
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

HermiT: An OWL 2 Reasoner

Birte Glimm · Ian Horrocks · Boris
Motik · Giorgos Stoilos · Zhe Wang

Received: date / Accepted: date

Abstract This system description paper introduces the OWL 2 reasoner HermiT.
The reasoner is fully compliant with the OWL 2 Direct Semantics as standardised
by the World Wide Web Consortium (W3C). HermiT is based on the hypertableau
calculus, and it supports a wide range of standard and novel optimisations that
improve the performance of reasoning on real-world ontologies. Apart from the
standard OWL 2 reasoning task of entailment checking, HermiT supports several
specialised reasoning services such as class and property classification, as well as
a range of features outside the OWL 2 standard such as DL-safe rules, SPARQL
queries, and description graphs. We discuss the system’s architecture, and we
present an overview of the techniques used to support the mentioned reasoning
tasks. We further compare the performance of reasoning in HermiT with that of
FaCT++ and Pellet—two other popular and widely used OWL 2 reasoners.

Birte Glimm
University of Ulm, Institute of Artificial Intelligence,
89069 Ulm, DE
E-mail: birte.glimm@uni-ulm.de

Ian Horrocks
University of Oxford, Department of Computer Science,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail: ian.horrocks@cs.ox.ac.uk

Boris Motik
University of Oxford, Department of Computer Science,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail: boris.motik@cs.ox.ac.uk

Giorgos Stoilos
National Technical University of Athens, School of Electrical & Computer Engineering
Iroon Polytexneiou 9, 15780 Zografou, GR
E-mail: gstoil@image.ntua.gr

Zhe Wang
Griffith University, School of Information & Communication Technology
Brisbane, QLD 4111, AU
E-mail: zhe.wang@griffith.edu.au

2 Birte Glimm et al.

1 Introduction

In this system description paper we describe the main features of the HermiT on-
tology reasoner. HermiT supports all features of the OWL 2 ontology language [4],
including all OWL 2 datatypes [26], and it correctly performs both object and data
property classification—reasoning tasks that are, to the best of our knowledge, not
fully supported by any other OWL reasoner. In addition to these standard reason-
ing tasks, HermiT also supports SPARQL query answering, and it uses a range of
optimisations [21] to ensure efficient processing of real-world ontologies. Further-
more, HermiT supports several features that go beyond existing standards, such as
DL-safe SWRL rules [15,29] and description graphs [24]—an extension of OWL 2
that allows for a faithful modelling of arbitrarily connected structures.

A key novel idea in HermiT is the hypertableau calculus [30], which allows the
reasoner to avoid some of the nondeterministic behaviour exhibited by the tableau
calculus used in Pellet [36] and FaCT++ [39]—two other popular and widely
used OWL reasoners. In order to further improve the performance of the calculus,
HermiT employs a wide range of standard and novel optimisation techniques,
including anywhere blocking [30], blocking signature caching [30], individual reuse
[25], and core blocking [7]. HermiT also implements a novel classification algorithm
[8] that greatly reduces the number of consistency tests needed to compute the
class and property hierarchies.

We have compared HermiT’s performance with Pellet [36] and FaCT++ [39]
on a set of standard ontologies. Unlike many earlier evaluations, all the ontologies
used in our tests are directly accessible via immutable URIs, so our tests are fully
repeatable and their results are unambiguous. Our results show that, although
HermiT did not outperform the other reasoners on all ontologies, it seemed more
robust as it managed to process more ‘hard’ ontologies.

The rest of this paper is organised as follows: in Section 2 we introduce Her-
miT’s system architecture; in Section 3 we present an overview of the hypertableau
calculus; in Section 4 we discuss several optimisations of the core calculus; in Sec-
tion 5 we outline the features that go beyond OWL 2 and discuss their support in
the reasoner; and in Section 6 we evaluate HermiT’s performance on a wide range
of ontologies and compare it to the performance of Pellet and FaCT++.

We assume the reader to be familiar with OWL, description logics [22,12], and
the correspondence between the OWL and the description logic syntax [14]. We
take an OWL ontology O to consist of a TBox T and an ABox A, where the former
specifies the schema (i.e., the axioms that describe the structure of the domain
being modelled) and the latter contains the data (i.e., the assertions describing
the objects in a domain of discourse). For brevity we will mainly use the standard
description logic syntax; however, as HermiT is an OWL reasoner, we will talk
about classes and properties, which are commonly called concepts and roles in the
description logic community.

2 System Architecture

HermiT consists of several components that together implement a sound and com-
plete OWL reasoning system. Figure 1 shows the most important components (e.g.,

HermiT: An OWL 2 Reasoner 3

<<Interface>>	
Blocking	 Strategy	

Tableau	

<<Interface>>	
Expansion	 Manager	

Clausifier	
Instance	
Manager	

Role	
Classifica?on	

K/P	
Classifica?on	

Determinis?c	
Classifica?on	

Normaliser	 Role	 Chain	
Encoder	 Lo

ad
in

g

C
la

ss
ifi

ca
tio

n

R
ea

lis
at

io
n

Reasoning

Blocking

Existential Expansion
NI	

Manager	

Extension	
Manager	

Resolu?on	
Manager	

Merging	
Manager	

Dataype	 	
Manager	

Single	
Blocking	

Pairwise	
Blocking	

Single	 Core	
Blocking	

Pairwise	 Core	
Blocking	

Ancestor	 Blocking	
Validator	 Core	 Crea?on	

Order	
Individual	
Reuse	 Anywhere	

Blockers	
Cache	

<<Interface>>	
OWLReasoner	

Command	 Line	
Interface	

Reasoner	

DGraph	
Manager	

Fig. 1: A diagram showing the components of the HermiT reasoner

Loading, Classification, etc.) and their main subcomponents. The system has
been implemented in Java for portability and easy integration into applications.

Users can interact with the reasoner via three different interfaces: a native
Java interface, the OWL API [13], and a command line interface. HermiT’s native
interface (the Reasoner component) is a facade that converts typical reasoning
tasks into ontology consistency tests—the only reasoning operation supported by
the hypertableau calculus. For example, to check whether the currently loaded on-
tology entails the statement that an object property f is functional, the Reasoner

component temporarily extends the ontology’s ABox with two object property as-
sertions relating a fresh individual a via the f property with two fresh individuals
b and c, and an assertion specifying that b and c are distinct individuals, and then
it checks whether such an extended ontology is consistent using the hypertableau
calculus; if that is the case, then a model exists proving f to be not functional.

The Reasoner component also implements the OWLReasoner interface from the
OWL API. This allows HermiT to be used in any application based on the OWL
API, and it also allows the Protégé editor to use HermiT as a plugin. HermiT
does not internally use the OWL API data structures to represent ontologies and
axioms, so the Reasoner component converts OWL API data structures into Her-
miT’s internal data structures and back.

The command line interface allows users to invoke basic reasoning tasks from
the command line. In order to keep the number of command line options man-
ageable, the interface does not expose all of the inferencing capabilities of the
reasoner: only common tasks such as ontology classification are supported. The
main benefit of the command line interface is that it allows HermiT to be used

4 Birte Glimm et al.

without any prior setup (e.g., without writing a Java program that invokes the
Reasoner component or the OWLReasoner interface).

2.1 Loading an Ontology

HermiT internally represents an ontology as a set of (ground) assertions A and a
set of DL-clauses C. A DL-clause is an implication of the form

B1 ∧ . . . ∧Bn → H1 ∨ . . . ∨Hm (1)

where each Bi and Hi are atoms constructed using the classes and properties
from the ontology; see Section 3 for more detail. A DL-clause straightforwardly
corresponds to a first-order implication.

The Reasoner component is given an OWL ontology, and then the Loading

component constructs the set O of all axioms contained in the given and all di-
rectly and indirectly imported ontologies,1 and converts O into the sets A and
C. Towards this goal, the Normaliser component first simplifies complex axioms
(e.g., by removing duplicate or irrelevant conjuncts or disjuncts) and then con-
verts the result into a particular normal form; the normalisation step can be seen
as a variant of the well-known structural transformation [32,31]. For example, the
complex superclass in the axiom

Person v ∀hasAncestor.(Male t Female) (2)

is normalised so that only a fresh class Q occurs inside the quantifier, and the
meaning of Q is captured in a separate axiom; more precisely, the above axiom is
transformed into the following two axioms:

Person v ∀hasAncestor.Q (3)

Q v Male t Female (4)

ABox assertions are subjected to the same transformation so, after normalisation,
the ABox contains only classes and properties, rather than class expressions and
property expressions. Moreover, if present in the input ontology, SWRL rules are
normalised along the same lines.

