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Abstract. Answering queries over an incomplete database w.r.t. a set
of constraints is an important computational task with applications in
fields as diverse as information integration and metadata management
in the Semantic Web. Description Logics (DL) are constraint languages
that have been extensively studied in the past with the goal of providing
useful modeling constructs while keeping the query answering problem
decidable. For many DLs, query answering under constraints can be re-
duced to query rewriting: given a conjunctive query Q and a set of DL
constraints T , the query Q can be transformed into a datalog query QT
that takes into account the semantic consequences of T ; then, to obtain
answers to Q w.r.t. T and some (arbitrary) database instance A, one can
simply evaluate QT over A using existing (deductive) database technol-
ogy, without taking T into account. In this paper, we present a novel
query rewriting algorithm that handles constraints modeled in the DL
ELHIO¬ and use it to show that answering conjunctive queries in this
setting is PTime-complete w.r.t. data complexity. Our algorithm deals
with various description logics of the EL and DL-Lite families and is
worst-case optimal w.r.t. data complexity for all of them.

1 Introduction

Answering conjunctive queries over incomplete databases lies at the core of nu-
merous data management problems, such as answering queries using views [29],
information integration [28], data exchange [16], and data warehousing [40].
Given a query and an incomplete database consisting of a set of constraints
and a partial database instance [1], the problem is to compute the so-called cer-
tain answers—the tuples that satisfy the query in every database instance that
conforms to the partial instance and satisfies the constraints [38].

It is well known that answering conjunctive queries under general first-order
constraints is undecidable; therefore, the expressivity of the constraint languages
considered has to be restricted in order to achieve decidability. Various decidable
constraint languages have been considered in the field of databases. For instance,
Cal̀ı and Kifer [9] consider first-order constraints derived from a restricted ver-
sion of F-logic [25]; Simkus and Eiter [37] deal with expressive constraints based
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on Answer Set Programming [19]; Cal̀ı et al. [10, 6] consider constraints tailored
to express entity-relationship schemas; Fuxman and Miller [18] consider key con-
straints expressed over potentially inconsistent databases; and very recently, Cal̀ı
et al. [7, 8] proposed a general datalog-based framework for query answering in
which constraints are expressed as restricted TGDs (tuple-generating dependen-
cies) and EGDs (equality-generating dependencies) [1].

DLs can be viewed as very expressive but decidable first-order fragments,
which makes them natural candidates for constraint languages. DLs are a family
of knowledge representation formalisms that can be used to represent a given
domain in terms of concepts (unary predicates), roles (binary predicates), and
individuals (constants) [3]. A DL Knowledge Base (KB) K = 〈T ,A〉 consists of a
terminological component T called the TBox, and an assertional component A
called the ABox. In analogy to incomplete databases, the TBox can be seen as a
conceptual schema containing a set of constraints, and the ABox as some partial
instance of the schema. The use of DLs as constraint languages has already
proven to be useful in a variety of scenarios such as ontology-based information
integration [14, 28] and the Semantic Web [21].

The DL ELHIO¬ is an an expressive extension of the basic DL EL [2].
The language includes (limited) concept and role negation, role inclusions, in-
verse roles, and nominals—concepts that are to be interpreted as singletons
(e.g. {Mexico}). As we show in Section 6, ELHIO¬ is one of the most expres-
sive Horn logics for which query answering is polynomial w.r.t. data complexity.
The approach to query answering that we adopt in this paper is based on query
rewriting : given a conjunctive query Q and an ELHIO¬ TBox T , one computes
a datalog query QT —a so-called rewriting of Q w.r.t. T—such that, for every
ABox A, the answers to Q over T and A, and the answers to QT over A coin-
cide. Thus, the problem of answering Q over K = 〈T ,A〉 for a specific A can be
reduced to evaluating the datalog query QT over A only. Such an approach to
query answering is interesting from a practical perspective because it allows one
to reuse existing (deductive) database systems for data storage and query eval-
uation, thus taking advantage of the extensive body of research in data storage,
indexing, and query evaluation.

Various rewriting techniques for DL constraints have been proposed. Motik
[31] presented a resolution-based algorithm for reducing very expressive DL KBs
to disjunctive datalog programs. Kazakov [24] used saturation-based theorem
proving to derive a range of decision procedures for various DLs of the EL family
[2]. These approaches, however, do not consider conjunctive queries. Conjunctive
query rewriting under DL constraints has been considered by Calvanese et al.
[11] for the DL-Lite family of languages, for which query answering was shown
to be in LogSpace w.r.t. data complexity; and by Rosati [35] for EL. Conjunc-
tive query answering for EL has been shown to be PTime-complete w.r.t. data
complexity independently by Rosati [35], Krisnadhi and Lutz [26], and Krotzsch
and Rudolph [27]. Finally, another rewriting technique for EL has been recently
proposed by Lutz et al. [30]. However, their approach is quite different from the
standard query rewriting approach since their algorithm rewrites both the query
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and the ABox w.r.t. the TBox. All the aforementioned techniques are closely re-
lated; however, they have been designed to handle different DLs. In contrast, our
goal is to obtain a unified rewriting algorithm, inspired by the resolution-based
techniques presented in [31, 24], that generalizes and extends the techniques of
[11] and [35].

In this paper, we present a rewriting algorithm that takes as input a con-
junctive query Q and an ELHIO¬ TBox T , and computes a datalog query that
is a rewriting of Q w.r.t. T . We use the rewriting algorithm to obtain the novel
result that conjunctive query answering for ELHIO¬ is PTime-complete w.r.t.
data complexity. Our rewriting algorithm exhibits “pay-as-you-go” behavior: if
T is in ELHIO¬, then the computed rewriting is a datalog query, as in [33, 35];
if T is in DL-Lite+ [32], then the rewriting consists of a union of conjunctive
queries and a linear datalog query, as in [32]; finally, if T is in DL-LiteR, then
the rewriting is a union of conjunctive queries, as in [11]. Therefore, the rewrit-
ing algorithm not only deals with various DLs ranging from ELHIO¬ down to
DL-Litecore [11], but it is optimal w.r.t. data complexity for all such logics. We
derive our rewriting algorithm from a novel query answering algorithm that can
be used to obtain the certain answers of a conjunctive query Q over an ELHIO¬
KB K. Such an answering algorithm employs a resolution-based procedure that
handles equality in a novel way, which makes our answering algorithm interesting
in its own right.

This paper is an extended version of our work presented in [32] and [33],
where we considered description logics DL-Lite+ and ELHI, respectively.

2 Preliminaries

In this section we introduce all necessary terminology and recapitulate relevant
definitions and results.

2.1 Logic Programming

We use the well-known definitions of constants, variables, function symbols,
terms, and atoms of first-order logic [17]. With ~t we denote a tuple of terms
〈t1, ..., tn〉. For easier readability, we often write functional terms of the form
f1(...(fn(t))...) as f1...fn(t). The Herbrand universe of a first-order signature L,
denoted UL, is the set of all ground terms that can be formed with the functions
and constants of L. An atom of L is any expression of the form R(t1, ..., tn),
where R is an n-place predicate symbol and t1, ..., tn are terms. An atom is
ground if all its terms are ground. The Herbrand base of L, denoted BL, is the
set of all ground atoms that can be formed with the predicates of L and the
terms of UL.

A Horn clause is an expression of the form H ← B1 ∧ ... ∧Bn, where H
and each Bi are atoms. The atom H is called the head, and the set of atoms
{Bi} is called the body. With � we denote the empty clause—that is, a clause
where H = ⊥ and the body is empty. A Horn clause C is safe if all the variables
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occurring in the head also occur in the body. A clause C of the form H ← is
often written as H and is called a fact ; furthermore, if H is a ground atom, then
C is called a ground fact. An atom A is covering for a clause C if A contains all
the variables occurring in C. With var(C) we denote the number of variables in
a clause C. The depth of a term t is defined as depth(t) = 0 if t is a constant or a
variable, and depth(f(s)) = 1 + depth(s) if t is a functional term f(s). The depth
of an atom R(t1, ..., tn) is defined as depth(R(t1, ..., tn)) = max(depth(ti)) for
1 ≤ i ≤ n and of a Horn clause C as depth(C) = max(depth(H),max(depth(Bi)))
for 1 ≤ i ≤ n.

A logic program LP is a set of safe Horn clauses. The extensional database
(EDB) predicates of LP are those that do not occur in the head of any Horn
clause in LP ; all other predicates are called intensional database (IDB) predi-
cates. With each logic program LP we associate the signature L(LP ) that con-
sists of the predicates, functions, and constants occurring in LP ; if no constant
occurs in LP , we add an arbitrary constant to L(LP ). A Herbrand interpretation
of a logic program LP is any subset I of the Herbrand base BL(LP ) of L(LP ). A
Herbrand model of LP is a Herbrand interpretation I such that for each clause
C ∈ LP of the form H ← B1 ∧ ... ∧Bn, the interpretation I satisfies the first-
order formula ∀~x(B1 ∧ ... ∧ Bn → H), where ~x is a tuple of all the variables
occurring in C. A logic program LP is called a datalog program if every Horn
clause C ∈ LP is function-free. A datalog program D is said to be linear if each
Horn clause C ∈ D contains at most one IDB predicate in the body.

2.2 Resolution with Free Selection

The Resolution with Free Selection (RFS) family of calculi is a set of resolution-
based calculi that can be used to check whether a logic program LP is satisfiable
[5]. Each RFS calculus is defined by a selection function S that assigns to each
Horn clause C ∈ LP a nonempty set of atoms such that either S(C) is a singleton
set containing the head of C, or S(C) is a subset of the body of C. The atoms
in S(C) are said to be selected by S in C. Every RFS calculus R consists of the
following inference rule only, called resolution:

A← B1 ∧ ... ∧Bi ∧ ... ∧Bn C ← D1 ∧ ... ∧Dm

Aσ ← B1σ ∧ ... ∧Bi−1σ ∧Bi+1σ ∧ ... ∧Bnσ ∧D1σ ∧ ... ∧Dmσ

The two clauses above the inference line are called the premises and the clause
below is called the resolvent. W.l.o.g. we make a technical assumption that the
premises do not have variables in common. The atoms Bi and C must be selected
in the corresponding premises by the selection function S; we usually underline
the selecting atoms as shown in the previous inference. Finally, σ = MGU(Bi, C)
is the most general unifier of Bi and C as defined in [4].

A set of Horn clauses LP is saturated by R if, for every two premises P1 and
P2 in LP and every resolvent PR of P1 and P2, the set LP contains a clause
equivalent to PR up to variable renaming [4]. A derivation by R from a set of
Horn clauses LP is a sequence of sets of Horn clauses LP0, LP1, ... such that
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Table 1. Semantics of ELHIO¬

Semantics of concepts and roles: Semantics of assertions:

>I = 4I

{a}I = {aI}
(B1 uB2)

I = BI
1 ∩BI

2

(∃R)I = {x | ∃y.〈x, y〉 ∈ RI}
(∃R.B)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ BI}

(P−)I = {〈x, y〉 | 〈y, x〉 ∈ P I}
(¬B)I = 4I \BI

(¬R)I = 4I ×4I \RI

I |= A(a) iff aI ∈ AI

I |= P (a, b) iff 〈aI , bI〉 ∈ P I

I |= B v C iff BI ⊆ CI

I |= R v E iff RI ⊆ EI

LP0 = LP and for each i ≥ 0 we have that LPi+1 = LPi ∪ {C}, where C is the
resolvent of an inference by R of a pair of premises in LPi. The limit LPR of a
fair derivation from a set of Horn clauses LP by R is defined as LPR =

⋃
LPi.

It is well known that LPR is saturated by R. A clause C is said to be derivable
from LP byR iff C ∈ LPR. Resolution with free selection is sound and complete;
that is, a set of Horn clauses LP is satisfiable iff � 6∈ LPR [5].

2.3 Description Logic ELHIO¬

Let NC , NR, and NI be countable, infinite, and pairwise disjoint sets of atomic
concepts, atomic roles, and constants, respectively. ELHIO¬ roles are built ac-
cording to the following syntax rules, where R is called a basic role, E is called
a general role, and P ∈ NR:

R ::= P | P− E ::= R | ¬R

A basic role of the form P− is called the inverse role of P .
ELHIO¬ concepts are built according to the following syntax rules, where

B is called a basic concept, C is called a general concept, a ∈ NI , A ∈ NC , R is
a basic role, and B1 and B2 are basic concepts:

B ::= A | {a} | > | B1 uB2 | ∃R.B C ::= B | ¬B

An ELHIO¬ TBox is a finite set of axioms of the form B v C (concept
inclusions) or R v E (role inclusions), where B is a basic concept, C is a
general concept, R is a basic role, and E is a general role. An axiom α is called
a negative inclusion if it contains the symbol ¬; otherwise, it is called a positive
inclusion. Given an ELHIO¬ TBox T , with TNI we denote the set of all negative
inclusions of T , and with TPI we denote the set of all positive inclusions of T . An
ABox is a finite set of membership assertions of the form A(a) or P (a, b), where
A ∈ NC , P ∈ NR, a ∈ NI and b ∈ NI . An ELHIO¬ Knowledge Base (KB) K is
a tuple 〈T ,A〉, where T is an ELHIO¬ TBox and A is an ABox.

An interpretation I = (4I , ·I) consists of a nonempty interpretation domain
4I and a function ·I that maps each atomic concept A ∈ NC to a subset AI of
4I , each atomic role P ∈ NR to a subset P I of 4I × 4I , and each constant
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a ∈ NI to an element aI of 4I . The function ·I is extended to complex concepts
and roles as shown in the left column of Table 1. An interpretation I is a model
of an inclusion or membership assertion α, written I |= α, if I and α satisfy the
conditions shown in the right column of Table 1. An interpretation I is a model
of a KB K = 〈T ,A〉, written I |= K, if I satisfies every assertion in T and A.
A KB K is said to be satisfiable if it has at least one model. A KB K logically
implies an inclusion or membership assertion α, written K |= α, if every model
of K is a model of α.

