
Knowledge Representation and Reasoning on
the Semantic Web: OWL

Ian Horrocks1 and Peter F. Patel-Schneider2

1Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Ian.Horrocks@comlab.ox.ac.uk

2Alcatel-Lucent Bell Labs Research
Murray Hill, New Jersey, USA
pfps@research.bell-labs.com

Abstract. OWL is the ontology language recommended by the W3C.
OWL is heavily based on the knowledge representation languages called
Description Logic, which provide the basic representation features of
OWL. OWL also includes facilities that integrate it into the mainstream
of the Web, including use of IRIs as names, XML Schema datatypes,
and ontologies as Web documents, which can then import other OWL
ontologies over the Web. Because OWL is based on Description Log-
ics, its constructs have a well defined meaning and there are tools that
effectively perform inference within OWL, enabling the discovery of in-
formation that is not explicitly stated in OWL ontologies.

1 Introduction

A major feature of the Semantic Web is the ability to provide definitions for
objects and types of objects that are accessable and manipulable from within
the Semantic Web. In computer science, a collection of these sorts of definitions
about a particular domain is called an ontology, although philosophers may (and
probably will) have a different understanding of what constitutes an ontology.

It is this ability to provide machine-processable definitions and meanings that
most divides the Semantic Web from the Visual Web of HTML, CSS, SVG, etc.,
which is focussed on presenting information to humans, and the Syntactic Web
of XML, which is focussed on the transfer of uninterpreted data between applica-
tions (which themselves are written by humans who have extra-Web knowledge
of what the data means).

OWL [62, 30] is an ontology language designed for use in the Semantic Web
and is the language recommended by the W3C for this use. OWL has influences
from quite a number of sources, but its main representational facilities are di-
rectly based on Description Logics [1]. This basis confers upon OWL a logical
framework, including both syntax and model-theoretic semantics. OWL also in-
herits from Description Logics a concern for practical reasoning and effective,

2

readily available reasoners, for example the Description Logic reasoners Pellet
[74] and HermiT [51], both of which have been extended to handle all of OWL.

OWL is also completely integrated into the Semantic Web and uses other
W3C recommendations. The official transfer syntax for OWL ontologies is
RDF/XML, a syntax for transferring RDF graphs. Names (of individuals, etc.)
in the Semantic Web are IRIs [66], so names in OWL are IRIs. OWL uses XML
Schema datatypes [9] to define and type the data values that it uses. OWL
ontologies are Web documents and are stored and retrieved just as other Web
documents. OWL includes constructs for identifying ontologies and importing
one ontology into another. OWL ontologies can also be combined with rules
using the new W3C Rule Interchange Format (RIF) standard [67].

The remainder of this chapter will: discuss the history of OWL, and the
various influences that have shaped it; describe the results of these influences,
namely the OWL language; and explain how OWL is used in applications, and
in particular how OWL reasoning services are used in practice. The focus will
be on OWL 2 [56], an extension and revision of OWL that became a W3C
Recommendation on the 27th of October, 2009.

2 History and Influences

2.1 Description Logics

Because OWL is heavily based on Description Logics, it inherits their history
and shares their influences.

The history of Description Logics started with attempts to formalize Seman-
tic Nets, which themselves were attempts to provide a sort of natural representa-
tion based on labelled graphs (nets). A major problem with Semantic Nets was
that there was no formal meaning for their graphs, leading to conflicts over just
what complex nets meant when divorced from a particular system that provided
some data manipulation facilities for Semantic Nets. Another early influence on
Description Logics were frame systems, such as FRL [68], which had many of
the characteristics of Semantic Nets, but grouped related information together
into a frame.

The representation language KL-ONE [10, 11] was a knowledge representa-
tion system that had many of the characteristics of Semantic Nets and frame
systems. Not long after its inception there were attempts to provide a full formal
semantics for KL-ONE [40]. KL-ONE with this semantics can be considered as
the first proto-Description Logic.

It was then quickly determined that the systems that manipulated KL-ONE
constructs were incomplete with respect to the semantics i.e., they systematically
were unable to make conclusions that were implicit in the information given to
them; shortly thereafter it was determined that complete inference for KL-ONE
was very difficult, in fact undecidable [72], and that inference even in very limited
subsets of KL-ONE was worst-case intractable [40]. This lead to the development
of simpler representation systems, like Kandor [61]. The aim for Kandor was

3

to design a useful representation language in which complete inference would be
easy (both easy to implement and easy to decide). Unfortunately, the designers
of Kandor were able to achieve easy complete inference only by imposing severe
limits on its expressive power.

The Description Logic community then split into three groups. One group
continued work on simple Description Logics with complete or nearly complete
but worst-case-tractable reasoning algorithms, such as the one implemented in
the Classic system [63]. Another group continued work on more expressive De-
scription Logics that had worst case intractable reasoning, such as those imple-
mented in the Kris and Crack systems [3, 12]. This group was more interested
in the formal aspects of these Description Logics. A third group built partial
reasoners for very expressive, i.e., undecidable, Description Logics, such as the
one implemented in the Loom system [45].

Eventually, with the Fact system [27], it was shown that it was possible to
provide a reasoner for an expressive Description Logic (SH) that, in spite of the
worst case intractability of basic reasoning problems, nonetheless provided com-
plete and effective reasoning in most cases. This invigorated the community, as
now Description Logics that contained useful representational constructs could
be provided with effective reasoners and thus could be used in applications.

In spite of this success, continuing concerns about tractability, particularly in
applications requiring very large ontologies or data sets, have rekindled interest
in smaller Description Logics where reasoning is worst case tractable. Research
in this area has focused on two main families of Description Logics: the EL family
and the DL-Lite family. The advantage of these logics is that standard reasoning
problems have either PTime complexity (for members of the EL family) or are
in AC0 (for members of the DL-Lite family).

SROIQ(D) Modern Description Logics are generally quite alike, with most
using the same syntax for their constructs and the same First Order semantics.
Even the names of many of the modern Description Logics are rather similar as
they are built up from letters that signify features of the logic.

The Description Logics that underlie the various Semantic Web ontology
languages are all extensions to the well known Description Logic ALC [73] plus
transitively closed primitive roles [70]. This Description Logic was called S due to
its relationship with the propositional (multi) modal logic S4m [71] (it can also
be called ALCR+ , but this name is cumbersome to add letters to representing
additional features). S is then extended to include features such as role inclusion
axioms (H, or R if role chains are allowed), nominals (O), inverse roles (I), and
number restrictions (Q if qualified, N if not).

The syntax and semantics of these features is summarised in Figure 1, where
A is a concept name, C and D are concepts, R and S are roles, R+ is the set of
transitive roles, o is an individual name, P is a simple role (i.e., one that is not
transitive and has no transitive sub-role), and n is a non-negative integer. Note
that, in order to retain decidability, it is necessary to impose some restrictions on
the property hierarchy and on the use of roles in number restrictions; for example,

4

transitive roles cannot be used in number restrictions. A complete description
of these languages and the relevant restrictions on roles can be found in the
Description Logic literature [33, 32, 29].

Construct Name Syntax Semantics

atomic concept A AI ⊆ ∆I
atomic role R RI ⊆ ∆I ×∆I
transitive role R ∈ R+ RI = (RI)+

conjunction C uD CI ∩DI
disjunction C tD CI ∪DI S
negation ¬C ∆I \ CI
exists restriction ∃R.C {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
role hierarchy R v S RI ⊆ SI H
role chains R1 ◦ . . . ◦Rn v S RI1 ◦ . . . ◦RIn ⊆ SI R
nominal {o} {oI} O
inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI} I
number
restriction

>nP
6nP

{x |]{y.〈x, y〉 ∈ P I} > n}
{x |]{y.〈x, y〉 ∈ P I} 6 n} N

qualified number
restriction

>nP.C
6nP.C

{x |]{y.〈x, y〉 ∈ P I and y ∈ CI} > n}
{x |]{y.〈x, y〉 ∈ P I and y ∈ CI} 6 n} Q

Fig. 1. Syntax and semantics of the S family of Description Logics

These logics can also be extended with concrete domains, which allow for
the use of “concrete” types, such as the integers, values, such as the integer
“5”, and predicates such as integer comparisons [2, 41, 43]. A simplified form
of concrete domains, known as Datatypes, is denoted by appending (D) to the
name of the logic, e.g., SHOIN (D) [31]; Datatypes restrict the interactions
between concrete and “abstract” parts of a knowledge base so as to avoid prob-
lems of undecidability and to simplify implementation, and are widely used in
ontology languages, including OWL and OWL 2 [49]. The syntax and semantics
of Datatypes is summarised in Figure 2, where D is a datatype name, T is a
concrete role, v is a data value and n is a non-negative integer.

2.2 OIL and DAML+OIL

The first significant effort to build a language combining Description Logics
and the Semantic Web was OIL (the Ontology Inference Layer) [28], which
was developed within the On-To-Knowledge research project (see http://www.
ontoknowledge.org/) funded by the European Union. The OIL language was
explicitly designed as “a web-based representation and inference language for on-
tologies [that combines] the widely used modeling primitives from frame-based

5

Construct Name Syntax Semantics

datatype D DI ⊆ ∆ID
data value v vI ∈ ∆ID
concrete role T I ⊆ ∆I ×∆ID
enumerated datatype {v1, . . . , vn} {vI1 , . . . , vIn}
exists restriction ∃T.D {x | ∃y.〈x, y〉 ∈ T I and y ∈ DI}
value restriction ∀T.D {x | ∀y.〈x, y〉 ∈ T I implies y ∈ DI}
number
restriction

>nT
6nT

{x |]{y.〈x, y〉 ∈ T I} > n}
{x |]{y.〈x, y〉 ∈ T I} 6 n}

qualified number
restriction

>nT.D
6nT.D

{x |]{y.〈x〉y ∈ T I and y ∈ DI} > n}
{x |]{y.〈x〉y ∈ T I and y ∈ DI} 6 n}

Fig. 2. Syntax and semantics of Description Logic Datatypes

languages with the formal semantics and reasoning services provided by descrip-
tion logics” (see http://www.ontoknowledge.org/oil/). OIL was so closely
tied to Description Logics that the semantics was specified as a mapping from
its syntax to the Description Logic SHIQ [33, 17]. From this mapping, OIL
gained both a clear semantics and a means to exploit the reasoning services of
Description Logic systems such as Fact [27], Racer [22] and Pellet [64] that
implement (most of) SHIQ(D). OIL was also influenced by frame systems as its
syntax provided for the grouping of constructs related to a particular individual
or class, thus providing the appearance of a single construct per individual or
class.

