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Abstract

Description logics (DLs) are a family of state-of-the-art knowledge representation lan-
guages, and their expressive power has been carefully crafted to provide useful knowledge
modeling primitives while allowing for practically effective decision procedures for the
basic reasoning problems. Recent experience with DLs, however, has shown that their
expressivity is often insufficient to accurately describe structured objects—objects whose
parts are interconnected in arbitrary, rather than tree-like ways. DL knowledge bases
describing structured objects are therefore usually underconstrained, which precludes the
entailment of certain consequences and causes performance problems during reasoning.

To address this problem, we propose an extension of DL languages with description
graphs—a knowledge modeling construct that can accurately describe objects with parts
connected in arbitrary ways. Furthermore, to enable modeling the conditional aspects of
structured objects, we also extend DLs with rules. We present an in-depth study of the
computational properties of such a formalism. In particular, we first identify the sources
of undecidability of the general, unrestricted formalism. Based on that analysis, we then
investigate several restrictions of the general formalism that make reasoning decidable.
We present practical evidence that such a logic can be used to model nontrivial structured
objects. Finally, we present a practical decision procedure for our formalism, as well as
tight complexity bounds.
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1 Introduction

The Web Ontology Language (OWL) is a well-known language for ontology mod-
eling in the Semantic Web [35]. The World Wide Web Consortium (W3C) is cur-
rently working on a revision of OWL—called OWL 2 [10]—whose main goal is
to address some of the limitations of OWL. The formal underpinnings of OWL
and OWL 2 are provided by description logics (DLs)[3]–knowledge representation
formalisms with well-understood formal properties.

DLs are often used to describe structured objects—objects whose parts are in-
terconnected in complex ways. Such objects abound in molecular biology and the
clinical sciences, and clinical ontologies such as GALEN, the Foundational Model
of Anatomy (FMA), and the National Cancer Institute (NCI) Thesaurus describe
numerous structured objects. For example, FMA models the human hand as con-
sisting of the fingers, the palm, various bones, blood vessels, and so on, all of which
are highly interconnected.

Modeling structured objects poses numerous problems to DLs and the OWL
family of languages. The design of DLs has been driven by the desire to provide
practically useful knowledge modeling primitives while ensuring decidability of the
core reasoning problems. To achieve the latter goal, the modeling constructs avail-
able in DLs are usually carefully crafted so that the resulting language exhibits a
variant of the tree-model property [40]: each satisfiable DL ontology always has at
least one model whose elements are connected in a tree-like manner. This property
can be used to derive a decision procedure; however, it also prevents one from accu-
rately describing (usually non-tree-like) structured objects since, whenever a model
exists, at least one model does not reflect the intended structure. This technical
problem has severe consequences in practice [29]. In search of the “correct” way of
describing structured objects, modelers often create overly complex descriptions;
however, since the required expressive power is actually missing, such descriptions
do not entail the consequences that would follow if the descriptions accurately cap-
tured the intended structure. We discuss the expressivity limitations of DLs in more
detail in Section 3 and present a practically-motivated example.

In order to address this lack of expressivity, in this paper we extend DLs with de-
scription graphs, which can be understood as schema-level descriptions of structured
objects. To allow for the representation of conditional statements about structured
objects, we also extend DLs with first-order rules [20]. In this way, we obtain a pow-
erful and versatile knowledge representation formalism. It allows us, for example,
to describe the structure of the hand using description graphs, statements such as
“if a bone in the hand is fractured, then the hand is fractured as well” using rules,
and nonstructural aspects of the domain such as “a medical doctor is a person with
an MD degree” using DLs.

Unsurprisingly, this formalism is undecidable in its unrestricted form. It is widely
recognized that reasoning algorithms are more likely to be effective in practice if the
underlying logics are decidable. Therefore, we discuss the main causes of undecid-
ability and investigate restrictions under which the formalism becomes decidable.
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We have observed that structured objects can often be described by a possibly
large, yet bounded number of parts. For example, a human body consists of organs
all of which can be decomposed into smaller parts; however, further decomposition
will eventually lead to parts that one does not want or know how to describe any
further. In this vein, FMA describes the skeleton of the hand, but it does not de-
scribe the internal structure of the distal phalanges of the fingers. The number of
parts needed to describe the hand is therefore determined by the granularity of the
hierarchical decomposition of the hand. This decomposition naturally defines an
acyclic hierarchy of description graphs. For example, the fingers can be described
by description graphs that are subordinate to that of the hand; however, the de-
scription graph for the hand is not naturally subordinate to the description graphs
for the fingers. We use this observation to define a particular acyclicity restriction
on description graphs. Acyclicity bounds the number of parts that one needs to
reason with, which, provided that there are no DL axioms, can be used to obtain
a decision procedure for the basic reasoning problems.

If description graphs are used in combination with DL axioms, the acyclicity
condition alone does not ensure decidability due to possible interactions between
DL axioms, graphs, and rules [26]. To obtain decidability, we limit this interaction
by imposing an additional role separation condition. In particular, we separate the
roles (i.e., the binary predicates) that can be used in DL axioms from the roles that
can be used in rules; furthermore, depending on the expressivity of the DL being
used, we may additionally require DL axioms not to refer to the roles used in the
description graphs.

We present a hypertableau-based [32] reasoning algorithm that decides the sat-
isfiability problem in the decidable cases, and acts as a semi-decision procedure for
some undecidable ones. Furthermore, we present tight complexity bounds for the
decidable variants of our formalism and identify the main sources of complexity.
We have implemented the reasoning algorithm in the HermiT 1 reasoner [31], and
our initial experiments have shown the algorithm to be amenable to practice.

Evaluation of our approach is currently difficult due to the lack of test data. We
have therefore devised an algorithm that extracts description graphs from existing
OWL ontologies, and have applied it to GALEN and FMA. The resulting ontolo-
gies should be treated with caution; however, domain experts have confirmed that
substantial parts of thus derived ontologies agree with their intuition. Our transfor-
mation can thus be used as a starting point for a more comprehensive remodeling of
ontologies using description graphs. Our experiments already allowed us to discover
a modeling error in GALEN, which we take as indication of the practical usefulness
of our formalism. Furthermore, classification times for the transformed ontologies
are of similar orders of magnitude as for the original ontologies despite the fact that
our formalism adds considerable expressive power to DLs.

We believe that description graphs can be used for modeling structured objects
in a number of domains, of which we list a few next.

1 http://www.hermit-reasoner.com/
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• Anatomy. In Sections 3 and 4 we present a comprehensive example of how
description graphs can be applied to model human anatomy.

• Chemistry. The precise description of molecules is an important problem in
bioinformatics [23]. A formal representation of molecules and chemical com-
pounds is often used to integrate information from different chemical databases
[23]. The structure of molecules is often not tree-like. For example, hydrocarbons
are chemical compounds containing carbon–hydrogen chains, and benzene is a
hydrocarbon whose molecules contain exactly one benzene ring. The structure of
benzene can be described using our formalism: description graphs can be used
to represent the benzene ring (which is bounded in size), while standard OWL
axioms can be used to represent tree-like carbon–hydrogen chains.

• Scientific Workflows. Scientific workflows are descriptions of the steps of scien-
tific experiments, and they are often represented as directed graphs in which each
node depicts a single experiment step and each edge represents information flow
between two steps. The precise description of workflows is increasingly impor-
tant, for example, in bioinformatics. Attempts were made to provide semantics
to workflows using OWL [16], but the success has been rather limited so far due
to their non-tree-like structure. Since workflows are typically bounded, however,
they can naturally be represented using description graphs.

• Engineering. OWL has recently been used in engineering domains, such as the
aerospace industry, which involve the representation of very complex structured
objects such as aeroplanes [19]. The number of parts needed to describe an aircraft
is naturally bounded (in the same way as it is in the case of the human body),
so such domains can easily be represented using description graphs [17].

2 Preliminaries

The formal underpinnings of OWL 2 are provided by the DL SROIQ [25].
To make our results easier to follow, however, in this paper we consider the DL
SHOIQ+, which covers all of SROIQ except for the so-called complex role inclu-
sions. Using a well-known encoding [21,13], complex role inclusions can be encoded
using SHOIQ+ axioms, so the decidability results and reasoning algorithms from
this paper can be easily extended to SROIQ and OWL 2. We present the defi-
nition of SHOIQ+ in Section 2.1. In Section 2.2, we recapitulate the well-known
principles for extending DLs with first-order rules. Finally, in Section 2.3 we present
an overview of the hypertableau algorithm for SHOIQ+ [32].

2.1 The Description Logic SHOIQ+

A SHOIQ+ signature is a triple (NC , NR, NI) consisting of mutually disjoint sets
of atomic concepts NC , atomic roles NR, and named individuals NI . In the rest of
this paper, we assume that the signature is implicit in all relevant definitions.

A role is either R or R− (inverse role), for R ∈ NR. The function inv(·) is defined
on the set of roles as inv(R) = R− and inv(R−) = R. An RBox axiom is an expres-
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sion of the form R1 ⊑ R2 (role inclusion), Dis(S1, S2) (role disjointness), Ref(R)
(reflexivity), Irr(S) (irreflexivity), Sym(R) (symmetry), Asy(S) (asymmetry), and
Tra(R) (transitivity), where R, R1, and R2 are roles, and S, S1, and S2 are sim-
ple roles, as defined next. For X a set of RBox axioms, let ⊑∗

X be the reflexive-
transitive closure of the relation {R1 ⊑ R2, inv(R1) ⊑ inv(R2) | R1 ⊑ R2 ∈ X}. A
role R is transitive in X if a role R′ exists such that R′ ⊑∗

X R, R ⊑∗
X R′, and either

Tra(R′) ∈ X or Tra(inv(R′)) ∈ X. A role S is simple in X if no transitive role R

exists such that R ⊑∗
X S.

Given a set of RBox axioms X, the set of concepts w.r.t. X is the smallest set
containing ⊤ (the top concept), ⊥ (the bottom concept), A (atomic concept), {a}
(nominal), ¬C (negation), C ⊓D (conjunction), C ⊔D (disjunction), ∃R.C (exis-
tential restriction), ∀R.C (universal restriction), ∃S.Self (local reflexivity), ≥ n S.C

(at-least restriction), and ≤ n S.C (at-most restriction), where A is an atomic con-
cept, a is an individual, C and D are concepts, R is a role, S is a simple role
w.r.t. X, and n is a nonnegative integer. The set of literal concepts is defined as
NL = NC ∪ {¬A | A ∈ NC}. A TBox T is a finite set of RBox axioms and general
concept inclusion (GCI) axioms C ⊑ D, where C and D are concepts w.r.t. the
subset of the RBox axioms of T . 2

An assertion is an expression of the form C(a) (concept assertion), R(a, b) (role
assertion), a ≈ b (equality assertion), and a 6≈ b (inequality assertion), where C is
a concept, R is a role, and a and b are named individuals. An ABox A is a finite
set of assertions. Finally, a SHOIQ+ knowledge base is a pair (T ,A) where T is a
TBox and A is an ABox.

An interpretation for a signature (NC , NR, NI) is a tuple I = (△I , ·I), where △I

is a nonempty set called the interpretation domain and ·I is a function assigning an
element aI ∈ △I to each named individual a ∈ NI , a set AI ⊆ △I to each atomic
concept A ∈ NC , and a relation RI ⊆ △I ×△I to each atomic role R ∈ NR. The
extension of ·I to concepts and roles, and satisfaction of axioms and assertions in
I is defined as shown in Table 1. An interpretation I is a model of (T ,A), written
I |= (T ,A), if and only if all axioms of T and all assertions of A are satisfied in I.

The basic inference problem for SHOIQ+ is checking whether (T ,A) is satisfi-
able—that is, whether a model of (T ,A) exists. A concept C subsumes a concept
D w.r.t. (T ,A), written (T ,A) |= C ⊑ D, if CI ⊆ DI for each model I of (T ,A).
It is well known that (T ,A) |= C ⊑ D if and only if (T ,A ∪ {C(a),¬D(a)}) is
unsatisfiable, where a is an individual occurring in neither T nor A [3].

The negation-normal form nnf(C) of a concept C is the concept equivalent to C

in which negations occur only in front of atomic concepts and concepts of the form
{a} and ∃S.Self . The concept nnf(C) can be computed in time linear in the size of
C [3]. With |K| we denote the size of a knowledge base K—that is, the number of
symbols required to encode K on the input tape of a Turing machine (numbers can
be coded in binary).

2 The TBox T is sometimes assumed to contain only GCIs, and all RBox axioms are
represented as a separate set R; however, to simplify the presentation in the following
sections, in this paper we assume that T contains GCIs as well as RBox axioms.
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Table 1
Model-Theoretic Semantics of SHOIQ+

Interpretation of Roles and Concepts

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
⊤I = △I

⊥I = ∅
{s}I = {sI}

(¬C)I = △I \ CI

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}

(∃S.Self)I = {x | 〈x, x〉 ∈ SI}
(≥ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}
(≤ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}

Interpretation of Axioms and Assertions

I |= C ⊑ D iff CI ⊆ DI

I |= R1 ⊑ R2 iff RI
1 ⊆ RI

2

I |= Dis(S1, S2) iff SI
1 ∩ SI

2 = ∅
I |= Ref(R) iff ∀x ∈ △I : 〈x, x〉 ∈ RI

I |= Irr(S) iff ∀x ∈ △I : 〈x, x〉 6∈ SI

I |= Sym(R) iff RI ⊆ (inv(R))I

I |= Asy(S) iff SI ∩ (inv(S))I = ∅
I |= Tra(R) iff ∀x, y, z ∈ △I : 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI → 〈x, z〉 ∈ RI

I |= C(a) iff aI ∈ CI

I |= R(a, b) iff 〈aI , bI〉 ∈ RI

I |= a ≈ b iff aI = bI

I |= a 6≈ b iff aI 6= bI

Note: ♯N is the number of elements in N .

SHIQ+ and SHOQ+ are obtained from SHOIQ+ by disallowing nominals and
inverse roles, respectively. ALCHOIQ+ is obtained from SHOIQ+ by disallowing
transitivity axioms. ALCIF allows for negation, conjunction, disjunction, existen-
tial and universal restrictions, inverse roles, and axioms of the form ⊤ ⊑ ≤ 1 R.⊤.
Finally, ALCF is obtained from ALCIF by disallowing inverse roles.

2.2 Extending DLs with Rules

Description logics can be extended with rules—clauses interpreted under stan-
dard first-order semantics—in a straightforward way [26,20,14]. Let NV be a set of
variables disjoint with the set of individuals NI . An atom is an expression of the
form C(s), R(s, t), or s ≈ t, for s and t individuals or variables, C a concept, and
R a role. A rule is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn(1)
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Table 2
Satisfaction of Rules in an Interpretation
I, µ |= C(s) iff sI,µ ∈ CI

I, µ |= R(s, t) iff 〈sI,µ, tI,µ〉 ∈ RI

I, µ |= s ≈ t iff sI,µ = tI,µ

I, µ |=
∧m

i=1 Ui →
∨n

j=1 Vj iff I, µ |= Ui for each 1 ≤ i ≤ m implies

I, µ |= Vj for some 1 ≤ j ≤ n

I |=
∧m

i=1 Ui →
∨n

j=1 Vj iff I, µ |=
∧m

i=1 Ui →
∨n

j=1 Vj for all mappings µ

I |= R iff I |= r for each rule r ∈ R

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ . . . ∧ Um is
called the body, and the disjunction V1 ∨ . . . ∨ Vn is called the head. Without loss
of generality, we assume that no rule r contains ≈ in the body. The empty body
and the empty head of a rule are written as ⊤ and ⊥, respectively. A rule is Horn
if the head of the rule contains at most one atom. Variables x and y are directly
connected in a rule r if they occur together in some body atom of r; furthermore,
connected is the transitive closure of directly connected. A rule r is connected if
each pair of variables x and y occurring in r is connected in r.

Let I = (△I , ·I) be an interpretation and µ : NV → △I a mapping of variables
to elements of the interpretation domain. Let aI,µ = aI for an individual a and
xI,µ = µ(x) for a variable x. Satisfaction of an atom, rule, and a set of rules R in
I and µ is defined in Table 2.

2.3 Hypertableau Calculus for SHOIQ+

We now present an overview of the hypertableau calculus [32], which can be used
to decide the satisfiability of a SHOIQ+ knowledge base (T ,A).

The algorithm first preprocesses (T ,A) into a set of rules ΞT (T ) and an ABox
A ∪ ΞA(T ). This transformation consists of three steps. First, transitivity axioms
are eliminated from T by encoding them using general concept inclusions; similar
encodings are well known in the context of various description and modal logics
[39,38,27]. Second, axioms are normalized and complex concepts are replaced with
atomic ones in a way similar to the structural transformation [36]. Third, the nor-
malized axioms are translated into rules by using the correspondences between
description and first-order logic [8]. We omit the details of the preprocessing for the
sake of brevity; they can be found in [32, Section 4.1]. All steps are satisfiability
preserving; thus, ΞT (T ) and A ∪ ΞA(T ) are equisatisfiable with (T ,A).

Preprocessing produces HT-rules—syntactically restricted rules on which the hy-
pertableau calculus is guaranteed to terminate. In the definition of HT-rules and
in the rest of this paper, we often use the following function ar. Given a role R and
variables or constants s and t, this function returns an atom with an atomic role
that is semantically equivalent to R(s, t).

ar(R, s, t) =

{

R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−
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Definition 1 (HT-Rule). We assume that the set of atomic concepts NC contains
a nominal guard concept Oa for each individual a, and that these concepts do not
occur in any input knowledge base.

An at-most equality is an atom of the form s ≈ t @u
≤n S.B, where s, t, and u

are constants or variables, n is a nonnegative integer, S is a role, and B is a
literal concept; the part @u

≤n S.B of the atom is called the annotation. This atom is
semantically equivalent to s ≈ t.

An HT-rule is a rule r of the form (1) with m ≥ 0 and n ≥ 0, in which it must be
possible to separate the variables into a center variable x, a set of branch variables
yi, and a set of nominal variables zj such that the following properties hold, for
A an atomic concept, B a literal but not a nominal guard concept, Oa a nominal
guard concept, R an atomic role, and S a role.

• Each atom in the body of r is of the form A(x), R(x, x), R(x, yi), R(yi, x), A(yi),
or A(zj).

• Each atom in the head of r is of the form B(x), ≥ h S.B(x), B(yi), R(x, x),
R(x, yi), R(yi, x), R(x, zj), R(zj , x), x ≈ zj, or yi ≈ yj @x

≤h S.B.

• Each yi occurs in the body of r in an atom of the form R(x, yi) or R(yi, x).

• Each zj occurs in the body of r in an atom of the form Oa(zj).

