. of the 21st Conference on
Automated Deduction (CADE-21), volume 4603 of LNAI, pages 67–83, Bremen,
Germany, July 17–20 2007. Springer.

11. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. Technical report, University of Oxford, 2008. Submitted to an international
journal.

12. B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc. of the 3rd
Int. Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November 7–11,
2004.

13. A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept representation
in the galen project. In C. Safran, editor, Proc. of the 17th Annual Symposium on
Computer Applications in Medical Care (SCAMC ’93), pages 414–418, Washington
DC, USA, November 1–3 1993. McGraw-Hill.

14. C. Rosse and J. V. L. Mejino. A reference ontology for biomedical informatics: the
Foundational Model of Anatomy. Journal of Biomedical Informatics, 36:478–500,
2003.

15. D. Tsarkov and I. Horrocks. Ordering Heuristics for Description Logic Reasoning.
In L. Pack Kaelbling and A. Saffiotti, editors, Proc. of the 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005), pages 609–614, Edinburgh, UK, July 30–
August 5 2005. Morgan Kaufmann Publishers.

16. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR
2006), volume 4130 of LNAI, pages 292–297, Seattle, WA, USA, August 17–20
2006. Springer.

17. M. Y. Vardi. Why Is Modal Logic So Robustly Decidable? In N. Immerman
and P. Kolaitis, editors, Proc. of a DIMACS Workshop on Descriptive Complexity
and Finite Models, volume 31 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 149–184, Princeton University, USA, January
14–17 1996. American Mathematical Society.

A Proofs of Theorems

Proof (of Theorem 1). Due to Definition 1, the ≥-rule introduces only assertions
of the form R(s, t) where t or s is a root individual, or one individual is the
predecessor of the other. Therefore, each ABox labeling a derivation node is
tree-shaped, c.f. [11, Definition 11] and [11, Lemma 12].

(Claim 1) Since iexp is bounded, the number of fresh individuals introduced
by the ≥-rule due to individual reuse is finite in each derivation. The number of
root and blockable individuals can then be bounded as in [11, Lemma 15].

(Claim 2) If A′ is a clash-free ABox labeling a leaf of a successful derivation,
it is tree-shaped, so a model of A′ and C can be extracted as in [11, Lemma 14].

(Claim 3) Let D = (T, λ) be a safe derivation for C, A, and iexp, and consider
a derivation D′ obtained from D by deleting all unsafe nodes starting from the
root. The conditions of Definition 3 guarantee that each node t ∈ T obtained by
the ≥-rule has at least one safe child. Therefore, D′ is similar to a derivation
obtained without individual reuse, with the minor difference that fresh named
individuals can be used to satisfy existential restrictions. We can always inter-
pret these individuals as required, so, just like in [11, Lemma 13], if (C,A) is
satisfiable, then D′ is successful; but then, D is successful as well. ut

Proof (of Proposition 1). Since iexp is NI -free, the ≥-rule does not introduce
assertions of the form R(s, a) or R(a, s) for a a root individual and s a blockable
individual that is not a successor of a. As shown in [11, Lemma 12], no other
rule can then introduce them either. But then, an at-most equality satisfying
the precondition of the NI -rule cannot be derived either. ut

Proof (of Theorem 2). Let A = A0,A1, . . . ,An, . . . be a derivation for C, A, and
iexpEL, and [·] a function on NI such that [αA] = A and [s] = {s} if s is not a
representative individual. We show inductively that, if (C,A) is satisfiable, then
the following properties (*) hold for each ABox An in the derivation and each
model I of (C,A):

(i) ‖s‖An
= ‖t‖An

⇒ [t]I = [s]I (v) C(s) ∈ An ⇒ [s]I ⊆ CI
(ii) s ≈ t ∈ An ⇒ [s]I = [t]I (vi) R(s, t) ∈ An ⇒ [s]I ⊆ (∃R.[t])I
(iii) s 6≈ t ∈ An ⇒ [s]I ∩ [t]I = ∅ (vii) ⊥ 6∈ An
(iv) s occurs in An ⇒ [s]I 6= ∅

The ABox A0 trivially satisfies (*). Assume that An satisfies (*) and, for each
derivation rule applicable to An, consider a model I of (C,An). The NI -rule is
never applicable since C does not contain at-most equalities. If the ⊥-rule were
applicable to A(s) and ¬A(s) (resp. s 6≈ s), by (*) we have [s]I 6= ∅, [s]I ⊆ AI ,
and [s]I ⊆ (¬A)I (resp. [s]I 6= ∅ and [s]I ∩ [s]I = ∅), which is a contradiction.

