
MORe: Modular Combination of OWL Reasoners
for Ontology Classification

Ana Armas Romero, Bernardo Cuenca Grau, Ian Horrocks

Department of Computer Science. University of Oxford

Abstract. Classification is a fundamental reasoning task in ontology
design, and there is currently a wide range of reasoners highly optimised
for classification of OWL 2 ontologies. There are also several reasoners
that are complete for restricted fragments of OWL 2 , such as the OWL
2 EL profile. These reasoners are much more efficient than fully-fledged
OWL 2 reasoners, but they are not complete for ontologies containing
(even if just a few) axioms outside the relevant fragment. In this paper,
we propose a novel classification technique that combines an OWL 2
reasoner and an efficient reasoner for a given fragment in such a way that
the bulk of the workload is assigned to the latter. Reasoners are combined
in a black-box modular manner, and the specifics of their implementation
(and even of their reasoning technique) are irrelevant to our approach.

1 Introduction

Classification—the problem of identifying the subsumption relationships be-
tween all pairs of classes in the input ontology—is a fundamental reasoning
task in ontology design. For expressive ontology languages, however, the decision
problems associated with classification have a very high worst-case complexity;
in particular, subsumption with respect to an OWL 2 ontology is known to be
a 2Nexptime-complete problem [15, 6].

In spite of these discouraging complexity results, highly optimised reasoners
such as Pellet [21], FaCT++ [22], RacerPro [10] and HermiT [8] are able to
classify many ontologies used in applications. The optimisations employed by
these reasoners aim not only to improve performance on individual subsump-
tion tests, but also to reduce the number of tests performed when classifying a
given ontology—most OWL 2 reasoners use variants of the well-known Enhanced
Traversal Algorithm to incrementally construct a compact representation of the
subsumption relation, along with the told subsumptions optimisation, which pro-
vides an inexpensive way of identifying “obvious” subsumption relationships that
hold in the input ontology [2, 11]. Identifying obvious non-subsumptions is also
important, as most possible subsumption relationships do not hold, and has been
addressed by optimisations such as completely defined concepts, which identifies a
fragment of the ontology for which told subsumptions provide complete informa-
tion, model-merging, and other related techniques that exploit the computations
performed during individual class satisfiability tests [23, 11, 9, 8].

However, notwithstanding extensive and ongoing research into optimisation
techniques, the classification of large ontologies—such as the SNOMED medi-
cal ontology—can still require a very large number of subsumption tests, and
even if no individual test is very costly, the total amount of time required for
classification can still be large. This (and other performance issues) has moti-
vated a growing interest in so-called lightweight description logics: weaker logics
that enjoy favourable computational properties. OWL 2 includes several profiles
(language fragments) based on such lightweight DLs, including OWL 2 EL, a
profile based on the EL++ DL for which most standard reasoning tasks can be
performed in polynomial time [19]. Very efficient profile-specific reasoners have
been developed for OWL 2 EL, including CEL [3] and ELK [16], which can
classify ontologies as large as SNOMED in just a few seconds.

Unfortunately, a reasoner for profile L (an L-reasoner) is only able to (com-
pletely) classify ontologies in the L profile (L-ontologies), and restricting the
ontology to a given profile may be undesirable or even infeasible in practice,
with many existing ontologies falling outside all of the tractable profiles of OWL
2. In many cases, however, such ontologies contain only a relatively small number
of axioms that are outside one of the tractable fragments. For example, of the
219,224 axioms in the latest version of the National Cancer Institute Ontology
(NCI), only 65 are outside the OWL 2 EL profile. Using a suitable L-reasoner
to efficiently classify most classes (i.e., to find all their subsumers) in the sig-
nature (or vocabulary) of a given ontology might, therefore, lead to significant
improvements in performance. Unfortunately, using an L-reasoner in this way is
far from simple, as even a single axiom that is outside L could affect every class
in the ontology.

In this paper, we propose a novel technique where an efficient L-reasoner and
a fully fledged OWL 2 reasoner are combined in a modular way to classify an
OWL 2 ontology. More precisely, given an OWL 2 ontology O, and a fragment
L of OWL 2 , our classification algorithm proceeds as follows:

1. It computes a signature ΣL ⊆ Sig(O) and an L-ontologyML ⊆ O such that
the classes in ΣL can be completely classified using only the axioms inML.

2. It computes an ontology ML ⊆ O such that the classes in O \ ΣL can be
fully classified using only the axioms in ML.

3. It classifies ML using a fully-fledged OWL 2 reasoner and then completes
the classification of O by classifying ML using an L-reasoner.

Step 1 involves two important technical challenges. First, ΣL should be as large
as possible; in particular, for ontologies with only a few non L-axioms, it is
reasonable to expect ΣL to contain most of the ontology’s signature. Second,
ML must be complete for ΣL; i.e., if a subsumption relationship between two
classes in ΣL is entailed by O, then it must also be entailed by ML. Although
techniques such as the completely defined concepts optimisation can be used to
identify a fragment of the ontology that is complete for a certain signature, these
techniques are very restricted—they are not applicable to all OWL 2 ontologies,
and even when they are applicable they use a fixed fragment of OWL 2 that

is much smaller than the OWL 2 EL profile. In contrast, we exploit module
extraction [5, 4] to develop a technique that provides the following compelling
features:

– It is general and flexible, as it is neither tied to any particular fragment or
profile L of OWL 2, nor to any particular reasoner or reasoning technique.

