
Description Logics

Markus Krötzsch, František Simančík, and Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract. This article provides a self-contained first introduction to description
logics (DLs). The main concepts and features are explained with examples before
the syntax and semantics of the DL SROIQ are defined in detail. Additional
sections review lightweight DL languages, discuss the relationship to the OWL
Web Ontology Language and give pointers to further reading.

1 Introduction

Description logics (DLs) are a family of knowledge representation languages that are
widely used in ontological modelling. An important practical reason for this is that
they provide one of the main underpinnings for the OWL Web Ontology Language as
standardised by the World Wide Web Consortium (W3C). However, DLs have been
used in knowledge representation long before the advent of ontological modelling in
the context of the Semantic Web, tracing back to first DL modelling languages in the
mid 1980s.

As their name suggests, DLs are logics (in fact most DLs are decidable fragments
of first-order logic), and as such they are equipped with a formal semantics: a precise
specification of the meaning of DL ontologies. This formal semantics allows humans
and computer systems to exchange DL ontologies without ambiguity as to their mean-
ing, and also makes it possible to use logical deduction to infer additional information
from the facts stated explicitly in an ontology—an important feature that distinguishes
DLs from other modelling languages such as UML.

The capability of inferring additional knowledge increases the modelling power of
DLs but it also requires some understanding on the side of the modeller and, above
all, good tool support for computing the conclusions. The computation of inferences is
called reasoning and an important goal of DL language design has been to ensure the
availability of practical reasoning algorithms. This is one of the reasons why there is not
just a single description logic: the best balance between expressivity of the language and
complexity of reasoning depends on the intended application.

In this article we provide a self-contained first introduction to description logics,
including basic features and ideas, and give pointers to several advanced topics.

2 Basic Building Blocks of DL Ontologies

DLs provide the means to model relationships between individuals in a domain of inter-
est. DL ontologies are based on three kinds of building blocks: concepts represent sets
of individuals, roles represent binary relations between the individuals, and individual

names represent single individuals in the domain. Readers familiar with first-order logic
will recognise these as unary predicates, binary predicates and constants.

For example, an ontology modelling family relationships might use concepts such
as Mother to represent the set of all mothers, roles such as parentOf to represent the
(binary) relationship between parents and their children, and individual names such as
julia to represent the individual Julia.

Unlike a database, a DL ontology does not fully describe a particular situation or
“state of the world”; rather it consists of a set of statements, called axioms, which typ-
ically capture only partial knowledge about the described situation. Thus there may be
many different states of the world that are consistent with the ontology. Although there
is no principal logical difference between different types of axioms, they are often sepa-
rated into three groups: assertional (ABox) axioms, terminological (TBox) axioms and
relational (RBox) axioms.

We continue with an intuitive introduction to the most important DL modelling
features, starting with the ABox (Section 3), and followed by TBox (Section 4) and
RBox (Section 5). This leads us to the rather expressive DL called SROIQ, the syntax
of which we summarise in Section 6. In Section 7 we explain the underlying ideas of
DL semantics and use it to define the meaning of SROIQ ontologies. In Section 8 we
review several practically important lightweight DLs that can be obtained by omitting
some features of SROIQ. In Section 9 we discuss the relationship of DLs to the OWL
Web Ontology Language. We conclude with pointers to further reading in Section 10.

3 Asserting Facts with ABox Axioms

ABox axioms capture knowledge about named individuals, especially the concepts they
belong to and their mutual relationships. The most common ABox axioms are concept
assertions such as

Mother(julia), (1)

which asserts that Julia is a mother or, more precisely, that the individual named julia is
an instance of the concept Mother.

Role assertions describe relations between named individuals. The assertion

parentOf(julia, john), (2)

for example, states that Julia is a parent of John or, more precisely, that the individual
named julia is in the relation that is represented by parentOf to the individual named
john. It is often cumbersome to emphasise that the relationships expressed by axioms
are really relationships between the individuals, sets and relations that are represented
by the respective individual names, concepts and roles. Assuming that the distinction
between syntactic identifiers and semantic entities is understood, we often prefer more
sloppy and readable formulations. Section 7 explains the underlying semantics with
greater precision.