• Each equality yi ≈ yj @x
≤h S.A in the head of r occurs in a subclause of r of the

form (2) and no yk with 1 ≤ k ≤ h + 1 occurs elsewhere in r.

. . .
h+1
∧

k=1

[ar(S, x, yk) ∧ A(yk)] . . . → . . .
∨

1≤k<ℓ≤h+1

yk ≈ yℓ @x
≤h S.A . . .(2)

• Each equality yi ≈ yj @x
≤n S.¬A in the head of r occurs in a subclause of r of the

form (3) and no yk with 1 ≤ k ≤ h + 1 occurs elsewhere in r.

. . .
h+1
∧

k=1

ar(S, x, yk) . . . → . . .
h+1
∨

k=1

A(yk) ∨
∨

1≤k<ℓ≤h+1

yk ≈ yℓ @x
≤h S.¬A . . .(3)

Intuitively, the body and the head of HT-rules can be seen as being “star-shaped”:
the variable x represents the center of the star, and the branch variables yi can be
connected to the center only through role atoms. Such a shape ensures that HT-
rules can enforce only tree-like models—a property that can be used to explain the
good computational properties of many DLs [40].

Atoms of the form x ≈ zj in HT-rules stem from nominals. For example, axiom
C ⊑ {a} naturally corresponds to the rule C(x) → x ≈ a. To avoid making the
calculus unnecessarily complex, however, the rules should not contain constants
[32]. Therefore, nominal guard concepts are used to “push” all constants from the
rules into the ABox. For example, the mentioned rule is transformed into an HT-
rule C(x) ∧ Oa(z) → x ≈ z and an assertion Oa(a). Nominal guard concepts are
unique for the nominal and they are used only internally by the algorithm—that
is, they are not allowed to occur in the input knowledge base.
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At-most equalities yi ≈ yj @x
≤n R.C stem from the translation of at-most concepts;

for example, ⊤ ⊑ ≤ 1 R.⊤ is translated into R(x, y1) ∧ R(x, y2) → y1 ≈ y2 @x
≤1 R.⊤.

The annotation @x
≤1 R.⊤ does not affect the meaning of the equality; it merely

records its provenance, and we shall discuss its usage shortly. The concept ∃R.C is
used in the rest of this paper as an abbreviation for ≥ 1 R.C.

The hypertableau calculus takes a set of HT-rules R and an input ABox A, and
it decides the satisfiability of (R,A).

Definition 2 (Hypertableau Algorithm).

Individuals. Given a set of named individuals NI , the set of root individuals
NO is the smallest set such that NI ⊆ NO and, if x ∈ NO, then x.〈R, B, i〉 ∈ NO

for each role R, literal concept B, and integer i. The set of generalized individuals
NA is the smallest set such that NO ⊆ NA and, if x ∈ NA, then x.i ∈ NA for each
integer i. The individuals in NA \ NO are tree individuals.

A tree individual x.i is a successor of x, and x is a predecessor of x.i. Descendant
and ancestor are the transitive closures of successor and predecessor, respectively.

ABoxes. The hypertableau algorithm operates on ABoxes that are obtained by
extending the standard definition as follows.

• In addition to standard assertions, an ABox can contain at-most equalities and
a special assertion ⊥ that is false in all interpretations. Furthermore, assertions
can refer to the individuals from NA and not only from NI .

• Each (in)equality s ≈ t (s 6≈ t) also stands for the symmetric (in)equality t ≈ s

(t 6≈ s). The same is true for annotated at-most equalities.

• An ABox A can contain renamings of the form a 7→ b where a and b are root
individuals. The relation 7→ in A must be acyclic, A can contain at most one
renaming a 7→ b for an individual a, and, if A contains a 7→ b, then a should
not occur in any assertion or (in)equality in A. An individual b is the canonical
name of a root individual a in A, written b = ‖a‖A, iff a 7→∗ b and there exists
no individual c 6= b such that b 7→∗ c, where 7→∗ is the reflexive-transitive closure
of 7→ in A.

An input ABox contains only named individuals, no at-most equalities, no re-
namings, and in which all concepts are literal and all roles are atomic.

Satisfaction of such ABoxes in an interpretation is obtained by a straightforward
generalization of the definitions in Section 2.1: all individuals are interpreted as
elements of the interpretation domain △I, and I |= a 7→ b iff aI = bI .

Merge Target. An individual t is a merge target for an individual s if t is a
named individual, or t is a root individual and s is not a named individual, or s is
a descendant of t.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
containing a descendent of s.

Merging. The ABox mergeA(s → t) is obtained from pruneA(s) by replacing the
individual s with the individual t in all assertions and their annotations (but not in
renamings) and, if both s and t are root individuals, adding the renaming s 7→ t.
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Pairwise Anywhere Blocking. The labels of an individual s and of an indi-
vidual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = { A | A(s) ∈ A and A is an atomic concept }
LA(s, t) = { R | R(s, t) ∈ A }

Let < be a strict ordering (i.e., a transitive and irreflexive relation) on NA con-
taining the ancestor relation—that is, if s′ is an ancestor of s, then s′ < s. By
induction on <, we assign to each individual s in A a status as follows:

• a tree individual s is directly blocked by a tree individual t iff, for s′ and t′ the
predecessors of s and t, respectively, we have

· t is not blocked,

· t < s,

· LA(s) = LA(t) and LA(s′) = LA(t′), and

· LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t);

• s is indirectly blocked iff it has a predecessor that is blocked; and

• s is blocked iff it is either directly or indirectly blocked.

Derivation Rules. Table 3 specifies derivation rules that, given an ABox A
and a set of HT-rules R, derive the ABoxes A1, . . . ,An. In the Hyp-rule, σ is a
mapping from the set of variables in the HT-rule to the individuals occurring in the
assertions of A, and σ(U) is the result of replacing each variable x in the atom U

with σ(x). In the NI-rule, for u a root individual, R a role, B a literal concept, and
i an integer, we define rootfor(u, R, B, i) = u.〈R, B, i〉. 3

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equality
s ≈ t in an ABox A only if A does not contain an equality s ≈ t @u

≤n R.B to which
the NI-rule is applicable.

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

Derivation. For a set of HT-rules R and an ABox A, a derivation is a pair
(T, ρ) where T is a finitely branching tree and ρ is a function that labels the nodes
of T with ABoxes such that the following properties hold for each node t ∈ T :

• ρ(t) = A if t the root of T ;

• t is a leaf of T if ⊥ ∈ ρ(t) or no derivation rule is applicable to ρ(t) and R;

• t has children t1, . . . , tn such that ρ(t1), . . . , ρ(tn) are exactly the results of apply-
ing one (arbitrarily chosen, but respecting the rule precedence) applicable rule to
ρ(t) and R in all other cases.

A derivation is successful if T contains a branch t1, t2, . . . such that each ABox ρ(ti)
is clash-free.

3 The function rootfor is not used in the formalization of the algorithm in [32], and has
been introduced here to make the presentation of the algorithm in Section 6 easier.
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Table 3
Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. r ∈ R with r = U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn, and
2. a mapping σ from variables of r to the individuals of A exists such that
2.1 σ(x) is not indirectly blocked for each variable x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 := A ∪ {⊥} if n = 0;
Aj := A∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥ n R.B(s) ∈ A,
2. s is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), B(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 ui is not indirectly blocked in A for each 1 ≤ i ≤ n

then A1 := A ∪ {ar(R, s, ti), B(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh distinct tree successors of s.

≈-rule
If 1. s ≈ t ∈ A (the equality can possibly be annotated),

2. s 6= t, and
3. neither s not t is indirectly blocked

then A1 := mergeA(s → t) if t is merge target for s, and
A1 := mergeA(t → s) otherwise.

⊥-rule
If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A where s is not indirectly blocked
then A1 := A ∪ {⊥}.

NI -rule

If 1. s ≈ t @u
≤n R.B ∈ A (the symmetry of ≈ applies as usual),

2. u is a root individual,
3. s is neither a root individual nor a tree successor of u,
4. t is not a root individual, and
5. neither s nor t is indirectly blocked

then Ai := mergeA(s → ‖rootfor(u,R,B, i)‖A) for each 1 ≤ i ≤ n.

The Hyp-rule is similar to the one of the hypertableau calculus for first order logic
[6]: given an HT-rule of the form (1) and an ABox A, the Hyp-rule tries to unify
the atoms U1, . . . , Um with a subset of the assertions in A; if a unifier σ is found,
the rule nondeterministically derives σ(Vj) for some 1 ≤ j ≤ n. For example, given
R(x, y) → ∃R.C(x) ∨ D(y) and an assertion R(a, b), the Hyp-rule derives either
∃R.C(a) or D(b). The ≥-rule deals with existential quantifiers; for example, given
∃R.C(a), the rule introduces a fresh individual t and derives R(a, t) and C(t). The
≈-rule deals with equality; for example, given a ≈ b, the rule replaces the individual
a in all assertions with the individual b, and it introduces a renaming a 7→ b in order
to keep track of the merge. As discussed in [32], renamings are necessary to ensure
soundness of the NI -rule. Finally, the ⊥-rule detects contradictions such as A(a)
and ¬A(a), or a 6≈ a.

Termination of the calculus is ensured through blocking, the correctness of which
relies on the notion of forest-shaped ABoxes. Such an ABox is shown in Figure 1,
where nodes and edges correspond to individuals and role assertions, respectively.
Named individuals (shown as black nodes) originate from the input ABox, and they
can be connected in arbitrary ways. Tree individuals (shown as white nodes and
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Fig. 1. A Forest-Shaped ABox

called blockable individuals in [32]) are introduced by the ≥-rule, and they can be
connected either to arbitrary named individuals, or to other tree individuals in a
tree-like way. For convenience, tree individuals are represented in the algorithm
as strings; for example, s = a.1 denotes that s is the first successor of a. Now it
is possible to show that the ≥-rule can be applied only to nonblocked individuals
without jeopardizing completeness. Intuitively, if s is blocked by t in an ABox A
and no derivation rule is applicable to A, then a model of the knowledge base can
be constructed by “unraveling” A—that is, by replicating the fragment between s

and t infinitely often. Effectively, blocking means that we do not need to introduce
tree successors in order to satisfy assertions of the form ≥ n R.C(s) because we can
“reuse” the successors of t.

Applications of most derivation rules preserve the forest shape of an ABox;
however, inverse roles, nominals, and number restrictions cause subtle problems.
Consider again Figure 1 and assume that d must satisfy an at-most restriction
≤ 1 R−.⊤. This implies v ≈ s, so one individual should be merged into the other;
however, this can compromise the tree shape of the ABox. The NI -rule deals with
this problem by promoting one of v or s into a root individual : such individuals
can be connected in arbitrary ways even if they do not occur in the input ABox.
Thus, an application of the Hyp-rule to the ABox in Figure 1 and the HT-rule
R(y1, x) ∧ R(y2, x) → y1 ≈ y2 @x

≤1 R−.⊤ derives the at-most equality v ≈ s @d
≤1R−.⊤.

By examining the annotation on the equality, the NI -rule can detect that the equal-
ity stems from an at-most concept, in response to which it turns either v or s into a
root individual. It is possible to establish a bound on the number of the introduced
root individuals and thus prove termination.

The complexity of the hypertableau calculus is due to a possible interaction
between number restrictions, inverse roles, and nominals. If a description logic
does not support at least one of these constructors, then the HT-rules in ΞT (T )
have a simpler form, which prevents the derivation of assertions that satisfy the
preconditions of the NI -rule. In such cases, each atom of the form yi ≈ yj @x

≤n R.B

can be simplified to yi ≈ yj, and the set of root individuals becomes the same as
the set of named individuals. Furthermore, Condition 3.2 of the ≥-rule is always
satisfied, so it need not be explicitly checked.

On SHOQ+, the HT-rules in ΞT (T ) have the following simpler form.

Definition 3 (Simple HT-Rule). A simple HT-rule is a rule r of the form (1) in
which it must be possible to separate the variables into a center variable x, a set of
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branch variables yi, and a set of nominal variables zj such that the following prop-
erties hold, for A an atomic concept, B a literal but not a nominal guard concept,
Oa a nominal guard concept, and R an atomic role.

• Each atom in the body of r is of the form A(x), R(x, x), R(x, yi), A(yi), or A(zj).

• Each atom in the head of r is of the form B(x), ≥ n R.B(x), B(yi), R(x, x),
R(x, yi), R(x, zj), x ≈ zj, or yi ≈ yj.

• Each yi occurs in the body of r in an atom of the form R(x, yi).

• Each zj occurs in the body of r in an atom of the form Oa(zj).

Simple HT-rules allow for a simpler version of blocking: instead of pairs of indi-
viduals, one needs to consider only single individuals.

Definition 4. Single Anywhere Blocking. By induction on <, each individual
s in A is assigned a status as follows:

• a tree individual s is directly blocked by a tree individual t if t is not blocked,
t < s, and LA(s) = LA(t);

• s is indirectly blocked if it has a predecessor that is blocked; and

• s is blocked if it is either directly or indirectly blocked.

3 Problems with Modeling Complex Structures

To understand the limitations of modeling structured objects in DLs (and hence
in OWL as well), consider the problem of modeling the skeleton of the human hand,
whose structure is shown in Figure 2a. The carpal bones form the base of the hand.
The central part of the hand contains the metacarpal bones, one leading to each
finger. The fingers consist of phalanges: the proximal phalanges are connected to the
metacarpal bones, and all fingers apart from the thumb contain a middle phalanx
between the proximal and the distal phalanx. This structure can be intuitively
conceptualized as shown in Figures 2b–2e. 4

This structure can be straightforwardly encoded in a DL ABox A. ABox as-
sertions, however, represent concrete data; thus, A would represent the structure
of one particular hand. In this paper, we are concerned with modeling structured
objects at the schema level—that is, we want to describe the general structure of
all hands. We should be able to instantiate such a description many times. For
example, if we say that each patient has a hand, then for each concrete patient we
should instantiate a different hand, each with the structure as shown in Figures 2b–
2e; depending on the properties of the patient and the axioms in the ontology, each
such structure can then exhibit distinct features. This clearly cannot be achieved
using ABox assertions.

4 The relationship attached to is assumed to be bidirectional, so the edges labeled with
it are not oriented.
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(a) Hand Anatomy (b) Hand (Ghand )

(c) Finger (Gfinger ) (d) Thumb (Gthumb) (e) Index (Gindex finger )

Fig. 2. The Anatomy of the Hand and its Conceptual Models

We can give a logical, schema-level interpretation to Figures 2b–2e by treating
vertices as concepts and arrows as participation constraints between the concepts.
For example, vertices 1 and 6 would correspond to concepts Hand and Index finger ,
whose instances would be all hands and all index fingers, respectively. Furthermore,
the arrow from 1 to 6 would be interpreted as a statement that each hand has an
index finger as its part. In DLs, such a participation constraint would commonly
be represented by axioms (4)–(5).

Hand ⊑ ∃part .Index finger(4)

Hand ⊑ ≤ 1 part .Index finger(5)

Thus, the knowledge base K containing axioms (6)–(19) would provide a formal-
ization of the structure shown in Figure 2e. 5

Index finger ⊑ ∃part .Distal phalanx oif(6)

Index finger ⊑ ∃part .Middle phalanx oif(7)

Index finger ⊑ ∃part .Proximal phalanx oif(8)

Distal phalanx oif ⊑ ∃attached to.Middle phalanx oif(9)

Middle phalanx oif ⊑ ∃attached to.Distal phalanx oif(10)

5 The suffix of index finger has been abbreviated to oif .
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Middle phalanx oif ⊑ ∃attached to.Proximal phalanx oif(11)

Proximal phalanx oif ⊑ ∃attached to.Middle phalanx oif(12)

Index finger ⊑ ≤ 1 part .Distal phalanx oif(13)

Index finger ⊑ ≤ 1 part .Middle phalanx oif(14)

Index finger ⊑ ≤ 1 part .Proximal phalanx oif(15)

Distal phalanx oif ⊑ ≤ 1 attached to.Middle phalanx oif(16)

Middle phalanx oif ⊑ ≤ 1 attached to.Distal phalanx oif(17)

Middle phalanx oif ⊑ ≤ 1 attached to.Proximal phalanx oif(18)

Proximal phalanx oif ⊑ ≤ 1 attached to.Middle phalanx oif(19)

Let I be an interpretation corresponding to Figure 2e in the obvious way. Clearly,
I satisfies K, which justifies the formalization of Figure 2e using K.

Let us extend K with knowledge about bone fractures. For example, let K′ be
an extension of K with axiom (20) stating that, if the middle phalanx of the index
finger is broken, then the index finger is broken as well:

Index finger ⊓ ∃part .(Middle phalanx oif ⊓ Broken) ⊑ Broken(20)

Given the structure of the index finger shown in Figure 2e, we might expect K′

to imply that if the index finger has a distal phalanx that is attached to a broken
middle phalanx, then the index finger is broken as well:

Index finger ⊓ ∃part .(Distal phalanx oif ⊓
∃attached to.(Middle phalanx oif ⊓ Broken)) ⊑ Broken

(21)

Unfortunately, K′ is underconstrained, and some models of K′ do not correspond
to the structure of the index finger shown in Figure 2e. Axioms (7) and (9) both
imply the existence of middle phalanges of the index finger, but K′ does not capture
the fact that, for any given index finger, these two middle phalanges must be the
same object. Thus, the infinite interpretation I ′ shown in Figure 3 is also a model
of K′. In I ′, even if the middle phalanx of the index finger is broken, the middle
phalanges at the second level of the model need not be broken; hence, axiom (20)
does not necessarily derive that the index finger is broken and, consequently, axiom
(21) is not a consequence of K′.

That K′ is underconstrained can also lead to problems with the performance of
reasoning. In order to disprove an entailment, a DL reasoner will try to construct a
“canonical” model of K′—that is, a model that contains as little information deriv-
able from K′ as possible. Such models, however, are often highly repetitive and
much larger than the intended ones, so constructing them can be costly. The inter-
pretation I ′ is an example of such a “canonical” model, and it contains an infinite
tree of phalanges instead of a finite structure shown in Figure 2e. In our experience,
this is the main reason why DL reasoners cannot process complex ontologies such
as FMA and certain versions of GALEN.

These problems could be addressed by ensuring that all models of K′ resemble
as much as possible the intended conceptualization shown in Figures 2b–2e. DL
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Fig. 3. Unintended Model I ′

axioms, however, are usually syntactically restricted such that the resulting logic
exhibits (a variant of) the tree model property [40]: whenever a DL knowledge base
has a model, it has a model of a certain tree shape (such as I ′). The tree model
property is generally considered desirable because its absence often leads to the
undecidability of reasoning. At the same time, however, it also means that we must
leave the confines of DLs if we want to faithfully represent structured objects.