There were three syntaxes for OIL: a text based syntax, an XML syntax and
a syntax based on RDF (Resource Description Framework—see http://www.
w3.org/RDF/). The first of these was meant for presentation use only, allowing
OIL ontologies to be easily viewed without the verbose additions needed in the
other two syntaxes. The XML and RDF syntaxes were suitable for transferring
OIL ontologies in the Semantic Web, the latter allowing OIL ontologies to be
written directly as RDF graphs. OIL even used the same set of names as RDF
(i.e., rdfs:Class, rdfs:subClassOf, etc.), permitting non-OIL RDF to be used
along with OIL ontologies. So in OIL there was, for the first time, the adaptation
of Description Logic constructs for the Semantic Web. OIL, however, did not
have complete integration with RDF. Some of the Description Logic constructs
in OIL, particularly exists, value, and number restrictions, were not RDF classes
but instead had a frame-like syntax, and were not RDF classes.

The DARPA Agent Markup Language (DAML) program then joined into
the above effort to update and modify OIL to provide an even closer relationship
to the Semantic Web, particularly RDFS. The result of this collaboration was
DAML+OIL (see http://www.w3.org/Submission/2001/12/).

From the point of view of language constructs, the differences between OIL
and DAML+OIL are relatively trivial. Although there is some difference in
“keyword” vocabulary, there is usually a one-to-one mapping of constructors,
and in the cases where the constructors are not completely equivalent, simple

6

translations are possible. However, the frame structure of OIL’s syntax is much
less evident in DAML+OIL, with the result that a DAML+OIL ontology is
more Description-Logic-like in that it consists largely of a relatively unstructured
collection of subsumption and equality axioms. This can make it more difficult
to use DAML+OIL with frame-based tools such as Protégé [21] or OilEd [7],
because the axioms may be susceptible to many different frame-like groupings
[6].

The initial release of DAML+OIL did not include any specification of
datatypes. The language was, however, subsequently extended with arbitrary
datatypes from the XML Schema type system [9], which can be used in re-
strictions (slot constraints) and range constraints. As in SHOQ(D) [31], a clean
separation is maintained between instances of “object” classes (defined using the
ontology language) and instances of datatypes (defined using the XML Schema
type system). In particular, it is assumed that the domain of interpretation of
object classes is disjoint from the domain of interpretation of datatypes, so that
an instance of an object class (e.g., the individual Italy) can never have the same
interpretation as a value of a datatype (e.g., the integer 5), and that the set of
object properties (which relate individuals to individuals) is disjoint from the
set of datatype properties (which relate individuals to datatype values).

2.3 OWL and OWL 2

DAML+OIL did solve the problem of the syntactic disconnect with RDFS;
there was, however, no semantic integration between DAML+OIL and RDF—
in fact RDF did not yet have a formal semantics. Further, DAML+OIL was not
recommended by any organization beyond the two projects that had sponsored
its development.

Therefore some of the people involved in the design of DAML+OIL de-
cided to try to create a W3C recommendation for an ontology language to be
tightly integrated into the Semantic Web. To this end DAML+OIL was submit-
ted to the W3C (see http://www.w3.org/Submission/2001/12/), and a Web
Ontology Working Group (WebOnt) was subsequently chartered to produce a
Semantic Web Ontology Language based on DAML+OIL, but more tightly in-
tegrated with RDF and RDFS as well as other web standards. At the same
time the W3C RDF Core Working Group was, among other things, developing
a formal semantics for RDF and RDFS [24].

The result of WebOnt was OWL, the W3C Web Ontology Language (see
http://www.w3.org/2004/OWL/). OWL had an official Semantic Web syntax in
the form of RDF graphs, and could thus be transferred and manipulated using
Semantic Web tools There was also an internal syntax for OWL, which was
easier to manipulate formally, and there soon came to be a compact frame-like
syntax for OWL called the Manchester Syntax [26]. OWL had a model-theoretic
semantics compatible with the semantics of Description Logics, so Description
Logics reasoners could, in principle, provide reasoning facilities for OWL as they
did for OIL and DAML+OIL. However, the Description Logic SHOIN (D) on
which OWL was based was more expressive than those supported by existing

7

reasoners, and it wasn’t until more than a year after the completion of OWL
that suitable reasoning algorithms and implementations became available.

OWL used the vocabulary of RDF and RDFS where possible, so RDF and
RDFS tools could process OWL ontologies that fit into their limited expressive
power, as they could for DAML+OIL. OWL’s model-theoretic semantics was
fine-tuned to be as compatible as possible with the new semantics for RDF and
RDFS so that the constructs common with RDF and RDFS had compatible
meaning. OWL included mechanisms to import other ontologies and Semantic
Web documents across the Semantic Web; it also included a way of adding extra-
logical information into ontologies to be used, for example, to record the status
of particular classes or individuals.

To obtain the desirable implementation characteristics of Description Logics
in OWL it was necessary to limit the ways in which some constructs of RDF
and RDFS were used. This required, in particular, restricting the use of RDF
and RDFS syntax to that which corresponded to syntactically coherent OWL,
ruling out both malformed OWL syntax and the use of RDF, RDFS and OWL
vocabulary as individual, class or property names in an OWL ontology. It ad-
ditionally required vocabulary separation, i.e., ensuring that the sets of names
used for classes, properties and individuals were disjoint. Ontologies satisfying
these restrictions were guaranteed to have the desirable characteristics of De-
scription Logics, and were called OWL DL ontologies. Ontologies that violated
these restrictions were called OWL Full ontologies. Description Logic reasoners
would not be complete for OWL Full ontologies, and, indeed, reasoning in OWL
Full is trivially undecidable (see [30] for a detailed discussion). The advantage
of OWL Full was that any RDF or RDFS document could be used as an OWL
Full ontology.

Although very successful, OWL did not, of course, satisfy all user re-
quirements. After extensive discussions between users, theoreticians and im-
plementers, in particular at the 2005 OWL Experiences and Directions Work-
shop (see http://www.mindswap.org/2005/OWLWorkshop/), it was decided to
address some of these requirements via an incremental revision of OWL, pro-
visionally called OWL 1.1. The initial goal of OWL 1.1 was to exploit recent
developments in Description Logic research in order to address some of the ex-
pressivity limitations of the OWL. However, as the design of OWL 1.1 progressed,
it was decided to also address performance requirements by exploiting research
into smaller Description Logics with desirable computational properties.

The development of OWL 1.1 was initially undertaken by an informal group
of language users and developers. After the original specification reached a
mature state, and first implementations were released, the OWL 1.1 proposal
was submitted to the W3C as a Member Submission (see http://www.w3.org/
Submission/2006/10/); this was then taken as a starting point for a new W3C
Working Group that was officially formed in September 2007. As work on the
new language progressed, the initial Member Submission evolved significantly,
and the Working Group eventually decided to call the new language OWL 2 so
as to indicate a substantial step in the evolution of the language.

8

OWL 2 is based on SROIQ(D) and so extends OWL with qualified cardi-
nality restrictions and with significantly extended expressivity w.r.t. properties,
e.g., the ability to assert that properties are reflexive, irreflexive, asymmetric and
disjoint, and the ability to compose properties into property chains. OWL 2 also
weakens the name separation restriction imposed in OWL—in OWL 2 the same
name can be used for a class, a property and an individual, a feature known as
punning. In addition, OWL 2 provides greatly extended support for datatypes,
including many of the XML Schema datatypes and facets, and for annotations,
including, e.g., the ability to annotate axioms as well as entities. Finally, OWL 2
also provides a limited form of database style keys.

As well as increasing the expressive power of the complete language, OWL 2
also defines several profiles: language fragments that have desirable computa-
tional properties (see http://www.w3.org/TR/owl2-profiles/). These include
a profile based on DL Lite, a Description Logic for which standard reasoning
problems can be reduced to SQL query answering; a profile based on EL++, a
Description Logic for which standard reasoning problems can be performed in
polynomial time; and a profile based on DLP [20], a logic for which query an-
swering can be implemented using rule based techniques that have been shown
to scale well in practice. The old OWL Lite profile was depricated as it provides
no significant computational advantage w.r.t. OWL.

In addition to language features, OWL 2 boasts several “convenience” fea-
tures, including an improved specification in both BNF and UML formats, a
fully validated XML Syntax and the use of Manchester syntax as a text based
and more human friendly syntax.

3 The OWL 2 Language

Because OWL is heavily based on Description Logics, OWL 2 exhibits many
characteristics of typical Description Logics. In particular, it describes the do-
main in terms of individuals, classes (called concepts in Description Logics),
properties (called roles in Description Logics), and data types and values (called
concrete domains in Description Logics). Individual names, e.g., “John”, refer to
elements of the domain; concepts, e.g., “University”, describe sets of individuals
having similar characteristics; roles, e.g., “studiesAt”, describe relationships be-
tween pairs of individuals (such as “John studiesAt Oxford”); and data types,
e.g., “integer”, describe sets of data values, e.g., “18”. Class descriptions can
also be composed from all of the above components using various constructors,
including, for example, the Booleans.

Like a Description Logic knowledge base, an OWL 2 ontology consists of a
set of axioms and facts that describe the domain, for example, asserting that
GradStudent is a subCalssOf Student, that John is a Student or that John
hasAge 18. Finally, like a Description Logic, OWL 2 can be seen as a fragment
of First Order Logic (FOL), and is given a formal semantics based on First
Order model theory (although it could equally well be given via a translation
into Description Logic, or even directly into FOL).

9

Because OWL 2 is an ontology language for the Semantic Web it has some
differences from most Description Logics and does some things in different ways
from Description Logics.