OWL supports transitive object properties and property chain axioms; how-
ever, these features are not handled directly by the hypertableau calculus as this
would make it difficult to ensure termination of the calculus. Instead, the Role

Chain Encoder component transforms away transitivity and property chain ax-
ioms by introducing additional axioms that ensure equisatisfiability between the
original and the transformed ontologies; this transformation is realised using an
automata-based technique [16,23]. The Role Chain Encoder component also in-
troduces axioms encoding the semantics of the the universal object property (i.e.,
owl:topObjectProperty) if needed (i.e., if it occurs in the ontology).

1 OWL ontologies can include references to other ontologies that are to be ‘imported’ (syn-
tactically added) into the current ontology [28].

HermiT: An OWL 2 Reasoner 5

The resulting axioms are finally converted directly into DL-clauses. For exam-
ple, the normalised axioms (3) and (4) are translated into the following DL-clauses:

Person(x) ∧ hasAncestor(x, y) → Q(y) (5)

Q(x) → Male(x) ∨ Female(x) (6)

The ontology expressivity (e.g., whether the ontology contains inverse properties
or nominals) is also determined during the loading step, and this information is
subsequently used to automatically configure certain options that parameterise
the hypertableau calculus.

2.2 Reasoning-Related Components

As already mentioned, all reasoning tasks are transformed into one or more ontol-
ogy consistency tests, whose goal is to determine the consistency of the currently
loaded sets of assertions A and DL-clauses C. For certain reasoning tasks (e.g., to
determine subsumption between complex class expressions), it might be necessary
to extend A and C with temporary assertions and DL-clauses that are needed only
for this single reasoning task. The satisfiability of A and C is decided using the
hypertableau calculus [30], which tries to construct a pre-model—a finite set of
(ground) assertions that describe a (possibly infinite) model satisfying A and C.
The Reasoning component implements the hypertableau calculus, and we discuss
both the calculus and its implementation in more detail in Section 3.

The Classification component uses the Reasoning component to compute
class and property hierarchies—that is, to arrange all classes, object properties,
and data properties occurring in the ontology into hierarchies that correctly reflect
the relevant subsumption relationships. To classify classes, HermiT uses a novel al-
gorithm [8] that extracts information from the constructed pre-models in order to
reduce the number of subsumption tests performed. To the best of our knowledge,
all reasoners apart from HermiT classify object and data properties by simply
computing the reflexive–transitive closure of the asserted property inclusion ax-
ioms, which is known to be incomplete (for both object and data properties) even
in very simple ontology languages [8]. In contrast, HermiT reduces property clas-
sification to class classification [8], and so it is the only reasoner that is guaranteed
to be complete for object and data property classification.

The Realisation component uses the Reasoning component to compute the
set of instances for each class and property in the ontology. Similarly to classifi-
cation, HermiT optimises this computation by exploiting pre-models constructed
during each consistency test. In its default mode, HermiT supports lazy realisa-
tion, where known and possible instances of classes are initialised during an initial
ontology consistency test, and refined during subsequent query answering. One
can, however, also explicitly request a complete computation of the instances of
all classes and properties.

3 Hypertableau Reasoning in HermiT

In this section we describe the Reasoning component of HermiT, which implements
the core reasoning task of deciding consistency of a set of assertions A and a set

6 Birte Glimm et al.

of DL-clauses C. In particular, in Section 3.1 we describe the calculus from a
conceptual perspective, in Section 3.2 we present a small example and contrast
the calculus with the known tableau calculi, and in Section 3.3 we discuss how the
calculus was implemented within HermiT’s architecture shown in Figure 1.

3.1 The Hypertableau Calculus

The formal definition of the hypertableau calculus [30] is rather involved, so we
do not repeat it here; rather, we discuss the calculus informally, and in Section 3.2
we illustrate some of its key aspects. The calculus takes as input an ABox A and
a set of DL-clauses C. Each DL-clause in C must be of the form∧

Ai(x) ∧
∧
pi(x, yi) ∧

∧
Bi(yi) ∧

∧
Oai(zai)→∨

Ci(x) ∨
∨
Di(yi) ∨

∨
ri(x, yi) ∨

∨
x ≈ zai ∨

∨
yi ≈ yj@x

≤n p.C ,

where pi and ri are object or data property expressions, Ai and Bi are classes,2 and
Ci and Di are classes, possibly negated datatypes, enumerations of data values,
or class expressions of the form ≥n p.A or ≤n p.¬A. Atoms of the form x ≈ zai

stem from nominals; for example, axiom C v {a} is translated into a DL-clause
C(x) ∧Oa(za)→ x ≈ za and an assertion Oa(a), where Oa is a new class uniquely
associated with the nominal {a}. Finally, equalities of the form yi ≈ yj@x

≤n p.C

stem from at-most number restrictions; for example, > v ≤ 1 p.> with p an object
property is translated into a DL-clause p(x, y1) ∧ p(x, y2)→ y1 ≈ y2@x

≤ 1 p.>. An
expression @x

≤n p.C is called an annotation and it essentially captures the at-most
number restriction (i.e., ≤n p.C in this case) that gives rise to the equality; this
allows us to correctly handle nominals in the presence of inverse properties and
number restrictions (cf. the nominal introduction rule described below). Annota-
tions are not needed for at-most restrictions over data properties.

The hypertableau calculus solves the consistency problem: given a set of DL-
clauses C and an ABox A, it determines whether C ∪ A is consistent. This is
achieved by constructing a derivation for A w.r.t. C, which is a sequence of sets
of assertions A0, . . . ,An where

– A0 = A,
– for each 0 ≤ ` < n, the ABox A`+1 is a possible result of applying a derivation

rule to A`, and
– no derivation rule is applicable to An.

If a derivation for A w.r.t. C exists such that An does not contain an obvious
contradiction (called a clash), then C ∪ A is consistent and An is called a pre-
model of C ∪ A. In contrast, if no such derivation can be constructed, then C ∪ A
is inconsistent. Derivation construction is nondeterministic: there can be more
than one way of constructing Ai+1 from Ai. Thus, to determine that a pre-model
of C ∪ A does not exist, all nondeterministic choices must be explored, and this
is commonly achieved via backtracking. In the rest of this section we present an
overview of the inference rules used to construct a derivation for A w.r.t. C.

The main derivation rule is the Hyp-rule, which ensures that a pre-model sat-
isfies all consequences of the DL-clases in C. Let σ be a mapping from variables

2 To ensure completeness, rule bodies should not contain atoms of the form Bi(yi) when pi
is a data property expression: all such restrictions should be moved to the rule’s head.

HermiT: An OWL 2 Reasoner 7

to individuals, and let U be an atom; then, σ(U) is the atom obtained from U
by replacing each variable x with σ(x). The Hyp-rule is applicable to a DL-clause∧m

i=1 Ui →
∨n

j=1 Vj in C and an ABox A` if a mapping σ from the variables in the

DL-clause to the individuals in A` exists such that σ(Ui) ∈ A` for each 1 ≤ i ≤ m
and σ(Vj) 6∈ A` for each 1 ≤ j ≤ n. If this is the case, then the rule nondetermin-
istically derives A`+1 = A` ∪ {σ(Vj)} for some 1 ≤ j ≤ n. For example, applying
the DL-clause A(x)→ (≥ 1 p.B)(x) ∨ C(x) to ABox A` containing assertion A(s)
extends A` with either (≥ 1 p.B)(s) or C(s).

The ≥-rule ensures that a pre-model satisfies all at-least restrictions. In par-
ticular, the rule is applicable to ≥n p.C(s) in A` if and only if A` does not contain
individuals u1, . . . , un such that p(s, ui) ∈ A` and C(ui) ∈ A` for each 1 ≤ i ≤ n,
and ui 6≈ uj ∈ A` for each 1 ≤ i < j ≤ n. If that is the case, then the rule deter-
ministically derives

A`+1 = A` ∪ {p(s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n},

where t1, . . . , tn are fresh individuals. Individual s is called a predecessor of each
individual ti, and each ti is a called a successor of s; moreover, ancestor and descen-
dant are transitive closures of the predecessor and successor relations, respectively.
The ≥-rule introduces fresh individuals, so an unrestricted application of the rule
can easily lead to the introduction of an infinite number of fresh individuals and
thus prevent the calculus from terminating. In order to ensure termination, the
hypertableau calculus uses blocking, which in turn uses the notion of a label of an
individual or an individual pair. In particular, let s and t be individuals and let A
be an ABox; then, LA(s) and LA(s, t) are defined as follows:

LA(s) = {B | B(s) ∈ A} LA(s, t) = {r | r(s, t) ∈ A}

In other words, LA(s) is the set of classes that label s in A, and LA(s, t) is
the set of atomic roles that connect s and t in A. The hypertableau calculus
can be used with two distinct blocking variants. Single blocking is applicable
to ontologies that do not contain inverse properties: an individual s is directly
single-blocked in A by an individual s′ if LA(s) = LA(s′). If an ontology contains
inverse properties, then pairwise blocking is needed: an individual s with prede-
cessor t is directly pairwise-blocked in A by an individual s′ with predecessor t′ if
LA(s) = LA(s′), LA(t) = LA(t′), LA(s, t) = LA(s′, t′), and LA(t, s) = LA(t′, s′).
In both cases, care must be taken to avoid cyclic blocks; we omit the details for
brevity. An individual s is blocked in A if either s or some of its ancestors is di-
rectly blocked in A by another individual. The ≥-rule is applicable to an assertion
≥n p.C(s) only if s is not blocked, which ensures termination without affecting
the calculus’ completeness. This can be intuitively understood as follows. Due to
the restricted shape of DL-clauses, each ABox A encountered in a derivation has a
certain forest shape. Thus, if an individual s is directly blocked by an individual s′

in A and if both individuals occur in the tree part of A, then the two individuals
‘behave’ in the same way: all inferences that can be applied to s′ can be applied
to s as well. Thus, instead of applying the ≥-rule to ≥n p.C(s) to create an ap-
propriate subtree, we can ‘copy-and-paste’ the subtree of s′ and thus satisfy the
assertion. We discuss this in more detail in Section 3.2 by means of an example.