W.l.o.g. we can restrict our attention only to TBoxes in normal form in which
all axioms are of the form A1 v {a}, {a} v A1, A1 v (¬)A2, A1 uA2 v A3,
A1 v ∃R1, A1 v ∃R1.A2, ∃R1 v A1, ∃R1.A1 v A2, or R1 v (¬)R2, where A1,
A2, and A3 are in NC , a ∈ NI , and R1 and R2 are basic roles. Each TBox
T can be transformed into an equisatisfiable TBox T ′ in normal form by sys-
tematically replacing complex concepts with atomic ones along the lines of [2].
This process can produce axioms of the form > v C, which are then replaced
by A v C, {a} v A, and ∃R v A, for every A ∈ NC , every individual a, and
every basic role R occurring in the TBox; it is straightforward to see that this
transformation preserves satisfiability of a knowledge base.

Given two DLs L1 and L2, we say that L1 is a fragment of L2 if each ax-
iom of L1 is an axiom of L2. ELHIO is a fragment of ELHIO¬ obtained by
disallowing negative inclusions. ELHI is a fragment of ELHIO obtained by dis-
allowing basic concepts of the form {a}. ELH is a fragment of ELHI obtained
by disallowing inverse roles. EL is a fragment of ELH obtained by disallowing
role inclusions. DL-Lite+ is a fragment of ELH obtained by disallowing basic
concepts of the form B1 uB2. DL-LiteR is a fragment of ELHIO¬ obtained
by disallowing basic concepts of the form {a}, >, and B1 uB2, as well as ax-
ioms of the form ∃R.B v C. DL-Litecore is a fragment of DL-LiteR obtained by
disallowing role inclusions.

2.4 Queries

A datalog query Q is a tuple 〈QP , QC〉, where QP is a predicate symbol and QC is
a datalog program. Q is a linear datalog query if QC is a linear datalog program;
Q is called a union of conjunctive queries if QP is the only IDB predicate in
QC , and the body of each clause in QC does not contain QP ; finally, Q is a
conjunctive query if it is a union of conjunctive queries and QC contains exactly
one Horn clause. We may denote a conjunctive query Q = 〈QP , QC〉 simply with
QC . A tuple of constants ~a is a certain answer of a datalog query Q = 〈QP , QC〉
over a KB K = 〈T ,A〉 iff K ∪QC |= QP (~a), where QC is considered to be a set
of universally quantified implications with the usual first-order semantics. The
set of all certain answers of Q over K is denoted by ans(Q,K).

3 Approach Overview

Given an ELHIO¬ KB K and a conjunctive query Q = 〈QP , QC〉 over K, our
goal is to compute the answers of Q over K. According to the definition of the
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certain answers, we have that ~a is an answer to Q over K iff QP (~a) is a logical
consequence of K ∪QC . If K is unsatisfiable, then ans(Q,K) is trivially the set
of all possible n-ary tuples of constants of K, where n is the arity of QP . We are
only interested in computing meaningful answers; therefore, before proceeding,
we first need to check the satisfiability of K.

An ELHIO¬ KB may be unsatisfiable due to the presence of negative in-
clusions that can lead to contradictions. It is possible to reduce the problem of
KB satisfiability for ELHIO¬ to the problem of query answering along the lines
of [11]. The idea is to transform each negative inclusion α ∈ TNI into a boolean
conjunctive query Qα such that K = 〈T ,A〉 is satisfiable iff for every α ∈ TNI,
the query Qα is false over K′ = 〈TPI,A〉—that is, if ans(Qα,K′) = ∅. The trans-
formation is essentially the same as the one in [11], so we omit the details for
the sake of brevity and just illustrate the transformation with an example.

Example 1. Consider an ELHIO¬ KB K0 = 〈T0,A0〉 such that T0 contains the
axiom α0 = Theist v ¬Atheist, and A0 contains the assertions Theist(John) and
Atheist(John). The negative inclusion α0 intuitively says that if an individual is
an instance of Theist, then it is not an instance of Atheist. Therefore, if there
is an individual that is an instance of both Theist and Atheist according to K0,
then there is a contradiction and K0 can have no model (i.e., it is unsatisfiable).

We can check if K0 is unsatisfiable by answering the boolean query

Qα0()← Theist(x) ∧Atheist(x)

over K0. Clearly, ans(Qα0 ,K0) 6= ∅; therefore, K0 is unsatisfiable.

Since the language of conjunctive queries does not allow for negated atoms,
and ELHIO¬ does not allow for disjunction, the set TNI of negative inclusions
can be simply regarded as a set of “constraints” that can only be used to check
the consistency ofA w.r.t. T . Therefore, if the input knowledge base is satisfiable,
in the same vein as in [11] it can be shown that negative inclusions are not
needed for query answering; that is, ans(Q, 〈T ,A〉) = ans(Q, 〈TPI,A〉) for every
satisfiable ELHIO¬ knowledge base K = 〈T ,A〉. Therefore, in the rest of this
paper we assume that T does not contain negative inclusions (i.e., it is expressed
in ELHIO).

By the definition of certain answers, ~a ∈ ans(Q,K) iff the logic program
LP = Ξ(K) ∪QC ∪ {⊥ ← QP (~a)} is unsatisfiable, where Ξ(·) transforms K into
an equisatisfiable logic program Ξ(K). By the well-known relationship between
DLs and first-order logic [3], Ξ(K) corresponds to the transformation shown in
Table 2. The resulting clauses can contain the equality predicate ≈; for exam-
ple, the ELHIO TBox axiom Pope v {BenedictXVI} is transformed into a clause
x ≈ BenedictXVI ← Pope(x). To check the satisfiability of Ξ(K) we thus need
a calculus capable of effectively dealing with equality. Resolution-based calculi
such as paramodulation and superposition [5] have been specially designed to
improve efficiency of reasoning with equality. We base our work, however, on
Resolution with Free Selection, mainly because we want to extend our previous
work [33] where we employed an RFS calculus to handle various sublanguages
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Table 2. Translating an ELHIO KB K into a set of clauses Ξ(K)

ELHIO clause ELHIO axiom

A(a) A(a), {a} v A
P (a, b) P (a, b)
x ≈ a← A(x) A v {a}
A2(x)← A1(x) A1 v A2

A3(x)← A1(x) ∧A2(x) A1 uA2 v A3

P (x, f(x))← A(x) A v ∃P
P (x, f(x))← A1(x) A1 v ∃P.A2

A2(f(x))← A1(x)
P (f(x), x)← A(x) A v ∃P−

P (f(x), x)← A1(x) A1 v ∃P−.A2

A2(f(x))← A1(x)
A(x)← P (x, y) ∃P v A
A2(x)← P (x, y) ∧A1(y) ∃P.A1 v A2

A(x)← P (y, x) ∃P− v A
A2(x)← P (y, x) ∧A1(y) ∃P−.A1 v A2

S(x, y)← P (x, y) P v S, P− v S−

S(x, y)← P (y, x) P− v S, P v S−

Note 1. Each axiom of the form A v ∃R.B is uniquely associated with a distinct

function symbol f .

of ELHIO¬. Equality can be handled in RFS by treating the equality predi-
cate ≈ as just an ordinary predicate and axiomatizing its properties by a set of
clauses ET which ensures that ans(Q,K) = ans(Q,Ξ(K) ∪ ET ). It is well known,
however, that saturating a set of clauses containing ET causes the generation
of an infinite number of clauses [5]. In order to avoid this problem, we develop
an approximation of equality E′

T and we show how to compute ans(Q,K) from
ans(Q,Ξ(K) ∪ E′

T ).
Our answering algorithm is based on a procedure that decides whether ~a is

in ans(Q,Ξ(K) ∪ E′
T ) by checking whether the empty clause is derivable from

LP ∪ E′
T by RDL—a suitable RFS calculus. Note, however, that such an ap-

proach allows one only to decide whether some tuple ~a is an answer to Q over
Ξ(K) ∪ E′

T . In order to compute the entire set ans(Q,Ξ(K)∪E′
T ), we apply the

so-called answer literal technique (cf. [20]) and we show that

ans(Q,Ξ(K) ∪ E′
T ) = {QP (~a) | QP (~a) ∈ (Ξ(K) ∪ E′

T ∪QC)RDL}.

Therefore, our answering algorithm amounts to saturating Ξ(K) ∪ E′
T ∪QC by

RDL and returning each tuple ~a such that QP (~a) ∈ (Ξ(K) ∪ E′
T ∪QC)RDL .

Since RFS is sound and complete, out main challenge is to ensure that the
saturation of Ξ(K) ∪ E′

T ∪QC by RDL terminates. We present our answering
algorithm in Section 4.

Based on the query answering algorithm, in Section 5 we then present our
query rewriting algorithm. The rewriting algorithm takes as input Q and T and
derives the datalog query rew(Q, T ) by saturating Ξ(T ) ∪ E′

T ∪QC by RDL.
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We obtain the rewriting rew(Q, T ) by computing (Ξ(T ) ∪ E′
T ∪QC)RDL and

then removing all clauses containing functional terms. We also introduce a step
that ensures the optimality of rew(Q, T ) for various sublanguages of ELHIO: if
T is in ELHIO, then rew(Q, T ) is a datalog query; if T is in DL-Lite+, then
rew(Q, T ) consists of a union of conjunctive queries and a linear datalog query;
and if T is in DL-LiteR, then rew(Q, T ) is a union of conjunctive queries. We
present our rewriting algorithm in Section 5.

4 Resolution-based Query Answering

In this section we present a conjunctive query answering algorithm for ELHIO.
Roughly speaking, our algorithm first computes an approximation of equality
E′
T for Ξ(K). Next, it computes ans(Q,Ξ(K) ∪ E′

T ) by returning every tu-
ple ~a such that QP (~a) ∈ (Ξ(K) ∪ E′

T ∪QC)RDL , where RDL is an RFS cal-
culus as defined in Section 4.2. Finally, the algorithm computes ans(Q,K) from
ans(Q,Ξ(K) ∪ E′

T ). In Section 4.1 we present our approximation of equality E′
T

and we show how to compute ans(Q,K) from ans(Q,Ξ(K) ∪ E′
T ) based on the

notion of representatives. Before formally showing the correctness of our algo-
rithm, we present an example in which we give informal intuitive explanations;
the details are provided in the subsequent sections.

Example 2. Consider an ELHIO KB K1 = 〈T1,A1〉 about monotheistic reli-
gions. Let T1 contain the following axioms:

Religion v ∃hasDevotee

∃hasDevotee−.Religion v Theist
Theist v ∃believesIn.{God}
{FSM} v {God}

The TBox T1 states that a religion has at least one devotee, that someone who is
a devotee of a religion is a theist, that a theist is someone who believes in God,
and that the Flying Spaghetti Monster and God are the same individual.

Let A1 contain the following assertions:1

Religion(Pastafarism) (1)

hasDeity(Pastafarism,FSM) (2)

Mighty(FSM) (3)

Finally, consider the following query Q1:

Q1(z)← hasDevotee(x, y) ∧ believesIn(y, z) ∧ hasDeity(x, z) ∧Mighty(z) (4)

Note that Pastafarism is a religion, so it has at least one devotee who be-
lieves in God. The Flying Spaghetti Monster is mighty, and it is the deity of
1 We underline the atoms selected by the selection function of RDL.
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Pastafarism. Therefore, since the Flying Spaghetti Monster and God denote the
same individual, we expect that {God,FSM} ⊆ ans(Q1,K1).

We now show how our answering algorithm obtains the set ans(Q1,K1). We
start by translating T1 into clauses and compute Ξ(T1). According to Table 2,
the set Ξ(T1) contains the following clauses:2

hasDevotee(x,devoteeOf(x))← Religion(x) (5)

Theist(x)← hasDevotee(y, x) ∧ Religion(y) (6)

believesIn(x, dietyOf(x))← Theist(x) (7)

A1(dietyOf(x))← Theist(x) (8)

x ≈ God← A1(x) (9)
x ≈ God← A2(x) (10)
A2(FSM) (11)

According to Definition 2, the approximation of equality E′
T1

for T1 contains
the following clauses:

O(God) (12)

Mighty(y)← Mighty(x) ∧ x ≈ y ∧ O(y) (13)

hasDeity(x, z)← hasDeity(x, y) ∧ y ≈ z ∧ O(z) (14)

believesIn(x, z)← believesIn(x, y) ∧ y ≈ z ∧ O(z) (15)

Clause (12) identifies God as an O-constant —a constant that occurs in a clause
of the form x ≈ o← A(x) (cf. clauses (9) and (10)). O-constants play an im-
portant role in our approach since they underpin the notion of a representative.
Intuitively, a representative is an O-constant that “gathers” all the relevant in-
formation of all terms that are mutually equal. Clauses (13)–(15) intuitively say
that, if an individual is equal to an O-constant, then it can be replaced with such
an O-constant. Restricting substitutivity to O-constants reduces the number of
clauses generated during the saturation.

As shown in Table 3, the set (Ξ(K1)∪E′
T1
∪{Q1})RDL contains the following

clauses:

hasDeity(Pastafarism,God) (16)

Mighty(God) (17)

believesIn(x,God)← Theist(x) (18)

believesIn(devoteeOf(x),God)← Religion(x) (19)

Q1(God)← hasDevotee(Pastafarism,devoteeOf(x)) ∧ Religion(x) (20)

Q1(God) (21)

2 We only show the clauses that are relevant to derive the answers to Q1. We intro-
duced A1 and A2 in order to normalize T1 (see Section 2).
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Table 3. Inferences on Ξ(K1) ∪ E′
T1 by RDL (cf. Example 2)

Clause RDL inferences involved

(16) [[[(12)+(14)]+(10)]+(2)]+(11)
(17) [[[(12)+(13)]+(10)]+(3)]+(11)
(18) [[[(12)+(15)]+(9)]+(7)]+(8)
(19) [(5)+(6)]+(18)
(20) [[(4)+(16)]+(17)]+(19)
(21) [(20)+(5)]+(1)

Note 2. (x)+(y) means that the clause was obtained by resolving clauses (x) and (y).