These differences start with the names used in OWL 2, which are IRIs, the
names that underlie the Semantic Web (and indeed the Web itself) [66]. As
IRIs tend to be very long, OWL 2 syntaxes provide facilities for short forms of
names, roughly the same as QNames used by SPARQL [77]. So, for example,
OWL 2 syntaxes allow owl:Thing as a short form of http://www.w3.org/2002/
07/owl#Thing. OWL 2 also allows anonymous individuals (individuals without
global names), written out as in the RDF syntax for blank nodes, e.g., :id.
OWL 2 does not assume that different names refer to different entities, so, for
example, ex:Jack and ex:John can both be names for the same person (this is
discussed in more detail in Section 3.5); nor does it assume that the names used
for individuals, classes and properties are disjoint (as was the case in OWL),
so, for example, the same name could be used to denote both a class and an
individual (this is discussed in more detail in Section 3.3).

Moreover, OWL 2 largely uses the datatype facilities of XML Schema [9],
including floating point numbers, instead of the more mathematical (and easier
to work with) datatypes common to most Description Logics. The set of sup-
ported datatypes and facets is defined in the OWL 2 datatype map, which will
be discussed in more detail in Section 3.2.

OWL 2 has several syntaxes. The standard syntax of the Semantic Web,
RDF/XML [8] , is the one syntax that all OWL 2 implementations must support.
However, as RDF/XML is very verbose and very hard to read, there are other
syntaxes for OWL 2, including an XML syntax for integration with XML tools,
a functional-style syntax [59] that is used for precision and in formal documents,
and an easier to read syntax designed for presentation, called the Manchester
syntax [55]. Manchester syntax will be used in the remainder of this chapter,
precisely because it is designed for presentation to humans.

3.1 OWL 2 Ontologies

OWL 2 has the notion of an ontology—meant to be a collection of related in-
formation that describes a domain. These ontologies can (and generally are)
stored as Web documents and can be combined into larger collections of infor-
mation. In contrast to a Description Logic knowledge base, where conceptual
and instance level statements are usually separated into, respectively, a set of
Tbox axioms and a set of Abox assertions, an OWL 2 ontology consists of a
single set of axioms that include both conceptual and instance level statements.
OWL is non-standard in this regard: ontologies are more typically thought of as
describing only the structure of a domain (in terms of classes and properties),
and not as describing a particular situation (in terms of instances of classes and
properties); in this more common usage, an ontology is therefore equivalent to
a Description Logic Tbox, and not to the combination of a Tbox and an Abox.

In addition to the set of axioms, an ontology may be named using an IRI,
and different versions of the same ontology may additionally be named with a

10

version IRI. An ontology may also import other OWL 2 ontologies identified by
their ontology or version IRIs. The set of axioms that constitute an ontology is
taken to be equal to the union of the set of axioms contained in the ontology
and the sets of axioms that constitute each of the ontologies that it imports; this
is sometimes referred to explicitly as the imports closure of an ontology. Note
that this definition is recursive: the imported ontologies could themselves import
other ontologies, and so on.

Finally, an ontology can also be annotated with information such as
the creator’s name and copyright information. Annotation properties are
used for this purpose, and there are several built-in annotation prop-
erties intended for use with ontologies; these include owl:priorVersion,
owl:backwardCompatibleWith and owl:incompatibleWith, all used to spec-
ify prior versions of the ontology, and optionally to describe their compatibility
with the current ontology. More will be said about annotations and annotation
properties in Section 3.6.

3.2 OWL 2 Datatypes

OWL 2 uses datatypes from XML Schema datatypes, so xsd:integer is a
datatype in OWL, namely the type of integers; datatype restrictions using facets
are also allowed, as in xsd:integer xsd:minInclusive "5"^^xsd:integer
(the integers greater than or equal to 5). The set of supported datatypes and
facets is defined in the OWL 2 datatype map [59].

For data values (integers, strings, etc.) OWL 2 uses the syntax of RDF, so
"2"^^xsd:integer is the way to write the integer 2, and "23.5"^^xsd:decimal
is the way to write a decimal number. To enhance human readability for typical
data values, the OWL 2 Manchester syntax allows strings, integers, decimals, and
floats to be written as in most programming languages, as in "abc", 25, 25.55,
and 25.55F. OWL 2 also allows plain RDF literals, which are a combination
of a string and an optional language tag and can be written as in RDF, e.g.,
"favor"@en-us. These plain literals belong to the datatype rdf:PlainLiteral.

3.3 OWL 2 Entities

As mentioned above, OWL 2 uses IRIs as names for classes, properties, indi-
viduals and datatypes; collectively, these names are known as entities. In a De-
scription Logic, the set of entities occurring in an ontology is usually called the
signature. The entities, together with data values, make up the basic building
blocks of OWL 2 ontologies.

In OWL 2 the properties are divided into three disjoint sets of object prop-
erties, data properties and annotation properties. Object properties are used to
relate one individual to another; for example, the object property ex:worksFor
might be used to relate a person to a company. Data properties are used to relate
an individual to a data value; for example, the data property ex:hasAge might
be used to relate a person to an integer value. Finally, annotation properties are

11

used to add uninterpreted information (such as textual comments) to individ-
uals, classes, properties and ontologies; more will be said about annotations in
Section 3.6.

Declarations and typing The entities used in an OWL 2 ontology can, and
in some cases must, be typed using a suitable declaration. Declarations are used
to avoid possible ambiguities and to ensure the required separation of object,
data and annotation property names. For example, declarations could be used
as follows to state that ex:worksFor, ex:hasAge and ex:authoredBy are, re-
spectively, object, data and annotation properties:

ObjectProperty: ex:worksFor
DataProperty: ex:hasAge
AnnotationProperty: ex:authoredBy

Punning In OWL a given name could be used to refer to only a single type of
entity. In contrast, OWL 2 allows the same name to be used to refer to different
types of entity; for example, ex:Eagle might be used to denote both the class
(a subclass of ex:Bird) and an individual (an instance of ex:Species):

Class: ex:Eagle
SubClassOf: ex:Bird

Individual: ex:Eagle
Types: ex:Species

On the face of it this would seem to take OWL 2 beyond the strictly first
order realm of Description Logics. However, the semantics of OWL 2 is designed
so that the interpretations of a name used as different entity types are totally
unconnected; the interpretation of ex:Eagle the individual is, for example, to-
tally unconnected to the interpretation of ex:Eagle the class. In effect, entity
names are treated as though their type is part of the name, so the above example
could be read as:

Class: ex:EagleC

SubClassOf: ex:Bird
Individual: ex:EagleI

Types: ex:Species

This re-use of names, but with different meanings, is called punning. OWL 2
does place some restrictions on the use of punning: as discussed in Section 3.3,
punning between object, data and annotation properties is not allowed; in addi-
tion, punning between classes and datatypes is disallowed.

3.4 Expressions

As in a Description Logic, OWL 2 class and property expressions generalise
classes and properties, while data ranges generalise datatypes. In particular, a

12

Manchester Syntax DL Syntax

P P
inverse R R−

Fig. 3. OWL 2 Object Property Expressions

property is a property expression, and property expressions can be combined
using various operators to form new property expressions; a datatype is a data
range, and data ranges can be combined using various operators (including facet
based restrictions) to form new data ranges; and a class is a class expression,
and class expressions, property expressions and data ranges can be combined
using various operators to form new class expressions.

Property Expressions An object property expression in OWL 2 can be ei-
ther an object property name or an expression constructed using the available
operators as shown in Figure 3, where P is an object property name (an IRI),
and R is an arbitrary property expression. As can be seen, there is only one
constructor for use with object property expressions: inverse. Arbitrary nesting
of inverses is in principle possible, but as inverse (inverse R) is equivalent
to R, it is reasonable to assume that all OWL 2 object property expressions are
of the form P or inverse P for P an object property name (an IRI).

The set of constructors available for forming datatype properties is even more
limited: there are none! All datatype property expressions are, therefore, of the
form U for U a datatype property name (an IRI).

Manchester Syntax DL Syntax

B B
D1 and ...and Dn D1 ∩ . . . ∩Dn

D1 or ...or Dn D1 ∪ . . . ∪Dn

not D ¬D
{v1 . . . vn} {v1} ∪ . . . ∪ {vn}

Fig. 4. OWL 2 Data Ranges

Data Ranges In OWL 2 the supported XML schema datatypes (including
datatype restrictions using facets) are data ranges, and data ranges can also be
formed from other data ranges and values using various constructors as shown
in Table 4, where B is an XML schema datatype or datatype restriction, D
(possibly subscripted) is an arbitrary data range, and vi is a data value. For
example, a data range could be defined by using an XML schema facet to restrict
a base type, as in xsd:integer xsd:maxExclusive "10"^^xsd:integer (the

13

Manchester Syntax DL Syntax

A A
owl:Thing >
owl:Nothing ⊥
C1 and ...and Cn C1 u . . . u Cn

C1 or ...or Cn C1 t . . . t Cn

not C ¬C
{o1 . . . on} {o1} t . . . t {on}
R some C ∃R.C
R only C ∀R.C
R value o ∃R.{o}
R self ∃R.self
R min n >nR
R max n 6nR
R exactly n >nR u6nR
R min n C >nR.C
R max n C 6nR.C
R exactly n C >nR.C u6nR.C

U some D ∃U.D
U only D ∀U.D
U value v ∃U.{v}
U min n >nU
U max n 6nU
U exactly n >nU u6nU
U min n D >nU.D
U max n D 6nU.D
U exactly n D >nU.D u6nU.D

Fig. 5. OWL 2 Class Descriptions

integers less than 10); it could be defined by enumerating a set of values, as in
{"1"^^xsd:integer "2"^^xsd:integer "3"^^xsd:integer} (the integers 1, 2
and 3); or it could be defined by using one of the Boolean operators to combine
other data ranges, as in xsd:integer or xsd:float (the union of the integers
and floats).

Class Expressions As mentioned above, OWL 2 is very closely related to
SROIQ(D), and provides a correspondingly wide range of operators for build-
ing class expressions. These are summarised in Figure 5, where A is a class name
(an IRI), C (possibly subscripted) is an arbitrary class expression, oi is an in-
dividual name (an IRI), R is an object property expression, U is a datatype
property expression, D is a data range, v is a data value, and n is a nonnega-
tive integer. These can be used to form descriptions characterizing sets of indi-
viduals. For example, ex:Person and ex:hasChild some ex:Person describes
those individuals that are instances of ex:Person and are related via the prop-
erty ex:hasChild to an instance of ex:Person (i.e., parents).