The ≈-rule deals with equality assertions. In particular, the ≈-rule is applicable
to an assertion s ≈ t in A` if s 6= t, and an application of the ≈-rule merges s and

8 Birte Glimm et al.

t, as we describe next. To address termination problems caused by merging, the ≈-
rule always merges a descendent into its ancestor, and a named individual only into
another named individual. Moreover, when individual s is merged into individual
t, then s is first pruned—that is, all assertions involving a descendant of s are
removed; next, s is replaced with t in all assertions that contain s.

The nominal introduction rule (NI-rule) deals with equalities introduced by
number restrictions of the form ≤n p.C. Interactions between nominals and in-
verse properties can give rise to ABoxes that are not forest-shaped, which can
prevent blocking and thus cause termination problems. The NI-rule deals with
these problems by promoting some of the individuals introduced by the ≥-rule
into root individuals—that is, the promoted individuals are treated in the same
way as the named individuals in A0, so they may be arbitrarily interconnected.
The NI-rule is applicable to an assertion s ≈ t@u

≤n p.C in A` if u is a root indi-
vidual, s and t are not root individuals, and s is not a successor of u. If that is
the case, then the NI-rule nondeterministically merges s into a root individual of
a special form that was designed so that the number of such individuals can be
bounded by the size of A and C. Furthermore, to ensure termination, the NI-rule
must be applied before the ≈-rule—that is, if both rules are applicable to the
same equality assertion, the NI-rule should be applied first. Finally, the NI-rule is
necessary only if nominals, inverse properties, and number restrictions are all used
together in (possibly different) ontology axioms.

Finally, the ⊥-rule detects obvious contradictions, called clashes. The rule is
applicable to an assertion s 6≈ s, or to assertions A(s) and ¬A(s) in A`. If that is
the case, then the rule derives A`+1 = A` ∪ {⊥}, which captures the information
that ABox A`+1 contains a contradiction.

3.2 An Example of Hypertableau Reasoning

We next discuss certain aspects of the hypertableau calculus using an ontology O1

containing assertion (7), and axiom (8) instantiated for each 0 ≤ i ≤ n.

A0(a) (7)

Ai v ∃ri.A(i+1) mod (n+1) u ∃si.A(i+1) mod (n+1) (8)

To apply the hypertableau calculus, these axioms are first preprocessed as de-
scribed in Section 2.1, so axiom (8) is converted into DL-clauses (9) and (10).

Ai(x) → ∃ri.A(i+1) mod (n+1)(x) (9)

Ai(x) → ∃si.A(i+1) mod (n+1)(x) (10)

Applying the Hyp-rule and the ≥-rule without blocking produces an infinite
tree-shaped ABox as shown in Figure 2; in the figure, individuals are represented
as nodes, property assertions between individuals are represented as arcs, and
class assertions are represented by labelling individuals with class expressions.
The ABox is infinite because implications between existential quantifiers in O1 are
cyclic. Note, however, that each individual s at the bottom of the figure labelled
with A0 ‘behaves’ in the same way as individual a: the labels of the two individuals
coincide, so s is blocked by a. Each inference applicable to s is a ‘copy’ of an
inference applicable to a; thus, even if we do not apply the ≥-rule to assertions

HermiT: An OWL 2 Reasoner 9

aA0,∃r0.A1,∃s0.A1

A1,∃r1.A2,∃s1.A2

A2

∃r2.A3

∃s2.A3

An

∃rn.A0

∃sn.A0

A0

∃r0.A1

∃s0.A1

rn sn rn sn

r1

rn sn rn sn

s1

r0

rn sn rn sn

r1

rn sn rn sn

s1

s0

Fig. 2: Infinite Tree Axiomatised by the Example Ontology

∃ri.A(i+1) mod (n+1)(s) and ∃si.A(i+1) mod (n+1)(s), we can satisfy the assertions
by ‘copying’ the subtree of a. Hence, the finite part of the ABox above the dashed
line is a pre-model for assertion (7) and DL-clauses (9)–(10).

We next compare the hypertableau calculus with tableau calculi. To this end,
let O2 be O1 extended with axiom (11), which is converted to DL-clause (12).

∃r0.¬B v B (11)

r0(x, y) → B(x) ∨B(y) (12)

Tableau calculi [3] are similar in principle to the hypertableau calculus: they are
given an ontology consisting of an ABox A and a TBox T , and they construct
a derivation A0, . . . ,An for A w.r.t. T using various inference rules. The main
difference to the hypertableau calculus is in the treatment of class inclusion ax-
ioms. At least in their unoptimised form [3], tableau calculi transform such axioms
into negation-normal form and then apply them to all individuals occurring in a
derivation. For example, an axiom α of the form A uB v C is converted into an
axiom > v ¬A t ¬B t C; then, to ensure that each individual s occurring in a
derivation satisfies α, a tableau calculus nondeterministically guesses whether s
satisfies ¬A, ¬B, or C. The number of such guesses is polynomial in the number
of individuals occurring in a derivation and exponential in the number of axioms of
the mentioned form, which can cause problems in practice if either of these num-
bers is large. Tableau calculi address this problem to an extent using absorption
optimisations [40]. For example, the mentioned axiom α might be transformed
into axiom A v ¬B t C; then, the axiom is applied to an individual s only if
s satisfies A, in which case the rule nondeterministically derives that s satisfies
either ¬B or C. This, however, does not eliminate nondeterminism completely,
even though the original axiom is deterministic: it corresponds to the Horn clause
A(x) ∧B(x)→ C(x). More advanced versions of absorption, such as role [38] and
binary [18] absorption, can further reduce the degree of nondeterminism in tableau
calculi. None of the known absorption techniques, however, can handle axiom (11);
thus, tableau calculi derive a disjunction ∀r0.B tB for each node of the tree, which
gives rise to an exponential number of nondeterministic choices.

10 Birte Glimm et al.

The aim of the hypertableau calculus is to reduce the degree of nondetermin-
ism. In our example, the Hyp-rule applies the DL-clause (12) only to arcs in the
tree connected by property r0, which gives rise to a considerably smaller number
of nondeterministic choices. The hypertableau calculus thus generalises standard
absorption optimisations [2, Chapter 9], role absorption [38], and binary absorp-
tion [18], as well as allowing additional types of ‘absorption’ that are not possible
in standard tableau calculi. In particular, on Horn ontologies [19]—that is, on
ontologies that can be transformed into an equivalent set of Horn clauses—the
calculus becomes deterministic. This is important since ontologies considered in
practice often consist of mostly Horn axioms.

3.3 Implementing the Hypertableau Calculus in HermiT

We next discuss how we implemented the calculus within the Reasoning compo-
nent of HermiT shown in Figure 1. Although the hypertableau calculus comprises
relatively simple rules, implementing them efficiently is not trivial.

The Extension Manager component keeps track of the current set of assertions,
and it also detects when this set contains a clash. All class assertions are kept in
a binary table, and an assertion of the form A(b) is stored in the table as a tuple
〈A, b〉; furthermore, all property assertions are kept in a ternary table, and an
assertion of the form r(a, b) is stored in the table as a tuple 〈r, a, b〉. Both tables
are indexed so as to allow for easy retrieval of assertions. In order to facilitate
backtracking, the class and property assertion tables are used as stacks: assertions
are always added at the end of the table, and they are popped off the end during
backtracking; moreover, no assertion is ever modified in-place. The state of the
tables before a nondeterministic choice is thus fully described by two integers
pointing to the tables’ ends. All other components of HermiT with state that
evolves over time use a similar approach, and so the state of the reasoner at any
point in a derivation can be fully described by a handful of integers. This makes
the introduction of nondeterministic choices very cheap, which is important since
some optimisations used in HermiT (such as individual reuse [25]) can introduce
a very large number of such choices.