– It is easy to implement, as reasoners are combined in a black-box manner,
with no modification of their internals being required.

– It exhibits “pay-as-you-go” behaviour when an L-ontology is extended with
axioms outside L: on the one hand, the use of an L-reasoner is not precluded
by the extension; on the other hand, performance degrades gracefully with
the number of additional non L-axioms.

We believe that our results are interesting from both a theoretical and a
practical point of view. From a theoretical point of view, we show that given an
OWL 2 ontology O that is not captured by any known tractable fragment of
OWL 2, it is often possible to identify a large subset Σ of its signature such that
all subsumers of classes in Σ w.r.t. O can be computed using a polynomial time
classification algorithm. From a practical point of view, our experiments with a
prototype implementation MORe,1 which integrates the OWL 2 reasoner HermiT
and the OWL 2 EL reasoner ELK, illustrate the potential of this approach for
optimising classification and providing a modular reasoning system with robust
pay-as-you-go performance.

2 Preliminaries

We assume basic familiarity with the W3C standard OWL 2 [6] and its EL profile
[19]. When talking about ontologies and axioms we implicitly refer to OWL 2
ontologies and axioms, and when talking about OWL 2 we implicitly refer to
OWL 2 under the direct semantics [20].

For compactness reasons, we adopt description logic notation rather than
OWL syntax in examples and definitions; hence we also assume basic familiarity
with the syntax and semantics of the DLs SROIQ [12] and EL++ [1], which
provide the logical underpinning for OWL 2 and OWL 2 EL, respectively.

We consider the standard notions of signature (or vocabulary), interpreta-
tions and models, entailment, satisfiability, and class subsumption. We denote
with Sig(O) (respectively, Sig(α)) the signature of an ontology O (respectively,
of an axiom α), and use the greek letters Σ and Γ to denote signatures. We
denote with L a generic fragment of OWL 2—either one of its profiles or any
other possible fragment for which we may have an efficient reasoner. Finally,
given an OWL 2 ontology O, we denote with OL the set of L-axioms in O.

2.1 Module Extraction

Intuitively, a module M for an ontology O w.r.t. a signature Σ is an ontology
M⊆ O such that M and O entail the same axioms over Σ [5].
1 Modular OWL Reasoner.

BursitisOrCellulitisOfKnee
::::::::::::::::::::::

≡
:

BursitisOfKnee t CellulitisOfKnee
::::::::::::::::::::::::::::

(1)

BursitisOfKnee ≡ Bursitis u ∃hasLocation.Knee (2)

BursitisOfJoint ≡ Bursitis u ∃hasLocation.Joint (3)

Bursitis v Swelling (4)

Cellulitis v Swelling u ∃hasOrigin.Infection (5)

InfectiousDisease ≡ ∃hasOrigin.Infection (6)

∃hasOrigin.> v Disease (7)

Knee v Joint (8)

Fig. 1. The example ontology Oex. Its only non OWL 2 EL axiom is underlined

This intuition is typically formalised using the notions of deductive and
model-based conservative extensions [17, 5]. In this paper, we define modules
in terms of the model-based notion of conservative extension.

Definition 1 (Model Conservative Extension). Let O be an ontology and
let Σ ⊆ Sig(O). We say that O is a model conservative extension of M ⊆ O
w.r.t. Σ if, for every model I = (∆I , ·I) ofM, there exists a model J = (∆J , ·J)
of O such that ∆I = ∆J and XI = XJ for every symbol X ∈ Σ.

That is, O is a model conservative extension of M for Σ if every model of
M can be extended to a model of O without changing either the interpretation
domain, or the interpretation of the symbols in Σ.

Definition 2 (Module). Let O be an ontology and let Σ be a signature. We say
that M ⊆ O is a module for O w.r.t. Σ if O is a model conservative extension
of M w.r.t. Σ.

In particular, if M is a module for O w.r.t. Σ, then the following condition
holds: for each axiom α with Sig(α) ⊆ Σ, we have M |= α iff O |= α.

Example 1. Consider the ontology Oex, given in Figure 1, which we will use as a
running example. Consider also the fragment Oex

1 = {(1), (2), (3), (4), (8)} of Oex.
Let I be an arbitrary model of Oex

1 . We can obtain a model of Oex by interpreting
all symbols in Sig(Oex

1) in the same way as I, and all symbols outside Sig(Oex
1)

as the empty set. Thus, Oex is a model conservative extension of Oex
1 , and Oex

1

is a module for Oex w.r.t. Sig(Oex
1). As a result, Oex and Oex

1 entail exactly the
same axioms constructed using only symbols from Sig(Oex

1). ♦

The problem of checking whetherM is a module for O w.r.t. Σ is, however,
already undecidable for fairly lightweight fragments of OWL 2, such as the OWL
2 EL profile [18]; therefore, approximations are needed in practice. The following
sufficient condition for model conservativity is known to work well [5, 7].

Definition 3 (∅-locality). Let Σ be a signature. An interpretation I is ∅-local
for Σ if for every class A 6∈ Σ and every property R 6∈ Σ, we have AI = RI = ∅.
An axiom α is ∅-local for Σ if I |= α for each I that is ∅-local for Σ. An ontology
O is ∅-local for Σ if every axiom in O is ∅-local for Σ.