It can be shown that (21) is the only clause of the form Q1(~a) contained in
(Ξ(K1) ∪ E′

T1
∪ {Q1})RDL ; so, ans(Q1, Ξ(K1) ∪ E′

T1
) = {God}. In this case, we

compute ans(Q1,K1) by querying Ξ(K1)∪E′
T1

for all individuals that are equal
to God; in our example it is possible to show that the only such individual is
FSM, so ans(Q1,K1) = {God,FSM}.

4.1 Approximating Equality

In this section we present our approximation of equality E′
T and a simple pro-

cedure to compute ans(Q,K) from ans(Q,Ξ(K) ∪ E′
T ). Therefore, the problem

of answering Q over K can be reduced to the problem of answering Q over
Ξ(K) ∪ E′

T .
We first recapitulate the well-known axiomatization of equality—a set of

clauses ET that encode the properties of the equality relation, typically denoted
with ≈, such that ans(Q,K) = ans(Q,Ξ(K) ∪ ET ).

Definition 1. Let K = 〈T ,A〉 be an ELHIO KB. Let ET be the set contain-
ing exactly the following clauses, where (i) one functional monotonicity clause is
instantiated for every functional symbol f occurring in Ξ(T ), (ii) one unary sub-
stitutivity clause is instantiated for every unary predicate A occurring in Ξ(T ),
and (iii) one binary substitutivity 1 clause and one binary substitutivity 2 clause
are instantiated for every binary predicate P occurring in Ξ(T ):3

x ≈ x (reflexivity)
x ≈ y ← y ≈ x (symmetry)
x ≈ z ← x ≈ y ∧ y ≈ z (transitivity)

f(x) ≈ f(y)← x ≈ y (functional monotonicity)
A(y)← A(x) ∧ x ≈ y (unary substitutivity)

P (x, z)← P (x, y) ∧ y ≈ z (binary substitutivity 1)
P (z, x)← P (y, x) ∧ y ≈ z (binary substitutivity 2)

3 W.l.o.g. we assume that all the symbols in A occur in T .
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Our approximation of equality E′
T “weakens” the axiomatization of equality

ET in three ways: first, the relation ≈ is only required to be (implicitly) sym-
metric; second, the substitutivity clauses are limited to be applicable to certain
constants only (O-constants); and third, functional monotonicity is dropped. We
formally define E′

T as follows.

Definition 2. Let K = 〈T ,A〉 be an ELHIO KB. A constant o occurring in
Ξ(K) is called an O-constant if it appears in a clause C ∈ Ξ(K) of the form
x ≈ o← A(x).

We define the set E′
T as follows. Let O be a fresh predicate not occurring in

Ξ(T ). If there is no O-constant o occurring in Ξ(K), then E′
T = ∅; otherwise

let E′
T be the set that contains the following clauses, where (i) one O-constant

identification clause is instantiated for every O-constant o occurring in Ξ(T ),
(ii) one unary substitutivityO clause is instantiated for every unary predicate A
occurring in Ξ(T ), (iii) and one binary substitutivityO 1 clause and one binary
substitutivityO 2 clause are instantiated for every binary predicate P occurring
in Ξ(T ):

O(o) (O-constant identification)
A(y)← A(x) ∧ x ≈ y ∧ O(y) (unary substitutivityO)

P (x, z)← P (x, y) ∧ y ≈ z ∧ O(z) (binary substitutivityO 1)
P (z, x)← P (y, x) ∧ y ≈ z ∧ O(z) (binary substitutivityO 2)

We make the standard assumption of equational theorem proving that ≈ is
implicitly symmetric; thus, each atom s ≈ t should be also read as t ≈ s. The two
forms should be considered interchangeable; for example, both forms should be
considered when applying RFS inferences to clauses containing equality atoms.

Our goal is to show that ans(Q,K) can be computed from ans(Q,Ξ(K) ∪ E′
T ).

In our proofs we use the notion of representatives. Intuitively, the idea is to define
a unique representative term for every set of terms that are equal according to
K. The role of the representative is to “gather” all the information of all terms
that are mutually equal: we ensure that everything that follows from K for the
terms that are mutually euqal also follows from Ξ(K) ∪ E′

T for the corresponding
representative term. Therefore, we argue that it is possible to answer queries over
K by answering them over Ξ(K) ∪ E′

T , and then “expanding” the answers to the
set of represented terms. We formally define the representative [s]I of a term s
as follows.

Definition 3. Let ≺K be a total well-founded order on the set of terms occurring
in the Herbrand universe of Ξ(K) ∪ E′

T such that, for all terms s and t, we have
that depth(s) < depth(t) implies s ≺K t, and for every O-constant o and every
term s, we have that o ≺K s.

Let I be the minimal Herbrand model of Ξ(K) ∪ E′
T . For all terms s and t oc-

curring in I, we say that s and t are ≈-connected w.r.t. I, written s ≈∗I t, if s = t
or there are terms u1, ..., un such that {s ≈ u1, u1 ≈ u2, ..., un ≈ t} ⊆ I. For ev-
ery term s occurring in I, with min(s) we denote the term such that s ≈∗I min(s),
and there is no other term t such that s ≈∗I t and t ≺I min(s).
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For every term s occurring in the Herbrand universe of Ξ(K) ∪ E′
T , we define

the representative [s]I of s w.r.t. I inductively as follows: if s is a constant or if
there is an O-constant o such that s ≈ o ∈ I, then [s]I = min(s); otherwise, s is
of the form f(s′) and [s]I = min(f([s′]I)). For ~s = 〈s1, ..., sn〉 a tuple of n terms,
with [~s]I we denote the tuple 〈[s1]I , ..., [sn]I〉.

As we show later in Lemma 9, a tuple of representative constants [~a]I is in
ans(Q,K) iff [~a]I is in ans(Q,Ξ(K) ∪ E′

T ). Moreover, if two constants are im-
plied to be equal by K, then they have the same representative. Therefore, we
can compute ans(Q,K) by replacing every tuple 〈a1, ..., an〉 in ans(Q,Ξ(K) ∪ E′

T )
with ra1 × ...× ran

, where rai
for 1 ≤ i ≤ n is the set of all the constants repre-

sented by ai—that is, rai
= {b | [b]I = ai}. As we will see, for every constant a,

constants o1, ..., om exist such that Ξ(K) ∪ E′
T |= {a ≈ o1, o1 ≈ o2, ..., om ≈ [a]I}

(cf. Lemma 2). Hence, we can obtain every set rai by answering the query
Qeq(x, y)← x ≈ y over Ξ(K) ∪ E′

T and selecting all the constants from which
there is a path to ai (including itself). We illustrate the use of the representative
with an example.

Example 3. Consider an ELHIO TBox T2 containing the following axioms:

{FSM} v {God}
{God} v {Zeus}

Consider an ABox A2 containing the following assertions:

Mighty(FSM)
Omniscient(God)

Omnipotent(Zeus)

Consider the following query Q2:

Q2(x)← Mighty(x) ∧Omniscient(x) ∧Omnipotent(x)

Clearly, FSM, God and Zeus are equal according to K2 = 〈T2,A2〉. Therefore,
we have that

ans(Q2,K2) = {FSM,God,Zeus}

The set ans(Q2, Ξ(K2) ∪ E′
T2

) is guaranteed to contain the representative of
FSM, God, and Zeus. Therefore, in order to compute ans(Q2,K2), we only need
to substitute each tuple 〈a〉 in ans(Q2, Ξ(K2) ∪ E′

T2
) with the corresponding ra.

It can be shown that ans(Q2, Ξ(K2) ∪ E′
T2

) = {God,Zeus} and that

{〈FSM,God〉, 〈God,Zeus〉} ⊆ ans(Qeq(x, y)← x ≈ y, Ξ(K2) ∪ E′
T2

)

Therefore, we have that rGod = rZeus = {God,FSM,Zeus}. Clearly, substituting
each tuple 〈a〉 in ans(Q2, Ξ(K2) ∪ E′

T2
) with the corresponding ra yields the set

{FSM,God,Zeus}.
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Note that we derived the set ans(Q2,K2) from ans(Q2, Ξ(K2) ∪ E′
T2

) without
knowing what constant is the actual representative of FSM, God, and Zeus; in
fact, we did not need an order ≺K2 either. The representatives and the associated
order are used only to prove that it is possible to compute ans(Q2,K2) from
ans(Q2, Ξ(K2) ∪ E′

T2
); the potential implementors of our answering algorithm

do not need to worry about the representatives whatsoever.

In the rest of the section we show various properties required to prove the
correctness of our approach of deriving ans(Q,K) from ans(Q,Ξ(K) ∪ E′

T ). We
start by showing that E′

T ensures the “propagation of information” from every
term s to its representative [s]I (cf. Lemma 4): we show that A(s) ∈ I implies
A([s]I) ∈ I, and P (s, t) ∈ I implies P ([s]I , [t]I) ∈ I. In order to do so, we first
prove a property of the binary atoms occurring in the minimal Herbrand model
of Ξ(K) ∪ E′

T .

Lemma 1. Let K = 〈T ,A〉 be an ELHIO KB, and let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . Every binary atom D occurring in I is of the form
(i) P (s, f(s)), (ii) P (f(s), s), (iii) P (s, o), or (iv) P (o, s).

Proof. If D ∈ A, then it is of form (iii) or (iv). Otherwise, by analyzing the type
of clauses with binary head in Table 2, it can be readily checked that if D was
derived through one of such clauses, then it is of the form (i) or (ii). By analyzing
the binary substitutivityO clauses of E′

T , it can be checked that if D was derived
through one of such clauses, then it is of the form (iii) or (iv). There is no other
type of clause with binary head in Ξ(K) ∪ E′

T . The claim follows from these
facts and that fact that I is minimal. ut

We now prove two properties of the representatives.

Lemma 2. Let K = 〈T ,A〉 be an ELHIO KB, and let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . For every term s such that s 6= min(s), there exist
O-constants o1, ..., on such that {s ≈ o1, o1 ≈ o2, ..., on ≈ min(s)} ⊆ I.

Proof. We first show that, for all O-constants o and o′, if t ≈ o ∈ I and t ≈ o′ ∈ I
for some term t, then o ≈ o′ ∈ I. Since I is minimal, the assertion t ≈ o′ was
derived by a clause x ≈ o′ ← A(x) and a fact A(t) ∈ I for some predicate A.
We have t ≈ o ∈ I; moreover, since o is an O-constant, we have that O(o) ∈ I.
Therefore, the unary substitutivityO clauses in E′

T then ensures A(o) ∈ I, which
implies o ≈ o′ ∈ I.

Now, since s 6= min(s), by the definition of min(s), there exist terms u1, ..., un

such that Γ ⊆ I for Γ = {s ≈ u1, u1 ≈ u2, ..., un ≈ min(s)}. Given the type of
clauses contained in Ξ(K) ∪ E′

T , every equality assertion in I is of the form
t ≈ o, where t is a term and o is an O-constant. Assume now that some term ui

is not an O-constant. Then, Γ contains equalities of the form ui ≈ o and ui ≈ o′.
By the previous paragraph, I then contains o ≈ o′; hence, ui can be eliminated
from Γ . By successively eliminating all uj that are not O-constants, we obtain
a subset of the equalities of I that satisfy our claim. ut
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To show the next property we need a notion of a derivation tree, as defined
next.

Definition 4. A tree T is a prefix-closed subset of N∗, where the root node is
denoted by ε, and the i-th child of a node t ∈ T is denoted by t.i.

Let N be a set of Horn clauses and let I be a Herbrand model of N . A
derivation tree Σ for a fact l ∈ I is a triple 〈T, δ, λ〉 where T is a finite tree, δ
is a function that maps every node t ∈ T to a fact δ(t) ∈ I, and λ is a partial
function that maps every nonleaf node t ∈ T with n children to a clause λ(t) ∈ N
such that δ(t) is obtained by resolving each δ(t.i) with the i-th body literal of λ(t)
simultaneously. If t is a leaf node, then δ(t) ∈ N and λ(t) is undefined.

We are ready to show the next property.

Lemma 3. Let K = 〈T ,A〉 be an ELHIO KB, and let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . For every term s, every constant o, all predicates A
and P , and every n ≥ 0, we have that

(i) A(f1...fn(s)) ∈ I implies A(f1...fn([s]I)) ∈ I,
(ii) P (f1...fn(s), f0f1...fn(s)) ∈ I implies P (f1...fn([s]I), f0f1...fn([s]I)) ∈ I,
(iii) P (f1...fn(s), f2...fn(s)) ∈ I implies P (f1...fn([s]I), f2...fn([s]I)) ∈ I,
(iv) P (f1...fn(s), o) ∈ I implies P (f1...fn([s]I), [o]I) ∈ I,
(v) P (o, f1...fn(s)) ∈ I implies P ([o]I , f1...fn([s]I)) ∈ I, and
(vi) f1...fn(s) ≈ o implies f1...fn([s]I) ≈ o.

Proof. Let D be an atom of one of the following forms:

A(f1...fn(s)) (22)
P (f1...fn(s), f0f1...fn(s)) (23)

P (f1...fn(s), f2...fn(s)) (24)
P (f1...fn(s), o) (25)
P (o, f1...fn(s)) (26)

f1...fn(s) ≈ o (27)

We prove the claim by induction on the height h of the derivation tree of D.
The base case is h = 0. Since I is minimal, D is of the form A(a) or P (a, b).