The Resolution Manager component implements the Hyp-rule: for each DL-
clause it attempts to match all antecedent atoms to the assertions stored in the
Extension Manager, and for each match it derives one consequent atom. The
Merging Manager component handles merging due to equalities of the form s ≈ t
and s ≈ t@x

≤n p.C , and it also implements the required pruning operation [30].
Furthermore, the NI Manager component examines annotations in equalities of
the form s ≈ t@x

≤n p.C and determines whether s or t should be replaced with a
root node due to the NI-rule; if so, it delegates the replacement process to the
Merging Manager component.

The Expansion Manager component is responsible for applying the ≥-rule.
This is done by invoking one of the (currently two) subcomponents that imple-
ment different strategies for dealing with existential quantifiers. The Creation

Order expansion manager implements the standard way of dealing with existen-
tial quantifiers from tableau and hypertableau algorithms—that is, it introduces
a new individual. In contrast, the Individual Reuse expansion manager tries to
reduce the size of the constructed pre-model (at the expense of additional non-

HermiT: An OWL 2 Reasoner 11

determinism) by reusing existing individuals [25]; we discuss this optimisation in
more detail in Section 4.1. Both expansion managers can be parameterised with a
blocking strategy, allowing them to use blocking techniques as appropriate for the
language that the ontology is expressed in. Supported blocking techniques include
pairwise or single anywhere blocking [30] (see Section 4.2), core blocking [7] (see
Section 4.2.2), and blocking via signature caching (see Section 4.2.1).

The Datatype Manager component checks the consistency of datatype con-
straints. These are represented as a set of assertions of the form dt(s), ¬dt(s), and
s1 6≈ s2, where s, s1, and s2 are concrete individuals (i.e., placeholders for data
values), and dt is an explicit enumeration of data values {v1, . . . , vn} or an expres-
sion of the form d[ϕ] for d a datatype (including the special datatype rdfs:Literal)
and ϕ a facet expression. For example, the assertion

xsd:integer[xsd:minInclusive “13”ˆˆxsd:integer
xsd:maxExclusive “15”ˆˆxsd:integer](s)

uses the xsd:minInclusive and xsd:maxExclusive facets to restrict the data values
that can be assigned to s to the integers 13 and 14. Given a set of such assertions,
the Datatype Manager component uses the algorithm described in [26] to check
whether each concrete individual can be assigned a data value in a way that satis-
fies all of the given assertions. An important aspect of this algorithm is modularity:
one can easily add a new datatype without having to change the implementation
of the existing datatypes.

The DGraph Manager component manages the information relevant to the de-
scription graph [24] extension to OWL 2. We describe description graphs and how
they are handled in HermiT in more detail in Section 5.2.

The Tableau component orchestrates the pre-model construction process by
delegating various subtasks to the relevant components. It first calls the DGraph

Manager and the Resolution Manager components to derive all possible fresh
facts. Each equality assertion derived during this step is immediately passed to the
Merging Manager component, unless the equality assertion is also relevant for the
NI-rule, in which case the equality assertion is buffered in the NI Manager compo-
nent. All contradictions are determined eagerly (i.e., immediately after conflicting
assertions are derived), so that backtracking can be initiated as soon as possible.
Once all DL-clauses have been applied, the Tableau component calls the Datatype

Manager component to check consistency of datatype constraints; if that does not
reveal a contradiction, the Tableau component then calls the NI Manager com-
ponent to process all buffered annotated equalities. If any of these steps derives
new facts, the entire process is repeated until a fixpoint is reached. Only after no
new facts can be derived in this way, the Tableau component calls the Expansion

Manager component in order to process assertions involving existential class ex-
pressions. If the latter step introduces new assertions, then the entire process is
repeated; otherwise, reasoning terminates, at which point the Extension Manager

contains a pre-model proving the consistency of C ∪ A.

4 Optimising Ontology Consistency Tests

HermiT uses several optimisations that improve the efficiency of ontology con-
sistency checking in typical cases. Of particular interest are individual reuse and

12 Birte Glimm et al.

A0

∃r0.A1

∃s0.A1

a

A1

∃r1.A2

∃s1.A2

A2

∃r2.A3

∃s2.A3

A3

∃r3.A4

∃s3.A4

. . .

An

∃r0.A0

∃s0.A0

A0

∃r0.A1

∃s0.A1r0

s0

r1

s1

r2

s2

rn

sn

r0

s0

Fig. 3: A Pre-Model of O1 of Polynomial Size

several blocking optimisations, which we describe in more detail in this section.
HermiT also uses dependency-directed backtracking [2, Chapter 9], but this opti-
misation is standard so we do not discuss it here in more detail.

4.1 Individual Reuse

Individual reuse [25] is a technique whose goal is to reduce the size of the con-
structed pre-models at the expense of additional nondeterminism. Consider again
the ontology O1 from Section 3.2. The part of the ABox from Figure 2 above the
dashed line is the canonical pre-model for O1, but it is exponential in the size of
O1 and thus expensive to construct. However, the ABox shown in Figure 3 is poly-
nomial in the size of O1, and it also satisfies all axioms of O1. More specifically,
to satisfy assertions ∃r0.A1(a) and ∃s0.A1(a), we need assertions r0(a, b), A1(b),
s0(a, c), and A1(c), but we can obtain a pre-model even if b = c—that is, if we
reuse b when trying to satisfy ∃s0.A1(a). This is possible because the axioms of
O1 do not place many constraints on the shape of the pre-model.

Individual reuse exploits this idea in a systematic way. In particular, we asso-
ciate with each class C a distinct individual tC ; moreover, we modify the ≥-rule
so that it satisfies each assertion of the form ∃r.C(s) through assertions r(s, tC)
and C(tC). Such a modification, however, can cause problems. For example, let
O3 be the ontology obtained by extending the ontology O1 from Section 3.2 with
axiom (13), which corresponds to DL-clause (14).

∃r−0 .> u ∃s
−
0 .> v ⊥ (13)

r0(y1, x) ∧ s0(y2, x) → ⊥ (14)

It should be clear that O3 is consistent: the pre-model shown in Figure 2 satisfies
O3 as well. The pre-model shown in Figure 3, however, does not satisfy O3 since
DL-clause (14) is not satisfied when x is mapped to the individual labelled with A1.
In other words, the modified ≥-rule can overconstrain the pre-model, which makes
the calculus unsound. In order to regain soundness, we make the modified ≥-rule
nondeterministic: if reusing an individual leads to a clash, then we backtrack and

HermiT: An OWL 2 Reasoner 13

A0

∃r0.A1

∃s0.A1

a

A1

∃r1.A2

∃s1.A2

A1

∃r1.A2

∃s1.A2

A2

∃r3.A3

∃s2.A3

A3

∃r4.A4

∃s3.A4

. . .

An

∃rn.A0

∃sn.A0

A0

∃r0.A1

∃s0.A1

A1

∃r1.A2

∃s1.A2

A1

∃r1.A2

∃s1.A2

r0

s0

r1

s1

r1

s1

r2

s2

rn

sn

r0

s0

r1

s1

r1

s1

Fig. 4: A Pre-Model of O3 of Polynomial Size

introduce fresh individuals as usual. In our example, as soon as we detect that DL-
clause (14) is not satisfied, we backtrack and introduce two fresh successors for a,
but we still try to satisfy further existential restrictions by reusing individuals. In
this way, we obtain the polynomially-sized pre-model shown in Figure 4.

Individual reuse can thus incur a significant degree of nondeterminism, but it
can also considerably reduce the size of the constructed pre-models. As the results
of our evaluation in Section 6 show, this technique is very effective on a range of
ontologies. However, on ontologies that tightly constrain the shape of pre-models,
the large number of nondeterministic choices causes considerable backtracking,
which can render the technique impractical. We observed that this often happens
on ontologies containing functional and inverse-functional properties. For example,
if we extendO3 to make properties r1 and s1 inverse-functional, then all individuals
labelled with A1 must be merged, so the pre-model becomes as shown in Figure 3;
then, DL-clause (14) is not satisfied, which triggers further backtracking.

4.2 Anywhere Blocking

As we discussed in Section 3.1, to use blocking we must ensure that there are no
cyclic blocks; otherwise, it is not possible to ‘copy-and-paste’ the blocker’s subtree.
Prior to HermiT, this requirement was satisfied using ancestor blocking [17]: an
individual s′ could directly block an individual s only if, in addition to the usual
requirements on single or pairwise blocking, it is the case that s′ is an ancestor of
s. This, however, can lead to the generation of very large pre-models. For example,
Figure 2 shows the pre-model for O1 obtained using single ancestor blocking, and,
as one can see, the pre-model is exponential in the size of O1.