Example 2. It is easy to check that the ontology Oex \Oex
1 , consisting of axioms

(5), (6) and (7), is ∅-local w.r.t. Sig(Oex
1). For example, to see that axiom (5)

is indeed ∅-local w.r.t. Sig(Oex
1), consider any I that interprets all symbols in

(5) other than those in Sig(Oex
1) as the empty set. Thus, we have CellulitisI =

hasOriginI = InfectionI = ∅. Clearly, both left and right hand sides of axiom (5)
are interpreted as the empty set by I (see below) and hence I satisfies (5).

∅︷ ︸︸ ︷
Cellulitis v Swelling u ∃

∅︷ ︸︸ ︷
hasOrigin .

∅︷ ︸︸ ︷
Infection︸ ︷︷ ︸

∅ ♦

Checking ∅-locality for OWL 2 axioms is, however, a Pspace-complete prob-
lem [5]. Since our goal is to optimise classification, checking ∅-locality might still
be too costly. Instead, we will use ⊥-locality—a well-known sufficient syntactic
condition for ∅-locality which has been successfully used for both ontology reuse
and reasoning problems [5, 14, 7, 4].

The grammar defining ⊥-locality for SROIQ can be found in the literature
[4, 5]. It suffices to note that ⊥-locality can be checked in polynomial time and
that it implies ∅-locality. Furthermore, the following property holds [4, 5]:

Proposition 1. If an axiom α is ⊥-local w.r.t. a signature Σ, then α is ⊥-local
w.r.t. Σ′ for any Σ′ ⊆ Σ.

We use ⊥-locality to define the notion of ⊥-module. The fact that ⊥-locality
implies ∅-locality ensures that, if M is a ⊥-module for O w.r.t. Σ (as defined
next), then it is a module for O w.r.t. Σ.

Definition 4 (⊥-module). Let O be an ontology and let Σ be a signature. We
say thatM⊆ O is a ⊥-module for O w.r.t. Σ if O\M is ⊥-local for Σ∪Sig(M).

Example 3. It was pointed out in Example 2 that Oex \ Oex
1 is ∅-local w.r.t.

Sig(Oex
1). In particular, Oex \ Oex

1 is also ⊥-local w.r.t Sig(Oex
1), and therefore

Oex
1 is a ⊥-module for Oex w.r.t Sig(Oex

1). ♦

The algorithm for ⊥-module extraction [7] is given in Algorithm 1. This
algorithm computes the unique smallest ⊥-module for a given O and Σ (the
smallest subsetM⊆ O s.t. O\M is ⊥-local for Σ∪Sig(M)). We refer to such a
smallest ⊥-module as the ⊥-module for O w.r.t. Σ, and denote it with M[O,Σ].

Example 4. Suppose that we want to extract a ⊥-module for O w.r.t. Γ , with

Γ = {Knee,Bursitis, hasLocation}

It can be observed in Algorithm 1 that new symbols added to the module’s
signature in some iteration may cause more axioms to be added to the module

Algorithm 1 ⊥-module(O, Σ)

Input: an ontology O and a signature Σ

1: M := ∅; O′ := O
2: repeat

3: changed := false

4: for all α ∈ O′ do

5: if α not ⊥-local w.r.t Σ ∪ Sig(M) then

6: M :=M∪ {α}; O′ := O′ \ {α}
7: changed := true

8: until changed = false

9: returnM

in subsequent iterations. The algorithm stops once a fixpoint is reached and no
more symbols need to be added to the module’s signature.

On the first iteration, we would only add axioms (2), (4) and (8) to our
module. Then, due to having added Joint and BursitisOfKnee to the module’s
signature, we would have to add axioms (1) and (3) as well. We would thus find
that M[Oex,Γ] coincides with Oex

1 and its signature is precisely Sig(Oex
1). ♦

In addition to being modules as in Definition 2, ⊥-modules enjoy a property
that makes them especially well-suited for optimising classification [4].

Proposition 2. Let O be an ontology, let A,B be classes in Sig(O) ∪ {>,⊥},
let Σ ⊆ Sig(O) with A ∈ Σ, and let M⊆ O be a ⊥-module in O w.r.t. Σ. Then
O |= A v B iff M |= A v B.

Example 5. Proposition 2 implies that O 6|= Bursitis v Cellulitis. Indeed, we have
that Bursitis ∈ Γ but Cellulitis /∈ Sig(M[O,Γ]); therefore, it must be the case that
M[O,Γ] 6|= Bursitis v Cellulitis, and thus O 6|= Bursitis v Cellulitis. ♦

3 Modular Classification of Ontologies

Consider an ontology O such that most of the axioms in it are expressed in some
restricted fragment L of OWL 2. This is the case, considering L = OWL 2 EL,
for our example ontology Oex, whose L-fragment Oex

L contains all the axioms in
Oex except axiom (1).

Our first goal is to identify a signature ΣL ⊆ Sig(O) such that the corre-
sponding ⊥-module M[O,ΣL] is contained in the L-fragment OL of O. We call
any such ΣL an L-signature for O. Proposition 2 ensures that an L-reasoner
can then be used to determine all the subsumers of classes in ΣL. Section 3.1
addresses the problem of identifying as large an L-signature as possible.

Once an L-signature ΣL has been identified, the use of a fully-fledged OWL
2 reasoner can be restricted to computing the subsumers of the classes in the
complementary signature ΣL = Sig(O)\ΣL. The details of how our classification

algorithm combines the use of both an L-reasoner and an OWL 2 reasoner as
black boxes are given in Section 3.2.