We consider the case where D is of the form P (a, b); the other case can be
proved analogously. By the definition of [·]I , we have that [a]I = min(a) and
[b]I = min(b). If a = min(a) and b = min(b), then the claim trivially follows. We
consider the case when a 6= min(a) and b 6= min(b); the case where a 6= min(a) and
b = min(b), and vice versa can be shown analogously. By Lemma 2, O-constants
o1, ..., on and o′1, ..., o

′
m exist such that {a ≈ o1, o1 ≈ o2, ..., on ≈ min(a)} ⊆ I and

{b ≈ o′1, o
′
1 ≈ o′2, ..., o

′
m ≈ min(b)} ⊆ I. Due to the substitutivityO clauses in E′

T ,
we have P (oi, b) ∈ I for 1 ≤ i ≤ n; since on ≈ min(a), we have P (min(a), b) ∈ I.
In an analogous way, we have P (min(a), o′j) ∈ I for 1 ≤ j ≤ m. Hence, since
o′m ≈ min(b), we have that P (min(a),min(b)) ∈ I.
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We now assume the claim holds for h and we prove the claim for h + 1. We
first consider the case where D is of the form (22). Given the clauses contained
in Ξ(K) ∪ E′

T , we have that D could have been derived using a clause C of one
the following forms:

A(x)← B(x) (28)
A(x)← B(x) ∧ C(x) (29)
A(x)← P (x, y) ∧B(y) (30)
A(x)← P (y, x) ∧B(y) (31)
A(y)← A(x) ∧ x ≈ y ∧ O(y) (32)

A(f(x))← B(x) (33)

– If C is of the form (28) or (29), then by the induction hypothesis we have
that the claim holds for every antecedent atom required to apply C, which
implies that A(f1...fn([s]I)) ∈ I.

– If C is of the form (30), then {P (f1...fn(s), t), B(t)} ⊆ I for some term t.
Lemma 1 implies that the term t can be of the form o, f0f1...fn(s), or
f2...fn(s). In all cases, by the induction hypothesis we have that the claim
holds for every antecedent atom required to apply C, which implies that
A(f1...fn([s]I)) ∈ I. The proof is analogous if C is of the form (31).

– If C is of the form (32), then we have that D is of the form A(o) for some O-
constant o. By the definition of [·]I , we have that [o]I = min(o). If o = min(o),
then the claim trivially follows, so we assume that o 6= min(o). Given Lemma
2 and the substitutivityO clauses of E′

T , we have that A(min(o)) ∈ I.
– If C is of the form (33), then we consider two cases: n > 0 and n = 0. In the

former case, we have that B(f2...fn(s)) ∈ I. By the induction hypothesis we
have B(f2...fn([s]I)) ∈ I, so A(f1...fn([s]I)) ∈ I. For n = 0, note that, given
the form of C, s is of the form s = f(s′) and B(s′) ∈ I. We consider the
possible forms of [f(s′)]I .
• If an O-constant o exists such that f(s′) ≈ o ∈ I, then [f(s′)]I = min(o).

Given Lemma 2 and the substitutivityO clauses of E′
T , we have that

A(min(o)) ∈ I since A(f(s′)) ∈ I.
• Otherwise, we have [f(s′)]I = min(f([s′]I)). If there is an O-constant

o such that f([s′]I) ≈ o ∈ I, then [f(s′)]I = min(f([s′]I)) = min(o). By
the induction hypothesis we have that B([s′]I) ∈ I, so A(f([s′]I)) ∈ I.
Therefore, it follows from Lemma 2 and the substitutivityO clauses of
E′
T that A(min(o)) ∈ I. Finally, if there is no O-constant o such that

f([s′]I) ≈ o ∈ I, we have that [f(s′)]I = min(f([s′]I)) = f([s′]I) and the
claim follows since A(f([s′]I)) ∈ I.
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We now consider the case where D is of the form (23)–(26). The atom D
could have been derived using a clause C of one the following forms:

P (x, y)← S(x, y) (34)
P (x, y)← S(y, x) (35)
P (x, z)← P (x, y) ∧ y ≈ z ∧ O(z) (36)
P (z, x)← P (y, x) ∧ y ≈ z ∧ O(z) (37)

P (x, f(x))← A(x) (38)
P (f(x), x)← A(x) (39)

– If C is of the form (34) or (35), then by the induction hypothesis we have
that the claim holds for every antecedent atom required to apply C, which
implies that the claim holds for all possible forms of D.

– If C is of the form (36), then D is of the form (25). Clearly, in order for
C to be applied, we have that {P (f1...fn(s), t), t ≈ o,O(o)} ⊆ I for some
term t. Lemma 1 implies that the term t can be of the form o′, f0f1...fn(s),
or f2...fn(s). In all cases, by the induction hypothesis the claim holds for
P (f1...fn(s), t) and t ≈ o, which is enough to derive P (f1...fn([s]I), o) using
C. By the definition of [·]I we have that [o]I = min(o). If o = min(o), then
the claim trivially follows, so we assume that o 6= min(o). By Lemma 2 and
the substitutivityO clauses of E′

T , we have that P (f1...fn([s]I),min(o)) ∈ I;
the claim can be shown analogously if C is of the form (37).

– If C is of the form (38), then D is of the form (23) and A(f1...fn(s)) ∈ I. By
the induction hypothesis we have that A(f1...fn([s]I)) ∈ I; therefore, we have
that P (f1...fn([s]I), f0f1...fn([s]I)) ∈ I; the claim can be shown analogously
if C is of the form (39).

Finally, we consider the case where D is of the form (27). The atom D could
have been derived using a clause C of the following form:

x ≈ o← A(x) (40)

We have that A(f1...fn(s)) ∈ I. We have that A(f1...fn([s]I)) ∈ I by the induc-
tion hypothesis; therefore, f1...fn([s]I) ≈ o ∈ I. ut

We are now ready to show the desired relationship between a term s and its
representative [s]I .

Lemma 4. Let K = 〈T ,A〉 be an ELHIO KB, and let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . For all terms s and t, and all predicates A and P
occurring in I, we have that

(i) A(s) ∈ I implies A([s]I) ∈ I, and
(ii) P (s, t) ∈ I implies P ([s]I , [t]I) ∈ I.

Proof. Claim (i) follows from Lemma 3. We now consider claim (ii). Let D be an
atom of the form P (s, t). In case D is of the form P (a, b), P (s, a), or P (a, s), the
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claim follows from Lemma 3. We now consider the case where D is of the form
P (s, f(s)); the case where D is of the form P (f(s), s) can be shown analogously.
We analyze the possible forms of [f(s)]I .

– If there is an O-constant o such that f(s) ≈ o ∈ I, then [f(s)]I = min(o). By
Lemma 3 we have that f([s]I) ≈ o ∈ I and P ([s]I , f([s]I)) ∈ I. By Lemma 2
and the substitutivityO clauses of E′

T we have that P ([s]I ,min(o)) ∈ I.
– Otherwise, we have that [f(s)]I = min(f([s]I)). If there is an O-constant

o such that f([s]I) ≈ o ∈ I, then [f(s)]I = min(f([s]I)) = min(o), and the
claim follows again by Lemma 2 and the substitutivityO clauses of E′

T .
Finally, if there is no O-constant o such that f([s]I) ≈ o ∈ I, we have that
[f(s)]I = min(f([s]I)) = f([s]I), and the claim follows since we have that
P ([s]I , f([s]I)) ∈ I.

ut

We now show that [·]I “compensates” for the loss of functional monotonicity
(cf. Lemma 5): we show that [s]I = [t]I implies [f(s)]I = [f(t)]I . We point out
that in order to do so, it suffices to show that [f(s)]I = [f([s]I)]I . We illustrate
the point with an example.

Example 4. Let us assume that (*) for every term s and every f we have that
[f(s)]I = [f([s]I)]I . Now, suppose that

[FSM]I = [Zeus]I = God.

Let religionOf be a function symbol. By (*) we have that

[religionOf(FSM)]I = [religionOf(God)]I ,
[religionOf(Zeus)]I = [religionOf(God)]I .

Therefore, it can be seen that if we assume (*) we have that [FSM]I = [Zeus]I
implies [religionOf(FSM)]I = [religionOf(Zeus)]I .

Lemma 5. Let K = 〈T ,A〉 be an ELHIO KB, and let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . For every term s and every function symbol f , we
have that [f(s)]I = [f([s]I)]I .

Proof. We show the claim by analyzing the possible forms of [f(s)]I .

– If there is an O-constant o such that f(s) ≈ o ∈ I, then [f(s)]I = min(o). By
Lemma 3 we have that f([s]I) ≈ o ∈ I; therefore, [f([s]I)]I = min(o).

– Otherwise, we have that [f(s)]I = min(f([s]I)). If there is an O-constant o
such that f([s]I) ≈ o ∈ I, then min(f([s]I)) = min(o) and [f([s]I)]I = min(o).
Finally, if there is no O-constant o such that f([s]I) ≈ o ∈ I, then we have
that min(f([s]I)) = f([s]I) and [f([s]I)]I = f([s]I).

ut
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We now concentrate on showing the crucial fact that [~a]I ∈ ans(Q,K) iff
[~a]I ∈ ans(Q,Ξ(K) ∪ E′

T ) (cf. Lemma 9). Note that, in order to show this claim,
it suffices to show that Ξ(K) ∪ ET |= D([~s]I) iff Ξ(K) ∪ E′

T |= D([~s]I) for every
atom D([~s]I). Moreover, since both sets—Ξ(K) ∪ ET and Ξ(K) ∪ E′

T —are sets
of Horn clauses, we can simply show that D([~s]I) ∈ J iff D([~s]I) ∈ I, where J
is the minimal Herbrand model of Ξ(K) ∪ ET , and I is the minimal Herbrand
model of Ξ(K) ∪ E′

T . We show this by constructing an interpretation I∞ from
I such that D([~s]I) ∈ I∞ iff D([~s]I) ∈ I, and proving that I∞ is the minimal
Herbrand model of Ξ(K) ∪ ET .

Intuitively, we obtain I∞ from I by adding to I the set of facts needed to make
≈ a congruence relation: we propagate every logical consequence for [s]I to all the
terms represented by [s]I ; and we ensure that ≈ is a transitive, symmetric and
reflexive relation in I∞, that conforms to functional monotonicity. We formally
define I∞ as follows.

Definition 5. Let I be the minimal Herbrand model of Ξ(K) ∪ E′
T . Let OI be

the set of exactly all the atoms of the form O(o) contained in I.
We construct I∞ as follows. Let I0 be the smallest set of facts that satisfy

the following conditions for all predicates A and P , all terms s and t, and every
constant o:

(i) I \ OI ⊆ I0;
(ii) if A(s) ∈ I, then A(s′) ∈ I0 for every term s′ such that [s′]I = s;
(iii) if P (s, t) ∈ I, then P (s′, t′) ∈ I0 for all terms s′ and t′ such that [s′]I = s

and [t′]I = t; and
(iv) if s ≈ o ∈ I, then s′ ≈ o ∈ I0 for every term s′ such that [s′]I = s.

Let Ii, for 1 ≤ i ≤ ∞, be the smallest set of facts that satisfy the following con-
ditions for all terms s, t, and u, and every functional symbol f :

(v) Ii−1 ⊆ Ii;
(vi) s ≈ s ∈ Ii;
(vii) if s ≈ t ∈ Ii, then t ≈ s ∈ Ii;
(viii) if s ≈ u ∈ Ii and u ≈ t ∈ Ii, then s ≈ t ∈ Ii; and
(ix) if s ≈ t ∈ Ii, then f(s) ≈ f(t) ∈ Ii.

Let I∞ =
⋃

Ii.

We now show that I∞ is the minimal Herbrand model of Ξ(K) ∪ ET . We do
so in two steps: we first show that I∞ is a model of Ξ(K) ∪ ET (cf. Lemma 7),
and then show that I∞ is minimal (cf. Lemma 8). In order to do so, we first
show an important property of [·]I in Lemma 6.

Lemma 6. Let K = 〈T ,A〉 be an ELHIO KB, let I be the minimal Herbrand
model of Ξ(K) ∪ E′

T . For all terms s and t, we have that s ≈ t ∈ I∞ iff [s]I = [t]I .

Proof. We first prove that s ≈ t ∈ I∞ implies [s]I = [t]I . We prove the claim
by induction on the level i in the construction of Ii for 0 ≤ i ≤ ∞. In case
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i = 0, it follows from the definition of I0 that either s ≈ t ∈ I or [s]I ≈ t ∈ I.
In both cases, the claim follows from the definition of [·]I . We now assume that
the claim holds for i and prove the claim for i + 1. The atom s ≈ t was derived
due to conditions (vi)–(ix). The claim trivially follows for condition (vi). For
condition (vii) we have that t ≈ s ∈ Ii. By the induction hypothesis we have
that [t]I = [s]I , so the claim holds. For condition (viii) we have that there is a
term u such that s ≈ u ∈ Ii and u ≈ t ∈ Ii. By the induction hypothesis we have
that [s]I = [t]I = [u]I ; so the claim holds. We now consider condition (ix). Let
s be of the form f(s′) and t be of the form f(t′) for some function symbol f .
We have that s′ ≈ t′ ∈ Ii. By the induction hypothesis we have that [s′]I = [t′]I ,
and by Lemma 5, we have that [f(s′)]I = [f(t′)]I . We have shown that s ≈ t ∈ Ii

implies [s]I = [t]I for any 0 ≤ i ≤ ∞. The claim for I∞ follows from the fact
that s ≈ t ∈ I∞ implies that there is an i such that s ≈ t ∈ Ii.

We now prove that [s]I = [t]I implies s ≈ t ∈ I∞. It follows from the defi-
nition of [·]I and Lemma 5 that there are three cases for which [s]I = [t]I : (I)
s = t; (II) there are terms u1, ..., um such that {s ≈ u1, u1 ≈ u2, ..., um ≈ t} ⊆ I;
or (III) s is of the form f(s′), the term t is of the form f(t′), and [s′]I = [t′]I . Let
s = f1...fn(s′′) and t = f1...fn(t′′) for the longest possible common prefix f1...fn

of s and t. We prove the claim by induction on n. If n = 0, then only cases (I) and
(II) apply. The claim follows from conditions (vi) and (viii), respectively, of the
definition of I∞. We now assume that the claim holds for n and prove the claim
for n + 1. In cases (I) and (II), the claim follows again from conditions (vi) and
(viii), respectively. In case (III) we have that s is of the form f1...fn+1(s′′), the
term t is of the form f1...fn+1(t′′), and [f2...fn+1(s′′)]I = [f2...fn+1(t′′)]I . By the
induction hypothesis we have that f2...fn+1(s′′) ≈ f2...fn+1(t′′) ∈ I∞. Therefore,
there is an i such that f2...fn+1(s′′) ≈ f2...fn+1(t′′) ∈ Ii and the claim follows
due to condition (ix) of the construction of I∞. ut

We are ready to show that I∞ is a model of Ξ(K) ∪ ET .