Rule formalisms such as datalog [1] can routinely express conditions over nontree
structures; however, they typically do not provide for existential quantification.
Such rules can thus be applied only to the individuals explicitly mentioned in
a knowledge base and cannot express schema constraints such as “each patient
has some (unknown) hand.” Ontology languages such as OWL-Flight [12], Telos
[34], and the logic programming variant of F-Logic [22] are based on datalog and
therefore share its restrictions.

Combining rules with description logics overcomes the limitations of datalog and
yields a very expressive knowledge representation formalism capable of axiomatizing
nontree structures [20,26]. Similarly, the first-order version of F-Logic [22] provides
a combination of existential quantification with rules. Such solutions, however, are
quite complex and susceptible to modeling errors. Furthermore, the extension of
DLs with rules is undecidable even for very simple DLs [26], and the same is the
case for the first-order version of F-Logic.

A number of decidable combinations of DLs and rules have been proposed in
practice, and decidability is typically achieved by syntactically restricting the ap-
plicability of the rules. For example, DL-safe rules [33] are restricted such that
they apply only to the explicitly named objects. Role-safe [26] and weakly safe
[37] rules also impose restrictions that prevent the application of the rules to arbi-
trary elements of the domain, and similar restrictions are also employed by various
nonmonotonic rule extensions of DLs [15,37,30]. Consequently, such extensions are
useful mainly for query answering, but not for schema modeling.
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To address the problems outlined in this section, SROIQ [25] provides complex
role inclusions—axioms of the form R1 ◦ . . . ◦ Rn ⊑ S, where ◦ stands for role com-
position. Such axioms are restricted in a way that ensures decidability of the basic
reasoning problems. The use of complex role inclusions solves some of the identified
problems; however, they still cannot axiomatize arbitrary structures such as the
one in Figure 2b.

In the rest of this paper, we propose a formalism for modeling arbitrarily con-
nected structured objects by extending DLs with description graphs. For example,
Figure 2d can be seen as a description graph showing that each thumb has a prox-
imal and a distal phalanx that are attached to each other. Different structured
objects can be represented using separate description graphs, which can be appro-
priately connected. For example, the hand and the thumb can be represented using
two different description graphs, which are connected to each other. Furthermore,
structured objects often need to be modeled at different levels of abstraction. For
example, we would like to describe the abstract structure common to all fingers as
shown in Figure 2c, and then specialize it for, say, the index finger by introducing
the middle phalanx as shown in Figure 2e. To this end, our formalism provides for
graph specialization statements, which can represent the fact that one structure is
more general than another. Finally, in order to represent conditional aspects of the
domain, we also allow for arbitrary rules over the description graphs; for example,
we can state that, if a bone in the hand is fractured, then the hand is fractured as
well. We introduce the formalism in the following section, and show how it can be
used to exclude unintended infinite models such as the one in Figure 3.

Our formalism is related to weakly guarded tuple generating dependencies [9] and
the guarded fragment of first-order logic [2], which allow for axiomatizing nontree
structures of bounded treewidth. Unlike these formalisms, however, graph-extended
knowledge bases allow for functional roles and arbitrary rules; furthermore, we
present different syntactic restrictions to achieve decidability of reasoning.

4 A Formalism for Modeling Complex Structures

In this section, we present our knowledge representation formalism. We start by
defining the notion of a description graph.

Definition 5 (Description Graph). An ℓ-ary description graph G = (V, E, λ, M)
is a directed labeled graph where

• V = {1, . . . , ℓ} is a set of ℓ vertices,

• E ⊆ V × V is a set of edges,

• λ is a labeling function that assigns a set of literal concepts λ〈i〉 ⊆ NL to each
vertex i ∈ V and a set of atomic roles λ〈i, j〉 ⊆ NR to each edge 〈i, j〉 ∈ E, and

• M ⊆ NC is a set of main concepts for G.
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For A an atomic concept, VA is the set of vertices that contain A in their label; that
is, VA = {k ∈ V | A ∈ λ〈k〉}.

We define the vertices of G to be integers in order to be able to use them as
indices. The main concepts of G identify the objects whose structure is defined by
G. In Figure 2, main concepts are framed with rounded rectangles. Thus, the main
concepts for the description graph shown in Figure 2b are Hand and Palm, meaning
that this graph defines the structure of all hands and palms. Intuitively, an instance
of a main concept implies the existence of the corresponding graph instance of G.

As a notational convenience, we sometimes use i
R
−→ j to denote that a description

graph contains an R-labeled edge from a vertex i to a vertex j.

In order to represent conditions over the structure of a graph, our formalism
allows for graph rules. The following definition refines the general notion of a rule
introduced in Section 2.2.

Definition 6 (Graph Rule). A graph atom is an atom of the form G(t1, . . . , tℓ),
where G is an ℓ-ary description graph and ti ∈ NI ∪ NV for 1 ≤ i ≤ ℓ. A graph rule
is a rule in which all concepts and roles in atoms are atomic, and whose head and
body can contain graph atoms.

Next, we introduce graph specializations, which allow us to represent structured
objects at different levels of abstraction. For example, we can capture the abstract
structure common to all fingers by a description graph Gfinger shown in Figure
2c, and we can specialize this structure for the thumb by introducing a description
graph Gthumb shown in Figure 2d. The following graph specialization axiom captures
the relationship between these two description graphs:

Gfinger ⊳ Gthumb(22)

Definition 7 (Graph Specialization). A graph specialization is an axiom of the
form G1 ⊳ G2, where G1 = (V1, E1, λ1, M1) and G2 = (V2, E2, λ2, M2) are descrip-
tion graphs with V1 ⊆ V2.

Next, we introduce axioms that allow us to appropriately connect graph in-
stances. For example, the description graph Ghand shown in Figure 2b contains the
vertices 3 and 4 that represent the thumb and its proximal phalanx, which corre-
spond to the vertices 1 and 3 of the description graph Gthumb shown in Figure 2d.
We can specify this correspondence using the following graph alignment :

Ghand [3, 4] ↔ Gthumb [1, 3](23)

This axiom ensures that, whenever two instances of Ghand and Gthumb share the
thumb vertex, they share a proximal phalanx vertex as well, and vice versa.

Definition 8 (Graph Alignment). A graph alignment is an axiom of the form
G1[v1, . . . , vn] ↔ G2[w1, . . . wn], where G1 and G2 are description graphs with sets
of vertices V1 and V2, respectively, and vi ∈ V1 and wi ∈ V2 for 1 ≤ i ≤ n.

Finally, we define GBoxes and graph-extended knowledge bases.
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Table 4
Satisfaction of GBox Elements in an Interpretation

I |= G for G = (V,E, λ,M) iff

Key property :

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I :
〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI ∧

∨

1≤i≤ℓ

xi = yi →
∧

1≤j≤ℓ

xj = yj

Disjointness property :

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI →
∧

1≤i<j≤ℓ

xi 6= yj

Start property : for each atomic concept A ∈ M ,

∀x ∈ △I : x ∈ AI → ∃x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧
∨

k∈VA

x = xk

Layout property :

∀x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI →
∧

i∈V, B∈λ〈i〉

xi ∈ BI ∧
∧

〈i,j〉∈E, R∈λ〈i,j〉

〈xi, xj〉 ∈ RI

I |= G1 ⊳ G2 iff

∀x1, . . . , xℓ2 ∈ △I : 〈x1, . . . , xℓ1 , . . . , xℓ2〉 ∈ GI
2 → 〈x1, . . . , xℓ1〉 ∈ GI

1

I |= G1[v1, . . . , vn] ↔ G2[w1, . . . wn] iff, for each 1 ≤ i ≤ n,

∀x1, . . . , xℓ1 , y1, . . . , yℓ2 ∈ △I :
〈x1, . . . , xℓ1〉 ∈ GI

1 ∧ 〈y1, . . . , yℓ2〉 ∈ GI
2 ∧ xvi

= ywi
→

∧

1≤j≤n

xvj
= ywj

Note: ℓ(i) is the arity of the description graph G(i).

Definition 9 (Formalism). A graph box (GBox) is a tuple G = (GG,GS,GA) where
GG, GS, and GA are finite sets of description graphs, graph specializations over GG,
and graph alignments over GG, respectively. The definition of ABoxes from Section
2.1 is extended to allow for graph assertions of the form G(a1, . . . , aℓ) where G is an
ℓ-ary graph and each ai, 1 ≤ i ≤ ℓ, is an individual. A graph-extended knowledge
base is a 4-tuple K = (T ,P,G,A) where T is a TBox, P is a finite set of connected
graph rules, G is a GBox, and A is an ABox.

Next, we define the semantics of the formalism.

Definition 10 (Semantics). An interpretation I = (△I , ·I) is defined as usual, with
the addition that it interprets each ℓ-ary description graph G as an ℓ-ary rela-
tion over △I—that is, GI ⊆ (△I)ℓ. Each tuple in GI is called a graph instance
of G. A graph assertion is satisfied in I, written I |= G(a1, . . . , aℓ), if and only
if 〈aI

1, . . . , a
I
ℓ〉 ∈ GI . Satisfaction of a description graph, graph specialization, and

graph alignment in I is defined in Table 4. A knowledge base K = (T ,P,G,A) is
satisfied in I, written I |= K, if all its components are satisfied in I.

The key and disjointness properties in Table 4 ensure that no two distinct in-
stances of G can share a vertex; for example, different instances of Ghand cannot
share the vertex that represents the thumb. These properties are required to en-
sure that the representation of the structured objects is bounded, which is a core
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assumption of our formalism. In particular, they prevent the existence of infinite
“chains” of instances of Ghand , which is crucial for the decidability of our formalism.

The start property in Table 4 ensures that each instance of a main concept A of
G occurs in an instance of G. For example, since Hand is a main concept for Ghand ,
each instance of Hand must occur as vertex 1 in an instance of Ghand . Similarly,
vertex 3 of Ghand is labeled with Thumb, which is the main concept of Gthumb ; hence,
each vertex 3 in an instance of Ghand is also a vertex 1 in an instance of Gthumb (but
not the other way around). The disjunction in the start property handles the case
when a main concept labels multiple vertices. For example, if we were to describe
the hand and the five fingers in a single graph without a distinction between the
five fingers, then, given an instance of a Finger , we would have to guess which of
the five fingers we are dealing with. Finally, the layout property ensures that each
instance of G is labeled and connected as specified in the definition of G.

Graph specializations are interpreted as inclusions over the graph relations; for
example, axiom (22) states that each instance of a thumb is also an instance of a
finger. The two graphs share all the vertices of the more general graph, and the
more specific graph can introduce additional vertices.

Finally, graph alignments state that, whenever two graphs share some vertex
from the specified list, then they share all other vertices from the list as well. For
example, alignment (23) states that, if instances of Ghand and Gthumb share vertices
3 and 1, respectively, then they must also share vertices 4 and 3, respectively.

The main reasoning problem for graph-extended knowledge bases is satisfiabil-
ity checking, since concept subsumption and instance checking can be reduced to
satisfiability as usual.

Description graphs allow us to faithfully represent the nontree connections be-
tween the parts of a structured object. For example, consider the graph-extended
knowledge base K′′ = (T ′′, ∅,G′′, ∅) where T ′′ contains axioms (13)–(20), and G′′

contains description graph Gindex finger shown in Figure 2e. The GBox G′′ correctly
axiomatizes the structure of the index finger and, unlike the DL knowledge base K′

from Section 3, the graph-extended knowledge base K′′ entails axiom (21).

Note that Definition 10 does not ensure that objects in an instance of a de-
scription graph G are connected only by the edges as specified in G—that is, the
maximum cardinality of the edges in an instance of G is not fixed. Because of that,
axioms (13)–(19) are strictly necessary for the inference from the previous para-
graph. Although Definition 10 could be straightforwardly extended with conditions
that impose appropriate cardinality restrictions, we refrain from doing so for several
reasons. First, cardinalities can always be axiomatized explicitly as shown in the
previous example, so the presented formalism is more general. Second, the adopted
approach allows us to study at a finer-grained level the impact of various constructs
on the decidability of reasoning.
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5 Undecidability of Reasoning

Checking the satisfiability of a graph-extended knowledge base K = (T ,P,G,A)
is clearly undecidable since the combination of DLs such as ALC with unrestricted
Horn rules is already undecidable [26]. We next show that, even if T = ∅, checking
the satisfiability of K is undecidable due to an interaction between description
graphs and unrestricted Horn rules. In our proof, we use the well-known undecidable
problem of checking emptiness of the intersection of context-free grammars [18].
A context-free grammar is a tuple G = (T,N,P, S), where T is a finite set of
terminal symbols, N a finite set of nonterminal symbols, S ∈ N is a start symbol,
and P ⊆ N × (T ∪N)∗ is a finite set of productions. The language generated by
G is denoted as L(G). Given two context-free grammars G = (T,N,P, S) and
G′ = (T,N′,P′, S ′) over the same set of terminal symbols T and with N ∩ N′ = ∅,
checking whether L(G) ∩ L(G′) = ∅ is undecidable [18].

Proposition 1. Checking the satisfiability of a graph-extended knowledge base
K = (∅,P,G,A) where all rules in P are Horn and G = (GG, ∅, ∅) is undecidable.

Proof. Let G = (T,N,P, S) and G′ = (T,N′,P′, S ′) be two context-free grammars
with N ∩ N′ = ∅. We first construct a graph-extended knowledge base KG,G′ that
simulates the derivations of G and G′. Let RP be an atomic role uniquely associated
with each symbol P ∈ T ∪ N ∪ N′. The knowledge base KG,G′ contains a Horn rule
of the form (24) for each production in P ∪ P′ of the form P → Q1.Q2. . . . .Qn.

RQ1
(x0, x1) ∧ RQ2

(x1, x2) ∧ . . . ∧ RQn
(xn−1, xn) → RP (x0, xn)(24)

For each terminal symbol P ∈ T, the GBox of KG,G′ contains description graphs
G1

P = (V 1
P , E1

P , λ1
P , M1

P ) and G2
P = (V 2

P , E2
P , λ2

P , M2
P ) defined as follows:

G1
P :

V 1
P = {1, 2} M1

P = {A}
1

RP−−→ 2
λ1

P 〈1〉 = {A} λ1
P 〈2〉 = {B}

G2
P :

V 2
P = {1, 2} M2

P = {B}
1

RP−−→ 2
λ2

P 〈1〉 = {B} λ2
P 〈2〉 = {A}

Finally, the ABox of KG,G′ contains the assertion A(a).

It is straightforward to see that KG,G′ is satisfiable. Let I be any interpretation
obtained by intersecting all models of KG,G′ that have the same interpretation
domain △I , and let w = P1. . . . .Pn ∈ T∗ be a finite word over the set of nonterminal
symbols T. Due to the GBox of KG,G′, domain objects {α0, . . . , αn} ⊆ △I exists
such that 〈αi−1, αi〉 ∈ RI

Pi
for each 1 ≤ i ≤ n. It is straightforward to see that the

rules (24) encode the derivations of G and G′—that is, for each nonterminal symbol
Q ∈ N (resp. Q ∈ N′), we have 〈α0, αn〉 ∈ RI

Q if and only if a derivation of Q from
w exists in G (resp. G′). Now let Kint

G,G′ be the graph-extended knowledge obtained
by extending KG,G′ with the Horn rule (25).

RS(x, y) ∧ RS′(x, y) → ⊥(25)
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Clearly, Kint
G,G′ is unsatisfiable if and only if L(G) ∩ L(G′) 6= ∅, which proves the

claim of this proposition.

One might try to regain decidability by assuming that P = ∅. As we show next,
this is not sufficient: an interaction between description graphs in G and num-
ber restrictions in T is another source of undecidability. In our proof, we present
reductions from the well-known domino tiling problem. A domino system is a
triple S = (D,H,V) where D = {D1, . . . , Dm} is a set of tiles, and H ⊆ D × D

and V ⊆ D ×D are horizontal and vertical compatibility conditions, respectively.
An S-tiling is a function τ : N×N → D such that 〈τ(i, j), τ(i + 1, j)〉 ∈ H and
〈τ(i, j), τ(i, j + 1)〉 ∈ V. 6 It is well known that, given a domino system S, check-
ing whether an S-tiling exists is undecidable [7].

Proposition 2. Checking the satisfiability of a graph-extended knowledge base
K = (T , ∅,G,A) with T a TBox in ALCF and G = (GG, ∅, ∅) is undecidable.

Proof. We first present a graph-extended KB Kgrid that implies the existence of an
infinite grid. The TBox of Kgrid contains the following ALCF axioms:

⊤ ⊑ ≤ 1 H(26)

⊤ ⊑ ≤ 1 V(27)

The ABox of Kgrid consists of a single assertion A1(a). The GBox of Kgrid contains
four graphs Gi = (Vi, Ei, λi, Mi), 1 ≤ i ≤ 4. The sets of vertices Vi, edges Ei, and the
labels of the edges are the same for all Gi and are shown in Figure 4a. Furthermore,
Mi = {Ai}, and the labels λi of vertices in each Gi are as given next:

λ1 = {1 7→ {A1}, 2 7→ {A2}, 3 7→ {A3}, 4 7→ {A4}}
λ2 = {1 7→ {A2}, 2 7→ {A1}, 3 7→ {A4}, 4 7→ {A3}}
λ3 = {1 7→ {A3}, 2 7→ {A4}, 3 7→ {A1}, 4 7→ {A2}}
λ4 = {1 7→ {A4}, 2 7→ {A3}, 3 7→ {A2}, 4 7→ {A1}}

We next show that Kgrid is satisfiable and that each model I of Kgrid contains an
infinite two-dimensional grid, as shown in Figure 4b. Individual a corresponds to
the top left corner of the grid, and instances of description graphs are labeled using
lowercase letters. Since A1 is a main concept for G1, I contains the instance g1 of
G1. Vertex 2 of g1 is labeled with A2, so I contains the instance g2 of G2; since V

is functional by (27), the two graphs are “glued together” into a grid. By a similar
argument, one can see that I contains the instance g3 of G3 and the instance g4 of
G4, which are “glued” with g1 and g2 into a grid. By repeating the same argument,
it is clear that the grid extends indefinitely to the right and downwards.

For a domino system S = (D,H,V), let KS be the graph-extended knowledge
base obtained by extending the TBox of Kgrid with the following axioms, where

6
N is the set of all natural numbers.
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Fig. 4. Grid Construction for ALCF

each tile Di ∈ D, 1 ≤ i ≤ m, corresponds to an atomic concept Di:

⊤ ⊑ D1 ⊔ . . . ⊔ Dm(28)

Di ⊓ Dj ⊑ ⊥ for each 1 ≤ i < j ≤ m(29)

Di ⊓ ∃H.Dj ⊑ ⊥ for each (Di, Dj) 6∈ H(30)

Di ⊓ ∃V.Dj ⊑ ⊥ for each (Di, Dj) 6∈ V(31)

These axioms ensure that each point in a grid is labeled with some Di according
to the compatibility conditions of S. Thus, if KS is satisfiable, an S-tiling can be
extracted from a model of KS; conversely, if an S-tiling exists, a model of KS can
be obtained by labeling vertices in the grid shown in Figure 4b according to the
S-tiling. These two facts then imply the claim of this proposition.