3.1 Computing an L-signature

The definition of ⊥-module suggests a simple “guess and check” algorithm for
computing a (maximal) L-signature for O: consider all subsets Σ ⊆ Sig(O)
in decreasing size order and, for each of them, check whether M[O,Σ] is an L-
ontology. This could, however, be quite costly, and as our objective is to optimise
classification we propose a goal directed algorithm. Although our algorithm is
not guaranteed to compute a maximal L-signature, it can be implemented very
efficiently; furthermore, as shown in the evaluation section, it typically computes
large L-signatures, provided that OL is a large enough fragment of O.

We start by pointing out that every L-signature ΣL must satisfy the property
(?) below. If (?) does not hold, then M[O,ΣL] will contain some non L-axiom.

Property (?): O \ OL is ⊥-local w.r.t. ΣL

Example 6. Consider again our example ontology Oex and let L be OWL 2 EL.
As already mentioned, the L-fragment Oex

L of Oex contains all axioms in Oex

except for (1). One may think that the signature of Oex
L is an L-signature, which

makes the computation of a maximal L-signature trivial; this is, however, not
the case. Note that the signature of Oex

L , namely

Sig(Oex
L) = Sig(Oex) \ {BursitisOrCellulitisOfKnee,CellulitisOfKnee}

is not an L-signature for Oex; indeed, axiom (1) is not ⊥-local w.r.t Sig(Oex
L). In

contrast, we have that axiom (1) is ⊥-local w.r.t.

Γ ′ = {Bursitis, hasLocation, Joint,BursitisOfJoint,Swelling, Infection,

InfectiousDisease,Disease, hasOrigin}

Furthermore,M[Oex,Γ ′] consists of axioms (3), (4) (5) (6) (7), which are all within
the OWL 2 EL fragment; hence, Γ ′ is an L-signature for Oex. ♦

Although Example 6 might suggest that property (?) is also a sufficient
condition for ΣL to be an L-signature in O, this is unfortunately not the case.

Example 7. Consider again the signature Γ from Example 4. Clearly, axiom (1)
(the only non L-axiom in Oex) is ⊥-local w.r.t Γ and hence (?) holds for Γ .
Note, however, that Γ is not an L-signature for Oex since, as already discussed,
axiom (1) is contained inM[Oex,Γ]. One way to address this problem is to reduce
Γ to Γ \ {Knee}. The corresponding ⊥-module only contains axiom (4), which
implies that such reduced signature is indeed an L-signature for Oex. ♦

Example 7 suggests an algorithm for computing an L-signature for O, which
can be intuitively described as follows.

1. Reduce Σ0 = Sig(O) to a subset Σ1 of Σ0 such that S0 = O \OL is ⊥-local
w.r.t. Σ1 (thus satisfying (?)).

2. Compute the set S1 of axioms in M[O,Σ1] containing symbols not in Σ1.
3. Reduce Σ1 to a subset Σ2 of Σ1 such that S1 is ⊥-local w.r.t. Σ2.
4. Repeat Steps [2-4] until the set of axioms computed in Step 2 is empty.

The sequence (Σi)i≥0 will eventually converge to a fixpoint (as we will shortly
prove), and this fixpoint will be guaranteed to be an L-signature, ΣL. We next
explain the intuition behind our algorithm with an example.

Example 8. Consider once more our example ontology Oex. As already men-
tioned, the only non OWL 2 EL axiom is (1), so we start with

Σ0 = Sig(Oex)
S0 = {BursitisOrCellulitisOfKnee ≡ BursitisOfKnee t CellulitisOfKnee}

The only way to make axiom (1)⊥-local is by removing BursitisOrCellulitisOfKnee,
BursitisOfKnee and CellulitisOfKnee from Σ0. So we take

Σ1 = Σ0 \ {BursitisOrCellulitisOfKnee,BursitisOfKnee,CellulitisOfKnee}

Next, we computeM[Oex,Σ1] using Algorithm 1. This module contains axiom (2),
which mentions BursitisOfKnee (not in Σ1). Because this class is in the module’s
signature, the module needs to contain axiom (1) as well. This gives us

S1 = {BursitisOrCellulitisOfKnee ≡ BursitisOfKnee t CellulitisOfKnee,

BursitisOfKnee ≡ Bursitis u ∃hasLocation.Knee}

We have seen that, unless axiom (2) in S1 is outside the module, axiom (1)
cannot be outside the module either. Thus, we need to make sure that axiom
(2) is ⊥-local. For this, we can take Σ2 = Σ1 \ {Knee}.

At this point, we need not worry about axiom (1) anymore; it was already
local w.r.t. Σ1, so, by Proposition 1, it will be ⊥-local w.r.t. any subset of Σ1.

Next, we computeM[Oex,Σ2] and find that it contains all axioms in Oex except
for axioms (1), (2) and (8). This implies that all symbols inM[Oex,Σ2] are in Σ2

and hence S3 = ∅. The algorithm then terminates and returns ΣL = Σ2.
Note that ΣL is indeed an L-signature since the module M[Oex,Σ2] does not

contain axiom (1) and hence is an OWL 2 EL ontology. ♦

Note that there can be many ways to perform the signature reduction re-
quired in Steps 1 and 4. In Example 8, for instance, we could have taken
Σ2 = Σ1 \ {Bursitis} or Σ2 = Σ1 \ {hasLocation}, or even any subset thereof.
Making reasonable choices requires good heuristics. In our implementation our
choices are guided so that as many properties as possible are kept within ΣL. In-
deed, ontologies typically contain many more classes than properties, and each
property typically occurs in a larger number of axioms; thus, having a prop-
erty outside ΣL is likely to cause many other symbols to be left outside ΣL.
The following example illustrates how different choices lead to rather different
L-signatures.