14

Like SROIQ(D), OWL 2 supports the standard Boolean constructors (and,
or and not), which correspond directly to u, t and ¬ in Description Logic.
The OWL 2 OneOf constructor allows a class to be formed by enumerating its
instances, written {o1 . . . on} in the Manchester Syntax, and equivalent to a dis-
junction of nominals {o1} t . . . t {on} in SROIQ(D). The built-in owl:Thing
and owl:Nothing classes correspond directly to > and ⊥ in Description Logic.

OWL 2 also supports the full set of SROIQ(D) restrictions, including ex-
ists and value restrictions (some and only in the Manchester Syntax) and both
qualified and unqualified maximum, minimum and exact cardinality restrictions.
Note that exact cardinality restrictions are equivalent to a symmetrical pair of
Description Logic minimum and maximum cardinality restrictions, and that the
HasValue restriction in OWL 2 (written R value o in Manchester Syntax) is
simply shorthand for an exists restriction with a nominal as the restricting class.
A similar set of restrictions can be used with datatypes and data values.

3.5 Axioms

OWL 2 axioms provide information about classes, properties, data ranges, keys
and individuals, as shown in Figure 6, where A is a class name (an IRI), C (pos-
sibly subscripted) is an arbitrary class, P is an object property name (an IRI),
R (possibly subscripted) is an arbitrary object property, T is a data property
name (an IRI), S (possibly subscripted) is an arbitrary data property, D is a
data range, B is a datatype (an IRI), U (possibly subscripted) is a property (ei-
ther object or data), and i (possibly subscripted) is an individual. The axioms as
presented here mirror the structural specification and the RDF/XML and XML
syntaxes; using the Manchester Syntax, however, it is also possible to group to-
gether statements about classes, properties and individuals. For example, the
following “class frame” could be used to define cricket fans as people who like
cricket while at the same time asserting that cricket fans drink nothing but beer
and that no individual can be both a cricket fan and a baseball fan:

Class: CricketFan
EquivalentTo: ex:Person that ex:likes some ex:Cricket
SubClassOf: ex:drinks only ex:Beer
DisjointWith: ex:BaseballFan

This would be equivalent to the DL axioms:

CricketFan ≡ ex:Person u ∃ex:likes.ex:Cricket
CricketFan v ∀ex:drinks.ex:Beer
CricketFan v ¬ex:BaseballFan

Similarly, statements about a given individual could be combined in Manchester
Syntax as follows:

Individual: Canada
Types: ex:Country

15

Manchester Syntax DL Syntax

Class: A SubClassOf: C A v C
Class: A EquivalentTo: C A ≡ C
EquivalentClasses: C1, . . . , Cn Ci ≡ Ci+1 for 1 ≤ i < n
DisjointClasses: C1, . . . , Cn Ci v ¬Cj for 1 ≤ i < j ≤ n
Class: A DisjointUnionOf: C1, . . . , Cn Ci v ¬Cj for 1 ≤ i < j ≤ n

A ≡ C1 t . . . t Cn

ObjectProperty: P SubPropertyOf: R P v R
ObjectProperty: P EquivalentTo: R A ≡ C
EquivalentProperties: R1, . . . , Rn Ri ≡ Ri+1 for 1 ≤ i < n
DisjointProperties: R1, . . . , Rn Ri v ¬Rj for 1 ≤ i < j ≤ n
ObjectProperty: P InverseOf: R P ≡ R−
ObjectProperty: P Domain: C ∃P.> v C
ObjectProperty: P Range: C > v ∀P.C
ObjectProperty: P Characteristics: Functional > v 6 1P
ObjectProperty: P Characteristics: InverseFunctional > v 6 1P−

ObjectProperty: P Characteristics: Reflexive > v ∃P.self
ObjectProperty: P Characteristics: Irreflexive ∃P.self v ⊥
ObjectProperty: P Characteristics: Symmetric P ≡ P−
ObjectProperty: P Characteristics: Asymmetric

ObjectProperty: P Characteristics: Transitive P ◦ P v P
DataProperty: T SubPropertyOf: S T v S
DataProperty: T EquivalentTo: S A ≡ C
EquivalentProperties: S1, . . . , Sn Si ≡ Si+1 for 1 ≤ i < n
DisjointProperties: S1, . . . , Sn Si v ¬Sj for 1 ≤ i < j ≤ n
DataProperty: T Domain: C ∃T.>D v C
DataProperty: T Range: D > v ∀T.D
DataProperty: T Characteristics: Functional > v 6 1T

Datatype: B EquivalentTo: D B ≡ D
Class: A HasKey: U1, . . . , Un U1, . . . , UnkeyforA

SameIndividual: i1, . . . , in ii = ii+1 for 1 ≤ i < n
DifferentIndividuals: i1, . . . , in ii 6= ij for 1 ≤ i < j ≤ n
Individual: i Types: C i : C
Individual: i1 Facts: P i2 〈i1, i2〉 : P
Individual: i1 Facts: not P i2 i1 : (¬∃P.{i2})
Individual: i Facts: T v 〈i, v〉 : T
Individual: i Facts: not T v i : (¬∃T.{v})

Fig. 6. OWL 2 DL Axioms and Facts

16

Facts: ex:hasBorderWith USA,
ex:hasPopulation 33487208,
ex:hasLandArea 9093507

As well as asserting one class to be a subclass of or equivalent to another,
OWL 2 also allows for a set of classes to be asserted to be either equivalent or
pairwise disjoint. Moreover, a class can be asserted to be equivalent to the disjoint
union of a set of classes. As can be seen in Figure 6, all of these are “syntactic
sugar”—they could be replaced with suitable sets of subclass or equivalence
axioms.

As well as asserting one object property to be a subclass of or equivalent to
another, and for equivalence and disjointness to be asserted for sets of object
properties, OWL 2 also allows for a range of characteristics to be asserted for
a given object property. These include asserting that the property is functional,
inverse functional, reflexive, irreflexive, symmetric asymmetric and/or transitive.
Moreover, the inverse of a property can be given, as well as its range and domain.

For data properties the range of available axioms is reduced: there is no in-
verse axiom, and the only characteristic that can be asserted is functionality.
These restrictions are necessary in order to maintain a strict separation between
reasoning about classes/individuals and reasoning about data ranges/values.
Such a separation has been shown to allow for relatively simple integration of
DL reasoners with datatype reasoners, where the datatype reasoner is used by
the DL reasoner as an oracle able to answer relatively simple questions about
data ranges and values [42, 49].

OWL 2 also allows new datatypes to be introduced as abbreviations for data
ranges, a convenient feature if identical data ranges are used in many places in
an ontology. For example, the following axiom introduces the datatype over18
and defines it to be equivalent to the integers greater than 18:

Datatype: ex:over18 EquivalentTo: integer [> 18]

One of the new features of OWL 2 is keys, and these can be introduced using
a suitable axiom. For example, the following axiom states that the combination
of nationality and passport number is a key for persons:

Class: ex:Person HasKey: ex:hasNationality, ex:hasPassportNumber

where ex:hasNationality and ex:hasPassportNumber are data properties.
This means that no two named individuals can have the same nationality and
passport number.

Finally, OWL 2 allows for sets of individuals to be asserted to be the same
(different names for the same object) or pairwise different (no two individuals
name the same object), for individuals to be asserted to be instances of one or
more classes, and for both positive and negative assertions about relationships
between pairs of individuals. The first two statements are provided because OWL
does not make any unique name assumption (UNA), i.e., it is perfectly possible
for ex:USA and ex:UnitedStatesOfAmerica to be two different names for the
same object; it is therefore useful to be able to assert that a given set of names

17

all refer to the same object, or to assert that UNA does apply to a given set of
names, i.e., that no two names from the set refer to the same object. For example,
the following axioms could be used to assert the above mentioned equivalence be-
tween ex:USA and ex:UnitedStatesOfAmerica, and to assert that ex:Alabama,
. . . , ex:Wyoming all refer to different objects.

SameIndividual: USA, UnitedStatesOfAmerica
DifferentIndividuals: ex:Alabama, ..., ex:Wyoming

3.6 Annotations

Annotations are a mechanism for adding extra-logical “comments” to the on-
tology, i.e., information that does not affect the formal meaning of the ontology
and can thus be ignored by a reasoning system. Annotations could include,
e.g., human readable labels, provenance or hints on how the ontology should
be displayed in a visualisation tool. They are sometimes also used to capture
information used in language extensions, e.g., to associate a probability with an
axiom in a probabilistic extension of OWL.

In OWL 2 it is possible to add annotations to almost any part of the
ontology: they can be attached to the ontology itself, to entities such as
classes, properties and individuals, to class and property expressions, and to
statements such as axioms and declarations—they can even be attached to
other annotations. Annotations are specified by using an annotation prop-
erty to associate the subject of the annotation with an annotation value
which can be an IRI (which could, e.g., be a class or individual name),
a string literal or an anonymous individual. OWL 2 provides a number of
predifined annotation properties: rdfs:label, rdfs:comment, rdfs:seeAlso,
rdfs:isDefinedBy, owl:deprecated, owl:versionInfo, owl:priorVersion,
owl:backwardCompatibleWith and owl:incompatibleWith. In addition, some
simple structuring of annotation types is provided for by allowing range, domain
and sub-property to be asserted for annotation properties.

This represents a significant advance over OWL, where only ontologies and
entities could be annotated. In OWL this restriction was imposed due to the
difficulty of representing annotated statements in RDF, the problem being that
RDF has no mechanism for using a triple or a set of triples as the subject of
another triple. In OWL 2 this problem has been overcome by using a form of
reification for annotated statements when rendered in the RDF syntax.

Some of the uses of annotation are illustrated in the following two examples.
The first example illustrates an entity (the individual ex:Canada) annotated
with a textual comment, and the comment itself being annotated with prove-
nance information stating that the source is the CIA Wold Fact Book:

Individual: ex:Canada
Annotations:
Annotation: ex:source ex:CIA-World-Fact-Book
rdfs:comment

18

"Situated in Northern North America, bordering
the North Atlantic Ocean on the east, North
Pacific Ocean on the west, and the Arctic Ocean
on the north, north of the conterminous US"

The second example illustrates an axiom being annotated with provenance
information (again the CIA Wold Fact Book) and with information about when
the axiom was last updated:

Individual: ex:USA
Annotation: rdfs:label ‘‘United States of America’’
Facts:
Annotation: ex:source ex:CIA-World-Fact-Book,

ex:lastUpdated ‘‘July 2009’’
ex:population 307212123,

3.7 Global Restrictions

In order to ensure that OWL 2 is a decidable language it is necessary to impose
some global restrictions on the structure of ontologies. These restrictions corre-
spond closely to those used for the same purpose in the definition of SROIQ(D)
knowledge bases. The restrictions are called global because they depend on the
ontology as a whole and not just on a single expression or axiom; for example,
several of the restrictions relate to the property hierarchy, which depends on
the set of property axioms occurring in the imports closure of the ontology. The
definitions of some of the global restrictions are rather technical, and will only
be sketched here; full details can be found in Section 11 of the OWL 2 Structural
Specification and Functional-Style Syntax [59].