Intuitively, Julia and John are different individuals, but this does not logically follow
from the previous axioms. Most DLs do not make the unique name assumption, so

2

different names might refer to the same individual unless explicitly stated otherwise.
The individual inequality assertion

julia 0 john (3)

is used to assert that Julia and John are different individuals. Conversely, an individual
equality assertion, such as

john ≈ johnny, (4)

states that two different names refer to the same individual. This can arise, for example,
when integrating information from several sources.

4 Expressing Terminological Knowledge with TBox Axioms

TBox axioms describe relationships between concepts. For example, the fact that all
mothers are parents is expressed by the concept inclusion

Mother v Parent, (5)

in which case we say that the concept Mother is subsumed by the concept Parent. Such
knowledge allows us to infer further facts about individuals. For example, (1) and (5)
together imply that Julia is a parent. Concept equivalence asserts that two concepts have
the same instances, as in

Person ≡ Human. (6)

While synonyms are an obvious example of equivalent concepts, it is more common to
use concept equivalence to give names to complex expressions, which we will introduce
next. Indeed, the basic types of axioms introduced so far are rather limited. To describe
more complicated situations, DLs allow new concepts to be built using various concept
constructors. The resulting complex concept expressions can be used in all places where
concept names are allowed. This enables us to describe relationships such as concept
disjointness, which asserts that two concepts do not share any instances.

4.1 Boolean Concept Constructors

Boolean concept constructors represent Boolean operations closely related to intersec-
tion, union and complement of sets, or to conjunction, disjunction and negation of log-
ical formulae. For example, concept inclusions allow us to state that all mothers are
female and that all mothers are parents, but what we really mean is that mothers are
exactly the female parents. We can achieve this by constructing a new complex concept
as the intersection (also called conjunction)

Female u Parent, (7)

which represents the set of individuals that are both female and parents. Complex
concepts can be used in axioms just like atomic concepts, e.g., in the equivalence
Mother ≡ Female u Parent.

3

Union (also called disjunction) is the dual of intersection. For example,

Father tMother (8)

is the concept of individuals that are fathers or mothers. For example, the axiom Parent ≡
Father tMother states that a parent is a father or a mother (and vice versa).

Sometimes we are interested in individuals that do not belong to a certain concept,
e.g., in women who are not married, which could be described by the complex concept

Female u ¬Married, (9)

where the complement (also called negation) ¬Married represents the set of all unmar-
ried individuals.

It is sometimes useful to make a statement about every individual, e.g., to say that
everybody is either male or female. This can be accomplished by the axiom

> v Male t Female, (10)

where the top concept> is a special concept with every individual as an instance. Axiom
(10) is not very accurate, as it requires that every individual has a gender, which may
not be reasonable for instances of a concept such as Computer. We will see more useful
applications for > later on.

To express that, in our example, nobody can be both male and female at once, we can
declare the two concepts to be disjoint. While ontology languages like OWL provide a
basic constructor for disjointness, DLs naturally capture it with the axiom

Male u Female v ⊥, (11)

where the bottom concept ⊥ is the dual of >, that is the special concept without any
instances. The above axiom thus says that the intersection of the two concepts is empty.

4.2 Role Restrictions

The most interesting feature of DLs is their ability to form statements that link concepts
and roles together. For example, there is an obvious relationship between the concept
Parent and the role parentOf: a parent is someone who is a parent of at least one indi-
vidual. In DLs, this relationship can be captured by the concept equivalence

Parent ≡ ∃parentOf.>, (12)

where the existential restriction ∃parentOf.> is a complex concept that describes the
set of individuals that are parents of at least one individual (instance of>). Similarly, the
concept ∃parentOf.Female describes individuals that are parents of at least one female
individual, i.e., those that have a daughter.

To represent the set of individuals all of whose children are female, we use the
universal restriction

∀parentOf.Female. (13)

4

It is a common error to forget that (13) also includes those individuals without any chil-
dren. More accurately (and less naturally), the axiom can be said to describe the set of
all individuals that have “no children other than female ones,” i.e., that have “no chil-
dren that are not female.” Indeed, the concept (13) could be equivalently expressed as
¬∃parentOf.¬Female. If this meaning is not intended, one can describe the individu-
als who have at least one child and with all their children being female by the concept
(∃parentOf.>) u (∀parentOf.Female).