Algorithm 2 L-signature(O)

Input: an ontology O
1: ΣL := Sig(O) ; S := O \ OL
2: canReduce := true

3: while S 6= ∅ and canReduce do

4: ΣL := reduce(ΣL,S)

5: if ΣL = ∅ then canReduce := false

6: else S := {α ∈M[O,ΣL] | Sig(α) 6⊆ ΣL}
7: return ΣL

Example 9. As already mentioned, in Example 8 we could have alternatively
chosen to take Σ2 = Σ1 \{hasLocation}. This would have causedM[O,Σ2] = Oex

again, and we would have obtained

S3 = S2 ∪ {BursitisOfJoint ≡ Bursitis u ∃hasLocation.Joint}

It would now be enough to take Σ3 = Σ2 \ {BursitisOfJoint}, and we would have
S4 = ∅. In this case we would get ΣL = Σ3, which is smaller (and hence less
appealing) than the ΣL obtained in Example 8. ♦

These signature reductions satisfy the same properties that make them “ac-
ceptable”. We can characterise these acceptable reductions as given next.

Definition 5. Given an ontology O, a signature reduction is a function

reduce : P(Sig(O))× P(O)→ P(Sig(O))

that, given Σ ∈ P(Sig(O)) and S ∈ P(O) not ⊥-local w.r.t. Σ, returns

1. Σ if S = ∅.
2. Σ′ ⊂ Σ s.t. each axiom in S is ⊥-local w.r.t. Σ′ if S 6= ∅ and Σ′ exists.
3. ∅ otherwise.

Note that the Cases 1 and 3 correspond to the extreme situations when S = ∅
or when there is no satisfying way of reducing Σ. Case 2 constitutes the essence
of the reduction, namely to compute a strict subset of the signature that makes
the given set of axioms ⊥-local.

Given a particular reduce function, Algorithm 2 accepts an ontology O and
returns a signature ΣL ⊆ Sig(O). Theorem 1 guarantees the termination of
Algorithm 2 as well as its correctness: any non-empty signature returned by the
algorithm is an L-signature for O.

Theorem 1. Let O be an ontology and let reduce be a signature reduction func-
tion. Furthermore, let Si, Σi (i ≥ 0) be defined by the following construction:

(i = 0) : Σ0 = Sig(O) S0 = O \ OL
(i ≥ 1) : Σi = reduce(Σi−1,Si−1) Si = {α ∈M[O,Σi] | Sig(α) 6⊆ Σi}

Finally, let ΣL :=
⋂
i≥0Σi. Then, the following properties hold:

1. There exists k < |Sig(O)| such that either Σk = ∅ or Sk = ∅.
2. Either ΣL = ∅ or M[O,ΣL] ⊆ OL.

Proof. We first show Claim 1. Suppose Σi 6= ∅ for each i ≥ 0. A straightforward
inductive argument would show that Σj ⊆ Σi for each j > i ≥ 0. Furthermore,
Σ0 = Sig(O), so it cannot be the case that Σj ⊂ Σi for each 0 ≤ i < j ≤ |Sig(O)|.
Therefore, there must be some k < |Sig(O)| such that Σk+1 = Σk; by the
definition of reduce, this implies that Sk = ∅.

We finally show Claim 2. Suppose ΣL 6= ∅. It is enough to prove that each
α ∈ O \ OL is ⊥-local w.r.t. ΣL ∪ Sig(M[O,ΣL]).

First, we are going to see that Sig(M[O,ΣL]) ⊆ ΣL. According to Claim 1,
there exists k < |Sig(O)| such that Sk = ∅. This implies that, for each axiom
α ∈M[O,Σk], we have Sig(α) ⊆ Σk. It is easy to see that Sk = ∅ also implies that
Σj = Σk for each j > k. Together with the fact that Σj ⊆ Σi for each j > i ≥ 0,
this implies ΣL =

⋂
i≥0Σi = Σk. But then for each α ∈M[O,ΣL] =M[O,Σk] we

have Sig(α) ⊆ Σk = ΣL, and so Sig(M[O,ΣL]) ⊆ ΣL.
Now we can just prove that each α ∈ O \ OL is ⊥-local w.r.t. ΣL. Because

ΣL =
⋂
i≥0Σi 6= ∅, in particular it must be the case that Σ0 6= ∅. By definition

of reduce, either O \OL = ∅, in which case it is immediate that M[O,ΣL] ⊆ OL,
or every axiom in S0 = O \ OL is ⊥-local w.r.t. Σ1 = reduce(Σ0,S0). Then, by
Proposition 1, each α ∈ O \ OL is ⊥-local w.r.t. ΣL ⊆ Σ1. ut

3.2 Black-box Modular Classification

Having identified a (hopefully large) L-signature for our ontology O, we can next
proceed to classify the ontology in a modular way.

As already mentioned, we can fully classify the classes in ΣL using only an L-
reasoner. This is a consequence of Proposition 2 and the fact thatM[O,ΣL] ⊆ OL.