Firstly, it is necessary to distinguish simple properties. Roughly speaking, a
property P is not simple if its existence is implied by a chain of other properties.
This is the case if, for example, P is transitive, or if P has a sub-property
S, and S is transitive. In the latter case, given individuals x, y and z such
that xSy and ySz, then from the transitivity of S it is possible to infer xSz,
and from the fact that S is a sub-property of P it is possible to infer xPz.
Intuitively, checking cardinality constraints for a non-simple property P is much
more difficult because it is necessary to count not only directly related individuals
but also those related via some chain of properties that implies P ; in fact this
leads to undecidability in SROIQ(D). Therefore, only simple roles can be used
in cardinality restrictions. For similar reasons, only simple roles can be used in
self restrictions, and in Functional, InverseFunctional, Irreflexive, Asymmetric,
and Disjoint property axioms.

Secondly, the structure of property chains is restricted in various ways. They
must, for example, satisfy an acyclicity condition, which is again needed in order
to ensure decidability.

Thirdly, various restrictions are placed on the use of data ranges and datatype
definition axioms. In particular, datatype definitions must be unique and acyclic;
that is, given an axiom of the form:

19

Datatype: B EquivalentTo: D

where B is a newly defined datatype and D is a data range, D must not use B
either directly or indirectly. This restriction means that datatype definitions can
be treated as macros and simply “unfolded” by recursively substituting every
occurrence of a defined datatype with the data range used to define it. In De-
scription Logics similar restrictions on concept definitions result in an unfoldable
(sometimes called definitorial) TBox—one that can be eliminated by unfolding
definitions into the ABox [1].

Fourthly, the use of anonymous individuals in axioms is restricted: they are
not allowed to occur at all in SameIndividual or DifferentIndividuals axioms,
or in negated individual facts, and their use in other axioms must satisfy an-
other form of acyclicity constraint. These restrictions are designed to ensure that
anonymous individuals can be eliminated from the ontology using a “rolling up”
technique similar to the one use in conjunctive query answering [18].

Finally, the IRIs used to name ontologies and entities in OWL 2 must not
be from the reserved vocabulary, i.e., they must not be one of the IRIs used by
the language itself. These include all of the IRIs with prefixes rdf:, rdfs:, xsd:
and owl:.

4 Semantics for OWL 2

In common with Description Logics, OWL 2 has a (First Order) model-theoretic
semantics called the OWL 2 Direct Semantics [53]. This semantics is basically
equivalent to simply translating the ontology into a SROIQ(D) knowledge base
as described in Section 3 and then applying the standard Description Logic
semantics.

This model-theoretic semantics is the ultimate arbiter of the meaning of
OWL 2 constructs. However, it is generally sufficient to understand the informal
meaning as described above, and as described in OWL 2 user facing documents
such as the Primer [57]. For example, an individual is an instance of the in-
tersection C and D exactly when it is an instance of both C and D, it is an
instance of a restriction P some C exactly when it is related via the property
P to an instance of C, and it is an instance of a restriction U value v exactly
when it is related via the data property U to the value v. Similarly, an axiom
Class: A SubClassOf: C implies that every instance of A is also an instance of
C, while Class: A EquivalentTo: C additionally implies that every instance
of C is an instance of D.

OWL 2 includes datatypes, and these are integrated into the language in
much the same way is in Description Logics that include datatypes, in partic-
ular SHOQ(D). However, the particular datatypes used in OWL 2 are taken
from RDF and XML Schema Datatypes [9], and inherit the semantics from
the relevant specifications. Data types, such as xsd:integer and data values
such as "44"^^xsd:integer are thus given the same meaning as they have in
XML Schema. For example, the interpretation domains of xsd:integer and

20

xsd:float are disjoint, so in OWL 2 "1"^^xsd:integer and "1"^^xsd:float
are interpreted as two different values.

4.1 OWL 2 RDF-Based Semantics

For ontologies that use the RDF syntax, an alternative semantic account can
be given by extending the RDF model theory with new conditions that capture
the meaning of the OWL 2 vocabulary as described in the OWL 2 RDF-Based
semantics [54]. For example, if an OWL 2 ontology in RDF syntax includes the
triple:

< C owl:complementOf D >

for C and D classes, then ICEXT(C) = IR ICEXT(D), that is, the individuals that
are instances of C (ICEXT(C)) must be equal to the whole of the interpretation
domain (IR) minus the individuals that are instances of D (ICEXT(D)). Note
the similarity to the semantics of negation in Description Logic presented in
Figure 1; in fact the RDF-Based semantics is equipped with a correspondence
theory that precisely defines the relationship between the two semantics[54].

In practice, the main difference between the Direct semantics and the RDF-
Based semantics is that the latter can be applied to RDF-Graphs that do not
respect the various restrictions on OWL 2 syntax described in Section 3; indeed,
the RDF-Based semantics can be applied to arbitrary RDF graphs. It is impor-
tant to be aware, however, that additional meaning (beyond that derived from
the RDF semantics [24]) is only given to those parts of the graph that correspond
to OWL 2 constructions as described in Section 3. It therefore makes more sense
to think of the RDF-Based semantics as a semantics for OWL 2 ontologies that
do not respect the restrictions required by OWL 2 DL.

This style of usage of OWL 2 is known as OWL 2 Full. Although this easing
of language restrictions in OWL 2 Full can sometimes be convenient, it also has
the effect of making the language undecidable [33, 47]; this makes it difficult to
provide reasoning systems, and impossible to provide systems that can guarantee
to correctly answer arbitrary queries. In the case of OWL Full, this resulted in
applications typically using an ad hoc subset of the language along with some
simple inference rules to provide reasoning that was sound but incomplete, an
approach that was undesirable both from the point of view of reliability and
interoperability. In OWL 2, the OWL 2 RL profile is designed in part to overcome
this problem by defining a suitable subset, providing an axiomatisation that can
be used as the basis for a rule set, and describing conditions on the ontology
under which an implementation based on such a rule set would be sound and
complete. It is conjectured that OWL 2 Full will in effect be OWL 2 RL under
the RDF-Based semantics.

It is also worth pointing out that the new features of OWL 2 make it much
easier for applications to live with the restrictions imposed in OWL 2 DL. In
particular, punning in OWL 2 means that class/individual metamodelling is
now possible in OWL 2 DL, and keys can be used instead of applying inverse

21

functionality to data properties—another common reason for ontologies to be
OWL Full.

5 OWL 2 Profiles

As noted above, OWL 2 DL is closely related to SROIQ(D), a very expressive
Description Logic. SHOIN (D) is (potentially) very difficult to reason with, as
standard inference problems, such as Ontology Consistency, Class Expression
Satisfiability, Class Expression Subsumption, and Instance Checking, all have
2NExpTime complexity.

For these reasons, three profiles have been defined: language fragments that
have desirable computational properties, and in particular lower worst case com-
plexities for the above mentioned inference problems (see http://www.w3.org/
TR/owl2-profiles/). These profiles are called OWL 2 EL, OWL 2 QL and
OWL 2 RL. Note that the old OWL Lite profile has been depricated as it pro-
vides no significant computational advantage (OWL Lite ontologies would, in
general, be considered standard OWL 2 ontologies).

5.1 OWL 2 EL

OWL 2 EL is based on the EL++, a Description Logic for which standard rea-
soning problems can be performed in time that is polynomial with respect to the
size of the ontology. This profile captures the expressive power used by many
ontologies used in the life sciences, and is particularly useful in applications em-
ploying ontologies that contain very large numbers of properties and/or classes,
as is often the case with life science ontologies.

Unlike the other two profiles, EL has the advantage of being “symmetri-
cal”, in the sense that the restrictions apply equally to class expressions oc-
curring on the left hand and the right hand side of class inclusion axioms,
making it very easy to define and to use. The restrictions on class expres-
sions rule out the use of universal quantification (i.e., ObjectAllValuesFrom and
DataAllValuesFrom), cardinality restrictions, disjunction, negation, enumera-
tions involving multiple individuals (i.e., ObjectOneOf and DataOneOf), and
most property characteristics (including InverseObjectProperties, DisjointO-
bjectProperties, DisjointDataProperties, IrreflexiveObjectProperty, Function-
alObjectProperty, InverseFunctionalObjectProperty, SymmetricObjectProperty
and AsymmetricObjectProperty. In addition the set of supported datatypes
has been designed such that the intersection of the value spaces of any set
of datatypes is either empty or infinite, which is necessary to retain the de-
sired computational properties. As a result, use of the following datatypes
is ruled out: xsd:double, xsd:float, xsd:nonPositiveInteger, xsd:positiveInteger,
xsd:negativeInteger, xsd:long, xsd:int, xsd:short, xsd:byte, xsd:unsignedLong,
xsd:unsignedInt, xsd:unsignedShort, xsd:unsignedByte, xsd:language, and
xsd:boolean. Finally, EL also rules out the use of anonymous individuals.

22

Several reasoners are available for OWL 2 EL, including CB [36], CEL [4],
Pellet (in fact Pellet supports all of OWL 2, but includes a dedicated EL reasoner
for optimised reasoning with this profile) [74] and Snorocket [39, 14]. These rea-
soners all use a saturation based technique in which the TBox extended so as to
explicitly include all subsumption relationships holding between named classes.
These algorithms are extremely effective at dealing with large ontologies: the CB
reasoner can, for example, fully classify the 400,000 class SNOMED-CT ontol-
ogy [76] in less than 60 seconds. Recent work has shown how scalability can also
be extended to large data sets by using database technology to store the set of
individual axioms (the ABox) and employing a mixture of materialisation and
query rewriting [44].