In order to reduce the size of pre-models constructed on typical ontologies, the
hypertableau calculus uses anywhere blocking [30]. To this end, we assume that all
individuals in an ABox are ordered according to some strict ordering ≺ compatible
with the ancestor relation (i.e., we have u ≺ v whenever u is an ancestor of v). In

14 Birte Glimm et al.

a
A0

∃r0.A1

∃s0.A1

A1

∃r1.A2

∃s1.A2

A2

∃r2.A3

∃s2.A3

An

∃rn.A0

∃sn.A0

A0

∃r0.A1

∃s0.A1

rn

A0

∃r0.A1

∃s0.A1

sn

An

∃rn.A0

∃sn.A0

r1

A2

∃r2.A3

∃s2.A3

s1

r0

A1

∃r1.A2

∃s1.A2

s0

Fig. 5: A Pre-Model of O1 Obtained by Anywhere Single Blocking

practice, ≺ corresponds to the order in which individuals were introduced during a
derivation. Then, an individual s′ can directly block an individual s if, in addition
to the usual requirements on single or pairwise blocking, we also have that s′ ≺ s.
Individuals s′ and s thus do not need to be related through the ancestor relation,
but absence of cyclic blocks is guaranteed since ≺ is acyclic.

In practice, ancestor blocking can considerably reduce the size of the con-
structed pre-models. For example, given the ontology O1 from Section 3.2, any-
where single blocking produces the pre-model shown in Figure 5, where dashed
arrows point from blockers to blocked individuals. As one can see, switching from
ancestor to anywhere blocking can reduce the pre-model size by an exponential
factor. Moreover, the pre-models constructed using anywhere blocking are never
larger than those constructed using ancestor blocking, and are often considerably
smaller, so anywhere blocking is an important optimisation that allows HermiT
to process many nontrivial ontologies.

4.2.1 Blocking via Signature Caching

Anywhere blocking enables a very effective caching technique that can consider-
ably reduce the number of inferences that the reasoner performs over the course
of its lifetime. We explain this technique by means of the example ontology O1

from Section 3.2, where we assume that we must check the satisfiability of each
class Ai with 1 ≤ i ≤ n. We can do this by iteratively checking the satisfiability
of DL-clauses (9)–(10) and the assertion Ai(ai), where individuals ai are fresh.
Furthermore, let us assume that we initially determine that A0 is satisfiable by
constructing a pre-model A0 for (9)–(10) and A0(a0). Finally, note that we can de-
cide the satisfiability of A1 by trying to construct a pre-model for A0 ∪ {A1(a1)}:
ontology O1 does not contain nominals, so the assertions from A0 and the asser-

HermiT: An OWL 2 Reasoner 15

tions obtained from A1(a1) cannot interact. In other words, since O1 does not
contain nominals, it enjoys the disjoint model union property: if I and J are two
models of O1 and the domains of I and J are disjoint, then the union of I and J is
still a model of O1. Starting from A0 ∪ {A1(a1)}, however, has a distinct benefit:
we can use individuals from A0 to block individuals in assertions obtained from
A1(a1), which can considerably speed up pre-model construction. In our example,
the Hyp-rule will introduce assertions ∃r1.A2(a1) and ∃s1.A2(a1), which will be
expanded into r1(a1, u), A2(u), r2(a1, v), and A2(v), and then individuals u and
v will become blocked by individuals in A0; hence, we can decide the satisfiability
of A1 without recreating the full subtree under individual a1.

HermiT implements a slightly more refined version of this idea. In particular,
note that we do not really care about the assertions in pre-model A0; instead,
we can just memorise the signatures of potential blockers. For single blocking, a
signature is just a set of classes, and each individual s in an ABox A is associated
with the signature LA(s). For pairwise blocking, a signature is a 4-tuple of two sets
of classes and two sets of object properties, and each individual s with predecessor
t in an ABox A is associated with the signature 〈LA(s),LA(t),LA(s, t),LA(t, s)〉.
Blocking via signature caching now works as follows. Each time the hypertableau
calculus produces a pre-modelA, for each non-blocked individual s inA, we extract
from A the signature for s and add it to a global cache. In each subsequent run
of the hypertableau algorithm, if we determine that the global cache contains the
signature of an individual u, then we know that u is blocked by some individual s
from a previous run of the algorithm; otherwise, we determine the blocking status
of u as usual. The global cache can be implemented easily using a hash table. This
optimisation can greatly improve the performance of reasoning tasks that involve
more than one run of the hypertableau algorithm on ontologies without nominals.

4.2.2 Core Blocking

Core blocking [7] is another technique that HermiT uses in order to curb the size of
the generated pre-models. It is based on an observation that, even if individuals s
and s′ do not satisfy the relevant direct blocking conditions from Section 3 exactly,
it might still be possible to ‘cut-and-paste’ the subtree under s′. We explain this
using an ontology O4 that is obtained by extending ontology O1 from Section 3.2
with axioms (15)–(16) instantiated for each 0 ≤ i ≤ n.

∃ri.A(i+1) mod (n+1) v Bi (15)

∃si.A(i+1) mod (n+1) v Bi (16)

These axioms correspond to DL-clauses (17)–(18) for 0 ≤ i ≤ n.

ri(x, y) ∧A(i+1) mod (n+1)(y) → Bi(x) (17)

si(x, y) ∧A(i+1) mod (n+1)(y) → Bi(x) (18)

We next discuss the construction of a derivation for O4. After applying the hy-
pertableau rules to assertions involving individual a, we obtain the ABox shown
in Figure 6a. At this point, the labels of individuals b and c coincide, so individ-
ual b blocks individual c. Next, we apply the ≥-rule to b, and then we apply the
Hyp-rule as long as possible; this produces the ABox shown in Figure 6b. Labels

16 Birte Glimm et al.

a

A0, B0, ∃r0.A1, ∃s0.A1

b

A1

∃r1.A2

∃s1.A2

r0

c
A1

∃r1.A2

∃s1.A2

s0

(a) Step 1

a

A0, B0,∃r0.A1,∃s0.A1

b

A1, B1

∃r1.A2

∃s1.A2

d

A2

∃r2.A3

∃s2.A3

r1

e
A2

∃r2.A3

∃s2.A3

s1

r0

c
A1

∃r1.A2

∃s1.A2

s0

(b) Step 2

a

A0, B0,∃r0.A1,∃s0.A1

b

A1, B1

∃r1.A2

∃s1.A2

d

A2

∃r2.A3

∃s2.A3

r1

e
A2

∃r2.A3

∃s2.A3

s1

r0

c
A1, B1

∃r1.A2

∃s1.A2

f
A2

∃r2.A3

∃s2.A3

r1

g
A2

∃r2.A3

∃s2.A3

s1

s0

(c) Step 3

Fig. 6: Core Blocking Example

of individuals b and c do not coincide any more, so individual c is not blocked by
individual b, and so the ≥-rule must be applied to c, and by exhaustively applying
the Hyp-rule to c we derive B1(c), as shown in Figure 6c. The derivation of B1(c),
however, depends on the successors of c, and it does not lead to the derivation of
other assertions involving an ancestor of c; therefore, already in the ABox shown
in Figure 6a, we can ‘cut’ the subtree under b and ‘paste’ it under c since doing
so does not enable any additional hypertableau inferences. In other words, we can
let b block c in the ABox shown in Figure 6b even though the labels of the two
individuals do not coincide exactly.

More generally, an individual s′ can block an individual s if no hypertableau
inferences are enabled when we temporarily replace the subtree under s with the
direct successors of s′. A näıve way to apply this idea is to consider each pair
of individuals s and s′, for each pair apply the temporary replacement, and then
check whether any of the DL-clauses are applicable to s; if not, then we declare
that s is blocked by s′. Such an approach, however, would be very inefficient since
it would consider a quadratic number of individual pairs.

To obtain a practical solution, we use a heuristic to identify pairs of individuals
that are likely to block each other; we call these candidate pairs. Towards this goal,

HermiT: An OWL 2 Reasoner 17

each assertion in an ABox is assigned a flag specifying whether the assertion is core
or not. There are several ways to determine the value of this flag, all of which are
discussed in more detail in [7]; intuitively, all of these approaches aim to identify
the assertions that determine the ‘properties’ of the involved individuals, with the
expectation that similar individuals should occur in similar core assertions. In our
example, concepts Ai would belong to the core, whereas concepts Bi would not.
Then, in order to determine candidate pairs of individuals, we compare the core
assertions of the two individuals. For each thus obtained candidate pair of s and
s′, we then conduct the check from the previous paragraph and determine with
certainty whether s′ can block s.

5 Supporting Additional Features

We next discuss several features supported in HermiT that go beyond the OWL
2 DL standard, but that have been identified as very useful in practice.

5.1 SWRL Rules

The Semantic Web Rule Language (SWRL) extends OWL with rules, which can
capture non-tree-like axioms [29] such as ‘all uncles of a person share the same
father, who is also that person’s grandfather’ [15]. Although reasoning in OWL
ontologies extended with SWRL rules is undecidable in general, restricting the
application of rules to individuals explicitly named in the input ABox—that is,
treating the rules as being DL-safe—ensures decidability [29].