To classify the classes in ΣL = Sig(O) \ΣL, however, a fully fledged OWL 2
reasoner is still required. By Proposition 2, the OWL 2 reasoner does not need
to consider all the axioms in O, but only those in the relevant moduleM

[O,ΣL]
.

Once the OWL 2 reasoner has computed the classification of M
[O,ΣL]

, we
can express the classification result as simple subsumption axioms of the form
A v B. These axioms, together with M[O,ΣL], can be given to the L-reasoner,
which will use the resulting ontology to compute a complete classification of O.

Algorithm 3 describes the entire classification process for a given fragment
L of OWL 2 and a particular signature reduction function reduce. The function
L-signature is as given in Algorithm 2. The function classification returns the
classification of the given ontology (computed using an OWL 2 reasoner) as
a set of axioms of the form A v B. The function classificationL returns the
classification of the given ontology as computed by an L-reasoner.

Algorithm 3 L-ModularClassification(O)

Input: an OWL 2 ontology O
1: ΣL := L-signature(O) . See Algorithm 2

2: H
ΣL

:= classification(M
[O,ΣL]

) . using the OWL 2 reasoner

3: H := classificationL(M[O,ΣL] ∪HΣL) . using the L-reasoner

4: return H

Example 10. Recall the L-signature ΣL for Oex computed in Example 8:

ΣL = {Bursitis, hasLocation,BursitisOfJoint, Joint,Swelling,Cellulitis,

hasOrigin, Infection, InfectiousDisease,Disease}

The complementary signature is

ΣL = {BursitisOrCellulitisOfKnee,BursitisOfKnee,CellulitisOfKnee,Knee}

and the relevant ⊥-module is M
[Oex,ΣL]

= {(1), (2), (3), (4), (8)}. The classifica-
tion of this module leads to the following subsumptions H

ΣL
:

CellulitisOfKnee v BursitisOrCellulitisOfKnee BursitisOfJoint v Bursitis

BursitisOfKnee v BursitisOrCellulitisOfKnee Bursitis v Swelling

BursitisOfKnee v BursitisOfJoint Knee v Joint

BursitisOfKnee v Bursitis

We can now use the L-reasoner to classify M[O,ΣL] ∪ HΣL , thus obtaining
all the remaining subsumption relationships that hold in Oex:

Cellulitis v Swelling Cellulitis v InfectiousDisease

InfectiousDisease v Disease Cellulitis v Disease ♦

The following Theorem establishes the correctness of Algorithm 3.

Theorem 2. Let O be an ontology, let reduce be a signature reduction function
and letM[O,ΣL], HΣL be as computed by Algorithm 3. Then, for any two classes
A ∈ Sig(O) and B ∈ Sig(O) ∪ {>,⊥}, we have that

O |= A v B iff (M[O,ΣL] ∪HΣL) |= A v B

Proof. Let A ∈ Sig(O) and B ∈ Sig(O) ∪ {>,⊥}. We consider two cases.

– Case 1: A ∈ ΣL. Then, by Proposition 2, we have that O |= A v B iff
M[O,ΣL] |= A v B. Also, because M[O,ΣL] ⊆ M[O,ΣL] ∪ HΣL , by mono-
tonicity we have thatM[O,ΣL] |= A v B implies (M[O,ΣL]∪HΣL) |= A v B.
It remains to show that

(M[O,ΣL] ∪HΣL) |= A v B implies M[O,ΣL] |= A v B (9)

Because H
ΣL

encodes the classification of M
[O,ΣL]

, we have that

(M[O,ΣL] ∪HΣL) |= A v B implies (M[O,ΣL] ∪M[O,ΣL]
) |= A v B (10)

Now, it is immediate that M[O,ΣL] ∪M[O,ΣL]
⊆ O; thus, because M[O,ΣL]

is a module for O w.r.t. ΣL, it must also be a module forM[O,ΣL]∪M[O,ΣL]

w.r.t. ΣL. So, again by Proposition 2, we have

(M[O,ΣL] ∪M[O,ΣL]
) |= A v B implies M[O,ΣL] |= A v B (11)

Now, (10) and (11) imply (9), as required.
– Case 2: A ∈ ΣL = Sig(O) \ ΣL. Then, by Proposition 2, O |= A v B iff
M

[O,ΣL]
|= A v B. Because H

ΣL
represents the classification of M

[O,ΣL]
,

we have M
[O,ΣL]

|= A v B iff H
ΣL
|= A v B. It remains to show that

H
ΣL
|= A v B iff M[O,ΣL] ∪HΣL |= A v B (12)

Left to right implication holds directly by monotonicity, so let us assume
M[O,ΣL] ∪ HΣL |= A v B. Since H

ΣL
is the classification of M

[O,ΣL]
,

we have M[O,ΣL] ∪M[O,ΣL]
|= A v B. Now, M

[O,ΣL]
is a ⊥-module for

M[O,ΣL] ∪M[O,ΣL]
⊆ O w.r.t. ΣL since it is a ⊥-module for O w.r.t. ΣL.

By Proposition 2, M
[O,ΣL]

|= A v B, which implies H
ΣL
|= A v B. ut

4 Implementation and Experiments

We have implemented our modular reasoner MORe2 in Java using the OWL
API.3 Our implementation of a signature reduction function reduce (see Section
3.1) is based on the ⊥-locality module extractor described in [14].4 Our system
currently integrates ELK, which acts as an OWL 2 EL reasoner, and HermiT,
which plays the role of a fully-fledged OWL 2 reasoner.