The proofs of Propositions 1 and 2 suggest that undecidability arises partly
because graph-extended knowledge bases can axiomatize models containing un-
bounded sequences of description graph instances. In practice, however, structured
objects are usually modeled up to a certain level of granularity, which naturally
determines a bound on the sequence of graphs one needs to represent. In such
cases, we can describe the structure of an object by an acyclic hierarchy of parts;
for example, carpal bones are parts of the hand, but the hand is not a part of the
carpal bones. To reflect the acyclic nature of such a representation, it therefore
seems reasonable to impose an acyclicity condition in our formalism. Intuitively,
this condition ensures that the description graphs are arranged in a hierarchical
manner and that their instantiation always provides a bounded representation.

Definition 11 (Acyclic GBox). Let G = (GG,GS,GA) be a GBox, and let ⊳∗ be the
reflexive–transitive closure of the graph specialization relation ⊳ in GS. The GBox
G is acyclic if a strict (i.e., an irreflexive and transitive, but not necessarily total)
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order ≺ on GG exists such that, for each G = (V, E, λ, M) and G′ = (V ′, E ′, λ′, M ′)
in GG such that G 6� G′, and for each A ∈ M ′, the following two conditions hold:

• G′ ⊳∗ G implies ¬A ∈ λ〈i〉 for each i ∈ V \ V ′; and

• G′ 6⊳∗ G implies ¬A ∈ λ〈i〉 for each i ∈ V .

A graph-extended knowledge base is acyclic if its GBox is acyclic.

Intuitively, G1 ≺ G2 means that an instance of G1 is allowed to imply the ex-
istence of an instance of G2. In our example, we would have Ghand ≺ Gfinger and
Ghand ≺ Gthumb , which allows an instance of a hand to imply the existence of a
finger and/or a thumb. We would also have Gfinger ≺ Gthumb , since finger is more
general than thumb. The conditions in Definition 11 state that, if G1 6≺ G2, then an
instance of G2 cannot imply the existence of an instance of G1 because each node
of G2 must be labeled with a negation of each start concept of G1. For example,
since Gthumb 6≺ Ghand , no vertex in an instance of Gthumb should ever become labeled
with a main concept of Ghand . Effectively, this prevents cyclic implications between
instances of description graphs.

Requiring the GBox to be acyclic invalidates Proposition 1. In fact, checking
the satisfiability of K = (∅,P,G,A) where G is acyclic is decidable: G can then
axiomatize only structures that can be obtained by unfolding G in a straightforward
way, so it does not matter if the rules in P are not tree-like. Furthermore, in Section
6.2 we show that checking satisfiability of K = (T , ∅,G,A) is decidable if T is in
SHOQ+. We next show, however, that an interaction between inverse roles, number
restrictions, and description graphs leads to undecidability even if G is acyclic.

Proposition 3. Checking the satisfiability of a graph-extended knowledge base
K = (T , ∅,G,A) with T a TBox in ALCIF and G = (GG, ∅, ∅) an acyclic GBox
is undecidable.

Proof. Let Kgrid be the graph-extended KB in which the GBox contains four de-
scription graphs Gi = (Vi, Ei, λi, Mi), 1 ≤ i ≤ 4 with the structure as shown in Fig-
ure 5a and Mi = {Ai}. To make the GBox acyclic, we assume that all vertices in
each Gi are labeled with ¬Aj for i 6= j; these negative labels are not shown in
Figure 5a for the sake of clarity. The ABox of Kgrid contains the assertion A1(a).
Finally, the TBox of Kgrid contains the following ALCIF axioms:

⊤ ⊑ ≤ 1 H ⊤ ⊑ ≤ 1 V ⊤ ⊑ ≤ 1 R−

B1 ⊑ ∃R.A2 C1 ⊑ ∃R.A4

B2 ⊑ ∃R.A1 C2 ⊑ ∃R.A3

B3 ⊑ ∃R.A4 C3 ⊑ ∃R.A2

B4 ⊑ ∃R.A3 C4 ⊑ ∃R.A1

We next show that Kgrid is satisfiable and that each model I of Kgrid contains an
infinite two-dimensional grid, as shown in Figure 5b. Instances of description graphs
are denoted with lowercase letters. Due to the ABox assertion A1(a), I contains
the instance g1 of G1. Due to B1 ⊑ ∃R.A2, vertex 2 of g1 is connected with an
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Fig. 5. Grid Construction for ALCIF

instance of A2, so I contains the instance g2 of G2. Since R is inverse-functional,
however, vertex 1 of g2 must be the same as vertex 2 of g1, as shown by the arrow
m1. Furthermore, since V is functional, vertex 4 of g2 must be the same as vertex
3 of g1, as shown by the arrow m2. Hence, g1 and g2 form the top two squares of
the grid. By a similar argument, one can see that I contains the instance g4 of G4,
and that g1 and g4 share the vertices as shown by the arrows m3 and m4. Finally, I

contains the instances g1
3 and g1

3 of G3, which share vertices with g2 and g4 as shown
my the arrows m5–m8. Thus, g1

3 and g2
3 share vertex 1, so by the key property they

must be the one and the same instance. Consequently, g1, g2, g1
3 = g2

3 = g3, and g4

are connected in I in a grid-like manner. Note that no two instances gi share vertex
5, so I satisfies the concept ¬Ai occurring in the label of each vertex of Gj for i 6= j.
By repeating the same argument, it is clear that the grid extends indefinitely to
the right and downwards.

Now given a domino system S = (D,H,V), we can extend Kgrid with axioms
(28)–(31) to a knowledge base KS that is satisfiable if and only if an S-tiling exists,
which proves our claim.

This result can be intuitively understood as follows. Let G1 and G2 be description
graphs with start concepts A1 and A2, respectively; furthermore, let g1 and g2 be
instances of G1 and G2, respectively. Then, inverse roles and number restrictions
can merge g1 and g2 such that the vertex of g1 labeled with A1 is not contained in g2

and, conversely, the vertex of g2 labeled with A2 is not contained in g1. Therefore,
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even if all vertices of G1 and G2 are labeled with ¬A2 and ¬A1, respectively, it is
still possible to enforce the existence of infinite non-tree-like structures.

6 Reasoning with Graph-Extended Knowledge Bases

In this section, we present an algorithm for reasoning with a graph-extended
knowledge base K = (T ,P,G,A). In order to overcome the undecidability results
from the previous section, in Section 6.1 we introduce role separation as a way of
attaining decidability. Intuitively, role separation places restrictions on the usage
of atomic roles in T , P, and G in order to limit the possible interaction between
different types of axioms. In Section 6.2 we then present a hypertableau-based
algorithm for checking the satisfiability of K. When K is weakly separated (i.e., when
the roles occurring in P do not occur in T and vice versa), our algorithm provides
a decision procedure if T is in SHOQ+ and G is acyclic G and a semidecision
procedure if T is in SHOIQ+. Finally, in Section 6.3 we show that the decidability
of the latter case can be regained by requiring K to be strongly separated (i.e., that
the roles occurring in P and G do not occur in T and vice versa).

6.1 Role Separation

Let K = (T ,P,G,A) be a graph-extended KB. In Section 5, we proposed acyclic-
ity of G as a way to limit the size of the structures whose existence is implied by G.
As expected, acyclicity invalidates the proof of Proposition 2. The proof of Propo-
sition 3, however, reveals that an interaction between graphs, inverse roles, and
functionality axioms can circumvent the desired effects of acyclicity. Thus, one way
of ensuring decidability is to restrict the interaction between T , P, and G by placing
restrictions on the usage of roles. The general approach is captured by the following
definition, which is specialized in the following sections.

Definition 12 (Role Separation). A role separation scheme Λ = (NRT
, NRP

, NRG
)

is a triple where all NRT
, NRP

, and NRG
are (not necessarily disjoint) subsets of

the set of atomic roles NR. The roles in NRT
, NRP

, and NRG
are called T -, P-,

and G-roles, respectively. A graph-extended knowledge base K = (T ,P,G,A) is Λ-
separated if all roles occurring in T , P, and G are T -, P-, and G-roles, respectively.

A similar idea has been used to ensure decidability of the fusions of Abstract
Description Systems (ADSs) [5]: the component ADSs can share concepts, but the
interaction through roles is restricted to ensure decidability. The separation into T -,
P- and G-roles is similar in spirit. ADSs, however, lack standard first-order variables,
so they cannot directly represent arbitrarily connected structures and rules. The
latter could potentially be axiomatized using an ADS; however, such an encoding
is likely to be complex and therefore not practicable. Furthermore, fusions of ADSs
require a strict separation of roles, which rules out weakly separated knowledge
bases (see Section 6.2).
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Similarly to the standard hypertableau algorithm presented in Section 2.3, our
algorithm first preprocesses K into a set of rules R, a GBox G, and an ABox A.
We next define a notion of Λ-admissibility for (R,G,A) that identifies the types
of inputs our core algorithm can handle. This notion closely parallels Definition
12 and, as we discuss shortly, there is a straightforward relationship between Λ-
separation for knowledge bases and Λ-admissibility for the algorithm inputs.

Definition 13 (Admissibility). Let R be a set of rules, G a GBox, A an ABox, and
Λ = (NRT

, NRP
, NRG

) a role separation scheme. The triple (R,G,A) is Λ-admissible
if all roles in G are G-roles, A is an input ABox, and R can be separated into disjoint
subsets RT and RP of T - and P-rules, respectively, such that

• each rule r ∈ RT is an HT-rule and all roles in r are T -roles, and

• each rule r ∈ RP is a connected graph rule and all roles in r are P-roles.

A Λ-admissible triple (R,G,A) is simple if all rules in RT are simple HT-rules,
and (R,G,A) is acyclic if G is acyclic.

Let K = (T ,P,G,A) be a graph-extended KB, ΞT (T ) and A′ = A∪ ΞA(T ) the
result of preprocessing T using the preprocessing transformation from [32, Section
4.1] (see Section 2.3 for a summary), and R = P ∪ ΞT (T ). By inspecting the trans-
formation it is straightforward to see that, for each role separation scheme Λ, if K
is Λ-separated, then (R,G,A′) is Λ-admissible; if T is in SHOQ+, then (R,G,A′)
is simple; and if G is acyclic, then (R,G,A′) is acyclic as well. Furthermore, if K
does not contain transitivity axioms, it is trivial to see that K is equisatisfiable with
(R,G,A′). Finally, if Λ is such that NRT

∩ NRP
= ∅, then there is no interaction

between T and P, so transitivity axioms in T can be encoded into GCIs in the same
way as in [32, Section 4.1] without affecting satisfiability. Therefore, we omit the
details of the preprocessing phase for the sake of brevity and present an algorithm
that decides the satisfiability of an admissible triple (R,G,A).

6.2 Weakly Separated Knowledge Bases

We now define a notion of weak role separation.

Definition 14 (Weak Separation). A role separation scheme (NRT
, NRP

, NRG
) is

weak if NRT
∩ NRP

= ∅. A graph-extended knowledge base K is weakly separated
if a weak role separation scheme Λ exists such that K is Λ-separated. Similarly, for
R a set of rules, G a GBox, and A an ABox, (R,G,A) is weakly admissible if a
weak role separation scheme Λ exists such that (R,G,A) is Λ-admissible.

Intuitively, weak separation prevents any interaction between T and P and thus
avoids well-known sources of undecidability, such as the ones identified in [26].
From a modeling point of view, weak separation is interesting because it allows
one to describe general knowledge using TBox axioms and then to specialize such
knowledge using description graphs. For example, even if the general structure of a
finger were described using DL axioms (e.g., this description might be a part of a
general, coarse-grained knowledge base that does not use description graphs), one

27



could describe more specialized knowledge, such as the structure of an index finger,
using graphs. One can thus choose the appropriate style of modeling for knowledge
at different levels of granularity. The main limitation of weak separation is that
one cannot use rules to express knowledge about roles used in DL axioms. Thus,
weak separation does not impose any additional restrictions on graph-extended KBs
beyond those that are already present in standard DL knowledge bases without
description graphs. Note that DL-safe [33] need not satisfy the weak admissibility
requirement; however, we do not consider such rules in this paper because of their
limited applicability to schema reasoning.

We next present an algorithm that can be used to check the satisfiability of a
weakly separated knowledge base K. The formal definitions of the algorithm are
rather intricate, so we first outline the main ideas by means of an example. Consider
the following graph-extended knowledge base K1 = (T1,P1,G1,A1):

T1 = { C ⊑ ∃R.A,

B ⊑ {b} }
P1 = ∅
A1 = { C(a) }

G1 contains the following description graph:

G:
V = {1, 2, 3} λ〈1〉 = {A} 1

S
−→ 2

M = {A} λ〈2〉 = {B} 2
T
−→ 3

λ〈3〉 = {C} 1
U
−→ 3

(32)

The preprocessing of T1 produces the ABox ΞA(T1) = {Ob(b)} and the following set
of rules ΞT (T1):

C(x) → (∃R.A)(x)(33)

B(x) ∧ Ob(yb) → x ≈ yb(34)

Let R1 = ΞT (T1) and A1
1 = ΞA(T1) ∪ A1. Clearly, (R1,G1,A

1
1) is weakly admissible:

all rules in R1 are HT-rules and, since P = ∅, we can consider all roles to be T -roles.

By successively applying the derivation rules shown in Tables 3 and 5 to R1,
G1, and A1

1, our algorithm tries to construct an ABox that represents a model of
(R1,G1,A

1
1). The evolution of A1

1 is shown in Figure 6, where assertions derived by
a single application of a derivation rule are separated by dotted lines. Note that the
derivation rules from Table 5 closely follow the semantic conditions on description
graphs given in Definition 10.

The Hyp-rule derives new assertions based on the contents of R: if the body of
some rule r ∈ R can be matched to assertions in an ABox, an assertion from the
head of r is derived nondeterministically. Thus, from C(a) and (33), the Hyp-rule
derives the assertion ∃R.A(a).

To satisfy this assertion, the ≥-rule introduces a fresh tree successor s1 of a and
it derives the assertions R(a, s1) and A(s1). To keep track of the successor relation,
our algorithm represents individuals as finite strings of the form ⊲.α1. . . . .αn, where
αi are symbols, and ⊲ is a special symbol that is used to make certain definitions
simpler. Thus, the individual a actually corresponds to the string ⊲.νa where νa is
a name symbol ; furthermore, s1 corresponds to the individual ⊲.νa.τ , where τ is a
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Ob(b)
C(a)

∃R.A(a)
R(a, s1)

A(s1)

G(s1, t1,1, t1,2)

S(s1, t1,1)
T (t1,1, t1,2)
U(s1, t1,2)
B(t1,1)
C(t1,2)

∃R.A(t1,2)

R(t1,2, s2)

A(s2)

G(s2, t2,1, t2,2)

S(s2, t2,1)
T (t2,1, t2,2)
U(s2, t2,2)
B(t2,1)
C(t2,2)

a = ⊲.νa

s1 = ⊲.νa.τ

t1,1 = ⊲.νa.τ.γ1

t1,2 = ⊲.νa.τ.γ2

s2 = ⊲.νa.τ.γ2.τ

t2,1 = ⊲.νa.τ.γ2.τ.γ1

t2,2 = ⊲.νa.τ.γ2.τ.γ2

Fig. 6. Example Derivation of the Hypertableau Algorithm

tree symbol. That s1 is a successor of a is evident from the fact that a = ⊲.νa is a
prefix of s1 = ⊲.νa.τ .

The concept A is a main concept in G so, due to the assertion A(s1), indi-
vidual s1 must occur in an instance of G at vertex 1; to ensure this, the hyper-
tableau calculus contains the G∃-rule. An application of the G∃-rule to A(s1) de-
rives the assertion G(s1, t1,1, t1,2). Individuals t1,1 and t1,2 fresh graph successors of
s1, which is reflected in their string representation: we have t1,1 = s1.γ1 = ⊲.νa.τ.γ1

and t1,2 = s1.γ2 = ⊲.νa.τ.γ2 where γ1 and γ2 are graph symbols. A tree or named
individual and all of its graph successors are said to form a cluster ; individuals s1,
t1,1, and t1,2 are an example of such a cluster.

In order to connect and label all the vertices in the instance of G, the hypertableau
calculus contains the GL-rule. Its application to the current set of assertions adds,
among others, the assertion C(t1,2). But then, the same inferences can be repeated:
the Hyp-rule derives ∃R.A(t1,2), the ≥-rule derives R(t1,2, s2) and A(s2) where
s2 = t1,2.τ = ⊲.νa.τ.γ2.τ , the G∃-rule derives the graph assertion G(s2, t2,1, t2,2), and
the GL-rule connects and labels all the vertices. Let A2

1 be the ABox containing all
assertions derived thus far; these are shown in Figure 6.

Clearly, unrestricted application of the ≥- and G∃-rule would lead to nontermi-
nation. Therefore, just like the standard (hyper)tableau algorithms, our algorithm
applies blocking. Roughly speaking, tree individuals s1 and s2 occur in A2

1 in the
same concepts, so the former individual blocks the latter—that is, the ≥- and
G∃-rule are not applied to (the successors of) the blocked individual. Blocking is
applicable because the ABox A2

1 is of structure that generalizes the notion of forest-
shaped ABoxes from Section 2.3. In particular, A2

1 can thus be seen as consisting of
three clusters, shown in Figure 6 as the left-most, middle, and right-most columns,
connected by assertions R(a, s1) and R(t1,2, s2).

In general, forest-shaped ABoxes are of the form shown in Figure 7. They contain
several kinds of individuals, which we summarize next.

• Root individuals are shown in Figure 7 as black circles, and can be of two types:

· Named individuals are the ones that occur in the input ABox.

· Root individuals that are not named are introduced by the NI -rule (see Table 3)
due to an interaction between inverse roles, number restrictions, and nominals.
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Fig. 7. A Generalized Forest-Shaped ABox

An in-depth discussion of the rationale behind the NI -rule is available in [32].

• Tree individuals are introduced by the ≥-rule in order to satisfy the existential
quantifiers in the TBox of the knowledge base, and they are shown in Figure 7
as white circles with a single edge.

• Graph individuals are introduced by the G∃-rule in order to satisfy the start
property for the graphs in the GBox of the knowledge base, and they are shown
in Figure 7 as white circles with a double edge.