Lemma 7. Let K = 〈T ,A〉 be an ELHIO KB, let I be the minimal Herbrand
model of Ξ(K) ∪ E′

T . Then, I∞ is a Herbrand model of Ξ(K) ∪ ET .

Proof. We first show that I0 is a model of Ξ(K). The set Ξ(K) contains clauses
of the form (28)–(31), (33)–(35), and (38)–(40).

We now show that I0 is a model of clauses of form (30); the proof is analogous
for clauses of form (28), (29), (31), (34), and (35). We show that if P (s, t) ∈ I0

and B(t) ∈ I0, then A(t) ∈ I0. If we have that P (s, t) ∈ I and B(t) ∈ I, then
A(t) ∈ I because I is a model of Ξ(K). Therefore, A(t) ∈ I0 since I \ OI ⊆ I0.
Otherwise, we first assume that P (s, t) 6∈ I and B(t) ∈ I. It follows from the def-
inition of I0 that P ([s]I , [t]I) ∈ I; moreover, Lemma 4 implies that B([t]I) ∈ I.
Therefore, we have that A([t]I) ∈ I and according to condition (ii) of the def-
inition of I0, we have that A(t) ∈ I0; the claim can be shown analogously for
the case where P (s, t) ∈ I and B(t) 6∈ I. Finally, we assume that P (s, t) 6∈ I and
B(t) 6∈ I. It follows from the definition of I0 that P ([s]I , [t]I) ∈ I and B([t]I) ∈ I;
therefore, we have that A([t]I) ∈ I and according to condition (ii) of the defini-
tion of I0, we have that A(t) ∈ I0.
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We now show that I0 is a model of clauses of form (38). We show that
if A(s) ∈ I0, then P (s, f(s)) ∈ I0. If we have that A(s) ∈ I, then P (s, f(s)) ∈ I
because I is a model of Ξ(K). Therefore, P (s, f(s)) ∈ I0, since I \ OI ⊆ I0. Oth-
erwise, it follows from the definition of I0 that A([s]I) ∈ I; therefore, we have
that P ([s]I , f([s]I)) ∈ I. By Lemma 4, we have that P ([[s]I ]I , [f([s]I)]I) ∈ I. The
function [·]I is idempotent by definition, so we have P ([s]I , [f([s]I)]I) ∈ I; more-
over, by Lemma 5, we have that [f([s]I)]I = [f(s)]I , so P ([s]I , [f(s)]I) ∈ I. Now,
according to condition (iii) of the definition of I0, we have that P (s, f(s)) ∈ I0;
the proof is analogous for clauses of form (33) and (39).

We finally show that I0 is a model of clauses of form (40). We show that if
A(s) ∈ I0, then s ≈ o ∈ I0. If we have that A(s) ∈ I, then s ≈ o ∈ I because I is
a model of Ξ(K). Therefore, s ≈ o ∈ I0, since I \ OI ⊆ I0. Otherwise, it follows
from the definition of I0 that A([s]I) ∈ I; therefore, we have that [s]I ≈ o ∈ I.
Now, according to condition (iv) of the definition of I0, we have that s ≈ o ∈ I0.

Since I0 is a model of Ξ(K), we have that I∞ is also a model of Ξ(K) since
I0 ⊆ I∞, only atoms of the form s ≈ t are added to Ii for every i > 0, and no
clause in Ξ(K) contains the predicate ≈ in the body.

We now show that I∞ is a model of ET . It follows from the definition of Ii for
i > 0 that I∞ is a model of the reflexivity, symmetry, transitivity, and functional
monotonicity clauses of ET . Therefore, we need only consider the substitutivity
clauses of ET . We consider binary substitutivity 1. We show that if P (s, t) ∈ I∞
and t ≈ u ∈ I∞, then P (s, u) ∈ I∞. Since no atom of the form P (s, t) is added
to I∞ in the construction of Ii for i > 0, we have that P (s, t) ∈ I0; moreover,
it follows from the definition of I0 that either P (s, t) ∈ I or P (s, t) 6∈ I. In the
former case, by Lemma 4, we have P ([s]I , [t]I) ∈ I; and in the latter case it
follows from the definition of I0 that P ([s]I , [t]I) ∈ I. Since t ≈ u ∈ I∞, Lemma
6 implies that [t]I = [u]I . Therefore, according to condition (iii) of the definition
of I0 we have that P (s, u) ∈ I0, which implies that P (s, u) ∈ I∞ since I0 ⊆ I∞;
the claim can be shown analogously for other substitutivity clauses. ut

We are ready to show that I∞ is minimal.

Lemma 8. Let K = 〈T ,A〉 be an ELHIO KB, let I be the minimal Her-
brand model of Ξ(K) ∪ E′

T . We have that every fact D ∈ I∞ is derivable from
Ξ(K) ∪ ET .

Proof. Note that D is of the form s ≈ t, A(s) or P (s, t). We first consider the
case where D ∈ I. Let Σ = 〈T, δ, λ〉 be the derivation tree of D. We transform
Σ into a new derivation tree Σ′ as follows: for every node n ∈ T , if δ(n) is of the
form O(o), then remove n from T ; and if λ(n) contains an atom of the form O(y),
then remove such an atom from λ(n). Given the substitutivity clauses contained
in ET it follows that Σ′ is a derivation tree for D such that for every node n ∈ T ′

we have that λ(n) ∈ Ξ(K) ∪ ET . Therefore, D is derivable from Ξ(K) ∪ ET .
We now consider the case where D 6∈ I. In case D is of the form s ≈ t, we have

that it was added to I∞ due to condition (iv) of the definition of I0, or conditions
(vi)–(ix) of the definition of Ii for i > 0. For condition (iv), it follows from the
definition of I0 that [s]I ≈ t ∈ I; and since I \ OI ⊆ I∞, we have [s]I ≈ t ∈ I∞.
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Since clearly [s]I = [[s]I ]I , Lemma 6 implies that s ≈ [s]I ∈ I∞. Therefore, the
atom s ≈ t is derivable from Ξ(K) ∪ ET given the transitivity clause of ET .
For conditions (vi)–(ix), it is easy to see that s ≈ t is derivable from Ξ(K) ∪ ET
given the reflexivity, symmetry, transitivity, and functional monotonicity clauses
of ET , respectively. We now assume that D is of the form P (s, t); the unary case
can be shown analogously. Since no atom of the form P (s, t) is added to I∞ in
the construction of Ii for i > 0, we have that P (s, t) ∈ I0; moreover, it follows
from the definition of I0 that either P (s, t) ∈ I or P (s, t) 6∈ I. In the former case,
by Lemma 4, we have P ([s]I , [t]I) ∈ I; and in the latter case it follows from the
definition of I0 that P ([s]I , [t]I) ∈ I. As already shown, there is a derivation tree
Σ′ for P ([s]I , [t]I). Since clearly [s]I = [[s]I ]I and [t]I = [[t]I ]I , Lemma 6 implies
that s ≈ [s]I ∈ I∞ and t ≈ [t]I ∈ I∞. We obtain a derivation tree Σ′′ for P (s, t)
from Σ′ by applying the binary substitutivity clauses of ET twice. Therefore,
P (s, t) is derivable from Ξ(K) ∪ ET . ut

By Lemma 7 we have that I∞ is a Herbrand model of Ξ(K) ∪ ET , and
by Lemma 8 we have that every fact D ∈ I∞ is derivable from Ξ(K) ∪ ET .
Therefore, I∞ is the minimal Herbrand model of Ξ(K) ∪ ET . Lemma 9 follows
from this fact, since by definition of I∞, we have that D([~s]I) ∈ I∞ iff D([~s]I) ∈ I.

Lemma 9. Let K = 〈T ,A〉 be an ELHIO KB, let I be the minimal Herbrand
model of Ξ(K) ∪ E′

T , and let Q = 〈QP , QC〉 be a conjunctive query. We have
that [~a]I ∈ ans(Q,K) iff [~a]I ∈ ans(Q,Ξ(K) ∪ E′

T ).

Lemma 9 implies that ans(Q, Ξ(K) ∪ E′
T ) ⊆ ans(Q,K). As previously men-

tioned, in order to compute the whole set ans(Q,K), one needs to expand
ans(Q, Ξ(K) ∪ E′

T ) by expanding every tuple ~a into all tuples of terms ~b such
that each ai is equal to the corresponding bi. We formalize this process as follows.

Definition 6. Let ans(Q, Ξ(K) ∪ E′
T ) = {〈a1,1, ..., a1,m〉, ..., 〈an,1, ..., an,m〉} for

a conjunctive query Q and an ELHIO KB K. With ans′(Q,Ξ(K) ∪ E′
T ) we de-

note the set
⋃n

i=1×m
j=1ri,j, where ri,j is the set containing ai,j and every constant

to which there is a path from ai,j in ans(Qeq(x, y)← x ≈ y, Ξ(K) ∪ E′
T ).

By Lemma 9 we have that [~a]I ∈ ans(Q,K) iff [~a]I ∈ ans(Q,Ξ(K) ∪ E′
T ).

Moreover, it follows from the definition of [·]I and Lemma 2 that if there is a path
from a to b in the relation ans(Qeq(x, y)← x ≈ y, Ξ(K) ∪ E′

T ), then [a]I = [b]I .
Furthermore, by Lemma 6 we have that [a]I = [b]I implies a ≈ b ∈ I∞. This im-
plies Lemma 10 since, by Lemma 7 and Lemma 8, we have that I∞ is the minimal
Herbrand model of Ξ(K) ∪ ET .

Lemma 10. For K an ELHIO KB, and Q = 〈QP , QC〉 a conjunctive query,
we have that ans(Q,K) = ans′(Q,Ξ(K) ∪ E′

T ).

4.2 Computing ans(Q, Ξ(K) ∪ E′
T ) using Resolution

As mentioned in Section 3, it follows from the definition of certain answers that a
tuple ~a is a certain answer to a conjunctive query Q = 〈QP , QC〉 over Ξ(K) ∪ E′

T
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iff the logic program Ξ(K) ∪ E′
T ∪QC ∪ {⊥ ← QP (~a)} is unsatisfiable. Joyner

[22] has established the fundamental principles for deciding a first-order frag-
ment L by resolution: first, one selects a sound and complete clausal calculus
R; second, one identifies a set of clauses N such that (i) N is finite for a finite
signature, and (ii) the translation of each formula α ∈ L into clauses produces
only clauses from N ; and third, one demonstrates that N is closed under R—
that is, one shows that applying an inference of R to clauses from N produces
a clause in N . This is sufficient to obtain a refutation decision procedure for L:
given any formula α ∈ L, a saturation by R of the clauses corresponding to α
will, in the worst case, derive all clauses of N .

Note, however, that Joyner’s principles allow us only to check whether some
tuple ~a is an answer to Q over Ξ(K) ∪ E′

T . In order to compute the entire set
ans(Q,Ξ(K) ∪E′

T ), we make use of the answer literal technique [20]: instead of
saturating Ξ(K) ∪ E′

T ∪QC ∪ {⊥ ← QP (~a)}, we saturate Ξ(K) ∪ E′
T ∪QC by

RDL—a suitably parameterized RFS calculus. The following lemma shows that
by doing so we shall compute all answers to Q over Ξ(K) ∪ E′

T .

Lemma 11. Let K be an ELHIO KB, and Q = 〈QP , QC〉 a conjunctive query.
We have that ~a ∈ ans(Q,Ξ(K) ∪ E′

T ) iff QP (~a) ∈ (Ξ(K) ∪ E′
T ∪QC)RDL .

Proof. Clearly, ~a ∈ ans(Q,Ξ(K) ∪ E′
T ) iff Ξ(K) ∪ E′

T ∪QC ∪ {⊥ ← QP (~a)} is
unsatisfiable. We show that the latter is the case iff QP (~a) is contained in
(Ξ(K) ∪ E′

T ∪QC)RDL . The (⇐) direction is trivial. For the (⇒) direction, note
that Ξ(K) ∪ E′

T ∪QC does not contain clauses with the empty head, so a satura-
tion of Ξ(K) ∪ E′

T ∪QC by RDL cannot derive the empty clause. Furthermore,
the predicate QP does not occur in the body of any clause in Ξ(K) ∪ E′

T ∪QC ;
thus, RDL can derive the empty clause from Ξ(K) ∪ E′

T ∪QC ∪ {⊥ ← QP (~a)}
only if QP (~a) ∈ (Ξ(K) ∪ E′

T ∪QC)RDL . Since any RFS calculus is sound and
complete [5], the claim of this lemma follows. ut

We now apply Joyner’s principles and the answer literal technique to show
how to compute ans(Q,Ξ(K) ∪E′

T ) using resolution. With NDL we denote the
clause set defined in Definition 7. Clearly, NDL is finite assuming that Q and
Ξ(K) are finite; moreover, it can be verified that Ξ(K) ∪ E′

T ∪QC ⊆ NDL. In
the rest of this section we present RDL and we show that NDL is closed under
RDL. We formally define NDL and RDL as follows.