5.2 OWL 2 QL

OWL 2 QL is based on DL-LiteR, a Description Logic for which conjunctive
query answering can be implemented using conventional relational database sys-
tems and so can be performed in LOGSPACE with respect to the size of the
data (individual axioms). It is aimed at applications that use very large volumes
of instance data, and where query answering is the most important reasoning
task. As in OWL 2 EL, polynomial time algorithms can be used to implement
the ontology consistency and class expression subsumption reasoning problems.
The expressive power of OWL 2 QL is necessarily quite limited, although it
does include most of the main features of conceptual models such as UML class
diagrams and ER diagrams.

Several variants of DL-Lite have been described in the literature, with OWL 2
QL being based on the DL-LiteR variant. This has the advantage that, although
the instance data is assumed to be in a relational database, no unique name as-
sumption (UNA) is required—this is because the UNA would have no impact on
the semantic consequences of a DL-LiteR ontology. OWL 2 QL not only restricts
the kinds of class expression that can be used, but also varies these restrictions
depending where the expression occurs in an axiom (e.g., as the subclass or su-
perclass part of a subClassOf axiom. This makes the precise definition of the
profile rather complex, and the reader is referred to the OWL 2 Profiles speci-
fication for full details [58]. The set of supported datatypes is the same as for
OWL 2 EL, and the use of anonymous individuals is similarly ruled out. Finally,
OWL 2 QL does not support individual equality assertions (SameIndividual),
because this would make queries no longer first order rewritable, with the result
that query answering could no longer be implemented directly using relational
database technologies. However, individual equality could be materializing the
equality relation in the database and using the resulting relation in query an-
swering [69].

Several reasoners are available for DL-LiteR/OWL 2 QL, including Owlgres
(see http://pellet.owldl.com/owlgres), and QuOnto (see http://www.dis.
uniroma1.it/~quonto/). Both of these are based on query rewriting techniques
that transform a conjunctive query against the ontology into a set of queries
against the individual axioms (the ABox) only, and ultimately (via mappings

23

from ontology class and property names to SQL queries) into SQL queries against
a database (or databases) where the instance data is stored [65].

5.3 OWL 2 RL

The OWL 2 RL profile is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. It is designed to accommodate
both OWL 2 applications that can trade the full expressivity of the language
for efficiency, and RDF(S) applications that need some added expressivity from
OWL 2. This is achieved by defining a syntactic subset of OWL 2 which is
amenable to implementation using rule-based technologies, and presenting a par-
tial axiomatization of the OWL 2 RDF-Based Semantics in the form of first-order
implications that can be used as the basis for such an implementation (see Sec-
tion 4.1). The design of OWL 2 RL was inspired by Description Logic Programs
[20] and pD* [79].

Like OWL 2 QL, the syntax of RL is asymmetric in the sense that differ-
ent constraints apply to class expressions depending where they occur in on-
tology axioms. Essentially, this means allowing enumerations (ObjectOneOf),
intersections (ObjectIntersectionOf), unions (ObjectUnionOf) and existential
restrictions in the subclass position of a subClassOf axiom, and intersection
(ObjectIntersectionOf), negation (ObjectComplementOf), universal restrictions
(ObjectAllValuesFrom and DataAllValuesFrom), existential restrictions using an
individual or data value (ObjectHasValue and DataHasValue) and at-most 0/1
cardinality restrictions (ObjectMaxCardinality and DataMaxCardinality with
values 0 or 1) in the superclass position of a subClassOf axiom (see the OWL 2
Profiles specification for full details [58]).

For ontologies satisfying the above mentioned syntactic constraints, a suit-
able rule-based implementation (e.g., one based on the partial axiomatization
of the RDF-Based semantics) will have desirable computational properties; for
example, it can return all and only the correct answers to ground atomic queries
(see Theorem PR1 from the OWL 2 Profiles specification [58] and the OWL 2
Conformance specification [52]). As mentioned in Section 4.1, such an imple-
mentation can also be used with arbitrary RDF graphs. In this case, however,
the above mentioned computational properties no longer hold—in particular, it
is no longer possible to guarantee that all correct answers can be returned, for
example if the RDF graph uses the built-in vocabulary in unusual ways.

Several reasoners are available for OWL 2 RL, including Elly (see http:
//elly.sourceforge.net/), Jena (see http://jena.sourceforge.net/) and
the Oracle Database 11g OWL Reasoner (see http://www.oracle.com/
technology/tech/semantic_technologies/index.html). These implementa-
tions are all based on rule extended triple stores and relational databases and
work by computing all “relevant” inferences and materialising them in the
store/database. This may require significant additional time and storage, but
if this is within acceptable bounds, then queries can subsequently be answered
simply by querying the store/database. Completeness is, however, dependent on
the set of materialised inferences and the kind of query being answered and,

24

as mentioned above, can only be guaranteed for ground atomic queries against
ontologies satisfying the syntactic restrictions on the RL profile.

6 OWL Tools and Applications

As discussed in Section 2, one of the motivations for basing OWL on a description
logic was the ready availability of tools and infrastructure. Similarly, in the case
of OWL 2, the willingness and ability of tool developers to support the language
was an important influence on its design.

Regardless of the target ontology language, developing good quality ontolo-
gies is an extremely difficult and time-consuming task. It is therefore essential to
provide ontology engineers with tool support. A range of ontology development
tools are available for this purpose, including Swoop [34], Protégé [38], and
TopBraid Composer (see http://www.topbraidcomposer.com/).

Ontology development tools invariably use a DL reasoner to provide feedback
to the user about the logical implications of their design, e.g., to warn them about
inconsistencies. Moreover, reasoners are an essential feature of applications where
they are required, e.g., in order to answer both conceptual and data retrieval
queries.

The availability of tools and reasoning systems has been an important factor
in the increasingly widespread use of OWL. Applications of OWL are particularly
prevalent in the life sciences where it has been used by the developers of several
large biomedical ontologies, including the SNOMED, GO and BioPAX ontolo-
gies mentioned above, the Microarray Gene Expression Data (MGED) ontol-
ogy (see http://mged.sourceforge.net/ontologies/index.php), the Foun-
dational Model of Anatomy (FMA) [19] and the National Cancer Institute the-
saurus (NCI) [23].

Another important component in OWL applications, including the above
mentioned editors, is the de facto standard Manchester OWL API [25]. The API
takes care of parsing and rendering OWL ontologies in various different syntaxes,
and also provides a standard interface to OWL reasoners. This means that OWL
applications can easily switch between reasoners, choosing whichever proves to
be most effective.

6.1 Ontology Design Tools

Ontologies are often large and complex: the well known SNOMED clinical terms
ontology includes, for example, more than 400,000 class names [75]. Building and
maintaining such ontologies is very costly and time consuming, and providing
tools and services to support this “ontology engineering” process is of crucial
importance to both the cost and the quality of the resulting ontology. State of the
art ontology development tools, such as Swoop [34], Protégé [38], and TopBraid
Composer (see http://www.topbraidcomposer.com/), use a DL reasoner, such
as FaCT++ [80], HermiT [51], Racer [22] or Pellet [74], to provide feedback to
the user about the logical implications of their design.

25

The importance of reasoning support in ontology applications was highlighted
in a recent paper describing a project in which the Medical Entities Dictionary
(MED), a large ontology (100,210 classes and 261 properties) that is used at the
Columbia Presbyterian Medical Center, was converted into OWL and checked
using an OWL reasoner [37]. This check revealed “systematic modelling errors”,
and a significant number of missed subClassOf relationships which, if not cor-
rected, “could have cost the hospital many missing results in various decision
support and infection control systems that routinely use MED to screen pa-
tients”.

Similarly, an extended version of the SNOMED ontology was checked using
an OWL reasoner, and a number of missing subClassOf relationships found. This
ontology is being used by the UK National Health Service (NHS) to provide “A
single and comprehensive system of terms, centrally maintained and updated
for use in all NHS organisations and in research”, and as a key component of
their multi-billion pound “Connecting for Health” IT programme. An important
feature of this system is that it can be extended to provide more detailed coverage
if needed by specialised applications. For example, a specialist allergy clinic may
need to distinguish allergies caused by different kinds of nut, and so may add
new terms to the ontology such as AlmondAllergy:

AlmondAllergy ≡ Allergy u ∃causedBy.Almond

Using a reasoner to insert this new term into the ontology will ensure that it is
recognised as a subClassOf NutAllergy. This is clearly of crucial importance in
order to ensure that patients with an AlmondAllergy are correctly identified in
the national records system as patients having a NutAllergy.

As well as computing the class hierarchy, ontology design tools typically
provide (at least) warnings about inconsistencies and redundancies. An incon-
sistent (sometimes called unsatisfiable) class is one whose description is “over-
constrained”, with the result that it can never have any instances. This is typ-
ically an unintended feature of the design—why introduce a name for a class
that can never have any instances—and may be due to subtle interactions be-
tween axioms. It is, therefore, very useful to be able to detect such classes and
bring them to the attention of the ontology engineer. For example, during the
development of an OWL ontology at the NASA Jet Propulsion Laboratory (see
Section 6.2), the class “OceanCrustLayer” was found to be inconsistent. This was
discovered (with the help of debugging tools) to be the result of its being defined
to be both a region and a layer, one of which (layer) was a 2-dimensional object
and the other a 3-dimensional object, where the axioms describing 2-dimensional
and 3-dimensional objects ensured that these two classes were disjoint (had no
instances in common). The inconsistency thus highlighted a fundamental error in
the design of the ontology, discovering and repairing which obviously improved
the quality of the ontology.

It is also possible that the descriptions in the ontology mean that two classes
necessarily have exactly the same set of instances, i.e., that they are alternative
names for the same class. This may be desirable in some situations, e.g., to

26

capture the fact that “Myocardial infarction” and “Heart attack” mean the same
thing. It could, however, also be the inadvertent result of interactions between
descriptions, and so it is also useful to be able to alert users to the presence of
such “synonyms”. For example, when developing a medical terminology ontology
a domain expert added the following two axioms:

AspirinTablet ≡ ∃hasForm.Tablet
AspirinTablet v AspirinDrug

intending to capture the information that aspirin tablets are just those aspirin
drugs that have the form of a tablet. Instead, these axioms had the effect of
making every kind of tablet be an aspirin tablet. This was immediately corrected
when the reasoner alerted the domain expert to the unexpected equivalence
between Tablet and AsprinTablet.