The central concept in forest-shaped ABoxes is the notion of a cluster, whose formal
definition ensures that all root individuals and all graph individuals of the form ⊲.γi

form a single cluster, and that each tree individual t and all graph individuals of the
form t.γi form a cluster. Figure 7 shows two clusters, where the member individuals
are enclosed in a dashed line. The key idea behind clusters is that (i) individuals
in the same cluster can be arbitrarily connected, but (ii) individuals from different
clusters are connected in a tree-like manner. Thus, each forest-shaped ABox can be
seen as a tree of clusters; we often call this structure a tree backbone. We exploit the
tree backbone to generalize the notions of blocking and pruning from the standard
(hyper)tableau algorithms.

In Lemma 1, we formalize the notion of forest-shaped ABoxes and show that, if
(R,G,A) is weakly separated, then the application of the hypertableau derivation
rules to a forest-shaped ABox always produces a forest-shaped ABox. Intuitively,
the arbitrarily shaped P-rules in R can be applied only to assertions involving
individuals in the same cluster, where they can introduce arbitrary connections;
however, due to weak separation, they cannot affect the tree backbone. The tree
backbone is constructed solely using the T -rules in R.

Nominals, however, introduce a slight complication. Consider again the ABox A2
1.

From B(t1,1), Ob(b), and (34), the Hyp-rule derives t1,1 ≈ b. The ≈-rule then prunes
t1,1 (i.e., it removes all graph and tree descendants or t1,1) and replaces it with b;
pruning is necessary in order to avoid nontermination due to repeated individual
creation and merging, as in the so-called “yo-yo” problem [4]. After t1,1 is replaced
with b, the ABox contains the graph assertion G(s1, b, t1,2) in which b is not from
the same cluster as s1 and t1,2; thus, the ABox is not forest shaped. This is reme-
died through graph cleanup: the mentioned assertion is replaced with G(v1, b, v2),
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where v1 = ⊲.γ1 and v2 = ⊲.γ2 are fresh graph individuals from the cluster of b. The
cluster of s1 and t1,2 is thus merged into the cluster of b in order to make the re-
sulting ABox forest shaped. Furthermore, if graph cleanup is subsequently applied
to an assertion of the form G(w1, b, w2), individuals w1 and w2 are replaced with
v1 and v2, respectively. Reusing individuals in graph cleanup is sound because of
the key property in Table 4, and it allows us to establish a bound on the number
of individuals introduced by the cleanup.

We next define our algorithm formally. At this point, we assume the rules in R
to be HT-rules, but do not assume them to be simple. Thus, the algorithm can be
applied to a triple (R,G,A) obtained by preprocessing a graph-extended knowledge
base whose TBox is in SHOIQ+.

Definition 15. The hypertableau algorithm for checking the satisfiability of an
admissible triple (R,G,A) is obtained by modifying parts of Definition 2 as follows.

Individuals. Let Στ , Σγ, and Σν be countably infinite and mutually disjoint sets
of tree, graph, and name symbols, respectively, none of which contains the special
symbol ⊲. The set Σι of NI -symbols is the smallest set such that 〈α, R, B, i〉 ∈ Σι

for each α ∈ Σγ ∪ Σν ∪ Σι, role R, literal concept B, and integer i.

An individual is a finite string of the form ⊲.α1. . . . .αn with n ≥ 1 such that

• α1 ∈ Σν ∪ Σγ ∪ Σι,

• αi ∈ Σγ ∪ Στ for 2 ≤ i ≤ n, and

• αi ∈ Σν ∪ Σγ ∪ Σι implies αi+1 6∈ Σγ for 1 ≤ i ≤ n.

An individual with αn ∈ Στ (resp. αn ∈ Σγ) is a tree (resp. graph) individual.
Furthermore, an individual of the form ⊲.α is a root individual, and if α ∈ Σν , the
individual is named. Let NA, NI , and NO be the sets of all individuals, all named
individuals, and all root individuals, respectively.

For each individual x.α ∈ NA (with x possibly being equal to ⊲), we say that x.α

is a successor of x, x is predecessor of x.α, and descendant and ancestor are the
transitive closures of successor and predecessor, respectively.

Cluster. For each individual s ∈ NA, the function ⌊s⌋ is defined as follows:
⌊s⌋ = s if s is a tree individual; otherwise, ⌊s⌋ = t for s = t.α. Individuals s and t

are from the same cluster if ⌊s⌋ = ⌊t⌋.
Graph Cleanup. Let A be an ABox containing an assertion G(u1, . . . , uℓ) where

some ui and uj are not from the same cluster, and ⌊ui⌋ is an ancestor of uj. A
cleanup of uj is an ABox obtained from A by pruning uj and then replacing in all
the remaining assertions uj with an individual t defined as follows:

• if A contains another graph assertion G(v1, . . . , vℓ) such that ui = vi and vj is
from the same cluster as ui, then t = vj;

• otherwise, t is a fresh graph successor of ⌊ui⌋.

A graph cleanup of A is obtained from A by iteratively applying a cleanup to candi-
date individuals as long as possible and in any sequence that satisfies the following
restriction: whenever cleanup is applicable to ui and uj such that ui is an ancestor
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of uj, cleanup is applied first to ui.
7

Merge Target. An individual t is a merge target for an individual s if t is a
named individual, or t is a root individual and s is not a named individual, or t is
not a root individual and s is a descendant of ⌊t⌋.

Merging. The ABox mergeA(s → t) is obtained from pruneA(s) by replacing s

with t in all assertions, and then applying a graph cleanup.

Derivation Rules. The derivation rules from Table 3 are extended with the
ones from Table 5. In the NI-rule (see Table 3), for u = ⊲.α a root individual, R a
role, B a literal concept, and i an integer, rootfor(u, R, B, i) = ⊲.〈α, R, B, i〉.

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equality
s ≈ t in an ABox A only if A does not contain an equality s ≈ t @u

≤n R.B to which
the NI-rule is applicable. Furthermore, the G∃-rule is applicable to an ABox only if
the ⊥-, ≈-, G⊥-, G≈-, G⊳-, and GL-rule are not applicable to the ABox.

If (R,G,A) is weakly admissible and simple, the T -rules in R are simple HT-rules
so, as explained in Section 2.3, the NI -rule then never gets applied, no root indi-
vidual occurring in a derivation involves an NI -symbol, and pairwise blocking can
be simplified to single blocking. Therefore, we implicitly make these assumptions
whenever (R,G,A) is simple.

We next show that, if (R,G,A) is weakly admissible, simple, and acyclic, the
hypertableau algorithm becomes a decision procedure. Intuitively, if R is simple
(i.e., if T is in SHOQ+), then different clusters cannot interact in an adverse way
due to number restrictions. Consider, for example, the ABox shown in Figure 7.
Individual u can be merged into t; however, t then “inherits” all main concepts
asserted on u. Thus, if t and u occur in assertions with description graphs G1 and
G2, respectively, such that G1 6≺ G2, an inconsistency will be derived due to the
acyclicity of G, which will prevent further application of the derivation rules. Hence,
despite the fact that different clusters can be merged, we can establish a bound on
the size of each cluster and thus prove termination.

We next prove soundness, completeness, and termination of our algorithm. To
this end, we first formalize the intuitive notion of forest-shaped ABoxes and show
that an application of a derivation rule always preserves this property.

Lemma 1. Let R be a set of rules, G a GBox, and A an ABox such that (R,G,A) is
simple and weakly admissible. Then, each ABox A′ labeling a node of a derivation
for (R,G,A) satisfies the following properties, for a and b root individuals, u(i)

individuals, γi, γj ∈ Σγ, and τi, τj ∈ Στ .

(1) Each R(s, t) ∈ A′ where R is a T -role has the form R(u, u.τi), R(u, a), or
R(u1, u2), where u1 and u2 are individuals from the same cluster.

(2) Each s ≈ t ∈ A′ is of the form a ≈ u, u1 ≈ u2, u1 ≈ u2.τi, or u.τi ≈ u.τj, where
u1 and u2 are individuals from the same cluster.

7 Note that, due to the freedom in choice of t and the order in which cleanup is applied
to candidate individuals, graph cleanup of A is not uniquely defined; however, for the
purposes of our algorithm, any cleanup of A will suffice.
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Table 5
Derivation Rules Related to Description Graphs

G≈-rule

If 1. {G(s1, . . . , sℓ), G(t1, . . . , tℓ)} ⊆ A,
2. si = ti for some 1 ≤ i ≤ ℓ,
3. {sj ≈ tj | 1 ≤ j ≤ ℓ} 6⊆ A, and
4. neither si nor ti is indirectly blocked for each 1 ≤ i ≤ ℓ

then A1 := A ∪ {sj ≈ tj | 1 ≤ j ≤ ℓ}.

G⊥-rule
If 1. {G(s1, . . . , sℓ), G(t1, . . . , tℓ)} ⊆ A,

2. si = tj for some i 6= j, and
3. neither si nor ti is indirectly blocked for each 1 ≤ i ≤ ℓ

then A1 := A ∪ {⊥}.

G∃-rule

If 1. A(s) ∈ A such that A ∈ M for some G = (V,E, λ,M) ∈ GG,
2. s is not blocked in A, and
3. for each vi ∈ VA = {v1, . . . , vn}, no individuals u1, . . . , uℓ exist

such that G(u1, . . . , uℓ) ∈ A and uvi
= s

then Ai := A ∪ {G(t1, . . . , tℓ)} for each 1 ≤ i ≤ n where
tvi

= s and all other tk are fresh graph successors of ⌊s⌋.

GL-rule
If 1. G(s1, . . . , sℓ) ∈ A with G = (V,E, λ,M),

2. {A(si) | A ∈ λ〈i〉} ∪ {R(si, sj) | R ∈ λ〈i, j〉} 6⊆ A, and
3. si is not indirectly blocked for each 1 ≤ i ≤ ℓ

then A1 := A ∪ {A(si) | A ∈ λ〈i〉} ∪ {R(si, sj) | R ∈ λ〈i, j〉}.

G⊳-rule

If 1. G1 ⊳ G2 ∈ GS,
2. G2(s1, . . . , sℓ2) ∈ A,
3. G1(s1, . . . , sℓ1) 6∈ A, and
4. si is not indirectly blocked for each 1 ≤ i ≤ ℓ

then A1 := A ∪ {G1(s1, . . . , sℓ1)}.

G↔-rule

If 1. G1[v1, . . . , vn] ↔ G2[w1, . . . wn] ∈ GA,
2. {G1(s1, . . . , sℓ1), G2(t1, . . . , tℓ2)} ⊆ A,
3. svi

= twi
for some 1 ≤ i ≤ n,

4. {svj
≈ twj

| 1 ≤ j ≤ n} 6⊆ A, and
5. neither si nor ti is indirectly blocked for each 1 ≤ i ≤ ℓ

then A1 := A ∪ {svj
≈ twj

| 1 ≤ j ≤ n}.

(3) In each G(u1, . . . uℓ) ∈ A′ and U(u1, u2) ∈ A′ with U a P-role, ui are all from
the same cluster. Furthermore, for each graph individual u0 in A′, a tree or a
root individual un from the same cluster as u0 exists such that u0 has a path
to un in A′—that is, individuals u1, . . . , un−1 exist such that ui−1 and ui occur
together in a graph assertion in A′ for each 1 ≤ i ≤ n.

(4) In each Oa(u) ∈ A′ with Oa a nominal guard concept, the individual u is
named. Furthermore, in each ≥ n R.B(u) ∈ A′, the concept B is not a nominal
guard concept.

(5) For each tree individual tn in A′, individuals s0, . . . , sn and t0, . . . , tn−1 exist
such that (i) s0 is a root individual, (ii) for each 1 ≤ i ≤ n, individuals si and
ti−1 are from the same cluster, and (iii) for each 0 ≤ i ≤ n, individual ti is a
tree successor of si, and Ri(si, ti) ∈ A′ for some T -role Ri.
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Proof. Let Λ = (NRT
, NRP

, NRG
) be a weak role separation scheme and RT and RP

the subsets of R satisfying the conditions of Definition 13. We prove this lemma
by induction on the rule application. Since A is an input ABox, the induction base
is trivial. Assume that the claim holds for an ABox A0 and consider the inferences
deriving some ABox Ai.

(⊥- and G⊥-rule) The ABox A1 trivially satisfies Conditions 1–5.

(G⊳-, G↔-, G≈-, and GL-rule) These rules are always applied to individuals in
the same cluster, so A1 satisfies Conditions 1–5.

(G∃-rule) Assume that Ai is obtained by an application of the G∃-rule to an
assertion A(s) ∈ A0. All individuals t1, . . . , tℓ introduced by the rule application
are from the same cluster as s, so Ai satisfies Conditions 1–5.

(≥-rule) Assume that A1 is obtained by an application of the ≥-rule to an asser-
tion ≥ n R.B(s) ∈ A0. All individuals t1, . . . , tn introduced by the rule application
are tree successors of s such that R(s, ti) ∈ A1, and B is not a nominal guard
concept, so A1 satisfies Conditions 1–5.

(Hyp-rule) Assume that Ai is obtained from A0 by an application of the Hyp-rule
to a rule r ∈ R. The rule r does not contain a nominal guard concept in the head,
so Ai satisfies Condition 4. Furthermore, the Hyp-rule does not introduce fresh
individuals, so Condition 5 trivially holds for Ai.

If r ∈ RP , then r is connected, so all variables in r are matched to individuals in
the same cluster. All role atoms in the head of r are P-roles due to weak separation,
so Ai satisfies Conditions 1–3. Thus, let r ∈ RT be a simple HT-rule and consider
the types of assertions derived by instantiating an atom from the head of r.

If s ≈ t is derived by instantiating an atom of the form x ≈ zj , then the body
of r contains an atom Oa(zj). This atom is matched to an assertion Oa(t) ∈ A0 in
which, by Condition 4, t is a named individual. Hence, s ≈ t satisfies Condition 2.

If s ≈ t is derived by instantiating yi ≈ yj in a simple HT-rule r, the body of r

contains atoms R(x, yi) and S(x, yj) that are matched to assertions R(u, s) ∈ A0

and S(u, t) ∈ A0 where R and S are T -roles, and each individual in {s, t} is from
the same cluster as u, or a tree successor of u, or a root individual. Clearly, s ≈ t

satisfies Condition 2.

If R(s, t) is derived by instantiating R(x, x), then s = t; since s is from the same
cluster as s, the assertion satisfies Condition 1.

If R(s, t) is derived by instantiating R(x, yi) in a simple HT-rule r, the body of r

contains an atom S(x, yi) that is matched to assertion S(s, t) ∈ A0, which satisfies
Condition 1. Clearly, R(s, t) then satisfies Condition 1 as well.

If R(s, t) is derived by instantiating R(x, zj) in a simple HT-rule r, the body of r

contains an atom Oa(zj) that is matched to an assertion Oa(t) ∈ A0. By Condition
4, t is a root individual, so R(s, t) satisfies Condition 1.

(≈-rule) Consider the types of equality assertions in A0 to which the ≈-rule can
be applied.

For u1 ≈ u2 where u1 and u2 are from the same cluster, the ≈-rule prunes one
individual—call it s—and replaces it with another individual from the same cluster.
Clearly, the resulting assertions satisfy Conditions 1 and 2. Furthermore, individual
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s occurs in the ABox after pruning only in assertions involving predecessors of s or
individuals from the same cluster as s, so A1 satisfies Conditions 3–5 as well.

For u1 ≈ u2.τi with u1 and u2 from the same cluster, the ≈-rule prunes u2.τi and
replaces it with u1. Thus, assertions of the form R(u2, u2.τi), R(u2.τi, a), a ≈ u2.τi,
u3 ≈ u2.τi with u2 and u3 from the same cluster, and u2.τi ≈ u2.τj are changed
into assertions R(u2, u1), R(u1, a), a ≈ u1, u3 ≈ u1, and u1 ≈ u2.τj , respectively, all
of which satisfy Conditions 1 and 2. Furthermore, pruning removes all individuals
from the cluster of u2.τi, so A1 satisfies Conditions 3–5 as well.

For a ≈ u, the ≈-rule prunes u and merges it into a. Thus, assertions of the form
R(v, u) and v ≈ u are changed into assertions R(v, a) and v ≈ a, respectively, all
of which satisfy Conditions 1 and 2. Replacing u with a in G(u1, . . . , un) where
ui = u produces at first an assertion that does not satisfy Condition 3; however,
graph cleanup then replaces each uj with a graph individual from the same cluster
as a. Since A0 satisfies the second part of Condition 3, graph cleanup replaces all
individuals from the cluster of u with graph individuals from the same cluster as
a, so the resulting ABox satisfies Conditions 1–5.

Theorem 1 summarizes the properties of our algorithm.

Theorem 1. The following properties hold for each set of rules R, GBox G, and
ABox A such that (R,G,A) is weakly admissible, simple, and acyclic:

(1) if (R,G,A) is satisfiable, then each derivation for (R,G,A) is successful;

(2) (R,G,A) is satisfiable if a successful derivation for (R,G,A) exists; and

(3) each derivation for (R,G,A) is finite.

Proof of Claim 1. The claim follows from the following property: if (R,G,A) is
satisfiable and 〈A1, . . . ,An〉 is the result of applying a derivation rule to R, G, and
A, then (R,G,Ai) is satisfiable for some 1 ≤ i ≤ n (and, consequently, Ai is clash-
free). The proof is the same as in [32, Lemma 13] for all but the ≈-rule, in which
the application of graph cleanup is nonstandard. Let I be a model of (R,G,A) and
consider an application of the ≈-rule to s ≈ t ∈ A, producing an ABox A1. Let A′

be the ABox obtained from A by pruning s and then replacing it with t. Since
I |= s ≈ t, we have sI = tI , so clearly I |= A′. The ABox A1 is obtained from A′

by graph cleanup, which can additionally replace some individuals ui with vi. If vi

is fresh, we can extend I to obtain a model of A1; otherwise, by the definition of
graph cleanup, A′ contains graph assertions G(. . . , ui, . . .) and G(. . . , vi, . . .) so, by
the key property from Definition 10, we have uI

j = vI
j for each j. Clearly, (R,G,A1)

is satisfied in I.

Proof of Claim 2. Let A′ be a clash-free ABox labeling a leaf of a successful deriva-
tion for (R,G,A). To prove the claim, we next show how to construct a model of
(R,G,A). To do this, we first introduce several definitions.

A path is a finite nonempty sequence of pairs of individuals p = [x0

x′
0

, . . . , xn

x′
n
].