In the implementation of the signature reduction, symbols required to make
a set of axioms ⊥-local are selected greedily axiom by axiom. As discussed in
Examples 8 and 9, when selecting symbols it is often a good idea to implement
heuristics that try to keep as many properties as possible within ΣL.

Evaluation on BioPortal ontologies. We have compared classification times
obtained by MORe and HermiT over a set of large bio-medical ontologies avail-
able from BioPortal.5 Results are summarised in the upper part of Table 1. The
Gene Ontology (GO) and Gazetteer are OWL 2 EL ontologies; therefore, MORe
delegates all the work to ELK, with the consequent performance improvement.

2 http : //www.cs.ox.ac.uk/isg/tools/MORe/
3 http : //owlapi.sourceforge.net/
4 http : //www.cs.ox.ac.uk/isg/tools/ModuleExtractor
5 http : //bioportal.bioontology.org/

Table 1. MORe vs HermiT. Comparison on BioPortal ontologies and on mapped on-
tologies. Tables show number of axioms outside OWL 2 EL, relative size of ΣL and
M

[O,ΣL]
, and classification times using HermiT and MORe. For MORe we specify the

performance gain w.r.t. HermiT alone and the time taken by HermiT and ELK.

Ontology |O \ OL| |ΣL| |M
[O,ΣL]

|
Classif. time (seconds)

HermiT
MORe

total HermiT ELK

GO 0 100% 0% 7.1 2.2 (↓69.0%) 0 0.1

Gazeteer 0 100% 0% 838.1 28.2 (↓96.6%) 0 15.6

NCI 65 94.9% 15.4% 84.1 28.6 (↓66.0%) 15.8 3.3

Protein 12 98.1% 6.6% 11.4 2.9 (↓74.6%) 0.4 0.9

Biomodels 22,079 45.2% 66.4% 741.4 575.6 (↓22.4%) 540.1 2.6

cellCycle 1 > 99.9% < 0.1% – 13.9 (–) <0.1 4.9

NCI+CHEBI 65 95.6% 10.3% 116.6 34.0 (↓70.8%) 16.3 4.1

NCI+GO 65 96.7% 10.4% 110.0 37.6 (↓65.8%) 17.6 3.2

NCI+Mouse 65 96.0% 13.3% 93.7 31.0 (↓66.9%) 16.6 2.6

For the latest version of NCI and for Protein, which contain only a small number
of axioms outside OWL 2 EL, the obtained ΣL contains most of Sig(O), and
hence MORe significantly outperforms HermiT. Biomodels, however, contains a
large number of axioms outside OWL 2 EL, thus the size of ΣL is proportion-
ally much smaller and MORe must assign a higher workload to HermiT, which
results in a more modest performance gain. Finally, the Cell Cycle ontology is
an extreme case: an ontology that is almost OWL 2 EL and can be classified
efficiently with MORe, while HermiT alone runs out of memory.

Evaluation on ontologies integrated via mappings. We have used the
ontology matching tool LogMap [13] to integrate the latest version of NCI with
other widely used ontologies. Results are summarised in the lower part of Table
1. We can observe that MORe consistently outperforms HermiT by 65-70%.

Evaluation on versions of NCI. We have compared MORe with HermiT on
10 versions of NCI.6 Unsurprisingly, there have been significant variations in 10
years of development; for example, a 2003 version was entirely in OWL 2 EL, a
version in 2009 contained more than 4, 000 axioms outside OWL 2 EL, and the
current version only contains 65. Figure 2 summarises our results; in all cases,
MORe outperforms HermiT.

Extensions of SNOMED. We have manually extended SNOMED (v. Jan
2010), which is fully expressed in OWL 2 EL, with a few disjunctive axioms
suggested by domain experts who are involved in SNOMED’s development. All
these axioms share the same structure; for example,

Sprain of ankle OR foot ≡ Sprain of ankle t Sprain of foot

6 See http : //ncit.nci.nih.gov/. We consider the latest version in each year.

 0

 50

 100

 150

 200

 250

 300

v.03.12e (0)

v.04.12g (3201)

v.05.12f (3180)

v.06.12d (4532)

v.07.12e (4597)

v.08.12d (4592)

v.09.12d (577)

v.10.12c (31)

v.11.12e (65)

v.12.04e (65)

C
la

ss
ifi

ca
tio

n
tim

e

NCI version and number of non-EL axioms

MORe
HermiT

Fig. 2. Classification times (seconds) for MORe and HermiT on NCI. The X axis in-
dicates the version and the number of axioms outside OWL 2 EL (in parenthesis).

introduces a new class that is fully defined as the set of all sprains that affect
either the ankle or the foot (or both). In total, 20 such axioms were added to
SNOMED, one by one.

Table 2 presents the results obtained for these extended ontologies. Each
of them is identified, in the first column, by the number of disjunctive axioms
that it contains. The second and third columns indicate the relative sizes of
the computed L-signature and the resulting M

[O,ΣL]
. The last two columns

give the classification times obtained using MORe and HermiT. In most cases
classification times are improved by between one and two orders of magnitude.