As discussed above, ontology development tools usually check for implicit
subsumption relationships, and update the class hierarchy accordingly. This is
also a very useful design aid: it allows ontology developers to focus on class
descriptions, leaving the computation of the class hierarchy to the reasoner, and
it can also be used by developers to check if the hierarchy induced by the class
descriptions is consistent with their intuition. This may not be the case when,
for example, errors in the ontology result in unexpected subsumption inferences,
or “under-constrained” class descriptions result in expected inferences not being
found. The latter case is extremely common, as it is easy to inadvertently omit
axioms that express “obvious” information. For example, an ontology engineer
may expect the class of patients who have a fracture of both the tibia and
the fibula to be a subClassOf “patient with multiple fractures”; however, this
may not be the case if the ontology doesn’t include (explicitly or implicitly)
the information that the tibia and fibula are different bones. Failure to find
the expected subsumption relationship will alert the engineer to the missing
DisjointClasses axiom.

Recent work has also shown how reasoning can be used to support modular
design [16] and module extraction [15], important techniques for working with
large ontologies. When developing a large ontology such as SNOMED, it is useful
if not essential to divide the ontology into modules, e.g., to facilitate parallel work
by a team of ontology developers. Reasoning techniques can be used to alert the
developers to unanticipated and/or undesirable interactions between the various
modules. Similarly, it may be desirable to extract from a large ontology a smaller
module containing all the information relevant to some subset of the domain,
e.g., heart disease—the resulting small(er) ontology will be easier for humans to
understand and easier for applications to use. Reasoning can be used to compute
a module that is as small as possible while still containing all the necessary
information.

Finally, in order to maximise the benefit of reasoning services, tools should
be able to explain inferences: without this facility, users may find it difficult to
repair errors in the ontology and may even start to doubt the correctness of in-
ferences. Explanation typically involves computing a (hopefully small) subset of

27

Fig. 7. An explanation from Protégé

the ontology that still entails the inference in question, and if necessary present-
ing the user with a chain of reasoning steps [35]. Figure 7, for example, shows an
explanation, produced by the Protégé ontology development tool, of the above
mentioned inference with respect to the inconsistency of OceanCrustLayer.

6.2 Reasoning in Deployed Applications

Reasoning is also important when ontologies are deployed in applications—it
is needed, e.g., in order to answer structural queries about the domain and to
retrieve data. For example, biologists use ontologies such as the Gene Ontology
(GO) and the Biological Pathways Exchange ontology (BioPAX) to annotate
data from gene sequencing experiments so as to be able to answer complex
queries such as “what DNA binding products interact with insulin receptors”.
Answering this query requires a reasoner not only to identify individuals that
are (perhaps only implicitly) instances of DNA binding products and of insulin
receptors, but also to identify which pairs of individuals are (perhaps only im-
plicitly) related via the interactsWith property.

It is easy to imagine that, with large ontologies, query answering may be a
very complex task. The use of DL reasoners allows OWL ontology applications
to answer complex queries, and to provide guarantees about the correctness
of the result. This is obviously of crucial importance when ontologies are used
in safety critical applications such as medicine; it is, however, also important
if ontology based systems are to be used as components in larger applications,
such as the Semantic Web, where the correct functioning of automated processes
may depend on their being able to (correctly) answer such queries.

Ontologies are also widely used to facilitate the sharing and integration of
information. The Neurocommons project (see http://sciencecommons.org/
projects/data/) for example, aims to provide a platform for sharing and in-
tegrating knowledge in the neuroscience domain. A key component is an ontol-
ogy of annotations that will be used to integrate available knowledge on the
web, including major neuroscience databases. Similarly, the OBO Foundry (see

28

http://www.obofoundry.org/) is a library of ontologies designed to facilitate
information sharing and integration in the biomedical domain, while the NCI
ontology mentioned above constitutes the working vocabulary used in NCI data
systems (see http://ncicb.nci.nih.gov/NCICB/core/EVS/).

In information integration applications the ontology can play several roles:
it can provide a formally defined and extensible vocabulary for use in semantic
annotations, it can be used to describe the structure of existing sources and the
information that they store, and it can provide a detailed model of the domain
against which queries can be formulated. Such queries can be answered by using
semantic annotations and structural knowledge to retrieve and combine infor-
mation from multiple sources [78]. It should be noted that the use of ontologies
in information integration is far from new, and has already been the subject of
extensive research within the database community [5].

Other examples of OWL ontology applications include:

– United Nations Food and Agriculture Organization (FAO) is using OWL to
develop a range of ontologies covering areas such as agriculture and fisheries
(see http://www.fao.org/agris/aos/Applications/intro.htm).

– The Semantic Web for Earth and Environmental Terminology (SWEET)
ontologies developed at the US National Aeronautics and Space Adminis-
tration (NASA) Jet Propulsion Laboratory (see http://sweet.jpl.nasa.
gov/ontology/). These include ontologies describing space, the biosphere
and the sun. SWEET is now being expanded by a number of earth and
space science efforts, and has been augmented in the GEON project (see
http://www.geongrid.org/) to cover the solid earth, and by the Virtual
Solar Terrestrial Observatory Project (see http://vsto.hao.ucar.edu/) to
include much more information on the atmosphere.

– An ontology used at General Motors in a project to help quality improvement
activities for assembly line processes in different production sites [46].

7 Summary

OWL 2 exhibits the desirable features of Description Logics, including useful
expressive power, formal syntax and semantics, decidability, and practical rea-
soning systems, resulting in OWL 2 providing effective ontology representation
facilities. As well, OWL 2 is firmly a part of the W3C Semantic Web, with its
use of IRIs for names, XML Schema datatypes, and ontologies as Web docu-
ments, which can then import other OWL 2 ontologies over the Web. OWL 2
thus firmly integrates ontologies into the Semantic Web.

It is not necessary to understand all of the formal aspects of OWL 2 in order
to use OWL 2 effectively. All that is required is a reasonable understanding of
what it means to define aspects of a class, property, or individual in an ontol-
ogy. The use of OWL 2 ontology editors, such as Protégé, serve as a bridge
between the syntax of an ontology and its semantics, calling OWL 2 reasoners,

29

such as Pellet, HermiT, and Fact++ to determine consequences of the ontology
statements and then present them in an easy-to-see fashion.

It is also not necessary to completely understand the differences between the
various profiles of OWL 2. It is possible to design an ontology without reference
to the profiles, and without checking which profile the ontology belongs to. Of
course, if the computational or implementation benefits of a particular profile
are needed, it is best to keep the ontology being designed within that particular
profile. It is expected that ontology editors will soon be able to both check
which profile an ontology is in, and impose syntactic constrains to ensure that
an ontology stays within a given profile.

The situation is somewhat more complex with OWL 2 Full. First, determin-
ing whether an ontology is outside of OWL 2 DL has to be done on the entire
ontology. Second, most OWL 2 tools do not handle OWL 2 Full, so using OWL 2
Full results in a loss of tool support. Third, reasoning in OWL 2 Full is undecid-
able, so there is no chance of effective reasoning tools being developed. The use
of OWL 2 Full should thus be reserved for situations where there already is some
existing RDFS that does not fit within OWL 2 DL and cannot be modified.

In practice, relatively few OWL Full applications have emerged to date, and
where OWL Full ontologies are found, they often turn out to be outside the
OWL DL subset only as the result of minor syntactic errors and thus should
have been in OWL DL. Fragments of OWL 2 are, however, sometimes used as
ad hoc extensions to RDFS. A common example is the use of OWL functional
properties, and explicit equivalences and (in)equalities, in what would otherwise
be an RDFS ontology. In many cases, the RDFS ontology can or should be
in OWL 2 DL, but sometimes there is some significant aspect of the RDFS
ontology that requires the use of OWL Full. The need to use OWL Full should
be further reduced in OWL 2 due to support for punning and key constraints.

There remain, of course, significant issues that are not handled by OWL 2,
but that are definitely pertinant to the Semantic Web.

– OWL 2 excludes useful expressive power to remain decidable, or just be-
cause there was not enough time in the OWL Working Group to specify
the construct. In particular DL-safe rules [50] and Description Graphs [48]
are not in OWL 2, even though there are Description Logics that include
these features and even Description Logic reasoners that implement them
(such as HermiT). Similarly there are proposals for N-ary relations [13] and
N-ary datatypes [60] in Description Logics but neither of these features are
in OWL 2.

– OWL 2 is monotonoic, as are most formal representation languages that can
handle reasonably large amounts of information, and thus cannot handle
default reasoning or localised closed world assumptions.

– OWL 2 is binary, as are most formal representation languages that can han-
dle reasonably large amounts of information, and thus cannot handle prob-
abilistic or fuzzy reasoning.

– OWL 2 treats ontologies as single entities and does not allow the extraction
of part of an ontology.

30

Some of the non-present features are already in particular proposals for ex-
tensions for OWL 2. If considered desirable by a sufficiently large community,
it is likely that OWL 2 reasoners and other systems will implement them in a
compatible fashion, leading to de facto extensions to OWL 2. Other non-present
features, however, would require significant research to provide formal founda-
tions, reasoning algorithms, and/or effective reasoners for them, which must be
done before they can be included in future OWL 2 extensions.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. F. Baader and P. Hanschke. A schema for integrating concrete domains into con-
cept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 452–457, 1991.

3. F. Baader and B. Hollunder. KRIS: Knowledge Representation and Inference
System. SIGART Bull., 2(3):8–14, 1991.

4. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner
for life science ontologies. In U. Furbach and N. Shankar, editors, Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Artificial Intelligence, pages 287–291. SV, 2006.

5. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):323–364,
1986.

6. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not enough. In
Proc. of the 2001 Int. Semantic Web Working Symposium (SWWS 2001), pages
151–159, 2001. Available at http://www.semanticweb.org/SWWS/program/full/

SWWSProceedings.pdf.
7. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A Reason-able on-

tology editor for the semantic web. In Proc. of the Joint German/Austrian Conf.
on Artificial Intelligence (KI 2001), number 2174 in Lecture Notes in Artificial
Intelligence, pages 396–408. Springer, 2001.

8. D. Beckett. Rdf/xml syntax specification (revised). W3C Recommendation, 10
February 2004. Available at http://www.w3.org/TR/rdf-syntax-grammar/.