HermiT’s reasoning algorithm is based on DL-clauses, which are essentially
rules, so extending the reasoning algorithm to handle SWRL rules requires minimal
effort. The main challenge is to respect the DL-safety requirement, which is ensured
by extending each rule r with an atom O(x) for each variable x occurring in r,
where O is a internal predicate used by HermiT to qualify all individuals occurring
in the input ABox. After this modification, the Hyp-rule can be used as usual to
apply the rules and derive their consequences.

A problem can arise, however, if SWRL rules use transitive properties, or prop-
erties defined via property chain axioms, and in these circumstances HermiT is, in
general, incomplete. An extension of the automata-based encoding of properties
has recently been developed that solves this problem for transitive properties [5],
and we conjecture that this approach can be extended to correctly handle property
chains as well; however, the approach has not yet been implemented in HermiT.

5.2 Description Graphs

Description Graphs are an extension of OWL designed to facilitate more precise
modelling of arbitrarily connected structures [24]. Reasoning with an unrestricted
extension of OWL 2 DL with description graphs is undecidable, but several de-
cidable restrictions of the general formalism have been developed [24]. Roughly
speaking, these ensure that ontologies extended with description graphs can ax-
iomatise structures of unbounded size, but whose non-tree-like components are all

18 Birte Glimm et al.

bounded in size; the latter observation can then be used to define a suitable notion
of blocking and thus ensure termination of reasoning.

Description graphs have also been implemented in HermiT. Given an OWL 2
DL ontology extended with description graphs and rules, HermiT can determine
whether the restrictions necessary for decidability are satisfied; if so, the ontology
can be used in all standard reasoning tasks. Since there is no standard syntax for
description graphs, these can at present be passed to HermiT only via a Java API.

5.3 SPARQL Queries

The SPARQL query language [33] and its revision SPARQL 1.1 [11] provide a stan-
dard query interface for Semantic Web systems. The SPARQL 1.1 version of the
language includes several entailment regimes [10,9] that support querying implicit
information logically entailed by an ontology and the data. The OWL 2 Direct
Semantics Entailment Regime has been specifically designed to enable querying
OWL 2 DL ontologies interpreted under the Direct Semantics [27] of OWL 2 DL,
and is thus of particular interest to OWL reasoners.

HermiT supports SPARQL queries via the OWL-BGP SPARQL wrapper3—a
separate library that implements SPARQL query answering using HermiT’s public
interface [21]. The wrapper is based on the Apache Jena SPARQL processor ARQ,4

and it can be used with any reasoner that supports the OWL API; however,
HermiT also provides several methods for retrieving ontology statistics that the
wrapper uses to produce near-optimal query evaluation plans [21].

6 Evaluation

We compared HermiT 1.3.7 with the state of the art tableau reasoners Pellet
2.3.0 [36] and FaCT++ 1.6.1 [39]. Pellet and FaCT++ are based on tableau algo-
rithms [17], so they use a different set of derivation rules and (possibly) a different
blocking strategy than HermiT. The purpose of our evaluation was mainly to com-
pare the behaviour of the hypertableau calculus and our reasoning optimisations
with that of the tableau calculi and other optimisations in the other systems,
and furthermore to demonstrate the advantages of HermiT on a certain set of
ontologies. Individual reuse is not enabled by default because its performance can
be unpredictable; however, on some ontologies it offers considerable performance
improvements, so we also tested a version called HermiT-IR in which individual
reuse is always switched on. Our tests involved primarily class classification—a
core reasoning service for all reasoners that provides us with a natural measure
of a reasoner’s performance—but we also measured the time needed to check the
consistency of all classes in several ontologies, as this allowed us to analyse the
impact of consistency test optimisations independently from the impact of classi-
fication optimisations. We did not measure property classification times since, to
the best of our knowledge, the other reasoners are incomplete on that task [8].

3 http://code.google.com/p/owl-bgp/
4 http://jena.apache.org/documentation/query/index.html

HermiT: An OWL 2 Reasoner 19

Table 1: Statistics of some interesting ontologies

ID Name DL C P T R

00001 ACGT-v1.0 SROIQ(D) 1,751 265 5,329 128
00004 BAMS-simplified SHIF 1,110 12 18,813 9
00024 DOLCE SHOIN (D) 209 317 1,210 334
00026 GALEN-no-FIT ELH 23,141 949 35,531 958
00029 GALEN-doctored ALEHIF+ 2,748 413 4,320 442
00032 GALEN-undoctored ALEHIF+ 2,748 413 4,563 442
00285 FMA-constitutional ALCOIF(D) 41,648 168 123,090 0
00347 LUBM-one-uni ALEHI+(D) 43 32 88 6
00350 OBI SHOIN (D) 2,638 83 9,876 50
00351 AERO SROIQ(D) 276 66 460 45
00354 NIF-gross-anatomy SROIF(D) 4,042 77 6,581 49
00463 Fly-anatomy-XP SRI 8,023 27 16,020 23
00471 FMA-lite EL + + 78,983 8 121,709 4
00477 Gazetteer EL + + 150,981 5 167,351 2
00512 Lipid ALCHIN 716 46 2,349 26
00545 Molecule-role EL + + 9,223 3 9,629 2
00774 RNA-v0.2 SRIQ(D) 244 93 581 102
00775 Roberts-family SROIQ(D) 61 87 239 85
00778 SNOMED SH 54,974 9 54,974 4
00786 NCI-v12.04e SH(D) 93,413 206 130,928 19

We used a repository of standard ontologies, mainly from the Open Biologi-
cal Ontologies (OBO) Foundry,5 the Gardiner ontology suite [6], the Phenoscape
Project,6 and several variants of the GALEN ontology [34]. We preprocessed all
ontologies to resolve ontology imports so that each test ontology is contained in a
single file loadable though the OWL API. Each test ontology is assigned a unique
ontology ID, which can be used to download the ontology from our ontology repos-
itory.7 Please note that each ontology ID identifies a particular self-contained and
‘frozen’ OWL ontology file—that is, a different version of the same ontology, or a
version that imports different ontologies, is assigned a different ontology ID.

We did not consider ontologies that contain datatypes outside the OWL 2
datatype map, ontologies that are inconsistent, or ontologies that are too simple
to provide any useful test of performance (i.e., that contain few axioms and/or
classes). We thus selected 484 consistent OWL 2 ontologies from our repository,
with expressivity ranging from DL-Lite and EL to SROIQ(D), and containing
between 100 and 2,492,761 axioms, between 40 and 244,232 classes, and between
1 and 2,259 properties. Several commonly-used and well-known ontologies from
our test suite are shown in Table 1, with the table columns showing the ontology
ID, a human-readable name (Name), the DL expressivity (DL), the number of
classes (C), the number of properties (P), the number of TBox axioms (T), and
the number of RBox axioms (R).

All experiments were run on a Dell T7600 workstation with two quad core
Intel Xeon processors running at 3.30GHz under 64-bit Linux. We used Java 1.6

5 http://obofoundry.org/
6 http://www.phenoscape.org/
7 Ontology with ID ‘xxxxx’ is avalable at http://www.cs.ox.ac.uk/isg/ontologies/UID/

xxxxx.owl.

20 Birte Glimm et al.

0	

50	

100	

150	

200	

250	

<100ms	 100ms-‐500ms	 500ms-‐5s	 5s-‐1min	 1min-‐30mins	 -meout	 other	

HermiT	

HermiT-‐IR	

Pellet	

FaCT++	

0	

100	

200	

300	

400	

500	

100ms	 500ms	 5s	 1min	 30mins	 ,meout	

HermiT	

HermiT-‐IR	

Pellet	

FaCT++	

Fig. 7: Numbers of classified ontologies grouped by reasoning times

with 12 GB of heap memory per test. Each test was allowed at most 30 minutes
to complete. For each test, we loaded the ontology using the OWL API, passed
it to the reasoner, and then measured the wall-clock time for each test. Most
reasoners pre-process ontologies as they read them from the OWL API, which can
be seen as a form of reasoning; hence, we included this time into each test. Finally,
classification times may vary considerably from run to run with all of the reasoners
considered, so the presented results were obtained as an average over two runs, or
three runs for the results in Table 3.8

Figure 7 shows the results of the ontology classification tests. The upper chart
shows the number of ontologies successfully classified by a reasoner grouped by
reasoning times shown on the horizontal axis. The number of ontologies that each
reasoner failed to classify either due to memory exhaustion or an internal error
are shown in the ‘other’ group. The lower chart shows the cumulative numbers of
successfully classified ontologies grouped by the reasoning time. Please note that
the scales of the axes in the two charts are different.