Existential and universal restrictions together with the top concept can express do-
main and range restrictions on roles. For example, we can restrict the domain and range
of the role sonOf to male individuals and to parents, respectively:

∃sonOf.> v Male, (14)
> v ∀sonOf.Parent. (15)

Together with the assertion sonOf(john, julia), these axioms would allow us to deduce
that John is male and Julia is a parent. We remark that this differs from the meaning of
constraints in databases, which are used to check the validity of given data (“all sons
must be male”) rather than being used to deduce new data. Mistaking DL axioms for
constraints is a very common source of modelling errors.

Number restrictions allow us to restrict the number of individuals that are reachable
via some role. For example, we can describe the set of individuals that are children of at
least two parents (>2 childOf.Parent) or at most two parents (62 childOf.Parent). The
axiom Person v >2 childOf.Parent u 62 childOf.Parent then states that every person
is a child of exactly two parents.

Finally, local reflexivity can be used to describe the set of individuals that are related
to themselves via a given role. For example, the set of individuals that talk to themselves
is described by the concept

∃talksTo.Self . (16)

4.3 Nominals

It may also be useful to define a concept by simply enumerating its instances. Unlike
in OWL, there is no DL construct for enumerations, but we can express them using
nominals. A nominal is a concept that has exactly one instance. For example, {john} is
the concept whose only instance is (the individual represented by) john. Enumerations
can thus be expressed as unions of nominals, as in the next example:

Beatle ≡ {john} t {paul} t {george} t {ringo}. (17)

Using nominals, a concept assertion Mother(julia) can be turned into a concept in-
clusion {julia} v Mother and a role assertion parentOf(julia, john) into a concept inclu-
sion {julia} v ∃parentOf.{john}. This shows that ABox axioms could also be expressed
as part of the TBox. The distinction between ABox and TBox is nonetheless useful
for modelling purposes, separating general domain knowledge (TBox) from specific
application data (ABox).

5

5 Characterising Roles with RBox Axioms

RBox axioms refer to properties of roles. As for concepts, DLs support role inclusion
and role equivalence axioms. For example, the inclusion

parentOf v ancestorOf (18)

states that parentOf is a subrole of ancestorOf: every pair of individuals related by
parentOf is also related by ancestorOf. Thus (2) and (18) together imply that Julia is
an ancestor of John.

In role inclusion axioms, role composition can be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is a parent of John, then
Charles is an uncle of John. This kind of relationship between the roles brotherOf,
parentOf and uncleOf is captured by the complex role inclusion axiom

brotherOf ◦ parentOf v uncleOf. (19)

Role composition can only appear on the left-hand side of complex role inclusions.
Many DLs impose some additional restrictions that determine if a collection of such
axioms can be used together in one ontology.

Nobody can be both a parent and a child of the same individual, so the two roles
parentOf and childOf are disjoint, which we can write as follows:

Disjoint(parentOf, childOf). (20)

In contrast to the variety of concept constructors, DLs provide only few construc-
tors for forming complex roles. In practice, inverse roles are the most important such
constructor. For example, parentOf is the inverse of childOf: if Julia is a parent of John,
then John is a child of Julia and vice versa. This can be expressed by the axiom

parentOf ≡ childOf−, (21)

where the complex role childOf− represents the inverse of childOf. Inverse roles can be
used in all places where non-inverse roles can be used.

Moreover, DLs also provide a special universal role U that relates all pairs of indi-
viduals, and (rarely) an empty role that relates no individuals. Both are rarely used in
modelling and are mainly provided for symmetry with the top and bottom concepts.

OWL provides a variety of other RBox axioms, namely role transitivity, symmetry,
asymmetry, reflexivity and irreflexivity. These are sometimes considered as basic ax-
iom types in DLs as well, using some suggestive notation such as Trans(ancestorOf)
to express that the role ancestorOf is transitive. However, such axioms are just syntac-
tic sugar; all role characteristics can be expressed using features that we have already
introduced.