9. P. V. Biron and A. Malhotra. XML schema part 2: Datatypes. W3C Recommen-
dation, May 2001. Available at http://www.w3.org/TR/xmlschema-2/.

10. R. J. Brachman. A Structural Paradigm for Representing Knowledge. PhD thesis,
Harvard University, Cambridge, MA, 1977. Revised version published as BBN
Report No. 3605, Bolt Beranek and Newman, Inc., Cambridge, MA, July, 1978.

11. R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, 1985.

12. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: Preliminary report. In Proc. of the 1995 Description Logic
Workshop (DL’95), pages 131–139, 1995.

13. D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive descrip-
tion logics with fixpoints based on automata on infinite trees. In Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84–89, 1999.

31

14. R. Cornet and K. A. Spackman, editors. Proceedings of the Third International
Conference on Knowledge Representation in Medicine, Phoenix, Arizona, USA,
May 31st - June 2nd, 2008, volume 410 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

15. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount:
Extracting modules from ontologies. In Proc. of the Sixteenth International World
Wide Web Conference (WWW 2007), 2007.

16. B. Cuenca Grau, Y. Kazakov, I. Horrocks, and U. Sattler. A logical framework
for modular integration of ontologies. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), pages 298–303, 2007.

17. D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

18. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), pages 399–404, 2007.

19. C. Golbreich, S. Zhang, and O. Bodenreider. The foundational model of anatomy
in OWL: Experience and perspectives. J. of Web Semantics, 4(3):181–195, 2006.

20. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic. In Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), pages 48–57. ACM, 2003.

21. W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A.
Musen. Knowledge modelling at the millenium (The design and evolution of
Protégé-2000). In Proc. of Knowledge acqusition workshop (KAW’99), 1999.

22. V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in
Artificial Intelligence, pages 701–705. Springer, 2001.

23. F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, and J. Golbeck. Modeling a
description logic vocabulary for cancer research. Journal of Biomedical Informatics,
38(2):114–129, 2005.

24. P. Hayes. RDF model theory. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/rdf-mt/.

25. M. Horridge, S. Bechhofer, and O. Noppens. Igniting the OWL 1.1 touch paper:
The OWL API. In Proc. of the Third OWL Experiences and Directions Workshop,
number 258 in CEUR (http://ceur-ws.org/), 2007.

26. M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. Wang. The
Manchester OWL syntax. In Proc. of the Second OWL Experiences and Directions
Workshop, volume 216 of CEUR (http: // ceur-ws. org/), 2006.

27. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647, 1998.

28. I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van
Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The Ontology
Inference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty
of Sciences, Sept. 2000. See http://www.ontoknowledge.org/oil/.

29. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), pages 57–67. AAAI Press, 2006.

30. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7–26,
2003.

32

31. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages
199–204. Morgan Kaufmann, Los Altos, 2001.

32. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 448–453,
2005.

33. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer,
1999.

34. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. SWOOP: a
web ontology editing browser. J. of Web Semantics, 4(2), 2005.

35. A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes
in OWL ontologies. J. of Web Semantics, 3(4):243–366, 2005.

36. Y. Kazakov. Consequence-driven reasoning for horn shiq ontologies. In Proc. of
the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pages 2040–2045,
2009.

37. A. Kershenbaum, A. Fokoue, C. Patel, C. Welty, E. Schonberg, J. Cimino, L. Ma,
K. Srinivas, R. Schloss, and J. W. Murdock. A view of OWL from the field: Use
cases and experiences. In Proc. of the Second OWL Experiences and Directions
Workshop, volume 216 of CEUR Workshop Proceedings. CEUR (http://ceur-ws.
org/), 2006.

38. H. Knublauch, R. Fergerson, N. Noy, and M. Musen. The Protégé OWL Plugin: An
open development environment for semantic web applications. In S. A. McIlraith,
D. Plexousakis, and F. van Harmelen, editors, Proc. of the 3rd International Se-
mantic Web Conference (ISWC 2004), volume 3298 of Lecture Notes in Computer
Science, pages 229–243. Springer, 2004.

39. M. Lawley. Exploiting fast classification of snomed ct for query and integration of
health data. In Cornet and Spackman [14].

40. H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence, 3:78–93, 1987.

41. C. Lutz. Reasoning with concrete domains. In Proc. of the 16th Int. Joint Conf.
on Artificial Intelligence (IJCAI’99), pages 90–95, 1999.

42. C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, Teach-
ing and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

43. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete
domains. J. of Artificial Intelligence Research, 23:667–726, 2004.

44. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description
logic el using a relational database system. In Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI 2009), pages 2070–2075, 2009.

45. R. MacGregor. Inside the LOOM description classifier. SIGART Bull., 2(3):88–92,
1991.

46. A. P. Morgan, J. A. Cafeo, K. Godden, R. M. Lesperance, A. M. Simon, D. L.
McGuinness, and J. L. Benedict. The general motors variation-reduction adviser.
AI Magazine, 26(2), 2005.

47. B. Motik. On the properties of metamodeling in OWL. In Proc. of the 4th Inter-
national Semantic Web Conference (ISWC 2005), volume 3729 of Lecture Notes
in Computer Science, pages 548–562. Springer, 2005.

33

48. B. Motik, B. Cuenca Grau, I. Horrocks, and U. Sattler. Representing structured
objects using description graphs. In Proc. of the 11th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2008), pages 296–306, 2008.

49. B. Motik and I. Horrocks. OWL datatypes: Design and implementation. In Proc.
of the 7th International Semantic Web Conference (ISWC 2008), volume 5318 of
Lecture Notes in Computer Science, pages 307–322. Springer, 2008.

50. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
In Proc. of the 3rd International Semantic Web Conference (ISWC 2004), volume
3298, pages 549–563, 2004.

51. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics
using hypertableaux. In Proc. of the 21st Int. Conf. on Automated Deduction
(CADE-21), volume 4603 of Lecture Notes in Artificial Intelligence, pages 67–83.
Springer, 2007.

52. OWL 2 Web Ontology Language Conformance. W3C Candidate Recommendation,
11 June 2009. Available at http://www.w3.org/TR/owl2-conformance/.

53. OWL 2 Web Ontology Language Direct Semantics. W3C Candidate
Recommendation, 11 June 2009. Available at http://www.w3.org/TR/

owl2-direct-semantics/.
54. OWL 2 Web Ontology Language RDF-Based Semantics. W3C Candi-

date Recommendation, 11 June 2009. Available at http://www.w3.org/TR/

owl2-rdf-based-semantics/.
55. OWL 2 Web Ontology Language Manchester Syntax. W3C Working Draft, 11

June 2009. Available at http://www.w3.org/TR/owl2-manchester-syntax/.
56. OWL 2 Web Ontology Language Overview. W3C Candidate Recommendation, 11

June 2009. Available at http://www.w3.org/TR/owl2-overview/.
57. OWL 2 Web Ontology Language Primer. W3C Working Draft, 11 June 2009.

Available at http://www.w3.org/TR/owl2-primer/.
58. OWL 2 Web Ontology Language Profiles. W3C Candidate Recommendation, 11

June 2009. Available at http://www.w3.org/TR/owl2-profiles/.
59. OWL 2 Web Ontology Language Structural Specification and Functional-style

Syntax. W3C Candidate Recommendation, 11 June 2009. Available at http:

//www.w3.org/TR/owl2-syntax/.
60. B. Parsia and U. Sattler. OWL 2 Web Ontology Language Data Range Extension:

Linear Equations. W3C Working Draft, 11 June 2009. Available at http://www.

w3.org/TR/owl2-dr-linear/.
61. P. F. Patel-Schneider. Small can be beautiful in knowledge representation. In Proc.

of the IEEE Workshop on Knowledge-Based Systems, 1984. An extended version
appeared as Fairchild Tech. Rep. 660 and FLAIR Tech. Rep. 37, October 1984.

62. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language
semantics and abstract syntax. W3C Recommendation, 10 February 2004. Avail-
able at http://www.w3.org/TR/owl-semantics/.

63. P. F. Patel-Schneider, D. L. McGuiness, R. J. Brachman, L. A. Resnick, and
A. Borgida. The CLASSIC knowledge representation system: Guiding principles
and implementation rational. SIGART Bull., 2(3):108–113, 1991.

64. Pellet OWL reasoner. Maryland Information and Network Dynamics Lab, 2003.
http://www.mindswap.org/2003/pellet/index.shtml.

65. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, 10:133–173, 2008.

66. RFC 3987: Internationalized Resource Identifiers (IRIs). Internet Engineering Task
Force (IETF) Request For Comments (RFC), January 2005. Available at http:

//www.ietf.org/rfc/rfc3987.txt.

34

67. RIF RDF and OWL Compatibility. W3C Recommendation, 22 June 2010. Avail-
able at http://www.w3.org/TR/rif-rdf-owl/.

68. R. B. Roberts and I. P. Goldstein. The FRL primer. Memo 408, Massachusetts
Institute of Technology Artificial Intelligence Laboratory, July 1977. Available at
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-408.pdf.

69. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Else-
vier, 2001.

70. U. Sattler. A concept language extended with different kinds of transitive roles. In
G. Görz and S. Hölldobler, editors, Proc. of the 20th German Annual Conf. on Ar-
tificial Intelligence (KI’96), number 1137 in Lecture Notes in Artificial Intelligence,
pages 333–345. Springer, 1996.

71. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages
466–471, 1991.

72. M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proc. of the 1st Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR’89), pages 421–431. Morgan
Kaufmann, Los Altos, 1989.

73. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1–26, 1991.

74. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.

75. K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass., 2000. Fall Symposium Special Issue.

76. K. Spackman, K. Campbell, and R. Cote. SNOMED RT: A reference terminology
for health care. J. of the American Medical Informatics Association, pages 640–644,
1997. Fall Symposium Supplement.

77. SPARQL query language for RDF. W3C Recommendation, 15 January 2008.
Available at http://www.w3.org/TR/rdf-sparql-query/.

78. R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. W. Paton, C. A. Goble,
and A. Brass. Tambis: Transparent access to multiple bioinformatics information
sources. Bioinformatics, 16(2):184–186, 2000.

79. H. J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. of Web Se-
mantics, 3(2–3):79–115, 2005.

80. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