Assume that the ≈-rule is applied to s ≈ t ∈ An and s is merged into t.
By (*) we have [s]I = [t]I . Clearly, ‖s‖An

= t, and each assertion obtained by
replacing s with t in an assertion from An clearly satisfies (*).

Assume that the ∃-rule is applied to ∃R.A(s) ∈ An, so the assertions R(s, t)
and A(t) are added to An+1 for t = ‖αA‖An

. By (*) we have [s]I ⊆ (∃R.A)I and
[t]I = [αA]I = AI 6= ∅; this obviously implies [s]I ⊆ (∃R.[t])I and [t]I ⊆ AI .

Assume that the Hyp-rule is applied to a DL-clause r of the form (2)–(5),
and let s = σ(x), tn = σ(yn), and ta = σ(ya). By Condition 2.2 of the Hyp-rule,
we have Ai(s) ∈ An, Rj(s, tj) ∈ An, Bj(tj) ∈ An, and Oa(ta) ∈ An (if Oa is
present in r), so all these assertions satisfy (*). Consider now each δ ∈ [s]I , and
let µ be the following mapping from the variables of r to the elements of 4I :
µ(x) = δ, µ(yj) are arbitrarily chosen such that 〈µ(x), µ(yj)〉 ∈ RI (such ob-
jects exist by (vi) and the fact that yi 6= yj whenever i 6= j), and µ(ya) ∈ [ta]I

(such object exists by (iv)). By (*) then µ(x) ∈ AIi and µ(yj) ∈ BIj . Since I is a
model of r, the head atom of r must then be true in I, so it is not ⊥. We now
consider different forms that r can have. For r of the form (2), I |= C(µ(x))
implies δ ∈ CI ; this holds for each δ ∈ [s]I , so [s]I ⊆ CI . For r of the form
(3), I |= µ(x) ≈ µ(ya) implies δ = µ(ya); this holds for each δ ∈ [s]I and each
µ(ya) ∈ [ta]I , so [s]I = [ta]I For r of the form (4), I |= S(µ(x), µ(yj)) implies
〈δ, µ(yj)〉 ∈ SI ; this holds for each δ ∈ [s]I , so [s]I ⊆ (∃S.[tj])I . For r of the form
(5), I |= S(µ(x), µ(ya)) implies 〈δ, µ(ya)〉 ∈ SI ; this holds for each δ ∈ [s]I and
each µ(ya) ∈ [ta]I , so [s]I ⊆ (∃S.[ta])I . ut

Proof (of Theorem 3). In each a derivation on C and A, the strategy iexpEL

can introduce at most one representative individual for each concept, so the
total number of individuals i in each ABox is linear in |C,A|, giving rise to
polynomially many different assertions. A derivation rule is never applied twice
to the same set of assertions [11, Lemma 15]. The ⊥-, ∃-, and ≈-rule can clearly
be applied to an ABox in polynomial time. Let v be the maximal number of
variables in an ELOH-clause. To avoid an exponential blowup, we can match
a DL-clause r to an ABox as follows: we map x to each of the i individuals; if
r contains Oa, we additionally examine each of the possible i mappings for ya;
finally, we can match the variables yi independent of each other. Using such a
strategy, the Hyp-rule needs to examine at most i · i · vi substitutions, which is
polynomial in |C,A|. ut

Proof (of Proposition 2). A derivation node t can be nonsafe only if it has been
obtained by an application of the ≥-rule and the expansion [(αA)] (the fourth
case of Definition 7). Since the initial ABox A does not contain αA, an ancestor
node t′ of t exists that is obtained by an application of the ≥-rule with the
expansion [(αA), (∗)]. Node t′ is safe and so is its second child, so the derivation
is safe as well. ut