Figure 7 shows that the ontologies in our repository are quite diverse: many
can be classified within 100 ms, but quite a few turned out to be ‘hard’ for the
reasoners. There are 20 ontologies that no reasoner could classify with the given
resource bounds; these include the GALEN ontology and several of its modules,
two extensions of the GO ontology, the OMEO ontologies, and several Phenoscape
ontologies. Pellet and FaCT++ were able to classify more ontologies than HermiT
in 100 ms. Even without individual reuse, however, HermiT was able to classify

8 The raw data of the test results is available at http://www.hermit-reasoner.com/2014/
systemDescription/evaluation.zip

HermiT: An OWL 2 Reasoner 21

Table 2: Numbers of classified ontologies by major ontology groups

Group ID total H H-IR P F

DOLCE 00013–00024 9 7 9 0 9
GALEN 00026–00039 14 5 5 3 5
GO extensions 00040–00048 9 7 7 0 0
Gardiner corpus 00053–00345 68 67 68 64 66
OBO 00351–00697 290 286 287 266 244
Phenoscape 00700–00770 66 58 58 10 16

0	

10	

20	

30	

40	

50	

60	

00
03
0	

00
03
9	

00
05
2	

00
08
2	

00
11
2	

00
11
7	

00
31
9	

00
34
4	

00
34
5	

00
35
3	

00
36
8	

00
36
9	

00
39
0	

00
39
1	

00
41
5	

00
43
5	

00
44
3	

00
44
4	

00
46
0	

00
46
1	

00
48
5	

00
49
6	

00
49
7	

00
49
8	

00
50
2	

00
53
1	

00
53
5	

00
54
0	

00
64
7	

00
66
9	

00
67
0	

00
67
8	

00
68
0	

00
70
8	

00
72
9	

00
77
2	

00
77
9	

00
78
1	

00
78
2	

00
78
3	

HermiT	

HermiT-‐IR	

Pellet	

FaCT++	

Fig. 8: Classification times of easy ontologies in seconds.

64 ontologies that the other two reasoners were unable to process within the given
time and memory bounds; these include several OBO ontologies, a large number
of Phenoscape ontologies, and the majority of the extensions to the GO ontology.
Table 2 shows, for each major group of ontologies in our repository, the number
of ontologies successfully classified by HermiT (H), HermiT with individual reuse
(H-IR), Pellet (P), and FaCT++ (F).

Figure 8 shows the classification times for ontologies on which all reasoners
took less than one minute, and at least one reasoner took more than five seconds;
the horizontal axis shows the ontology IDs. As one can see, the performance of
HermiT is comparable to that of the other reasoners.

We next focus on the ‘hard’ ontologies—that is, ontologies that at least one
reasoner took more than a minute to classify. For brevity and clarity, we present
the results only for 20 common ontologies in this group. For some ‘hard’ ontolo-
gies (e.g., for OBO ontologies), our repository contains several different versions
of the same ontology, in which case we report the results only for the newest avail-
able version. Table 3 summarises our results. We identified four groups of these
ontologies, which we delineate in Table 3 using horizontal lines.

The first group contains ontologies on which HermiT-IR is much faster than
HermiT. There are four ontologies that HermiT failed to classify but HermiT-
IR processed successfully, which demonstrates the practical benefits of individual
reuse. Furthermore, individual reuse allows HermiT to classify BAMS-simplified
(ID 00004), NIF-gross-anatomy (ID 00354), and Fly-anatomy-XP (ID 00463) much
faster than the other two reasoners; however, FaCT++ outperforms HermiT-IR
on ACGT-v1.0 (ID 00001), DOLCE (ID 00024), and OBI (ID 00350). All of these
ontologies contain nominals, which prevents HermiT from caching blocking labels.

22 Birte Glimm et al.

Table 3: Results of the Class Classification Tests

ID
Classification Times (seconds)

HermiT HermiT-IR Pellet FaCT++

00001 31.9 14.7 100.5 1.3
00004 296.7 0.3 timeout 147.0
00024 timeout 5.1 timeout 0.7
00285 timeout 543.4 timeout exception
00350 209.5 47.9 timeout 6.6
00354 timeout 109.4 timeout 1,571.6
00463 timeout 24.8 timeout 240.7
00477 56.4 18.5 30.8 timeout
00029 1.7 3.0 timeout 3.3
00032 5.3 67.6 out of mem. 11.2
00786 69.8 753.3 372.1 100.1
00347 1.2 1.2 2.5 191.3
00351 0.4 0.3 timeout 0.2
00471 18.2 19.1 77.1 35.9
00545 1.8 1.4 0.7 168.7
00774 0.7 0.7 78.3 0.3
00026 timeout timeout 21.8 timeout
00512 timeout timeout 0.4 1.1
00775 out of mem. out of mem. timeout 42.6
00778 timeout timeout out of mem. 1,049.3

The second group contains ontologies on which HermiT (without individual
reuse) outperforms the other two reasoners. The good performance of HermiT in
these cases is largely due to the caching of blocking labels: only the first test is
hard, and all subsequent tests are easy because early blocking (facilitated through
caching) prevents the creation of large pre-models. With individual reuse, how-
ever, this optimisation is ineffective, as most individuals in the model are root
individuals and cannot be used as blockers. Each subsumption test with individ-
ual reuse takes less time than the ‘hard’ test without individual reuse; however,
the cumulative slowdown due to the lack of caching is detrimental.

The third group contains ontologies on which HermiT-IR performs similarly to
HermiT, thus suggesting little impact of individual reuse. On these ontologies, if
not always the best, HermiT is competitive with the other reasoners. To distinguish
the impact of consistency test optimisations from the impact of classification opti-
misations, for each of these ontologies we measured the time needed to iteratively
determine the consistency of all classes in the ontologies, which can benefit only
from consistency test optimisations; Table 4 shows the results of these tests. On
LUBM-one-uni (ID 00347) and Molecule-role (ID 00545), HermiT determined class
consistency in time similar to FaCT++, whereas HermiT outperformed FaCT++
on these ontologies during classification; we believe that the latter is mainly due to
our classification optimisations. Furthermore, we believe that the same observation
explains why HermiT classified FMA-lite (ID 00471) and RNA-v0.2 (ID 00774)
faster than Pellet. Finally, FaCT++ determined the consistency of all classes one
or two orders of magnitude quicker than HermiT on AERO (ID 00351), FMA-lite,
and RNA-v0.2. However, HermiT is competitive with FaCT++ on these ontologies,
which we also believe to be mainly due to our optimised classification algorithm.

The fourth group contains ontologies that HermiT failed to classify, even with
individual reuse. In contrast, Pellet and/or FaCT++ could classify some of these

HermiT: An OWL 2 Reasoner 23

Table 4: Results of the Consistency Tests

ID
Times for the Consistency Test (seconds)

HermiT HermiT-IR Pellet FaCT++

00347 1.0 1.0 1.2 1.1
00351 0.5 0.3 timeout 0.009
00471 61.4 16.4 4.4 3.5
00545 2.0 1.6 0.7 1.8
00774 0.7 0.5 0.6 0.02

ontologies, sometimes easily. In particular, HermiT failed to classify the Lipid (ID
00512) ontology, which poses no problems for Pellet or FaCT++. Our analysis
revealed that the main bottleneck in HermiT on this ontology is due to a large
number of individual merges encountered during the pre-model construction—an
effect that does not seem to occur in other test ontologies. Furthermore, HermiT
also failed to process GALEN-no-FIT (ID 00026): even with individual reuse, the
pre-models constructed by HermiT get very large due to complex cyclic axioms,
so checking the blocking condition and working with the Extension Manager be-
comes very slow. Better engineering might alleviate some of these problems, but
is is unlikely to completely solve them. In contrast, Pellet successfully processed
GALEN-no-FIT since it includes a specialised reasoner for ELH that derives all
subsumptions in one pass using a consequence-based saturation procedure.

To summarise, although HermiT is not universally better than Pellet and
FaCT++ on all test ontologies, our results indicate that HermiT may be more
robust on ‘hard’ ontologies as it managed to successfully process more ontolo-
gies. Individual reuse seems to be particularly useful on such ontologies and can
significantly improve HermiT’s performance, but it can also have a negative im-
pact: HermiT-IR is much slower than HermiT on GALEN-undoctored (ID 00032)
and NCI-v12.04e (ID 00786). As we explained in Section 4.1, this degradation is
often due to (inverse-)functional properties; however, please note that HermiT-
IR was very effective on ACGT-v1.0 (ID 00001), BAMS-simplified (ID 00004),
DOLCE (ID 00024), FMA-constitutional (ID 00285), OBI (ID 00350), and NIF-
gross-anatomy (ID 00354), all of which contain (inverse-)functional properties. De-
vising ways to estimate whether ontology axioms interact in a way that is adverse
to individual reuse is an interesting topic for our future research.