Transitivity is a special form of complex role inclusion. For example, transitivity of
ancestorOf can be captured by the axiom ancestorOf ◦ ancestorOf v ancestorOf. A
role is symmetric if it is equivalent to its inverse, e.g., marriedTo ≡ marriedTo−, and
it is asymmetric if it is disjoint from its inverse, as in Disjoint(parentOf, parentOf−).
If desired, global reflexivity can be expressed by imposing local reflexivity on the top
concept as in > v ∃knows.Self . A role is irreflexive if it is never locally reflexive, as in
the case of > v ¬∃marriedTo.Self .

6

6 The Description Logic SROIQ

Next, we summarise the features introduced in the previous sections to obtain a com-
prehensive definition of DL syntax. Doing so yields the DL called SROIQ, one of the
most expressive DLs considered today, which is closely related to the ontology language
OWL 2 DL.

Formally, every DL ontology is based on three finite sets of signature symbols: a set
NI of individual names, a set NC of concept names and a set NR of role names. Usually
these sets are assumed to be fixed for some application and are therefore not mentioned
explicitly. A SROIQ role expression over this signature is a role name, the inverse of
a role name, or the special symbol U (universal role). SROIQ concept expressions are
defined recursively. Every concept name, >, and ⊥ is a concept expression, and if C
and D are concept expressions, then so are (C u D), (C t D), ¬C, ∃R.C, ∀R.C, >n R.C,
6n R.C, ∃R.Self , and {a}, where R is a role expression, n ≥ 0 is an integer, and a ∈ NI .
We omit parentheses if there is no semantic confusion. For example, parentheses do not
matter for A t B tC, whereas the expression A u B tC is ambiguous.

Axioms are built from concept expressions, role expressions and individual names.
ABox axioms are of the form C(a), R(a, b), a ≈ b, or a 0 b; TBox axioms are of the
form C v D or C ≡ D; RBox axioms are of the form R v T , R ≡ T , R ◦ S v T , or
Disjoint(R, S). Note that both C and D can be complex concept expressions.

Roughly speaking, a SROIQ ontology (or knowledge base) is simply a set of such
axioms. To ensure the existence of reasoning algorithms that are correct and terminat-
ing, however, additional syntactic restrictions must be imposed. These refer not to single
axioms but to the structure of the ontology as a whole, hence they are called structural
restrictions. This also means that the union of two ontologies that satisfy these restric-
tions may no longer do so, which must be taken into account when merging ontologies.
The two such conditions relevant for SROIQ are based on the notions of simplicity
and regularity. Roughly speaking, simplicity requires that roles in number restrictions
do not depend on complex role inclusion axioms while regularity forbids some forms
of cyclic dependencies between complex role inclusion axioms. Both are automatically
satisfied for ontologies that do not contain complex role inclusion axioms. Formal defi-
nitions of both conditions can be found in the literature [9].

7 Description Logic Semantics

The formal meaning of DL axioms is given by their model-theoretic semantics. In par-
ticular, the semantics specifies what the logical consequences of an ontology are. The
formal semantics is therefore the main guideline for every tool that computes logical
consequences of DL ontologies, and a basic understanding of its working is vital to
make reasonable modelling choices and to comprehend the results given by software
applications. Luckily, the semantics of DLs is not difficult to understand provided that
some common misconceptions are avoided.

Intuitively speaking, an ontology describes a particular situation in a domain of
discourse. For example, the axioms in Sections 3–5 describe a particular situation in the
“families and relationships” domain. However, ontologies usually cannot fully specify

7

the situation that they describe. On the one hand, there is no formal relationship between
the symbols we use and the objects that they represent: the individual name julia, for
example, is just a syntactic identifier with no intrinsic meaning. Indeed, the intended
meaning of the identifiers in ontologies has no influence on their formal semantics:
what we know about them stems only from ontological axioms. On the other hand, the
axioms in an ontology typically do not provide complete information.

DLs have been designed to handle such incomplete information. Rather than mak-
ing default assumptions in order to fully specify one particular interpretation for each
ontology, the DL semantics generally considers all the possible situations (i.e., states
of the world) where the axioms of an ontology would hold (we also say: where the ax-
ioms are satisfied). This is sometimes called the Open World Assumption since it keeps
unspecified information open. A logical consequence of an ontology is an axiom that
holds in all interpretations that satisfy the ontology, i.e., something that is true in all
conceivable states of the world that agree with the ontology. The more axioms an on-
tology contains, the fewer interpretations exist that satisfy all the axioms, and the fewer
interpretations satisfy an ontology, the more logical consequences follow from it. In
other words, DL semantics is monotonic: additional axioms always lead to additional
consequences, or, more informally, the more knowledge we feed into a DL system the
more results it returns.