Definition 7. Let K be an ELHIO KB and Q = 〈QP , QC〉 a conjunctive query.
The set of ELHIO clauses NDL is the set of all clauses of types shown in
Table 4 constructed using the symbols in Q and Ξ(K) such that for every clause
C ∈ NDL the following properties hold:

– (i) C is safe.
– If C is of type 1.1, then
• (ii) var(C) = 1, and
• (iii) the head of C is of the form A(a), A(x), A(f(x)), P (a, b), P (a, x),

P (x, a), P (a, f(x)), P (f(x), a), P (x, f(x)), or P (f(x), x).
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Table 4. Clause Set NDL for Q = 〈QP , QC〉 and Ξ(K)

Type ELHIO clause

1.1 D(~s)←
∧

Ai(ai) ∧
∧

Bj(x) ∧
∧

Ck(f(x))
1.2 O(o)

2.1 A(x)← P (x, y) ∧ [B(y)]

2.2 A(x)← P (y, x) ∧ [B(y)]

2.3 P (x, a)← P (x, y) ∧A(y)

2.4 P (a, x)← P (y, x) ∧A(y)

2.5 P (x, y)← S(x, y)

2.6 P (x, y)← S(y, x)

3.1 x ≈ a← A(x)
3.2 A(y)← A(x) ∧ x ≈ y ∧ O(y)

3.3 P (x, z)← P (x, y) ∧ y ≈ z ∧ O(z)

3.4 P (z, x)← P (y, x) ∧ y ≈ z ∧ O(z)

3.5 A(a)← A(x) ∧ x ≈ a
3.6 P (x, a)← P (x, y) ∧ y ≈ a

3.7 P (a, x)← P (y, x) ∧ y ≈ a

4 QP (~s)←
∧

Di(~ti)

Note 3. D (possibly with subscripts) denotes a unary or a binary predicate; x, y, and

z denote variables; a (possibly with subscripts) denotes a constant; s and t (possibly

with subscripts) denote terms; and [D(s)] denotes a possible occurrence of the atom

D(s) in the clause.

– If C is of type 4, then
• (iv) var(C) ≤ var(QC),
• (v) depth(C) ≤ max(1, var(QC)− var(C)), and
• (vi) if a variable x occurs in a functional term in C, then x occurs in

every functional term in C.

With RDL we denote the RFS calculus parameterized with the selection func-
tion S defined as follows.

– If C ∈ NDL is of type 1.1, then S selects the head atom H if the body is
empty or if the depth of H is greater than the maximal depth of the body;
otherwise, S selects all deepest covering body atoms.

– If C ∈ NDL is of type 1.2, 2.1–2.6, or 3.1–3.7, then S selects the atom
underlined in Table 4.

– If C ∈ NDL is of type 4, then S selects the head atom H if the body is empty
or if H contains functional terms; otherwise, S selects all deepest body atoms.

Since RDL is sound and complete [5], in order to obtain a decision procedure
we only need to show that each saturation terminates. We do this in Lemma 12
by showing that NDL is closed under RDL.

Lemma 12. For every two clauses C1 and C2 ∈ NDL, and every resolvent Cr

of C1 and C2 by RDL, we have that Cr ∈ NDL.
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Table 5. Inferences of RDL on NDL

3.2 + 1.2 = 3.5:
A(y)← A(x) ∧ x ≈ y ∧ O(y) O(o)

A(o)← A(x) ∧ x ≈ o
3.3 + 1.2 = 3.6 and 3.4 + 1.2 = 3.7 are analogous.

3.5 + 3.1 = 1.1:
A(o)← A(x) ∧ x ≈ o x ≈ o← B(x)

A(o)← A(x) ∧B(x)
3.6 + 3.1 = 2.3 and 3.7 + 3.1 = 2.4 are analogous.

2.1 + 1.1 = 1.1:
A(x)← P (x, y) ∧ [B(y)] P (s, t)←

∧
Ai(ai) ∧

∧
Bj(x)

A(s)←
∧

Ai(ai) ∧
∧

Bj(x) ∧ [B(t)]
2.2–2.6 + 1.1 = 1.1 are analogous.

1.1 + 1.1 = 1.1:
D(~s)←

∧
Ai(ai) ∧A(b) A(b)

D(~s)←
∧

Ai(ai)
(a) D(~s) is of the form A(a) or P (a, b).

1.1 + 1.1 = 1.1:
D(~s)←

∧
Ai(ai) ∧

∧
Bj(x) ∧B(x) B(f(x))←

∧
A′

i(ai) ∧
∧

B′
j(x)

D(~s)σ ←
∧

Ai(ai) ∧
∧

Bj(f(x)) ∧
∧

A′
i(ai) ∧

∧
B′

j(x)
(a) D(~s) is of the form A(a), A(x), P (a, b), P (a, x), or P (x, a).
(b) σ = {x 7→ f(x)}

1.1 + 1.1 = 1.1:
D(~s)←

∧
Ai(ai) ∧

∧
Bj(x) ∧

∧
Ck(f(x)) ∧ C(f(x)) C(f(x))←

∧
A′

i(ai) ∧
∧

B′
j(x)

D(~s)←
∧

Ai(ai) ∧
∧

Bj(x) ∧
∧

Ck(f(x)) ∧
∧

A′
i(ai) ∧

∧
B′

j(x)
(a) D(~s) is of the form A(a), A(x), A(f(x)), P (a, b), P (a, x), P (x, a), P (a, f(x)),
P (f(x), a), P (x, f(x)), or P (f(x), x).

4 + 1.1 = 4:

QP (~s)← D(~t) ∧
∧

Di(~ui) D(~v)←
∧

Ai(ai) ∧
∧

Bj(x)

QP (~s)σ ← Ai(ai)σ ∧
∧

Bj(x)σ ∧
∧

Di(~ui)σ

(a) σ = MGU(D(~t), D(~v))

Note 4. The notation X + Y = Z denotes that resolving a clause of type X with a

clause of type Y produces a clause of type Z.
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Proof. The possible inferences are summarized in Table 5. If neither C1 nor C2

is of type 4, it is straightforward to check that Cr ∈ NDL; hence, we assume that
C1 is of type 4. For resolution to be possible, C2 must be of type 1.1 and the
selection function S must select the head D(~v) of C2. By the definition of S, if
D(~v) is of the form A(a) or P (a, b), then the body of C2 is empty. Therefore, the
inference only reduces the number of body atoms of C1, so Cr is of type 4. We
now consider the case where D(~v) is of the form P (α, f(x)) for α a constant a or
the variable x; the proof for the other forms of D(~v) is analogous. Let D(~t) be
of the form P (s, u). For unification to be possible, the term u must be a variable
xu or a functional term of the form f(u′).

– Let u be a variable xu. If α is also a variable x, then σ = {x 7→ s, xu 7→ f(s)}.
If α is a constant a, then σ = {s 7→ a, xu 7→ f(x)}. In both cases, due to the
occurs-check in unification, xu cannot occur in s. The inference thus de-
creases the number of variables by one, so Cr satisfies condition (iv). More-
over, since C1 satisfies condition (vi), xu does not occur in any functional
term in C1 (because it does not occur in s). Hence, even though xu is mapped
to a functional term, we have that depth(Cr) ≤ depth(C1) + 1, so Cr satisfies
condition (v). Finally, since every occurrence of xu is replaced with the same
term, the resolvent Cr satisfies condition (vi) as well.

– Let u be a functional term f(u′). If α is a variable x, then we have that
either s = u′ and σ = {x 7→ u′}; s is a variable xs (not occurring in u′) and
σ = {x 7→ u′, xs 7→ u′}; or u′ is a variable x′u and σ = {x 7→ s, x′u 7→ s}. If α
is a constant a, then σ = {s 7→ a, x 7→ u′}. In all cases, the inference does not
increase the number of variables or functional terms; therefore, Cr satisfies
conditions (iv) and (v). Furthermore, the inference does not introduce new
functional terms, so Cr satisfies condition (vi) as well.

ut

Theorem 1 follows from Lemma 11 and Lemma 12.

Theorem 1. For K an ELHIO KB, and Q = 〈QP , QC〉 a conjunctive query,
we have that ans(Q, Ξ(K) ∪ E′

T ) = {~a | QP (~a) ∈ (Ξ(K) ∪ E′
T ∪QC)RDL}.

5 Resolution-based Query Rewriting

In this section we present a query rewriting algorithm for ELHIO. We derive it
from the answering algorithm presented in Section 4: we show that in order to
answer Q over Ξ(K) ∪ E′

T , one can first saturate Ξ(T ) ∪ E′
T ∪QC with RDL to

produce a rewriting rew(Q, T ) of Q w.r.t. T , and then evaluate rew(Q, T ) over A.
Our goal is to obtain a worst-case optimal rewriting for various sublanguages of
ELHIO—that is, if T is in ELHIO, then rew(Q, T ) should be a datalog query;
if T is in DL-Lite+, then rew(Q, T ) should consist of a union of conjunctive
queries and a linear datalog query; finally, if T is in DL-LiteR, then rew(Q, T )
should be a union of conjunctive queries.
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In a nutshell, our algorithm takes as input Q and T , and proceeds in two
steps: (i) the set Ξ(T ) ∪ E′

T ∪QC is saturated using RDL, and (ii) the result-
ing logic program (Ξ(T ) ∪ E′

T ∪QC)RDL is transformed into a datalog query
rew(Q, T ) of optimal form. By Lemma 12, we know that every saturation by
RDL terminates; hence, the main challenge in computing the rewriting lies
in ensuring that (Ξ(T ) ∪ E′

T ∪QC)RDL can always be transformed into an
optimal rewriting. In the rest of this section, we first show how to convert
(Ξ(T ) ∪ E′

T ∪QC)RDL into a nonoptimal datalog rewriting, and then we present
an optimization step to obtain rewritings of optimal form.

5.1 Elimination of Function Symbols

We have devised RDL such that transforming (Ξ(T ) ∪ E′
T ∪QC)RDL into a

datalog program simply amounts to discarding clauses containing function sym-
bols. Intuitively, the reason is that by saturating Ξ(T ) ∪ E′

T ∪QC we obtain new
clauses that act as “inference shortcuts” rendering clauses containing function
symbols unnecessary to derive facts. We illustrate this point with an example.

Example 5. Consider an ELHIO TBox T3 containing the following axioms:

Catholic v ∃believesIn.Deity
∃believesIn.Deity v Theist

The TBox T3 states that a catholic believes in a deity, and that someone who
believes in a deity is a theist. Clearly, we have that T3 |= Catholic v Theist.

The set Ξ(T3) contains the following clauses:

believesIn(x,deityOf(x))← Catholic(x) (41)

Deity(deityOf(x))← Catholic(x) (42)

Theist(x)← believesIn(x, y) ∧Deity(y) (43)

Resolving (41) with (43) produces

Theist(x)← Deity(deityOf(x)) ∧ Catholic(x). (44)

Resolving (42) with (44) produces

Theist(x)← Catholic(x). (45)

Therefore, the saturation of Ξ(T3) will create a new function-free “shortcut”
clause (45) that explicitly represents the fact that T3 |= Catholic v Theist.

According to the definition of the certain answers, in order to answer con-
junctive queries, we are only interested in tuples of constants (not of func-
tional terms). Moreover, since it is possible to obtain rew(Q, T ) by saturating
Ξ(T ) ∪ E′

T ∪QC with RDL, every relevant implicit logical consequence (such as
(45)) that can be used to derive new facts will be made explicit by the satura-
tion. Therefore, we can safely get rid of every clause containing function symbols
in (Ξ(T ) ∪ E′

T ∪QC)RDL . The following definition summarizes the first step of
the algorithm.
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Definition 8. Let K = 〈T ,A〉 be an ELHIO KB and Q = 〈QP , QC〉 a conjunc-
tive query. With ff(Q, T ) we denote the set that contains exactly every function-
free clause contained in (Ξ(T ) ∪ E′

T ∪QC)RDL .

We now show that ff(Q, T ) is a rewriting of Q w.r.t. Ξ(T ) ∪ E′
T , albeit not

necessarily an optimal one. To this end, we first prove that in order to compute
the answers to Q over an ELHIO KB K = 〈T ,A〉, we can always “postpone” the
inferences involving ground facts of the form A(a) or P (a, b) in the saturation
of Ξ(K) ∪ E′

T ∪QC .

Lemma 13. Let K = 〈T ,A〉 be an ELHIO KB and Q = 〈QP , QC〉 a conjunc-
tive query. For every clause C of type 4, if C ∈ (Ξ(K) ∪ E′

T ∪QC)RDL , then
there is a clause C ′ of type 4 such that C ′ ∈ (Ξ(T ) ∪ E′

T ∪QC)RDL and there is
a derivation tree for C from {C ′} ∪ g(ff(Q, T ),A), where g(ff(Q, T ),A) is the set
of exactly all clauses of the form A(a) or P (a, b) contained in (ff(Q, T )∪A)RDL .

Proof. We prove the claim by induction on the height of a derivation tree of C.
If the derivation tree has height zero, then C ′ is the only clause contained in
QC , and the claim trivially follows. We assume that the claim holds for each
clause derived by a derivation tree of height n, and consider a clause C derived
by a derivation tree of height n + 1. Let C1 and C2 be the clauses that are
resolved to obtain C. W.l.o.g. we assume that C1 is of type 4 and C2 is of type
1.1. Hence, by the induction hypothesis, there is a clause C ′

1 of type 4 such that
C ′

1 ∈ (Ξ(T ) ∪ E′
T ∪QC)RDL and C1 can be derived from {C ′

1} ∪ g(ff(Q, T ),A).
The selection function S selects a deepest covering body atom in C1 and

the head D(~s) of C2, which is of the form A(a), A(f(x)), R(a, b), R(a, f(x)),
R(f(x), a), R(x, f(x)), or R(f(x), x).