Let tail(p) = xn and tail′(p) = x′
n. Furthermore, let q = [p | xn+1

x′
n+1

] denote the path
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[x0

x′
0

, . . . , xn

x′
n
, xn+1

x′
n+1

]; we say that q is a successor of p, and p is a predecessor of q. The

set of all paths P(A′) is defined inductively as follows:

• [a
a
] ∈ P(A′) if a is a root individual and it occurs in A′;

• [p | s′

s′
] ∈ P(A′) if p ∈ P(A′) and s′ is a successor of tail(p), s′ occurs in an assertion

of A′, and s′ is not blocked in A′; and

• [p | s
s′

] ∈ P(A′) if p ∈ P(A′) and s′ is a successor of tail(p), s′ occurs in an assertion
of A′, and s′ is directly blocked in A′ by s.

Paths p, q ∈ P(A′) are from the same cluster, written p ∼ q, if

• p = q, or

• p = [a
a
] and q = [ b

b
] for a and b root individuals, or

• individuals tail(p) and tail(q) are from the same cluster and either p and q are
successors of the same path or one path is a successor of the other path.

We now define an interpretation I as follows, for each atomic concept A, each
T -role R, each P-role U , and each description graph G: 8

△I = P(A′)

aI = [a
a
] for each root individual a that occurs in A′

aI = bI if a 6= b and ‖a‖A′ = b

AI = {p | A(tail(p)) ∈ A′}

RI = {〈p, [a
a
]〉 | a is a root individual, p 6∼ [a

a
], and R(tail(p), a) ∈ A′} ∪

{〈p1, p2〉 | p1 ∼ p2 and R(tail(p1), tail(p2)) ∈ A′} ∪
{〈p, [p | s

s′
]〉 | p 6∼ [p | s

s′
] and R(tail(p), s′) ∈ A′}

U I = {〈p1, p2〉 | p1 ∼ p2 and U(tail(p1), tail(p2)) ∈ A′}

GI = {〈p1, . . . , pℓ〉 | pi ∼ pj for 1 ≤ i < j ≤ ℓ and G(tail(p1), . . . , tail(pℓ)) ∈ A′}

A′ is an HT-ABox, so △I is not empty. To prove I |= (R,G,A), we first show
that, for each ps = [qs |

s
s′

] and each individual w, the following claims hold (*):

• R(s, s) ∈ A′ (resp. A(s) ∈ A′) iff 〈ps, ps〉 ∈ RI (resp. ps ∈ AI): Immediate by the
definition of I.

• If B(w) ∈ A′ and LA′(w) = LA′(s′) for B a literal concept, then ps ∈ BI : The
proof is immediate if B is atomic. If B = ¬A, since the ⊥-rule is not applicable
to A′, we have A(w) 6∈ A′; but then, A(s′) 6∈ A′ and A(s) 6∈ A′, which by the
previous case implies ps 6∈ AI .

• If ≥ n R.B(s) ∈ A′, then ps ∈ (≥ n R.B)I: By the definition of paths, s is not
blocked. Since the ≥-rule is not applicable to ≥ n R.B(s), individuals u1, . . . , un

exist such that R(s, ui) ∈ A′ and B(ui) ∈ A′ for each 1 ≤ i ≤ n, and ui 6≈ uj ∈ A′

for each 1 ≤ i < j ≤ n. Each assertion R(s, ui) satisfies Property (1) of HT-
ABoxes, so each ui can be of one of the following forms.

8 The function ‖ · ‖A′ has been introduced in Definition 2.
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· ui is from the same cluster as s. If s is a tree individual, let pui
= [ps |

ui

ui
]; oth-

erwise, let pui
= [qs |

ui

ui
]. By the definition of I and the facts that R(s, ui) ∈ A′

and B(ui) ∈ A′, we conclude 〈ps, pui
〉 ∈ RI and pui

∈ BI .

· ui is a successor of s, but ui and s are not from the same cluster. If ui is directly
blocked by vi, let pui

= [ps |
vi

ui
]; otherwise, let pui

= [ps |
ui

ui
]. In either case, we

have R(tail(ps), ui) ∈ A′, which, by the definition of I, implies 〈ps, pui
〉 ∈ RI .

Furthermore, B(ui) ∈ A′ and LA′(ui) = LA′(tail(pui
)) imply pui

∈ BI .

· ui is a root individual. Let pui
= [ui

ui
]. We have R(s, ui) ∈ A′ and B(ui) ∈ A′,

which imply 〈ps, pui
〉 ∈ RI and pui

∈ BI .

Consider now each 1 ≤ i < j ≤ n. In all cases, we have tail′(pui
) 6≈ tail′(puj

) ∈ A′.
Since ⊥ 6∈ A′ and the ⊥-rule is not applicable, we also have tail′(pui

) 6= tail′(puj
),

which implies pui
6= puj

. Thus, we conclude that ps ∈ (≥ n R.B)I .

For an assertion α′ ∈ A′ of the form a ≈ b and a 6≈ b with a and b named indi-
viduals, it is straightforward to see that I |= α′. Furthermore, if α′ is of the form
R(a, b) or B(a), or ≥ n R.B(a) with a a named individual, (*) implies I |= α′. Con-
sider now each α ∈ A. If α 6∈ A′, then A′ contains renamings that, when applied to
α, produce an assertion α′ ∈ A′; but then, I |= α by the definition of I.

We next show that I |= R. Consider a simple HT-rule r ∈ RT with variables x,
yi, and zj as in Definition 3, and a mapping µ of the variables to △I such that
I, µ |= Bm for each body atom Bm of r. Let σ be a mapping of the variables in r

to individuals in A′ defined as follows:

• σ(x) = tail(µ(x));

• σ(yi) = tail′(µ(yi)) if µ(yi) is a successor of µ(x), but µ(yi) 6∼ µ(x);

• σ(yi) = tail(µ(yi)) in all cases not covered by the previous one; and

• σ(zj) = tail(µ(zj)).

Atom Bm can be of the form A(x), A(yi), A(zj), R(x, x), or R(x, yi), for R a T -
role. By the definition of paths, σ(x) is not blocked. Furthermore, if µ(yi) is a
successor of µ(x), then σ(yi) is a successor of σ(x); otherwise, σ(yi) is either from
the same cluster as σ(x) or it is a named individual. Finally, by the definition of I,
we have σ(Bm) ∈ A′. Each variable zj occurs in r in an atom of the form Oa(zj);
by Condition 4 of Lemma 1 and the definition of I, all paths in OI

a are of the form
[ b
b
] for b a named individual, so µ(zj) is of that form as well. The Hyp-rule is not

applicable to r, A′, and σ, so σ(Hn) ∈ A′ for some head atom Hn of r. We have
the following possibilities for the structure of Hn.

• Assume that Hn is of the form C(x) for C a literal concept or a concept of
the form ≥ n S.B; thus, we have C(σ(x)) ∈ A′. By (*), we then have µ(x) ∈ CI .
Thus, I, µ |= r.

• Assume that Hn is of the form R(x, x); thus, we have R(σ(x), σ(x)) ∈ A′. By (*),
we then have 〈µ(x), µ(x)〉 ∈ RI . Thus, I, µ |= r.

• Assume that Hn is of the form B(yi); thus, we have B(σ(yi)) ∈ A′. By the def-
inition of blocking, we have LA′(σ(yi)) = LA′(tail(µ(yi))); by (*), we then have
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pyi
∈ EI

i . Thus, I, µ |= r.

• Assume that Hn is of the form S(x, yi), so S(σ(x), σ(yi)) ∈ A′. By the definition
of I, we have 〈px, pyi

〉 ∈ SI
i . Thus, I, µ |= r.

• The case when Hn is of the form S(x, zj) is analogous to the previous one.

• Assume that Hn is of the form x ≈ zj ; thus, we have σ(x) ≈ σ(zj) ∈ A. Since
the ≈-rule is not applicable to A′, we have σ(x) = σ(zj). Since σ(x) is a named
individual, it cannot block other individuals, so tail′(µ(x)) = σ(x), which implies
µ(x) = µ(zj). Thus, I, µ |= r.

• Assume that Hn is of the form yi ≈ yj; thus, we have σ(yi) ≈ σ(yj) ∈ A′. Since
the ≈-rule is not applicable to A′, we have σ(yi) = σ(yj). By Definition 3, the
antecedent of r contains atoms R(x, yi) and R(x, yj); therefore, 〈µ(x), µ(yi)〉 ∈ RI

and 〈µ(x), µ(yj)〉 ∈ RI . By Condition 1 of Lemma 1 and the definition of I, path
µ(yi) can be either of the form [a

a
] for a a root individual, a successor of µ(x),

or from the same cluster as µ(x); similar restrictions hold for µ(yj). But then,
σ(yi) = σ(yj) implies µ(yi) = µ(yj). Thus, I, µ |= r.

Consider a rule r ∈ RP containing variables x1, . . . , xn and µ a mapping of these
variables to △I such that I, µ |= Bm for each body atom Bm of r. Since r is con-
nected and each nonunary atom Bm involves either a P-role or a description graph,
Condition 3 of Lemma 1 and the definition of I imply that all paths µ(xi) are
from the same cluster. Let σ be a mapping of the variables in r to individuals
in A′ defined as σ(xi) = tail(µ(xi)) for 1 ≤ i ≤ n. By the definition of I, we have
σ(Bm) ∈ A′ for each body atom Bm. Since the Hyp-rule is not applicable to r, A′,
and σ, then σ(Hn) ∈ A′ for some head atom Hn. But then, by the definition of I,
we have I, µ |= Hn.

The proof that I |= G is completely analogous to the one in the previous para-
graph and we omit it for the sake of brevity.

Proof of Claim 3. We show that each derivation (T, ρ) for R, G, and A satisfies the
following properties: (1) if a derivation rule is applied to a subset of ρ(g) for some
derivation node g ∈ T , then the same derivation rule cannot become applicable
to the same assertions in ρ(g′) for some descendant node g′ of g; (2) an integer
℘ depending only on R, G, and A exists such that, for each ρ(g) and each tree
individual s in ρ(g), the number of tree ancestors of s is at most ℘; (3) for each
ρ(g) and each tree individual s in it, the number of graph successors of s is bounded;
(4) on each derivation path, the number of graph individuals introduced by graph
cleanup is bounded; and (5) the number of root graph individuals in each ρ(g)
is bounded. Together, all these items imply that (6) the number of individuals
introduced on each derivation path is bounded. Items (1) and (6) imply that the
number of applications of all derivation rules on each derivation path is bounded
as well, which implies the claim of this lemma.

(1) This item holds in exactly the same way as in the case of the standard
hypertableau algorithm [32, Lemma 15]: if a derivation rule is applied to a subset
of assertions of ρ(g) for some derivation node g ∈ T , then assertions are added to
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ρ(g) that prevent a reapplication of the same derivation rule to the same assertions
in ρ(g′) for some descendant node g′ of g. We omit the details for the sake of brevity.

(2) Let c be the number of atomic concepts occurring in (R,G,A), and let depth
of a tree individual s, written dep(s), be the number of its tree ancestors. For each
g ∈ T , the ancestors of each tree individual in ρ(g) are present in ρ(g) by Condition
5 of Lemma 1. Thus, if a tree individual s has depth ℘ = 2c + 1, two ancestors with
the same individual label exist in ρ(g), so s is blocked in ρ(g). The ≥-rule is not
applicable to blocked individuals, so the ≥-rule is never applied to such s. Thus,
for each tree individual s in ρ(g), we have dep(s) ≤ ℘.

(3) To prove this item, we first show a useful property. Let ≺ be an order on the
description graphs in G that satisfies the conditions of Definition 11. Furthermore,
let us assume that the hypertableau algorithm is modified such that each individual
s in A′ is assigned a label ω(s), which is a (possibly empty) string of the form

G1|
v1→ v′

1 . . . . .Gn|
vn→ v′n(35)

where n ≥ 0, Gi is a description graph, and vi and v′
i are vertices in Gi. Individuals

are labeled according to the following rules:

• For s a tree or named individual, or a fresh graph individual introduced by graph
cleanup, ω(s) is the empty string.

• If an application of the G∃-rule to an assertion A(s) introduces a graph assertion
G(t1, . . . , tℓ) with s = ti for some 1 ≤ i ≤ ℓ, then ω(tj) = ω(s).G|i→ j for each
1 ≤ j ≤ ℓ and j 6= i.

By induction on the applications of the derivation rules, we show that the fol-
lowing properties (†) hold for each clash-free ABox A′ labeling a node of (T, ρ):

(i) For each graph individual s in A′ with ω(s) of the form (35),

(a) A′ contains an assertion Gn(u1, . . . , uℓn
) such that s = uv′n

;

(b) G1 ≺ . . . ≺ Gn−1; and

(c) if Gn−1 6≺ Gn, then A′ contains (not necessarily distinct) graph assertions
Gn(w1, . . . , wℓn

) and Gn(w′
1, . . . , w

′
ℓn

) such that wi = w′
j for some i 6= j.

(ii) For each individual s in A′ such that ⌊s⌋ is a tree individual, A′ does not con-
tain an individual t from the same cluster as s such that s 6= t and ω(s) = ω(t).

Property (†) clearly holds for the input ABox A, so let A′ be an ABox satisfying
(†) and consider all possible derivation rules.

The Hyp-, ⊥-, G≈-, G⊥-, GL-, G⊳-, and G↔-rule do not introduce fresh individ-
uals and do not remove assertions from an ABox, so they cannot invalidate (†).
Furthermore, the ≥-rule introduces tree individuals ti where ω(ti) is the empty
string, so the resulting ABox clearly satisfies (†).

Assume that the ≈-rule is applied to an assertion s ≈ t ∈ A′ and that the indi-
vidual s is merged into t. By Lemma 1, pruning always removes either all or no
graph individuals from some cluster; therefore, the ABox after merging, but before
possible graph cleanup, clearly satisfies Condition (i-c) and (ii). Furthermore, if
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merging requires graph cleanup, then freshly introduced graph individuals clearly
satisfy Conditions (i) and (ii).

Consider an application of the G∃-rule to an assertion A(s) ∈ A′ and an ℓ′-ary
description graph G′ = (V ′, E ′, λ′, M ′) with A ∈ M ′. Assume that s is labeled as
follows, for Gn = (Vn, En, λn, Mn):

ω(s) = G1|
v1→ v′

1 . . . . .Gn|
vn→ v′n

By the induction assumption, ω(s) satisfies Conditions (i) and (ii). Moreover, by
the rule precedence, the G⊥-, GL-, and G⊳-, and ⊥-rule are not applicable to A′.

The G⊥-rule is not applicable, so A′ does not contain assertions Gn(w1, . . . , wℓn
)

and Gn(w′
1, . . . , w

′
ℓn

) such that wi = w′
j for some i 6= j. Since ω(s) satisfies Condition

(i-a), we conclude that Gn−1 ≺ Gn. Furthermore, since ω(s) satisfies Condition (i-
b), we have that Gi ≺ Gi+1 for each 1 ≤ i ≤ n − 1.

By Condition (i-a), A′ contains an assertion Gn(u1, . . . , uℓn
) such that s = uv′n

.
Since the GL-rule is not applicable, B(s) ∈ A′ for each B ∈ λn〈v

′
n〉. Since G is

acyclic, by Definition 11 the following properties (‡) hold for each description graph
G′′ in G such that Gn 6� G′′ and each main concept C of G′′:

• If G′′ 6⊳∗ Gn, or if G′′ ⊳∗ Gn and v′
n is not a vertex of G′′, then ¬C(s) ∈ A′.

• If G′′ ⊳∗ Gn and v′
n is a vertex of G′′, since the G⊳-rule is not applicable, A′

contains an assertion G′′(q1, . . . , qℓ′′) such that qv′n
= s.

Let G′(t1, . . . , tℓ′) be a graph assertion introduced by the G∃-rule such that tv = s,
and consider each fresh graph individual ti, labeled as follows:

ω(ti) = G1|
v1→ v′

1 . . . . .Gn|
vn→ v′n .G′|v→ i

We next show that ω(ti) satisfies Conditions (i) and (ii). Condition (i-a) is obvi-
ously satisfied, and we have already established that Condition (i-b) is satisfied by
the induction assumption on ω(s). To show that ω(t) satisfies Condition (i-c), we
consider all possible relationships between Gn and G′.

• Gn ≺ G′: Condition (i-c) is vacuously satisfied.

• Gn = G′: Precondition 3 of the G∃-rule ensures that v 6= v′
n, so graph assertions

G′(t1, . . . , tℓ′) and Gn(u1, . . . , uℓn
) satisfy Condition (i-c).

• Gn 6� G′: Consider the relationship between Gn and G′ in ⊳∗.

· G′ 6⊳∗ Gn, or G′ ⊳∗ Gn and v is not a vertex of Gn: By case 1 of (‡), we have that
¬A(s) ∈ A′; since the ⊥-rule is not applicable to A′, we have ⊥ ∈ A′, which is
a contradiction.

· G′ ⊳∗ Gn and v is not a vertex of Gn: By case 2 of (‡), then A′ contains an
assertion G′(q1, . . . , qℓ′′) such that qv = s; but then the G∃-rule is not applicable
to A′ by precondition 3, which is a contradiction.

Finally, to have ω(ti) = ω(q) for some individual q from the cluster of ti, the G∃-rule
must be applied to the same assertion for the same graph twice. By (1), this is not
possible; hence, ω(ti) satisfies (ii). This completes the proof of (†).
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We next use (†) to show (3). Let g be the number of graphs and a the maximum
arity of a graph in G. The ordering ≺ is acyclic, so n ≤ g + 1 in each label of the
form (35). Each label can thus be understood as a tuple of g + 1 triples (G, v, v′)
where G is a description graph or is empty, and v and v′ are integers between 1
and a. There are most ((g + 1) · a · a)g+1 different such labels, and this number is
bounded by ϑ = 2(2a+1)·(g+1)2 . But then, by (ii), the number of graph individuals in
a cluster of a tree individual in A′ is bounded by ϑ as well, which implies Item (3).

(4) Consider any graph or tree individual s in an ABox A′ labeling a derivation
node. Let t1, . . . , tn be a sequence of tree individuals such that t1 is a successor
of a root individual, tn = ⌊s⌋, and each tk is the closest tree predecessor of tk+1.
Furthermore, let χs = S1, . . . , Sn be a sequence where each Sk is the maximal subset
of A′ in which all individuals are from the cluster of tk. In the worst case, s can be
merged into a named individual a, and an individual from each Sk can be merged
into Sk+1. By the first condition of the definition of graph cleanup, however, fresh
graph individuals can be introduced at most once for each χs unique up to the
renaming of individuals. By Item (2), n ≤ ℘, and, by Item (3), the size of each Si

is bounded; therefore, the number of sequences χs unique up to the renaming of
individuals is also bounded. Consequently, the number of fresh graph individuals
introduced in graph cleanup is bounded as well.

(5) Item (4), property (†), and the fact that ≺ is acyclic imply that the number
of fresh root graph individuals introduced by the G∃-rule is bounded. The proof is
analogous to the proof of Item (3) and is omitted for the sake of brevity.