An extreme case is when an ontology is not satisfied in any interpretation. The
ontology is then called unsatisfiable or inconsistent, and every axiom holds in all of the
(zero) interpretations satisfying the ontology. Such an ontology is clearly not useful,
and avoiding inconsistency (and checking for it in the first place) is therefore important
during modelling.

To complete our presentation of the DL semantics, we need to clarify what we mean
by an “interpretation” and which conditions must hold for it to satisfy some axiom. We
closely follow the intuitive ideas explained above: an interpretation I is given by a set
∆I (its domain) and an interpretation function ·I that maps atomic concepts A to sets
AI ⊆ ∆I, atomic roles R to binary relations RI ⊆ ∆I × ∆I, and individual names a
to elements aI ∈ ∆I. The interpretation of complex concepts and roles follows from
the interpretation of the basic entities. Inverse roles are interpreted as inverse relations,
i.e., (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}. Boolean operators correspond to set functions:
(C u D)I = CI ∩ DI, (C t D)I = CI ∪ DI, (¬C)I = ∆I \ CI. The semantics of
∃R.C/∀R.C/>n R.C/6n R.C is the set of all individuals x such that some/all/at least n/at
most n RI-successors of x are in CI, where an “RI-successor of x” is any individual y
with 〈x, y〉 ∈ RI. Finally, > and ⊥ have fixed interpretations ∆I and ∅, respectively.

It is now easy to interpret axioms as conditions on an interpretation. For example,
a concept inclusion C v D holds in I if the corresponding set inclusion CI ⊆ DI

holds. In this case, we also say that I satisfies C v D and we write I |= C v D. It is
straightforward to define what it means for other types of axioms to hold; details can
be found in the literature [9]. If I satisfies all axioms in an ontology O, then I is a
model of O. Thus a model is an abstraction of a state of the world where all axioms
in the ontology hold. An ontology is consistent if it has at least one model. An axiom
is a consequence of an ontology O if it holds in every model of O. In particular, an
inconsistent ontology entails every axiom.

8

This semantics affects the meaning of individual names in DL ontologies. We al-
ready remarked that DLs do not usually make the Unique Name Assumption, and in-
deed our formal definition allows two individual names to be interpreted as the same
individual (element of the domain). Moreover, the domain of an interpretation can con-
tain individuals that are not represented by any individual name. A common confusion
in modelling arises from the assumption that interpretations only contain individuals
that are represented by individual names (such individuals are also called named indi-
viduals). For example, one could wrongly assume the ontology consisting of the axioms

parentOf(julia, john) manyChildren(julia) manyChildren v >3 parentOf.>

to be inconsistent since it requires Julia to have at least three children when only one
(John) is given. However, there are many models where Julia does have three children,
although only one of the children is explicitly named. Many modelling errors can be
traced back to similar misconceptions that are easy to prevent if the open world as-
sumption is kept in mind.

Also note that the specification of the semantics does not provide any hint as to
how to compute the relevant entailments in practice. There are infinitely many possible
interpretations, each of which may have an infinite domain. Therefore it is impossible
to test all interpretations to see if they model a given ontology, and impossible to test
all models of an ontology to see if they entail a given axiom. Rather, one has to devise
deduction procedures and prove their correctness with respect to the above specifica-
tion. The interplay of certain expressive features can make reasoning algorithms more
complicated and in some cases it can even be shown that no correct and terminating
algorithm exists at all (i.e., that reasoning is undecidable). However, entailment of ax-
ioms is decidable for SROIQ and a number of free and commercial tools are available.
Such tools are typically optimised for more specific reasoning tasks, such as consistency
checking, the entailment of concept subsumptions (subsumption checking) or of con-
cept assertions (instance checking). Many standard reasoning tasks are closely related
and can be handled by similar algorithms.