If D(~s) is ground, it follows from the definition of RDL that the body of C2 is
empty. Given the fact that S selects the deepest atoms in clauses of type 1.1, and
that functional terms do not unify with constants, we have that every ground
clause has function-free premises. Therefore, we have that C2 ∈ g(ff(Q, T ),A),
and the claim follows for C ′ = C ′

1.
We now consider the case where D(~s) is not ground. We show the claim for

the case where D(~s) is of the form R(α, f(x)), for α a constant a or the variable
x; the proof for the other cases is analogous. Let C2 be a clause of the form (46).
Note that every clause of type 1.1 is safe and contains at most one variable;
therefore, since S selects the covering atoms of this type of clauses, we have that
if D(~s) is not ground, then C2 ∈ (Ξ(T ) ∪ E′

T )RDL .
We know there is a derivation tree for C1 from {C ′

1} ∪ g(ff(Q, T ),A). There-
fore, given the fact that g(ff(Q, T ),A) contains only ground unit clauses, we
have that a set {Dk( ~ak)} ⊆ g(ff(Q, T ),A) exists such that resolving C ′

1 on body
atoms {Dk(~rk)} with the atoms of {Dk( ~ak)} produces C1. Furthermore, all such
resolution inferences just remove body atoms; hence, since C1 is to be resolved
with C2, the clause C ′

1 is of the form (47), and C1 of the form (48), where δ maps
the variables occurring in {Dk(~rk)} to some constants occurring in {Dk( ~ak)}.
Note that no inference used to derive C1 changes the number of function symbols
of C ′

1; therefore, since R(s, t)δ is deepest in C1, we have that R(s, t) is deepest in
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C ′
1. Moreover, each variable of C ′

1 that is replaced by δ with a constant clearly
does not occur in R(s, t)δ; hence, the substitutions δ and σ have disjoint do-
mains, and σ = δσ. Resolving C1 and C2 produces C, a clause of the form (49),
where σ = MGU(R(s, t)δ,R(α, f(x))).

C2 = R(α, f(x))←
∧

Ai(ti) (46)

C ′
1 = QP (~u)← R(s, t) ∧

∧
Dj( ~wj) ∧

∧
Dk(~rk) (47)

C1 = QP (~u)δ ← R(s, t)δ ∧
∧

Dj( ~wj)δ (48)

C = QP (~u)δσ ←
∧

Ai(ti)σ ∧
∧

Dj( ~wj)δσ (49)

We now transform this derivation into a derivation in which all inferences
with clauses in g(ff(Q, T ),A) are performed in the end. Let C ′ be the clause
obtained by resolving C ′

1 and C2. Given the form of C ′
1 and C2, the clause C ′ is

of the form (50), where σ′ = MGU(R(s, t), R(α, f(x))).

C ′ = QP (~u)σ′ ←
∧

Ai(ti)σ′ ∧
∧

Dj( ~wj)σ′ ∧
∧

Dk(~rk)σ′ (50)

Since R(s, t) is deepest in C ′
1, the inference between C ′

1 and C2 satisfies the
selection function of RDL. Moreover, since both C ′

1 and C2 are derivable from
Ξ(T ) ∪ E′

T ∪QC , the clause C ′ is derivable from Ξ(T ) ∪ E′
T ∪QC as well. Let

D now be the clause obtained by resolving {Dk(~rk)σ′} in C ′ with atoms of
g(ff(Q, T ),A). The clause D has form (51), where δ′ maps some variables of C ′

to constants.

D = QP (~u)σ′δ′ ←
∧

Ai(ti)σ′δ′ ∧
∧

Dj( ~wj)σ′δ′ (51)

We now prove that C = D. Given the forms of C and D, and since σ = δσ,
it suffices to show that δσ = σ′δ′. We first assume that α = x, so C2 has head
R(x, f(x)). Let y be a variable that occurs in R(s, t) that is replaced by δ with
a constant. Clearly, σ does not contain such y; therefore, w.l.o.g. we can assume
that (*) if σ maps a variable z to a constant yδ, then σ′ maps z to y. Note that
σ′ may still map a variable y1 occurring in δ to another variable y2 occurring
in δ, which implies that y1δ = y2δ. Due to (*), σ and σ′ have the same domain
modulo variables such as y1; therefore, {Dk(~rk)} and {Dk(~rk)σ′} are not neces-
sarily the same. However, note that since σ′ maps variables such as y1 to other
variables such as y2, the atoms {Dk(~rk)σ′} can be resolved with the ground
atoms {Dk( ~ak)} via δ′. So, we know that σ and σ′ have the same domain mod-
ulo variables such as y1; moreover, due to the possible variable renaming of σ′ on
variables such as y1, we have that δ and δ′ are the same modulo the mappings
concerning variables such as y1. Therefore, since y2δ

′ = y2δ = y1δ, we have that
δσ = σ′δ′.

We now assume that α = a, so C2 has head R(a, f(x)). We consider the
forms of R(s, t)δ. For the inference between C1 and C2 to be possible, the term sδ
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cannot be a functional term, and tδ cannot be a constant. Therefore, R(s, t)δ can
be of the form (i) R(xs, xt), (ii) R(a, xt), (iii) R(xs, f(t′δ)), or (iv) R(a, f(t′δ)).
W.l.o.g. we assume that if R(s, t)δ is of form (i), σ = {xs 7→ a, xt 7→ f(x)}; if it
is of form (ii), σ = {xt 7→ f(x)}; if it is of form (iii), σ = {xs 7→ a, x 7→ t′δ}; and
if it is of form (iv), σ = {x 7→ t′δ}. Since tδ cannot be a constant, xt is not in the
domain of δ. In case xs is not in the domain of δ either, w.l.o.g. we can assume
that σ′ and σ have the same domain. As can be seen, such a domain is disjoint
from the domain of δ; therefore, we have that σ = σ′δ and δ = δ′. Therefore,
δσ = σ′δ′ since σ = δσ. In case xs is in the domain of δ, we have that δ has
to map xs to a in order for the inference between C1 and C2 to be possible.
Moreover, R(s, t)δ is of form (ii) or (iv). W.l.o.g. we assume that σ and σ′ have
the same domain modulo xs. Moreover, since xs is the only variable of δ that is
mapped to a term (namely, a) by σ′, we have that δ and δ′ are the same modulo
the mapping concerning xs. Furthermore, both δ and σ′ map xs to the same
constant (namely, a); therefore, δσ = σ′δ′. ut

We now demonstrate the desired relationship between ans(Q,Ξ(K) ∪ E′
T )

and ans(ff(Q, T ),A). By Theorem 1, it follows that ~a ∈ ans(Q,Ξ(K) ∪ E′
T ) iff

QP (~a) ∈ (Ξ(K) ∪ E′
T ∪QC)RDL . By Lemma 13, we have that there is a clause

C ′ ∈ (Ξ(T ) ∪ E′
T ∪QC)RDL of type 4, such that there is a derivation tree for

QP (~a) from {C ′} ∪ g(ff(Q, T ),A). Since QP (~a) does not contain function sym-
bols, C ′ does not contain function symbols either, so C ′ ∈ ff(Q, T ). Hence, by
the definition of g(ff(Q, T ),A), it follows that there is a derivation tree for QP (~a)
from ff(Q, T ) ∪ A. Lemma 14 follows immediately.

Lemma 14. Let K = 〈T ,A〉 be an ELHIO KB, and Q = 〈QP , QC〉 a conjunc-
tive query. We have that ans(Q,Ξ(K) ∪ E′

T ) = ans(ff(Q, T ),A).

According to Lemma 14, the datalog program ff(Q, T ) is a rewriting of Q
w.r.t. Ξ(T ) ∪ E′

T . We note, however, that ff(Q, T ) is not necessarily optimal for
DL-Lite+. We illustrate the point with an example.

Example 6. Consider a DL-Lite+ TBox T4 consisting of the following axioms:

∃believesIn.Deity v Theist
praysTo v believesIn

Since T4 does not contain O-constants, then E′
T4

= ∅; therefore Ξ(T4) ∪ E′
T4

consists of the following clauses:

Theist(x)← believesIn(x, y) ∧Deity(y)

believesIn(x, y)← praysTo(x, y)

Consider the query Q4: Q4(x)← Theist(x). It is not difficult to verify that
Ξ(T4) ∪ E′

T4
∪ {Q4} = ff(Q4, T4). This is so because such a set does not contain

function symbols, and it is already saturated by RDL. In the case of DL-Lite+, a
worst-case optimal rewriting consists of a union of conjunctive queries and a lin-
ear datalog program [32]. In this case, however, predicates Theist and believesIn
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are both IDB predicates; therefore, the datalog program ff(Q4, T4) \ {Q4} is not
linear.

We now introduce a further step that transforms ff(Q, T ) into a datalog
program of optimal form.

5.2 Optimizing the Rewriting

The second step of the algorithm is based on the notion of unfolding that is
formally defined as follows.

Definition 9. Let C1 be a clause of the form D1(~r)←
∧

Di(~si) and let C2

be a clause of the form D2(~t)← D1(~u) ∧
∧

Dj(~vj). The unfolding of C1 in C2

is the clause D2(~t)σ ←
∧

Di(~si)σ ∧
∧

Dj(~vj)σ, where σ = MGU(D1(~r), D1(~u)).
The clause C1 is said to have been unfolded into C2.

Let R and U be sets of safe Horn clauses. With RU we denote the small-
est set such that R ⊆ RU , and for every unfolding Cr of a clause C1 ∈ R ∩ U
in a clause C2 ∈ R, we have that there is a clause C ′

r ∈ RU that is equiva-
lent to Cr up to variable renaming. The unfolding of R w.r.t. U is defined as
unfold(R,U) = RU \ U .

We show that unfolding clauses does not change the set of “relevant” conse-
quences (ground facts) of a datalog program.

Lemma 15. Let R and U be sets of safe Horn clauses. For any set of facts A
and for any predicate D that does not occur in U , we have R ∪A |= D(~a) iff
unfold(R,U) ∪A |= D(~a).

Proof. For the (⇐) direction, note that R |= RU and unfold(R,U) ⊆ RU ; there-
fore, for each clause C, if unfold(R,U) ∪A |= C then R ∪A |= C.

For the (⇒) direction, let Σ = 〈T, δ, λ〉 be the derivation tree of D(~a). We now
inductively define a function σ(t) as follows: starting from the leaves upwards,
for each t ∈ T , we set σ(t) to be the clause obtained from λ(t) by unfolding
each σ(t.i) in the i-th body atom of λ(t) provided that σ(t.i) /∈ U or δ(t.i) ∈ A;
furthermore, we call t a surviving node iff σ(t) /∈ U or δ(t) ∈ A. We say that
a node t2 is the closest surviving node to t1 if t2 is a surviving node, if it is a
descendent of t1, and no node on the path between t1 and t2 is a surviving node.
By the inductive definition of σ, it can be seen that, for each node t, the fact
δ(t) can be derived by resolving σ(t) with the set of facts {δ(t1), . . . , δ(tn)} in
one step, where t1, . . . , tn are exactly all the closest surviving nodes to t. Note
that, for every node t ∈ T , we have σ(t) ∈ RU . Moreover, if t is a surviving node,
then σ(t) ∈ unfold(R,U). Therefore, if t is a surviving node, the fact δ(t) can be
derived from unfold(R,U) ∪A. Since the predicate D does not occur in U , we
have D(~a) /∈ U . Furthermore, δ(ε) = D(~a), so the clause σ(ε) contains D in the
head, and σ(ε) /∈ U . Thus, ε is a surviving node, so δ(ε) can be derived from
unfold(R,U) ∪A. ut
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In order to obtain the rewriting rew(Q, T ), the idea is to unfold certain types
of clauses in ff(Q, T ) such that the resulting set is an optimal rewriting for the
sublanguage of ELHIO used to model T . We are ready to define the rewriting
rew(Q, T ) in terms of ff(Q, T ).

Definition 10. Let Q = 〈QP , QC〉 be a conjunctive query, and T an ELHIO
TBox. Let rew(Q, T ) = 〈QP , unfold(ff(Q, T ), U)〉, where U is the set that con-
tains every clause C ∈ NDL of one of the following forms:

A(x)← B(x) (52)
A(x)← R(x, y) (53)
A(x)← R(y, x) (54)

R(x, y)← S(x, y) (55)
R(x, y)← S(y, x) (56)

Theorem 2 follows from Lemma 14 and Lemma 15, since w.l.o.g. we can
assume that QP does not occur in any of the clauses that are to be unfolded to
obtain rew(Q, T ).

Theorem 2. Let K = 〈T ,A〉 be an ELHIO KB, and Q = 〈QP , QC〉 a conjunc-
tive query. We have that ans(Q,Ξ(K) ∪ E′

T ) = ans(rew(Q, T ),A).

5.3 Structure of the Rewriting

We now consider the form of the rewriting. We show important properties of
the structure of rew(Q, T ) that are used in Section 6 to prove complexity results
about query answering in ELHIO¬.

Lemma 16. Let T be an ELHIO TBox, Q = 〈QP , QC〉 be a conjunctive query,
and let rew(Q, T ) = 〈QP , Q′

C〉. We have that (i) rew(Q, T ) is a datalog query;
(ii) if T is a DL-Lite+ TBox, then Q′

C consists of a union of conjunctive queries
and a linear datalog program; and (iii) if T is a DL-LiteR TBox, then rew(Q, T )
is a union of conjunctive queries.

Proof. We first consider claim (i). It is immediate to see that, since ff(Q, T ) does
not contain functional terms, we have that rew(Q, T ) does not contain functional
terms either. Therefore, the claim holds.

We now consider claim (ii). It follows from Table 2 and the definition of
DL-Lite+ that E′

T = ∅, and Ξ(T ) only contains clauses of type 2.5, 2.1, or 1.1
of the form B(x)← A(x), P (x, f(x))← A(x), or B(f(x))← A(x). By analyzing
the inferences shown in Table 5, one can see that saturating a set of clauses of
these forms by RDL produces only clauses of the same forms plus clauses of the
form A(x)← B(f(x)) ∧ C(x). Therefore, ff(Q, T ) contains only clauses of type 4
or of the form (52), (53), (55), or A(x)← R(x, y) ∧B(y). Hence, the datalog pro-
gram Q′

C only contains clauses of type 4, and of the form A(x)← R(x, y) ∧B(y)
or A(x)← R(x, y) ∧ S(y, z) (which are obtained by unfolding a clause of the
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form (53) into a clause of the form A(x)← R(x, y) ∧B(y)). Clearly, every bi-
nary predicate in Q′

C is an EDB predicate. Moreover, even though there could
be unary IDB predicates in Q′

C , we have that there can be at most one unary
atom in the clauses of Q′

C which are not of type 4. Therefore Q′
C consists of a

union of conjunctive queries and a linear datalog program.
We finally consider claim (iii). It follows from Table 2 and the definition of

DL-LiteR that E′
T = ∅, and Ξ(T ) only contains clauses of type 2.1 with one

body atom, 2.2 with one body atom, 2.5, 2.6, or 1.1 of the form B(x)← A(x),
P (x, f(x))← A(x), P (f(x), x)← A(x) or B(f(x))← A(x). By analyzing the
inferences shown in Table 5, one can see that saturating a set of clauses of these
forms by RDL produces only clauses of the same forms. Therefore, ff(Q, T )
contains only clauses of type 4 or of the form (52)–(56). Clearly, the datalog
program Q′

C only contains clauses of type 4; hence, the claim follows. ut

5.4 Size of the Rewriting

We now provide estimates on the maximal number of clauses M generated by
our rewriting algorithm and the maximal size |rew(Q, T )| of the rewriting.