We can observe, however, that axioms 15, 16, 18, and 19 have a significant
effect on the size of ΣL and, consequently, on the size of M

[O,ΣL]
and the total

classification time. This is due to the classes involved in these particular axioms,
which force our algorithm to keep very general classes outside ΣL; for example,
in one of these cases, the class Liquid Substance is removed from the successive
approximations to ΣL at some point during its computation; by Proposition 2,
all classes representing some kind of liquid substance—and therefore subsumed
by the class Liquid Substance—must be left outside ΣL too, which leads to a
significantly smaller L-signature. It is part of our future work plan to improve

Table 2. Extensions of SNOMED

#t |ΣL| |M[O,ΣL]
| Classif. time

HermiT MORe

1 99.98% 0.10% 1,788.5 25.3

2 99.94% 0.24% 1,959.2 29.0

3 99.88% 0.52% 1,872.8 29.3

4 99.86% 0.61% 1,933.2 30.9

5 99.86% 0.63% 1,898.6 31.6

6 99.86% 0.63% 1,920.2 31.0

7 99.86% 0.64% 1,884.8 31.8

8 99.85% 0.65% 1,868.2 31.3

9 99.85% 0.66% 1,937.2 31.9

10 99.79% 1.00% 1,863.7 32.8

#t |ΣL| |M[O,ΣL]
| Classif. time

HermiT MORe

11 99.79% 1.00% 1,922.5 30.6

12 99.79% 1.01% 1,912.4 30.6

13 99.78% 1.02% 1,864.0 30.5

14 99.76% 1.91% 1,890.5 33.0

15 98.76% 3.19% 1,925.9 42.9

16 97.10% 9.79% 1,930.2 138.5

17 97.08% 9.89% 1,927.9 134.7

18 96.27% 13.50% 1,881.4 269.8

19 94.10% 17.65% 1,847.4 401.1

20 94.02% 17.78% 1,904.0 410.8

the heuristics we use in order to avoid, when possible, leaving out of ΣL classes
that are likely to be high up in the class subsumption hierarchy.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying an OWL 2 ontology
O by exploiting a reasoner for one of its profiles. Our technique allows us to show
that the subsumers of many classes in O can be completely determined using
only the fragment-specific reasoner. Our technique is general and flexible, it ex-
hibits pay-as-you-go behaviour, and it is relatively easy to implement. Although
the implementation in our reasoner MORe is still prototypical, our preliminary
experiments show the potential of our approach in practice.

There are also many interesting possibilities for future work:

– Our heuristics for computing an L-signature are rather basic, and there is
plenty of room for improvement. For example, it might be possible to explore
modular decomposition techniques to compute larger L-signatures [24].

– ⊥-modules provide very strong preservation guarantees (they preserve not
just atomic subsumptions, but even models). It would be interesting to devise
techniques for extracting modules that are more “permissive”, in the sense
that they only provide preservation guarantees for atomic subsumptions.

– Our technique could also be applied to a different notion of locality, as long
as it satisfied a result analogous to Proposition 2.

– We could explore ontology rewriting techniques that complement module
extraction. By rewriting O into an L-ontology O′ such that O′ |= O, and
classifying O′, we can obtain an “upper bound” on the classification of O.

Acknowledgements. This work was supported by the Royal Society, the EU
FP7 project Optique and the EPSRC projects Score!, ExODA and LogMap.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI (2005)
2. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.: An empirical anal-

ysis of optimization techniques for terminological representation systems. Applied
Intelligence 4(2), 109–132 (1994)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL - a polynomial-time reasoner for
life science ontologies. In: Proc. of IJCAR. pp. 287–291 (2006)

4. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incre-
mental classification of description logics ontologies. JAR 44(4), 337–369 (2010)

5. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. JAIR 31, 273–318 (2008)

6. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler,
U.: OWL 2: The next step for OWL. J. Web Semantics (JWS) 6(4), 309–322 (2008)

7. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In: WWW. pp. 717–726 (2007)

8. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. of Web Semantics 10(1) (2011)

9. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: Proc. IJCAI. pp. 161–168 (2001)

10. Haarslev, V., Möller, R.: Racer system description. In: IJCAR. pp. 701–705 (2001)
11. Horrocks, I.: Implementation and optimisation techniques. In: The Description

Logic Handbook: Theory, Implementation, and Applications, pp. 306–346 (2003)
12. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.

of KR. pp. 57–67 (2006)
13. Jiménez-Ruiz, E., Cuenca Grau, B.: Logmap: Logic-based and scalable ontology

matching. In: Proc. of ISWC (2011)
14. Jimenez-Ruiz, E., Cuenca Grau, B., Schneider, T., Sattler, U., Berlanga, R.: Safe

and economic re-use of ontologies: a logic-based methodology and tool support. In:
Proc. of ESWC (2008)

15. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. of KR. pp.
274–284 (2008)

16. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Concurrent classification of EL ontolo-
gies. In: Proc. of ISWC. vol. 7032 (2011)

17. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI. pp. 453–458 (2007)

18. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. In: Proc. of CADE-21. vol. 4603 (2007)

19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
web ontology language profiles. W3C Recommendation (2009)

20. OWL 2 Web Ontology Language Direct Semantics. W3C Recommendation (27
October 2009), http://www.w3.org/TR/owl2-direct-semantics/

21. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)

22. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of IJCAR. vol. 4130, pp. 292–297 (2006)

23. Tsarkov, D., Horrocks, I., Patel-Schneider, P.: Optimizing terminological reasoning
for expressive description logics. JAR 39(3), 277–316 (2007)

24. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: Atomic decomposition. In: Proc. of IJCAI. pp. 2232–2237 (2011)