8 Lightweight Description Logics

Many DLs have been proposed. Most can be characterised by the types of construc-
tors and axioms that they allow, which are often a subset of those in SROIQ. Since
SROIQ reasoning requires algorithms of very high worst-case complexities, several
DLs have been developed in order to allow for more efficient reasoning algorithms. The
three main “families” of such lightweight DLs are EL [1], DLP and DL-Lite [3], which
correspond to language fragments OWL EL, OWL RL and OWL QL of the Web On-
tology Language, respectively. Here, we give only a short introduction to this important
field and refer to the literature for a more detailed first introduction [8].

The EL family of DLs is based on existential quantifiers and concept intersection. In
addition, one can allow for> and⊥, Self , nominals, the universal role, and most types of
axioms. Unions, complements, universal and counting quantifiers, and inverse roles are
forbidden. All standard reasoning tasks for EL can be solved in polynomial time. EL is
used to model large but lightweight ontologies, especially in the life sciences. Several

9

DL reasoners are optimised for handling EL-type ontologies, the most prominent of
which currently is the ELK reasoner for OWL EL.

DLP is short for Description Logic Programs and supports DL axioms that can be
read as rules in first-order Horn logic without function symbols. Thus DLP can be con-
sidered as a kind of rule language—hence the name OWL RL. This requires different
syntactic restrictions for subconcepts (concepts on the left-hand side of concept inclu-
sion axioms) and superconcepts (those on the right-hand side); we omit the details. To
reason with DLP, one can restrict attention to models that contain only domain elements
corresponding to some individual name in the ontology. This is why DLP is often used
to augment databases (interpreted as sets of ABox axioms), e.g., in an implementation
of OWL RL in Oracle 11g.

DL-Lite is a family of DLs that is also used in combination with existing databases,
in particular to augment the expressivity of query languages. This approach, known
as Ontology-Based Data Access (OBDA), considers ontologies as a language for con-
structing views on top of existing data. OBDA with DL-Lite can be realised with stan-
dard query languages such as SQL that are not aware of the DL semantics, where on-
tologies are used in a query preprocessing step only. Like DLP, DL-Lite requires differ-
ent syntactic restrictions for subconcepts and superconcepts, which we omit here.

9 Relationship to OWL

The OWL Web Ontology Language is a knowledge representation language standard-
ised by the World Wide Web Consortium (W3C). OWL is one of the most important
applications of DLs today. We briefly outline the relationship of the two languages. A
comprehensive treatment is beyond the scope of this article; see Section 10 for pointers
to further reading. The current version of the OWL specification is OWL 2, standardised
in 2009, which supersedes the earlier OWL 1 standard of 2004.

The building blocks of OWL are very similar to those of DLs, with the main dif-
ference that concepts are called classes and roles are called properties. Indeed, DLs
have had a major influence on the development of OWL and its expressive features.
Historically, however, OWL has also been conceived as an extension to RDF, a Web
data modelling language whose expressivity is comparable to DL ABoxes. The formal
semantics of RDF is subtly different from that of DLs, although both often lead to the
same inferred consequences. Extending the RDF semantics to the expressive features
of OWL improves compatibility between the two, but it also makes reasoning unde-
cidable. Therefore, both styles of formal semantics were specified for OWL: the Direct
Semantics based on DLs and the RDF-based Semantics.

The Direct Semantics of OWL is only defined for OWL ontologies which satisfy
syntactic conditions that ensure that they can be read as SROIQ ontologies. This syn-
tactic fragment of OWL is called OWL DL, while the unrestricted OWL language is
called OWL Full. Large parts of OWL DL can be considered as a syntactic variant of
SROIQ. For example, the axiom Mother ≡ Female u Parent would be written as
follows in OWL:

EquivalentClasses(Mother ObjectIntersectionOf(Female Parent))

10

though one would use (abbreviations of) URIs instead of Mother, Female and Parent.
The previous example uses the so-called Functional-Style Syntax of OWL, which is
most directly related to DLs. Other syntactic forms are available, the RDF/XML serial-
isation being the most prominent.

There are still some differences between OWL DL under the Direct Semantics and
SROIQ. Syntactically, OWL provides many additional operators, such as special con-
structs for specifying domain and range of a property, which are logically redundant but
convenient as shortcuts for common axioms.