Lemma 17. Let T be an ELHIO TBox, and Q be a conjunctive query. We have
that (i) the maximal number M of clauses generated by our rewriting algorithm
is O(2tq

) and (ii) the maximal size |rew(Q, T )| of the rewriting is O(2tq).

Proof. We first consider claim (i). Clearly, we have that M = |NDL|+ F , where
|NDL| is the size of the clause set and F is the maximal number of clauses
produced in the unfolding step. We provide upper bounds for |NDL| and F .

We first consider |NDL|. We analyze clauses of type 4 since they are the
longest and deepest clauses in NDL. Let p be the number of predicate names
occurring in Ξ(T ), f the number of constants and function symbols occurring
in Ξ(T ), v a bound on the number of variables for the clauses of Ξ(T ), d a
bound on the maximal depth for the clauses of Ξ(T ), and b be the number of
body atoms of QC . It can be readily verified that it is possible to build pfdv
unary atoms and p(fdv)2 binary atoms with the symbols of Ξ(T ). For clauses of
type 4, however, both d and v are bounded by var(QC) and consequently by b.
Therefore, we can build no more than U = pf bb unary and B = p(f bb)2 binary
atoms for clauses of type 4. Moreover, it is easy to see that we can build no more
than H = (f bb)a head atoms for clauses of type 4, where a is the arity of QC .

We now determine the length of the longest clause of type 4—that is, we
determine the maximal number of occurrences of unary and binary body atoms
in every clause of type 4. The number of unary body atoms of a clause of type 4
may be augmented by resolving it with a clause of type 1.1; however, no inference
augments the number of binary atoms, which are bounded by b. Therefore, the
longest clause C in NDL contains no more than one head atom, U unary body
atoms and b binary body atoms.

Given the possible atoms that can be built for clauses of type 4 and the
length of the longest clause of type 4, it can be readily verified that there can be
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no more than H2UBb clauses of type 4 in NDL. Note that p and f depend on T ,
and a and b depend on Q. Let t = |T | and q = |Q|. We have that H = O((tqq)q),
U = O(ttqq), and B = O((t(tqq)2)q); therefore, the number of clauses of type 4
contained in NDL is

O((tqq)q2ttqq(t(tqq)2)q) = O(t3q2+qq3q2qtq+1
) = O(2tq

).

Since clauses of type 4 are the longest and deepest clauses in NDL, we have that
|NDL| = O(2tq

).
We now consider F . Note that only the function-free clauses of NDL are

unfolded; therefore, we first need to determine the size |ff(Q, T )| of ff(Q, T ). We
do so by analyzing the number of possible clauses of type 4 in NDL with a depth
equal to 0. For such clauses, we can build no more than H0 = (fb)a head atoms,
U0 = pfb unary body atoms, and B0 = p(fb)2 binary body atoms. The length
of the longest clause of type 4 with depth 0 is the same as before; therefore,
there can be no more than H02U0B0

b clauses of type 4 in ff(Q, T ). Since p and f
depend on t, and a and b depend on q, we have that H0 = O((tq)q), U0 = O(ttq),
and B0 = O((t(tq)2)q); therefore, the number of clauses of type 4 contained in
ff(Q, T ) is

O((tq)q2t2q(t(tq)2)q) = O(t4qq3q2t2q) = O(2tq).

The unfolding step may augment the number of binary body atoms in clauses of
type 4. Each unary atom of a clause C ∈ ff(Q, T ) can be replaced with a binary
atom. Therefore, for every such C, the unfolding step produces no more than
pU0 clauses. Hence, the number of clauses of type 4 produced in the unfolding
step is the number of clauses of this type contained in ff(Q, T ) multiplied by
pU0 . Consequently, the number of clauses of type 4 produced in the unfolding
step is

O(2tqtttq) = O(2tq).

Since clauses of type 4 are the longest and deepest clauses produced in the
unfolding step, we have that F = O(2tq).

We conclude that the maximal number of clauses M generated by our rewrit-
ing algorithm is

O(|NDL|+ F ) = O(2tq

+ 2tq) = O(2tq

).

We now consider claim (ii). The number of clauses of type 4 contained in
rew(Q, T ) is the number of clauses of this type contained in ff(Q, T ) plus the
new clauses of this type produced in the unfolding step, that is

O(2tq + 2tq) = O(2tq).

Since clauses of type 4 are the longest and deepest clauses in ff(Q, T ) and in the
set of clauses produced in the unfolding step, we have that |rew(Q, T )| = O(2tq).

ut
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Note that according to Lemma 17, even though the number of clauses gen-
erated by our algorithm is doubly exponential w.r.t. |T | and |Q|, the number of
clauses in the computed rewriting rew(Q, T ) is only exponential w.r.t. |T | and
|Q|.

6 Data Complexity Analysis

Query answering is typically considered the most important reasoning task in
scenarios where the size of the ABox is considerably larger than the size of the
TBox. In this kind of scenario, it is usual to measure the complexity of query
answering w.r.t. the size of the ABox only. This notion of complexity is known
as data complexity, and has been extensively studied in the database community
[39]. The data complexity of query answering over DLs has been studied for a
large variety of DLs of the DL-Lite and EL families (see for instance, [13, 36, 26,
27]). We now determine the data complexity of answering conjunctive queries
over ELHIO¬ KBs, and show that rew(Q, T ) is optimal w.r.t. data complexity
for various sublanguages of ELHIO¬.

Theorem 3. Let K = 〈T ,A〉 be an ELHIO KB, and Q = 〈QP , QC〉 a conjunc-
tive query. Deciding ~a ∈ ans(Q,Ξ(K) ∪ E′

T ) is PTime-complete w.r.t. |A|.

Proof. It has been shown in [13] that the problem of instance checking is already
PTime-hard if the language in which K is modeled allows for TBox axioms of the
form ∃P.A v B and AuB v C. Moreover, it is well known that, given a datalog
program DP , deciding whether DP |= P (~a) can be done in PTime w.r.t. to the
number of facts in DP [15]. According to Lemma 16 we have that rew(Q, T ) is a
datalog query; therefore, since its size does not depend on A, deciding whether
~a ∈ ans(rew(Q, T ),A) is PTime-complete w.r.t. |A|. The claim follows from this
fact given Theorem 2. ut

As explained in Section 3, verifying whether an ELHIO¬ K = 〈T ,A〉 is
unsatisfiable can be reduced to answering a set of queries (that depend on T )
over 〈TPI,A〉. Therefore, as a corollary of Theorem 3, we have that verifying
whether an ELHIO¬ KB K is unsatisfiable can be done in PTime w.r.t. data
complexity. Moreover, as also explained in Section 3, if an ELHIO¬ KB is
satisfiable, then its negative inclusions are not relevant for query answering.
Therefore, as another corollary of Theorem 3, we have that given a conjunctive
query Q and a satisfiable ELHIO¬ KB K, deciding ~a ∈ ans(Q,Ξ(K) ∪ E′

T ) is
PTime-complete w.r.t. data complexity.

It is well-known that adding other common DL features to ELHIO¬, such
as disjunction or qualified universal quantification, would cause query answering
to be coNP-hard w.r.t. data complexity [13]. Therefore, ELHIO¬ is one of the
most expressive languages for which query answering remains tractable w.r.t.
data complexity.

We now consider the optimality of the rewriting. Before proceeding, we show
that a datalog program DP consisting of a union of conjunctive queries and a
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linear datalog program can be evaluated in NLogSpace w.r.t. to the number of
facts in DP .

Lemma 18. Let Q = 〈QP , QC〉 be a union of conjunctive queries, DP a linear
datalog program. Deciding DP ∪QC |= QP (~a) can be performed in NLogSpace
w.r.t. |A|, where A is the set of facts contained in DP .

Proof. If DP ∪QC |= QP (~a), then QP (~a) can be derived from the set of clauses
DP ∪QC using SLD resolution [5]. First, we nondeterministically choose a query
Qi ∈ QC and ground it by nondeterministically choosing a set of constants from
A. We then initialize the goal G to be the resolvent of Qi and ← QP (~a); if
resolution is not possible, the algorithm halts. Then, we start the following loop.
We first eliminate all atoms with EDB predicates in G by resolving them with
facts in A; if some atom cannot be resolved, the algorithm halts. If G has an
empty body, the algorithm accepts. Otherwise, we nondeterministically choose
a rule R ∈ DP and generate its grounding R′ by nondeterministically choosing
a set of constants from A. Finally, we set our goal G to be the resolvent between
R′ and G; if this is not possible, the algorithm halts. We now repeat the loop.
To ensure termination, we maintain a counter that is initialized in the beginning
to the number of ground clauses of DP and A multiplied by the number of
the queries in QC . We decrease the counter after each pass through the loop,
and we terminate the loop if the counter reaches zero. Clearly, if the algorithm
accepts, then SLD resolution for QP (~a) from DP ∪QC exists. Conversely, if an
SLD resolution exists, then we can assume that each ground instance of a rule
is used only once, so an accepting run of our algorithm exists. It is possible to
make such an assumption since w.l.o.g. we can assume that every ground fact
occurs on each branch of a derivation tree only once: multiple occurrences of a
ground fact would clearly lead to unnecessary cyclic computations.

Since we are interested in in determining the data complexity of this pro-
cedure, the number of predicates p and their arity r is bounded. Hence, if A
contains c constants, we can describe each ground atom in p · r · dlog(c)e bits.
The number of atoms in G depends on the number of clauses in DP \A ∪QC ,
so storing G requires k1dlog(c)e bits for k1 a constant that does not depend on
c. Finally, the number of ground clauses depends polynomially on c, so we can
store the counter using k2dlog(c)e bits for k2 a constant that does not depend
on c. Clearly, the algorithm requires kdlog(c)e bits of space in total for k a con-
stant that does not depend on c. The algorithm is nondeterministic, so it can be
implemented in NLogSpace. ut

Since negative inclusions are not taken into account by our rewriting algo-
rithm, it follows from Lemma 16 that if T is an ELHIO¬ TBox, then rew(Q, T )
is a datalog query; if T is a DL-Lite+ TBox, then rew(Q, T ) consists of a union
of conjunctive queries and a linear datalog query; and if T is a DL-LiteR TBox,
then rew(Q, T ) is a union of conjunctive queries. A datalog query can be evalu-
ated in PTime w.r.t. data complexity [15]; a union of conjunctive queries with
a linear datalog query, in NLogSpace w.r.t. data complexity (Lemma 18); and
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a union of conjunctive queries, in LogSpace w.r.t. data complexity [23]. There-
fore, our rewriting algorithm not only deals with various DLs from ELHIO¬
down to DL-Litecore, but it is worst-case optimal w.r.t. data complexity for all
such logics, which makes it a generalization and an extension of the rewriting
approaches of [11], [35], [32], and [33].

Even though data complexity is the most significant complexity measure in
scenarios where the size of the ABox dominates, complexity of query answering
can also be measured w.r.t. the TBox only, the query only, and all inputs com-
bined. Upper bounds concerning these types of complexity may be derived from
our rewriting algorithm. We present these complexity results in Lemma 19.

Lemma 19. Let K = 〈T ,A〉 be an ELHIO KB, and Q = 〈QP , QC〉 a conjunc-
tive query. Deciding ~a ∈ ans(Q,Ξ(K) ∪ E′

T ) is in 2EXPTime w.r.t. |T |, w.r.t.
|Q|, and w.r.t. |K|+ |Q|.

Proof. According to Lemma 17, the maximal number of clauses produced by
our algorithm is O(2tq

). Therefore, computing rew(Q, T ) takes an exponential
number of steps w.r.t. |T |, and a doubly exponential number of steps w.r.t. |Q|,
and w.r.t. |K|+ |Q|. It follows from [15] that rew(Q, T ) can be evaluated over A
in an exponential number of steps w.r.t. |rew(Q, T )|. By Lemma 17, we have that
|rew(Q, T )| = O(2qt). Therefore, evaluating rew(Q, T ) over A can be done in a
doubly exponential number of steps w.r.t. |T |, w.r.t. |Q|, and w.r.t. |K|+ |Q|.
The claim follows from these facts given Theorem 2. ut

We believe that can tighten the upper complexity bounds stated by Lemma
19 by adjusting the definition of NDL to make it as small as possible. Never-
theless, our complexity analysis suggests that our rewriting-based technique is
more likely to be useful in practice when dealing with relatively small TBoxes
and queries. It is reasonable to assume that queries are small in practice; more-
over, applications dealing with enormous databases and small schemas are quite
common. Therefore, we expect our rewriting-based query answering technique
to be useful in practice for many real scenarios.

7 Future Work

We plan to conduct a more thorough complexity analysis of our technique to de-
rive tighter bounds w.r.t. TBox, query, and combined complexity. Moreover, we
plan to develop optimization techniques to reduce the size of the rewriting, and
reduce/eliminate recursion when possible. Additionally, we plan to conduct an
empirical evaluation of our algorithm. We have already conducted some prelimi-
nary experiments with very encouraging results. We have established promising
relationships with researchers at the universities of Newcastle and Aberdeen who
are using rewriting techniques to answer queries over various different KBs. We
plan to use such KBs in our empirical evaluation.
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