(6) By (4) and (5), the total number of root individuals in an ABox is bounded.
Furthermore, by (1), (2), and (3), the number of their descendants is bounded as
well. Therefore, by (1), the total number of applications of derivation rules on each
derivation path is bounded as well.

Since preprocessing of the TBox does not affect satisfiability of a graph-extended
knowledge base, we immediately have the following theorem.

Theorem 2. Checking the satisfiability of a weakly separated acyclic graph-extended
knowledge base K = (T ,P,G,A) where T is in SHOQ+ is decidable.

We now consider the case when K = (T ,P,G,A) is a weakly separated acyclic
graph-extended knowledge base with T in SHOIQ+. The TBox T is preprocessed
as usual, so let R = ΞT (T ) ∪ P and A′ = A∪ ΞA(A); then, (R,G,A′) is weakly
admissible and acyclic, but not simple. By Proposition 3, checking the satisfiability
of (R,G,A′) is undecidable; consequently, the hypertableau algorithm does not
necessarily terminate. Consider again Figure 7. If R is not simple (i.e., if T contains
inverse roles), then v can be merged into s. Individual v, however, does not need to
occur in an assertion involving a main concept of some graph from the cluster of u.
Thus, the algorithm does not necessarily derive a contradiction if a graph from the
cluster of u is not subordinate to all graphs in the cluster of s. Hence, even though
G is acyclic, clusters can be of arbitrary size which leads to nontermination.
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Our algorithm, however, can be used as a semidecision procedure. This is a non-
trivial and practically interesting consequence since the algorithm uses blocking.
Assume that the T -rules in R have been obtained from a cyclic TBox, and that
(R,G,A′) is satisfiable. Blocking “increases the chances” for termination; in fact,
provided that G is acyclic, our algorithm will necessarily terminate unless it per-
forms one particular type of inference. Our algorithm is a semidecision procedure
even if G is not acyclic, but then it is unlikely to terminate on satisfiable (R,G,A′).

Since the rules in RT are not simple, pairwise blocking must be used, and the
NI -rule can become applicable. Furthermore, as usual in the case of semidecision
procedures, derivations must be fair ; intuitively, this means that no application of
an inference rule should be “postponed” infinitely often.

Definition 16 (Fair Derivation). A derivation (T, ρ) for R, G, and A is unfair if
a branch t1, t2, . . . of T exists such that, for infinitely many nodes ti1 , ti2, . . . on that
branch, the same derivation rule is applicable to the same assertions in each ρ(tij ).
Fair is the opposite of unfair.

The correctness proofs for the standard hypertableau algorithm for SHOIQ+

[32] are quite involved and lengthy, and so is their generalization to graph-extended
knowledge bases. To keep this paper within reasonable length, we only sketch the
proofs of our claims. The full proofs can be obtained by a rather straightforward
combination of the proofs of Lemma 1 and Theorem 1 and the proofs from [32].

We first generalize Lemma 1 to take into account the assertions that can be
derived when R is not simple.

Lemma 2. Let R be a set of rules, G a GBox, and A an ABox such that (R,G,A) is
weakly admissible. Then, each ABox A′ labeling a node of a derivation for (R,G,A)
satisfies Conditions (3)–(5) of Lemma 1, as well as the following conditions, for a

and b root individuals, u(i) individuals, γi, γj ∈ Σγ, and τi, τj ∈ Στ .

(1) Each R(s, t) ∈ A′ where R is a T -role has the form R(u, u.τi), R(u.τi, u),
R(u, a), R(a, u), or R(u1, u2) with u1 and u2 from the same cluster.

(2) Each equality in A′ either is of the form s ≈ t @a
≤n R.B with s a tree individual

that is not a successor of a and t a tree individual, or it is a possibly annotated
equality of the form a ≈ u, u1 ≈ u2, u1 ≈ u2.τi, u ≈ u.τi.γj, u.τi ≈ u.τj, or
u ≈ u.τi.τj, where u1 and u2 are individuals from the same cluster.

Proof (Sketch). The proof is a straightforward combination of the proofs of Lemma
1 and [32, Lemma 12]. The main difference is in the application of the ≈-rule to
and equality of the form u ≈ u.τi.γj, which prunes u.τi.γj and merges it into u. The
cluster of u.τi.γj is not necessarily pruned as well; however, graph cleanup ensures
that all individuals from the cluster of u.τi.γj are replaced with individuals from
the cluster of u.

Theorem 3. The following properties hold for each set of rules R, a GBox G, and
an ABox A such that (R,G,A) is weakly admissible:
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(1) if (R,G,A) is satisfiable, then each derivation for (R,G,A) is successful; and

(2) (R,G,A) is satisfiable if a successful and fair derivation for (R,G,A) exists.

Proof (Sketch). The proof of Claim 1 is the same as in Theorem 1, apart from
the case for the NI -rule which is the same as in [32, Lemma 13]. For Claim 2, let
(T, ρ) be a successful fair derivation for (R,G,A). The main difference to the proof
of Claim 2 of Theorem 1 is that (T, ρ) is not necessarily finite. Let t1, t2, . . . be
the branch of T such that each ρ(ti) is clash-free, and let A′ =

⋃

i

⋂

j≥i ρ(tj). Since
(T, ρ) is fair, no derivation rule is applicable to A′. We can construct the model
of (R,G,A) in the same way as in Theorem 1, with the following difference in the
treatment of T -roles:

RI = {〈[a
a
], p〉 | a is a root individual, p 6∼ [a

a
], and R(a, tail(p)) ∈ A′} ∪

{〈p, [a
a
]〉 | a is a root individual, p 6∼ [a

a
], and R(tail(p), a) ∈ A′} ∪

{〈p1, p2〉 | p1 ∼ p2 and R(tail(p1), tail(p2)) ∈ A′} ∪
{〈p, [p | s

s′
]〉 | p 6∼ [p | s

s′
] and R(tail(p), s′) ∈ A′} ∪

{〈[p | s
s′

], p〉 | p 6∼ [p | s
s′

] and R(s′, tail(p)) ∈ A′}

The proof that I is a model of (R,G,A) is a straightforward combination of the
proof of Claim 2 of Theorem 1 and [32, Lemma 14].

Termination is lost because the application of the ≈-rule to assertions of the form
u ≈ u.τi.γj invalidates Condition (ii) of (†) in the proof of Claim 3 of Theorem 1.
The results in Section 6.3, however, show that the algorithm terminates if such an
inference is not performed. A practical implementation can detect such inferences
and warn the user about the loss of termination guarantees.

6.3 Strongly Separated Knowledge Bases

For K = (T ,P,G,A) where T is in SHOIQ+, termination can be regained if K
is strongly separated and acyclic. Then, for R = ΞT (T ) ∪ P and A′ = A∪ ΞA(A),
triple (R,G,A′) is strongly admissible and acyclic, as defined next.

Definition 17 (Strong Separation). A role separation scheme (NRT
, NRP

, NRG
)

is strong if NRT
∩ NRP

= ∅ and NRG
= NRP

. A graph-extended knowledge base
K = (T ,P,G,A) is strongly separated if a strong role separation scheme Λ ex-
ists such that K is Λ-separated. Similarly, a triple (R,G,A) is strongly admissible
if a strong role separation scheme Λ exists such that (R,G,A) is Λ-admissible.

Strong separation restricts the modeling style in a more significant way than
weak separation: essentially, it requires the modeler to determine in advance which
knowledge will be modeled using DLs and which using graphs. Thus, knowledge
modeled using DLs cannot be specialized using graphs and vice versa.

To understand why strong separation ensures decidability of reasoning, consider
again Figure 7. The tree backbone then contains only T -roles, and the clusters
contain only P-roles (i.e., G-roles). Thus, the T -rules from R can be applied only
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to the tree backbone, while the P-rules can be applied only to the graphs in a single
cluster. Therefore, even if R is not simple, no rule in T can derive an equality that
equates s with v and thus merges two distinct clusters.

Theorem 4. Let R be a set of rules, G a GBox, and A an ABox such that (R,G,A)
is strongly admissible and acyclic. Then, each derivation for (R,G,A) is finite.

Proof (Sketch). Since (R,G,A) is strongly admissible, the rules in R can be sepa-
rated into sets RT and RP of T -rules and P-rules, respectively, that do not share
roles. By a straightforward modification to the proof of Lemma 2 one can see that,
due to strong role separation, role assertions of the form R(u1, u2), where R is a
T -role and u1 and u2 are from the same cluster are always of form R(u, u) for u

a tree individual. This can be used to strengthen Lemma 2 and show that each
ABox A′ labeling a node in a derivation for (R,G,A) contains equalities of the
form a ≈ u, u1 ≈ u2, u ≈ u.τi, u.τi ≈ u.τj , or u ≈ u.τi.τj—that is, equalities of the
form u ≈ u.τi.γj are never derived. 9 As we show next, this can be used to show
that the number of individuals introduced on a derivation path is bounded.

Assume that the ≈-rule is applied to u ≈ u.τi, u.τi ≈ u.τj, or u ≈ u.τi.τj . Just like
in the proof of Claim 3 of Theorem 1, the merged individual is a tree individual, so
its entire cluster is pruned and the resulting ABox satisfies (†); consequently, the
number of individuals in the cluster of a tree individual is bounded by ϑ.

If the ≈-rule is applied to a ≈ u, then the resulting ABox is subjected to graph
cleanup; however, the number of newly introduced individuals is bounded in exactly
the same way as in Item (4) of the proof of Claim 3 of Theorem 1.

It remains to be shown that the number of new root individuals introduced by
the NI -rule is bounded as well. Let ℘ be the maximal number of tree ancestors of an
individual occurring in A′; in [32, Lemma 15], it was shown that ℘ is exponential in
the number of atomic concepts and roles. Furthermore, in [32, Lemma 15] it was also
shown that the root individuals introduced by the NI-rule can be seen as forming
a tree with a polynomial branching factor and depth at most ℘. Since the number
of graph individuals in each cluster is bounded, the addition of description graphs
does not change the essence of this argument: the root individuals introduced by
the NI-rule can be seen as forming a tree of clusters, where the size of each cluster
is at most ϑ and the depth of the tree is at most ℘. Thus, the number of root
individuals is bounded, which implies the claim of this theorem.

Theorem 5. Checking the satisfiability of a strongly separated acyclic graph-exten-
ded knowledge base K = (T ,P,G,A) where T is in SHOIQ+ is decidable.

9 Due to strong admissibility, equalities of the form u1 ≈ u2.τi from Lemma 2 become
u ≈ u.τi; however, this is not relevant to this termination proof.
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7 Complexity of Reasoning

We now determine the exact complexity bounds of checking the satisfiability of a
graph-extended knowledge base K = (T ,P,G,A). In Section 7.1, we show that the
problem is NExpTime-hard even if T = ∅. Then, in Section 7.2, we show that the
problem is in NExpTime if K is acyclic and weakly separated with T in SHOQ+,
or if K is acyclic and strongly separated with T in SHIQ+. The case when K is
strongly separated and acyclic and T is in SHOIQ+ is left for our future work.

7.1 Lower Bound

A graph-extended knowledge base K contains a set P or disjunctive datalog rules,
and checking the satisfiability of P is NExpTime-complete [11] (under standard
first-order semantics), so one might intuitively expect this result to provide a lower
bound for the complexity of checking the satisfiability of K. To understand why this
is not the case, consider the following intuitive explanation of the result from [11].
The satisfiability of P alone can be decided by the following three-step process:

(1) Compute the grounding Pg of P—that is, replace in P all variables in the rules
with all individuals in all possible ways.

(2) Nondeterministically guess an interpretation I for Pg.

(3) Check whether I is a model of Pg.

Without restricting P in any way, the first and the third step can be implemented
in exponential time, but the second step requires nondeterministic exponential time;
thus, the overall complexity of this procedure is NExpTime. If, however, the arity
of the predicates occurring in P is bounded, then the number of ground atoms in Pg

is polynomial in |P|, so all interpretations I can be enumerated by an exponential
algorithm. Similarly, if the number of variables in P is bounded, then Pg is poly-
nomial in |P|; furthermore, in the second step we can clearly restrict our attention
to interpretations that contain only the ground atoms from Pg, so we can again
enumerate all relevant interpretations in exponential time. Thus, for the problem
to be NExpTime-hard, P must be allowed to contain predicates of arbitrary arity
as well as rules with an arbitrary number of variables.

The set of rules P of a graph-extended knowledge base K can contain rules with
an unbounded number of variables, and it can contain graph atoms with arbitrary
arity. Graph atoms, however, must satisfy the disjointness and key properties from
Definition 10; this imposes restrictions on the interpretation of graph atoms in
addition to P, so the hardness result from [11] does not apply. In fact, we show
that checking the satisfiability of K is NExpTime-hard even if the rules are allowed
to contain only unary and binary predicates and at least four variables. We thus
identify a new source of complexity of reasoning with graph-extended knowledge
bases: description graphs can succinctly encode exponential structures.

We prove hardness by a reduction from the bounded domino tiling problem
[7]. Given a domino system S = (D,H,V), an initial condition for S is an n-
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tuple I = Dα0
, . . . , Dαn−1

of tiles from D. A bounded S-tiling for I is a function
τ : N2n ×N2n → D where N2n = {0, . . . , 2n − 1}, τ(i, 0) = Dαi

for 0 ≤ i < n, and
〈τ(i, j), τ(i ⊕2n 1, j)〉 ∈ H and 〈τ(i, j), τ(i, j ⊕2n 1)〉 ∈ V where ⊕2n denotes addi-
tion modulo 2n. Given a domino system S and an initial condition I, checking
whether a bounded S-tiling for I exists is NExpTime-complete [7].

Lemma 3. Let K = (∅,P,G,A) be a graph-extended KB where G = (GG, ∅, ∅) is an
acyclic GBox and each rule in P contains only atomic concepts and roles and at
most four variables. Then, checking the satisfiability of K is NExpTime-hard.

Proof. For an arbitrary integer n, we first construct a graph-extended knowledge
base Kn

grid that implies the existence of a “cyclic” grid with 2n × 2n elements. The
ABox of Kn

grid contains a single assertion A0(a). The GBox of Kn
grid contains n

graphs Gi = (Vi, Ei, λi, Mi), 1 ≤ i ≤ n, as shown in Figure 8a, where Mi = {Ai−1}.
The knowledge base Kn

grid contains the following rules:

A0(x) ∧ R4(x, y) ∧ R1(x, z) → H(y, z)(36)

A0(x) ∧ R3(x, y) ∧ R2(x, z) → H(y, z)(37)

A0(x) ∧ R2(x, y) ∧ R1(x, z) → V (y, z)(38)

A0(x) ∧ R3(x, y) ∧ R4(x, z) → V (y, z)(39)

H(x, y) ∧ R4(x, z) ∧ R1(y, w) → H(z, w)(40)

H(x, y) ∧ R3(x, z) ∧ R2(y, w) → H(z, w)(41)

V (x, y) ∧ R2(x, z) ∧ R1(y, w) → V (z, w)(42)

V (x, y) ∧ R3(x, z) ∧ R4(y, w) → V (z, w)(43)
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We next show that Kn
grid is satisfiable and that each model I of Kn

grid contains
a structure shown in Figure 8b. The individual a corresponds to the apex of the
pyramid. Due to the assertion A0(a), the model I contains an instance of G1 such
that its vertex 5 corresponds to a. Vertices 1–4 of G1 are labeled with A1, so I

contains four instances of G2 as shown in the figure. By repeating this argument,
I can be seen as containing a pyramid consisting of n levels, where level i contains
2i · 2i vertices. Furthermore, in the first level, rules (36)–(39) ensure that vertex 4
is connected through H to vertex 1, vertex 3 is connected through H to vertex 2,
vertex 2 is connected through V to vertex 1, and vertex 3 is connected through
V to vertex 4; that is, the grid in the first level is “cyclic.” Rules (40)–(43) then
inductively use the H- and V -edges at level i − 1 to construct the missing H- and
V -edges at level i; since the grid at level i − 1 is “cyclic,” these rules construct at
level i a “cyclic” grid as well. Thus, I contains at level n a “cyclic” grid of size
2n · 2n in which all elements are labeled with An.

Consider now any domino system S = (D,H,V) with m tiles in D and any
initial condition I = Dα0

, . . . , Dαn−1
. Let KS,I be a graph-extended knowledge base

obtained by extending Kn
grid with the following rules, where each domino tile Di ∈ D

corresponds to the atomic concept Di.

A0(x) → O0(x)(44)

O0(x) ∧ R1(x, y) → O0(y)(45)

An(x) ∧ Oi−1(x) ∧ H(x, y) → Oi(y) for each 1 ≤ i < n(46)

An(x) ∧ Oi(x) → Dαi
(x) for each 1 ≤ i < n(47)

An(x) → D1(x) ∨ . . . ∨ Dm(x)(48)

Di(x) ∧ Dj(x) → ⊥ for each 1 ≤ i < j ≤ m(49)

Di(x) ∧ H(x, y) ∧ Dj(y) → ⊥ for each (Di, Dj) 6∈ H(50)

Di(x) ∧ V (x, y) ∧ Dj(y) → ⊥ for each (Di, Dj) 6∈ V(51)

Let I be a model of KS,I. By rules (44)–(45), the apex of the pyramid and each
vertex that is reachable from the apex by an R1-chain is labeled with O0. Rule (46)
ensure that the “first” n vertices in the n-th level of the pyramid are labeled with
O0, . . . , On−1. Rules (47) label these vertices with the appropriate tiles from the
initial condition. Finally, rules (48)–(51) ensure that each element at the n-th level
of the grid is labeled with exactly one tile according to the compatibility conditions
of S. Therefore, KS,I is satisfiable if and only if a bounded S-tiling for I exists,
which proves our claim.

Note that rule (48) contains a disjunction. Without disjunctions in the rules and
description graphs (i.e., if for each graph G in the GBox of K we have that | VA |≤ 1
for each main concept A of G), reasoning with G and P becomes deterministic and
the complexity drops to ExpTime: the description graphs in G then encode a
structure that can be computed deterministically in exponential time by unfolding
G, and the rules in P can be applied to this structure in exponential time as well.
Axioms of the form (48), however, are available even in the basic description logic

47



ALC, so the proof of Lemma 7.1 shows that reasoning with graph-extended KBs is
NExpTime-hard even for basic DLs.