7 Conclusions

In this system description paper we have presented the HermiT OWL 2 reasoner
and its architecture, and have briefly described several novel optimisation tech-
niques used to improve HermiT’s performance; these include optimisations of single
consistency tests as well as optimisations of complex reasoning tasks. Finally, we
discussed HermiT’s support for several features that go beyond OWL 2, such as
SWRL rules, description graphs, and SPARQL queries. Hence, this paper pro-
vides a comprehensive overview of the system, which will hopefully help users and
developers to better understand the various options and extension points available.

We have also presented the results of a detailed performance comparison of
of HermiT, FaCT++, and Pellet on a wide range of ontologies. All test ontolo-
gies used are accessible via immutable URIs, thus allowing our tests to be easily

24 Birte Glimm et al.

repeated. Although HermiT does not outperform the other reasoners on all ontolo-
gies, its performance seems to be more consistent, particularly on ‘hard’ ontologies.

HermiT is already a very optimised reasoner and, in order to significantly im-
prove the performance and the number of ontologies that can be processed, we
believe that novel approaches are needed. A step in this direction is the combina-
tion of tableau-based with consequence-based reasoning procedures. This approach
is currently being explored in the reasoners MORe [1], WSReasoner [37], and Kon-
clude.9 The first two reasoners internally combine HermiT with the EL reasoners
ELK [20] and ConDOR [35], respectively, whereas Konclude directly combines
both types of reasoning procedures to maximise the benefits of the combination.

Up-to-date information can be found on the Hermit’s website,10 and its Google
code project11 provides an issue tracker and a discussion forum.

Acknowledgements This work was supported by the EPSRC projects ExODA and MaSI3.

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular Combination of OWL
Reasoners for Ontology Classification. In: Proc. of the 11th Int. Semantic Web Conf.
(ISWC 2012), Lecture Notes in Computer Science, vol. 7649, pp. 1–16. Springer (2012)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook, 2nd edn. Cambridge University Press (2007)

3. Baader, F., Sattler, U.: An Overview of Tableau Algorithms for Description Logics. Studia
Logica 69, 5–40 (2001)

4. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. Journal of Web Semantics 6(4), 309–322 (2008)

5. Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing Datalog Rewritings
Beyond Horn Ontologies. In: F. Rossi (ed.) Proc. of the 23rd Int. Joint Conf. on Artificial
Intelligence (IJCAI 2013), pp. 832–838. Beijing, China (2013)

6. Gardiner, T., Horrocks, I., Tsarkov, D.: Automated Benchmarking of Description Logic
Reasoners. In: Proc. of the 2006 Int. Workshop on Description Logic (DL 2006), CEUR
Workshop Proceedings, vol. 189 (2006)

7. Glimm, B., Horrocks, I., Motik, B.: Optimized Description Logic Reasoning via Core
Blocking. In: J. Giesl, R. Hähnle (eds.) Proc. of the 5th Int. Joint Conf. on Automated
Reasoning (IJCAR 2010), Lecture Notes in Computer Science, vol. 6173, pp. 457–471.
Springer, Edinburgh, UK (2010)

8. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A Novel Approach to Ontology
Classification. Journal of Web Semantics 14, 84–101 (2012)

9. Glimm, B., Krötzsch, M.: SPARQL Beyond Subgraph Matching. In: Proc. of the 9th Int.
Semantic Web Conf. (ISWC 2010), Lecture Notes in Computer Science, vol. 6414, pp.
241–256. Springer (2010)

10. Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. W3C Recommendation (2013).
Available at http://www.w3.org/TR/sparql11-entailment/

11. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013).
Available at http://www.w3.org/TR/sparql11-query/

12. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chap-
man & Hall/CRC (2009)

13. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semantic
Web Journal 2(1), 11–21 (2011)

14. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfi-
ability. Journal of Web Semantics 1(4), 345–357 (2004)

9 http://www.konclude.de/
10 http://www.hermit-reasoner.com/
11 http://code.google.com/p/hermit-reasoner/

HermiT: An OWL 2 Reasoner 25

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission
(2004). Available at http://www.w3.org/Submission/SWRL/

16. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Arti-
ficial Intelligence 160(1–2), 79–104 (2004)

17. Horrocks, I., Sattler, U.: A Tableau Decision Procedure for SHOIQ. Journal of Automated
Reasoning 39(3), 249–276 (2007)

18. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: B. Parsia, U. Sattler, D. Toman (eds.) Proc. of the 2006 Int. Workshop on
Description Logics (DL 2006), CEUR Workshop Proceedings, vol. 189. Windermere, UK
(2006)

19. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive
Description Logics. In: L.P. Kaelbling, A. Saffiotti (eds.) Proc. of the 19th Int. Joint Con-
ference on Artificial Intelligence (IJCAI 2005), pp. 466–471. Morgan Kaufmann Publishers,
Edinburgh, UK (2005)

20. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The Incredible ELK: From Polynomial Proce-
dures to Efficient Reasoning with EL Ontologies. Journal of Automated Reasoning pp.
1–61 (2013)

21. Kollia, I., Glimm, B.: Optimizing SPARQL Query Answering over OWL Ontologies. Jour-
nal of Artificial Intelligence Research 48, 253–303 (2013)

22. Krötzsch, M., Simanč́ık, F., Horrocks, I.: A Description Logic Primer. Computing Research
Repository (CoRR) abs/1201.4089 (2012)

23. Kutz, O., Horrocks, I., Sattler, U.: The Even More Irresistible SROIQ. In: P. Doherty,
J. Mylopoulos, C.A. Welty (eds.) Proc. of the 10th Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR 2006), pp. 68–78. AAAI Press, Lake District, UK
(2006)

24. Motik, B., Cuenca Grau, B., Horrocks, I., Sattler, U.: Representing ontologies using de-
scription logics, description graphs, and rules. Artificial Intelligence Journal 173(14),
1275–1309 (2009)

25. Motik, B., Horrocks, I.: Individual Reuse in Description Logic Reasoning. In: Proc. of
the Int. Joint Conf. on Automated Reasoning (IJCAR 2008), Lecture Notes in Computer
Science, vol. 5195, pp. 242–258. Springer (2008)

26. Motik, B., Horrocks, I.: OWL Datatypes: Design and Implementation. In: Proc. of the
7th Int. Semantic Web Conference (ISWC 2008), Lecture Notes in Computer Science, vol.
5318, pp. 307–322. Springer (2008)

27. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B.: OWL 2 Web Ontology Language Direct
Semantics (Second Edition). W3C Recommendation (2012). Available at http://www.w3.
org/TR/owl2-direct-semantics/

28. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax (Second Edition). W3C Recommendation
(2012). Available at http://www.w3.org/TR/owl2-syntax/

29. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal of
Web Semantics 3(1), 41–60 (2005)

30. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Jour-
nal of Artificial Intelligence Research 36, 165–228 (2009)

31. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In: J.A. Robin-
son, A. Voronkov (eds.) Handbook of Automated Reasoning, vol. 1, chap. 6, pp. 335–367.
Elsevier and MIT Press (2001)

32. Plaisted, D.A., Greenbaum, S.: A Structure-Preserving Clause Form Translation. Journal
of Symbolic Computation 2(3), 293–304 (1986)

33. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommen-
dation (2008). Available at http://www.w3.org/TR/rdf-sparql-query/

34. Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A.J., Mori, A.R.: The GALEN CORE
Model Schemata for Anatomy: Towards a Re-usable Application-Independent Model of
Medical Concepts. In: Proc. of the 12th Int. Congress of the European Federation for
Medical Informatics (MIE 1994), pp. 229–233 (1994)

35. Simanč́ık, F., Kazakov, Y., Horrocks, I.: Consequence-Based Reasoning beyond Horn On-
tologies. In: T. Walsh (ed.) Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2011), pp. 1093–1098. Barcelona, Spain (2011)

36. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-
DL Reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

26 Birte Glimm et al.

37. Song, W., Spencer, B., Du, W.: WSReasoner: A Prototype Hybrid Reasoner for ALCHOI
Ontology Classification using a Weakening and Strengthening Approach. In: I. Horrocks,
M. Yatskevich, E. Jiménez-Ruiz (eds.) Proc. of the 1st Int. Workshop on OWL Reasoner
Evaluation (ORE 2012), CEUR Workshop Proceedings, vol. 858. Manchester, UK (2012)

38. Tsarkov, D., Horrocks, I.: Efficient Reasoning with Range and Domain Constraints. In:
V. Haarslev, R. Möller (eds.) Proc. of the 2004 Int. Workshop on Description Logics (DL
2004), CEUR Workshop Proceedings, vol. 104 (2004)

39. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:
Proc. of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR 2006), Lecture Notes
in Artificial Intelligence, vol. 4130, pp. 292–297. Springer (2006)

40. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing Terminological Reasoning for
Expressive Description Logics. Journal of Automated Reasoning 39(3), 277–316 (2007)