Moreover, OWL also includes features that we excluded from our treatment of
SROIQ. The most important such feature are datatypes and datatype literals, which
resemble classes and individual names with a pre-defined interpretation. For example,
the Boolean datatype has exactly two elements—true and false—in any interpretation.
Such pre-defined interpretation domains are called concrete domains in DL. Both DLs
and OWL strictly distinguish roles/properties that relate to datatype values from those
that relate to “abstract” individuals.

Besides the logical features, OWL also covers other aspects that are not considered
in DLs. This includes means of naming ontologies and of importing ontological axioms
from one ontology into another. Further extra-logical features include a simple form of
meta-modelling called punning, non-logical axioms to declare identifiers, and support
for adding annotations (comments) to arbitrary axioms and entities.

10 Further Reading

This article can only provide a first introduction to description logics and OWL. Further
details and pointers to other introductory texts can be found in the Description Logic
Primer [9]. For a more detailed coverage of OWL and its relationship to DL, we rec-
ommend the textbook Foundations of Semantic Web Technologies [6], which also treats
the relationship of DLs to first-order logic. An in-depth treatment of DLs and related
research topics is provided by the Description Logic Handbook [2], which also covers
aspects of deduction algorithms and computational complexity.

A number of research papers focus on specific topics in DLs. Closely related to this
article is the original article on SROIQ, which also provides the details on structural
restrictions that we omitted [7]. A detailed discussion of OWL datatypes and their de-
scription logic semantics is given by Motik and Horrocks [10]. Current developments
in DL research are discussed at the annual DL Workshop (see http://dl.kr.org/ for pro-
ceedings) and at the major Semantic Web and Artificial Intelligence conferences.

The primary resources on OWL 2 are the online documents of the specification [11]
where the OWL Primer provides a first introduction [5]. The differences of the 2009
OWL 2 standard to its predecessor are explained in [4].

Many related tools are available. The most popular free ontology editor is Protégé,1

which can be used with a variety of OWL reasoners. Pointers to current OWL reason-
ers are best found online. Popular systems for large parts of OWL 2 DL (SROIQ)
include FaCT++, HermiT, Pellet and RacerPro. Some typical lightweight systems are

1 http://protege.stanford.edu/

11

http://www.semantic-web-book.org/
http://dl.kr.org/
http://protege.stanford.edu/

ELK (OWL EL), jCEL (OWL EL), Owlgress (OWL QL), OWLIM (OWL RL and QL),
Quonto (OWL QL) and Snorocket (OWL EL). Details about these tools and related
publications can be found on the respective homepages.

Acknowledgements We thank Fernando Bobillo, Peter Patel-Schneider, and Evgeny
Zolin for helpful comments on an earlier version of this text. All authors have been
working at the University of Oxford when writing this paper.

References

1. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie
Pack Kaelbling and Alessandro Saffiotti, editors, Proc. 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI’05), pages 364–369. Professional Book Center, 2005.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, second edition, 2007.

3. Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

4. Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and
Ulrike Sattler. OWL 2: The next step for OWL. J. of Web Semantics, 6:309–322, 2008.

5. Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian
Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Recommendation, 27
October 2009. Available at http://www.w3.org/TR/owl2-primer/.

6. Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

7. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Patrick
Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR’06), pages 57–67. AAAI Press,
2006.

8. Markus Krötzsch. OWL 2 Profiles: An introduction to lightweight ontology languages. In
Thomas Eiter and Thomas Krennwallner, editors, Proceedings of the 8th Reasoning Web
Summer School, Vienna, Austria, September 3–8 2012, volume 7487 of LNCS, pages 112–
183. Springer, 2012. Available at http://korrekt.org/page/OWL_2_Profiles.

9. Markus Krötzsch, František Simančík, and Ian Horrocks. A description logic primer. CoRR,
abs/1201.4089, 2012.

10. Boris Motik and Ian Horrocks. OWL datatypes: Design and implementation. In Amit Sheth,
Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and Krish-
naprasad Thirunarayan, editors, Proc. 7th Int. Semantic Web Conf. (ISWC’08), volume 5318
of LNCS, pages 307–322. Springer, 2008.

11. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation, 27 October 2009. Available at http://www.w3.org/TR/owl2-overview/.

12

http://www.w3.org/TR/owl2-primer/
http://korrekt.org/page/OWL_2_Profiles
http://www.w3.org/TR/owl2-overview/