7.2 Upper Bounds

The hypertableau procedure from Section 6 is not worst-case optimal even with-
out description graphs and rules, and with T in ALC [32, Section 5.3]. This is
because an ABox A′ labeling a derivation node for a set of HT-rules R = ΞT (T )
and an ABox ΞA(T ) ∪ A can at any given point in time contain at most expo-
nentially many nonblocked and directly blocked tree individuals; however, A′ can
contain a doubly exponential number of indirectly blocked individuals. The com-
plexity of the hypertableau procedure can be reduced to NExpTime if we ensure
that the label of each individual s is fully determined in A′ before applying the
≥-rule to an assertion containing s: the rule application strategy then ensures that
s cannot subsequently become blocked, so A′ never contains indirectly blocked in-
dividuals. A similar approach was used in [14] to obtain a tableau algorithm for
ALC running in NExpTime. For SHOQ+ and SHIQ+, such an algorithm is
not worst-case optimal, since these DLs are ExpTime-complete [3]. Description
graphs increase the complexity at least to NExpTime, so the “excess” complex-
ity of the modified hypertableau algorithm is not relevant: we next present two
modified hypertableau algorithms that decide the satisfiability of a graph-extended
acyclic knowledge base K = (T ,P,G,A) in NExpTime if K is acyclic and weakly
separated with T in SHOQ+, or if K is acyclic and strongly separated with T in
SHIQ+. Since they use extensive guessing to realize the idea outlined above, these
algorithms are unlikely to be practicable.

Our modified algorithms can be applied to any (R,G,A) where R is normalized
according to the following definition. This assumption is without loss of generality,
since each set of HT-rules can be normalized by replacing concepts of the form
≥ n R.B in the rules with fresh atomic concepts.

Definition 18 (Normalized Rules). A set of HT-rules R is normalized if all at-
least restriction concepts occur in R only in rules of the form (52).

A(x) → ≥ n R.B(x)(52)

We are now ready to present the algorithm for the case when T is in SHOQ+.

Theorem 6. Checking the satisfiability of a weakly separated acyclic graph-extended
knowledge base K whose TBox is in SHOQ+ is NExpTime-complete, provided that
the numbers in K are coded in unary.

Proof. Hardness is shown in Lemma 3. By the properties of preprocessing [32], K
can be transformed to an equisatisfiable triple (R,G,A) where R is normalized
and A is an input ABox. We next show that the satisfiability of (R,G,A) can be
decided by the following variant of the calculus from Section 6.
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(1) The ≥-rule is modified such that, after it is applied to an assertion ≥ n R.B(s)
in an ABox A′ and it introduces fresh tree successors t1, . . . , tn of s, it also
nondeterministically derives the following assertions for each 1 ≤ i ≤ n:

(a) ti ≈ a or ti 6≈ a for each root individual a in A′,

(b) ti ≈ u or ti 6≈ u for each individual u in A′ from the cluster of s,

(c) ti ≈ u or ti 6≈ u for each tree successor u of s in A′,

(d) ti ≈ tj or ti 6≈ tj for each i < j ≤ n, and

(e) A(ti) or ¬A(ti) for each atomic concept A occurring in (R,G,A).

(2) The G∃-rule is modified such that, after it is applied to an assertion A(s) in
an ABox A′ and it introduces fresh graph successors t1, . . . , tn of s, it also
nondeterministically derives the following assertions for each 1 ≤ i ≤ n:

(a) ti ≈ a or ti 6≈ a for each root individual a in A′,

(b) ti ≈ u or ti 6≈ u for each individual u in A′ from the cluster of ti, and

(c) A(ti) or ¬A(ti) for each atomic concept A occurring in (R,G,A).

(3) When the ≈-rule is applied to an assertion ti ≈ u derived in the previous two
cases, it merges ti into u.

(4) The rule precedence satisfies the following restrictions in addition to the ones
given in Definition 15:

(a) the ⊥-rule is applied with the highest priority,

(b) the ≈-rule is applied with the second-highest priority,

(c) the Hyp-rule is applied to an HT-rule of the form (52) with the third-
highest priority, and

(d) the ≥-rule is applied only if the G∃-rule is not applicable.

(5) The strict ordering < used in the definition of anywhere blocking follows the
creation order—that is, if an individual s is added to an ABox before an
individual t, then s < t.

The modified ≥- and G∃-rules are obviously sound, so the proof of Claim 1 of
Theorem 1 applies with minor changes. Furthermore, all assertions introduced by
the ≥- and G∃-rules are of the form as specified in Lemma 1, and the new rule
precedence is stronger than the one in Definition 15; hence, the proofs of Claims 2
and 3 of Theorem 1 apply without any change.

Let A0 be an ABox labeling a node in a derivation for (R,G,A); let A1 be an
ABox obtained from A0 by an application of the ≥- or G∃-rule that introduces
fresh individuals t1, . . . tn; and let A2 be a clash-free ABox obtained from A1 by
exhaustive applications of the rules mentioned in Items (4a)–(4c).

We now show the following property (⋆): if A2 contains ti, A3 is a clash-free
ABox obtained from A2 by applying one or more derivation rules, and the ⊥-rule
is not applicable to A3, then A3 contains ti as well and LA2

(ti) = LA3
(ti). This

follows from the following facts:
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• By Items (1a)–(1d), (2a)–(2b), and (4a)–(4b), ABox A2 contains an inequality
ti 6≈ u for each individual u from A2 that ti could potentially be merged into.
Hence, if A3 is derived by merging ti into some individual from A2, then A3

contains ⊥.

• By Item (3), if A3 is derived by an application of the ≈-rule to ti ≈ u, then u is
merged into ti, so A3 contains ti.

• By Items (1e) and (2c), ABox A2 contains either A(ti) or ¬A(ti) for each atomic
concept A. Hence, A3 is derived by adding an assertion of the form B(ti), then
A3 contains ⊥.

• By Item (4c) and the fact that R is normalized, A2 contains all assertions of the
form ≥ n R.B(ti) implied by the HT-rules of the form (52). Since no derivation
rule can introduce a concept A(ti) without introducing a clash, no HT-rule of
the form (52) can be used to derive a new assertion of the form ≥ n R.B(ti).

• By Items (1e), (2c), and (4d), the G∃-rule is applied exhaustively to individuals
in the cluster of ti before the ≥-rule can introduce a tree descendant of ⌊ti⌋.
Therefore, if a subsequent application of the ≥-rule introduces an individual
v, either ti ≈ v or ti 6≈ v will be introduced by Item (1b), which allows for an
inductive application of this argument.

We also show the following property (�): no individual in A3 is indirectly blocked.
This is because (⋆) implies that the blocking status of ti is the same in A2 and
A3, which means that no descendant of ti can become indirectly blocked by ti.

We also show the following property (♦): pruning never removes individuals from
an ABox. This is a simple consequence of the fact that, by (⋆), Items (3) and (4a)–
(4d), individual ti is either merged into an individual from A1 in the derivation of
A2, or it cannot participate in merging inference used to derive A3.

Let c be the number of atomic concepts in (R,G,A); by Item (5) and the def-
inition of single blocking, A0 can contain at most 2c nonblocked tree individuals.
As shown in the proof of Claim 2 of Theorem 1, A0 can contain the tree cluster
of each tree individual can contain at most ϑ graph individuals. Furthermore, (�)
implies that A0 can contain at most exponentially many blocked individuals.

Consider now a named individual a in A0. Since individuals are reused in graph
cleanup, merging a graph individual u into a can introduce at most ϑ individuals for
each label ω(u) of the form (35). There are at most ϑ such labels, so graph cleanup
can introduce at most ϑ2 individuals for a. In the same way as in the proof of
Item (3) of Claim 2 of Theorem 1, the G∃-rule can introduce at most ϑ individuals
for each of the ϑ2 individuals. Thus, A0 contains at most ϑr = i · ϑ3 root graph
individuals, where i is the number of named individuals in (R,G,A).

Thus, the total number of individuals itot in each clash-free ABox is at most
exponential in (R,G,A). Furthermore, each derivation rule is applied to a poly-
nomial number of individuals. Finally, by (♦), individuals are never removed from
an ABox by pruning. Thus, a derivation path for (R,G,A) can be constructed in
nondeterministic exponential time, which implies our claim.
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We now prove an analogous claim for the case when T is in SHIQ+.

Theorem 7. Checking the satisfiability of a strongly separated acyclic graph-exten-
ded knowledge base K whose TBox is in SHIQ+ is NExpTime-complete, provided
that the numbers in K are coded in unary.

Proof. Hardness is shown in Lemma 3, and the membership proof is analogous to
Theorem 6. The hypertableau algorithm from Section 6 is modified as follows:

(1) The ≥-rule is modified such that, after it is applied to an assertion ≥ n R.B(s)
in an ABox A′ and it introduces fresh tree successors t1, . . . , tn of s, it also
nondeterministically derives the following assertions for each 1 ≤ i ≤ n:

(a) ti ≈ u or ti 6≈ u if A′ contains a tree predecessor u of s,

(b) ti ≈ s or ti 6≈ s,

(c) ti ≈ u or ti 6≈ u for each tree successor u of s in A′,

(d) ti ≈ tj or ti 6≈ tj for each i < j ≤ n,

(e) A(ti) or ¬A(ti) for each atomic concept A occurring in (R,G,A), and

(f) R(s, ti) or ¬R(s, ti), as well as R(ti, s) or ¬R(ti, s), for each atomic T -role
R occurring in (R,G,A).

(2) The G∃-rule is modified such that, after it is applied to an assertion A(s) in
an ABox A′ and it introduces fresh graph successors t1, . . . , tn of s, it also
nondeterministically derives the following assertions for each 1 ≤ i ≤ n:

(a) ti ≈ u or ti 6≈ u for each individual u in A′ from the cluster of ti, and

(b) A(ti) or ¬A(ti) for each atomic concept A occurring in (R,G,A).

(3) The ⊥-rule is amended to derive ⊥ if A′ contains both R(s, t) and ¬R(s, t).

(4) Items (2)–(5) from the proof of Theorem 7 are used without change.

Although negative role assertions of the form ¬R(u, v) do not satisfy Lemma
2, they do not participate in the model construction from the proof of Theorem
3; therefore, Theorem 4 holds without any change. Furthermore, Item (1e) of the
modified calculus ensures that, for each individual s and each tree successor t of
s, labels LA(s, t) and LA(t, s) are fully determined after the application of the ≥-
rule; thus, an individual tj becomes pairwise-blocked immediately after it has been
introduced, or it never becomes blocked. The rest of the argument is analogous to
the proof of Theorem 6.

8 Implementation

We have implemented our reasoning algorithm in the hypertableau-based rea-
soner HermiT [32]. Evaluating the adequacy of our approach is rather difficult
due to lack of test data. Furthermore, remodeling existing ontologies using a new
modeling paradigm may require considerable effort. In order to both obtain test
data for our reasoner and make the adoption of our approach in practice easier,
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we have developed an algorithm that automatically transforms a TBox T1 into a
graph-extended knowledge base K. The knowledge base K, even if only a rough
approximation, can be used as a starting point for a more comprehensive remod-
eling of T1 into a proper graph-extended KB. Our experience with GALEN and
the discussions we had with the authors of GALEN led us to conclude that the
transformed KB K represents the anatomical structures in the human body in a
way that is closer to the modelers’ intention than the original DL axioms. 10

8.1 The Transformation Algorithm

Our algorithm transforms a TBox T1 into a graph-extended K = (T ,G,P,A)
such that K is strongly-separated and G contains only one description graph. It
would clearly be more useful if we could automatically transform T1 into several
smaller description graphs; however, it was unclear what kinds of heuristics to use
in order to determine the boundaries between different description graphs.

Our transformation is based on two assumptions. The first assumption is that
only some concepts and roles from T1 are relevant to G. For example, Hand is
relevant to the graph of the human body, but Fracture is not; similarly, the hasPart
role belongs to the graph, while the hasAge role does not. The second assumption is
that each relevant concept should be represented by one vertex in G, and edges in G

can be decoded from axioms of the form A ⊑ ∃R.B. In other words, we conjecture
that, by writing axioms such as (53)–(55), modelers actually wanted to say “the
index finger has a middle phalanx and a proximal phalanx as parts, and these two
phalanges are attached to each other.”

Index finger ⊑ ∃part .Middle phalanx oif(53)

Distal phalanx oif ⊑ ∃attached to.Middle phalanx oif(54)

Proximal phalanx oif ⊑ ∃part−.Index finger(55)

Our algorithm is given a DL TBox T1, a set of relevant concepts NCg
, and a

set of relevant roles NRg
. The latter set actually defines the set of G-roles, and all

other roles are T -roles. Our algorithm first normalizes T1 in a certain way. Then,
it creates a vertex i in V for each concept A ∈ NCg

and sets λ〈i〉 = {A}. Then, it
processes each axiom α ∈ T1 as follows:

• If α is of the form A ⊑ ∃R.B where {A, B} ⊆ NCg
and R ∈ NRg

, then, for i and
j vertices such that λ〈i〉 = {A} and λ〈j〉 = {B}, the algorithm adds the edge
〈i, j〉 to E and extends λ such that R ∈ λ〈i, j〉.

• If α does not contain a role in NRg
, then α is copied to T .

• If α contains only roles from NRg
and no existential quantifier, the algorithm

translates α into a graph-regular rule and adds it to P.

• If α is not of the above form, then either it involves a G-role and a T -role
simultaneously, or it is of the form A ⊑ ∃R.B but some of A, B, or R are not

10 Thanks to Alan Rector and Sebastian Brandt.
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Table 6
Information about Test Ontologies

GALEN FMA

Total number of concepts: 2748 430
Total number of roles: 413 38
Total number of GCIs: 6962 3479

GCIs discarded in the transformation: 320 328

Translated GCIs: 6642 3151
Into the description graph: 680 2966
Into rules over the graph: 155 1
Into the DL TBox 5807 184

Vertices in the description graph: 325 342
Edges in the description graph: 667 1076

relevant for the graph. Such an axiom either invalidates the syntactic restrictions
of our formalism or it does not have a natural interpretation. Human intervention
would be needed to interpret such axioms in a “reasonable” way; therefore, such
axioms are discarded by our algorithm.

Determining the sets NCg
and NRg

manually is not easy. According to our ex-
perience with GALEN and FMA, a good strategy is to manually identify a set of
roles N ′

Rg
that naturally belong to the graph, and then to take NRg

as the closure
of N ′

Rg
w.r.t. the explicit role inclusions from T1. Then, we take NCg

as the set of
all concepts A and B occurring in an axiom A ⊑ ∃R.B ∈ T1 such that R ∈ NRg

.
Intuitively, if A and B are connected by a role that should be included into the
graph, then it is likely that A and B should be included into the graph as well.

8.2 Classification Results

To evaluate our approach, we have classified the original version of GALEN and
a fragment of FMA. Next, we have transformed them into graph-extended KBs,
and classified the resulting KBs using the reasoning algorithm presented in Section
6. We now discuss the obtained results. Table 6 summarizes information about the
original and the transformed ontologies.

We performed the experiments using a standard laptop with 1 GB of RAM.
Classification of the original version of GALEN and the fragment of FMA took
129 s and 57 s, respectively; furthermore, classification of the transformed ontolo-
gies took 781 s and 6 s, respectively. The increase in classification time for GALEN
is partly due to the prototypical nature of our implementation. In the case of FMA,
classification times are substantially lower because most of the original ontology is
translated into the graph, so the generated models are much smaller. Our results
show that, even with a very prototypical implementation, complex ontologies can
be processed, which we take as indication that our approach is practically feasible.

Our transformation leads to a change in the semantics of the ontology: some
axioms are lost in the process, and the semantics of many axioms is modified.
Many parts of the resulting description graph, however, correspond with an intuitive
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description of the human body. For example, the (union of) the graphs shown in
Figures 2b–2e has been extracted from the transformed ontology.

Although some information is lost in the translation, the resulting description
graphs can be seen as being “more precise” than the original axioms, so one can
expect to obtain new entailments. For example, we discovered in GALEN a con-
cept that is satisfiable in the original ontology, but is unsatisfiable in the trans-
formed ontology; this revealed a modeling error in the original ontology. The prob-
lem occurs in the representation of the patella—a bone in a knee that is con-
nected to certain tendons through two retinacula, represented using the concepts
LateralPatellaRetinaculum and MedialPatellaRetinaculum. GALEN describes the
relationship between the patella and the two retinacula as follows:

LateralPatellaRetinaculum ≡ ∃hasOtherEndAt .Patella ⊓ (. . .)(56)

MedialPatellaRetinaculum ≡ ∃hasOtherEndAt .Patella ⊓ (. . .)(57)

hasOtherEndAt ≡ isAtOtherEndOf −(58)

⊤ ⊑ ≤ 1 isAtOtherEndOf(59)

In a human body, each patella is connected to a lateral and a medial retinaculum. In
GALEN, however, isAtOtherEndOf is functional, so the two retinacula connected
to a patella must always be one and the same object. This leads us to believe
that isAtOtherEndOf probably should not have been declared functional. GALEN,
however, is underconstrained: it does not require the lateral retinaculum and the
medium retinaculum of a knee to be connected to the same patella, and it does not
state that the lateral retinaculum and the medial retinaculum are different from
each other. Consequently, the concept Patella is consistent in GALEN, and this
modeling error was not detected. The description graph produced by our transfor-
mation, however, contains one node for the patella and one for each retinaculum;
furthermore, both retinacula are connected through isAtOtherEndOf to the same
patella. Since isAtOtherEndOf is functional, the retinacula should be the same,
which invalidates the disjointness property of description graphs (see Definition 10)
and makes Patella unsatisfiable.

9 Conclusion

We have presented an expressive formalism that extends DLs with description
graphs and rules, allowing for more precise modeling of arbitrarily connected struc-
tures. Our formalism is applicable not only to anatomy, but to all domains in which
the number of arbitrarily interconnected objects has a natural bound.

The main open theoretical challenges are to determine the decidability and/or
complexity of reasoning with graph-extended knowledge bases under different as-
sumptions on the expressivity of the DL TBox T and the set of rules P. All our
undecidability results from Section 5 require T to contain number restrictions. We
conjecture that if T is not allowed to contain number restrictions, P = ∅, and G
does not contain graph alignments, then reasoning becomes decidable even if G is
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not acyclic. This is because such T and the properties from Table 4 apart from the
key and the disjointness properties can be transformed into an equivalent formula
of the guarded fragment of first-order logic which is known to be decidable [2]; fur-
thermore, the key and the disjointness properties seem “innocuous” because they
merely prevent an axiomatization of infinite chains of instances of one description
graph. Another important research direction is to see whether decidability can be
achieved by placing different restrictions on the set of rules P. For example, we
conjecture that, even without any role separation requirement, our formalism can
be extended with ELP rules [24] without losing decidability. Finally, the complexity
of reasoning with a strongly separated and acyclic graph extended knowledge base
whose TBox is in SHOIQ+ is open.

The main practical challenge is to validate the applicability of our formalism
in these and other applications. To this end, we will extend the ontology editor
Protégé 4 to support description graphs and apply our formalism in the identified
practical scenarios.
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