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Abstract

We present a novel approach to parallel materialisation (i.e.,
fixpoint computation) of datalog programs in centralised,
main-memory, multi-core RDF systems. Our approach com-
prises an algorithm that evenly distributes the workload to
cores, and an RDF indexing data structure that supports effi-
cient, ‘mostly’ lock-free parallel updates. Our empirical eval-
uation shows that our approach parallelises computation very
well: with 16 physical cores, materialisation can be up to 13.9
times faster than with just one core.

1 Introduction
Querying OWL 2 RL ontologies can be reduced to answer-
ing datalog queries. The latter problem can be solved by
backward chaining (Abiteboul, Hull, and Vianu 1995; Ur-
bani et al. 2012), or one can materialise all consequences of
the rules and the data so that queries can be answered with-
out the rules. Since materialisation supports efficient query-
ing, it is commonly used in practice, but it is also expensive.
We show that materialisation can be efficiently parallelised
on modern multi-core systems. In addition, main-memory
databases have been gaining momentum in academia and
practice (Larson 2013) due to the decreasing cost of RAM,
so we focus on centralised, main-memory, multi-core RDF
systems. We present a new materialisation algorithm that
evenly distributes the workload to cores, and an RDF data in-
dexing scheme that supports efficient ‘mostly’ lock-free data
insertion. Our techniques are complementary to the ones
for shared-nothing distributed RDF systems with nontrivial
communication cost between the nodes (Urbani et al. 2012;
Oren et al. 2009): each node can parallelise computation
and/or store RDF data using our approach.

Materialisation is PTIME-complete in data complexity
and is thus believed to be inherently sequential. Neverthe-
less, many practical parallelisation techniques have been de-
veloped, and we discuss them using the following rules.

A(x, y)→ B(x, y) (R1)
C(x, y) ∧ E(y, z)→ D(x, z) (R2)
D(x, y) ∧ E(y, z)→ C(x, z) (R3)
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Interquery parallelism identifies rules that can be evaluated
in parallel. For example, rules (R2) and (R3) must be evalu-
ated jointly since C and D are mutually dependent, but rule
(R1) is independent since B is independent from C and D.
Such an approach does not guarantee a balanced workload
distribution: for example, the evaluation of (R2) and (R3)
might be more costly than of (R1); moreover, the number of
independent components (two in our example) limits the de-
gree of parallelism. Intraquery parallelism assigns distinct
rule instantiations to threads by constraining variables in
rules to domain subsets (Dong 1989; Seib and Lausen 1991;
Ganguly, Silberschatz, and Tsur 1990; Zhang, Wang, and
Chau 1995; Wolfson and Ozeri 1993). For example, given
N threads and assuming that objects are encoded as integers,
the ith thread can evaluate (R1)–(R3) with (x mod N = i)
added to the rules’ antecedents. Such a static partitioning
does not guarantee an even workload distribution due to data
skew. Shao, Bell, and Hull (1991) exploit both inter- and in-
traquery parallelism in datalog, and Gupta et al. (1986) do so
in the context of production systems. The latter approaches,
however, are unlikely to be applicable to large data sets since
Rete networks—data structures used to manage rules in pro-
duction systems—store partial rule instantiations and thus
often use large amounts of memory.

In the RDF setting, systems such as WebPIE (Urbani et
al. 2012), Marvin (Oren et al. 2009), C/MPI (Weaver and
Hendler 2009), DynamiTE (Urbani et al. 2013), by Heino
and Pan (2012), and by Goodman and Mizell (2010) use
variants of the above mentioned approaches. All of these
handle only OWL 2 RL fragments such as RDFS or pD∗
(ter Horst 2005), but can generally handle RDFS without
(much) communication between the threads. Furthermore,
Soma and Prasanna (2008) exploit both inter- and intraquery
parallelism for distributed OWL 2 RL reasoning.

In contrast, we handle general, recursive datalog rules us-
ing a parallel variant of the seminaı̈ve algorithm (Abiteboul,
Hull, and Vianu 1995). Each thread extracts a fact from the
database and matches it to the rules; for example, given a
fact E(a, b), a thread will match it to atom E(y, z) in rule
(R2) and evaluate subquery C(x, a) to derive atoms of the
form D(x, b), and it will handle rule (R3) analogously. We
thus obtain independent subqueries, each of which is evalu-
ated on a distinct thread. The difference in subquery evalua-
tion times does not matter because the number of queries is



large (i.e., proportional to the number of tuples) so threads
are fully loaded. We thus partition rule instantiations dynam-
ically (i.e., as threads become free), unlike static partitioning
which is determined in advance and thus susceptible to skew.

To support this idea in practice, an RDF storage scheme
is needed that (i) supports efficient evaluation of subqueries,
and (ii) can be efficiently updated in parallel. To satisfy
(i), indexes over RDF data are needed. Hexastore (Weiss,
Karras, and Bernstein 2008) and RDF-3X (Neumann and
Weikum 2010) provide six-fold sorted indexes that support
merge joins and allow for a high degree of data compres-
sion. Such approaches may be efficient if data is static, but
data changes continuously during materialisation so main-
taining sorted indexes or re-compressing data can be costly
and difficult to parallelise. Storage schemes based on colum-
nar databases (Idreos et al. 2012) with vertical partitioning
(Abadi et al. 2009) suffer from similar problems.

To satisfy both (i) and (ii), we use hash-based indexes
that can efficiently match all RDF atoms (i.e., RDF triples
in which some terms are replaced with variables) and thus
support the index nested loops join. Hash table access can
be easily parallelised, which allows us to support ‘mostly’
lock-free (Herlihy and Shavit 2008) updates: most of the
time, at least one thread is guaranteed to make progress re-
gardless of the remaining threads; however, threads do oc-
casionally resort to localised locking. Lock-free data struc-
tures are resilient to adverse thread scheduling and thus of-
ten parallelise better than lock-based ones. Compared to
the sort-merge (Albutiu, Kemper, and Neumann 2012) and
hash join (Balkesen et al. 2013) algorithms, the index nested
loops join with hash indexes exhibits random memory ac-
cess which is potentially less efficient than sequential access,
but our experiments suggest that hyperthreading and a high
degree of parallelism can compensate for this drawback.

We have implemented our approach in a new system
called RDFox and have evaluated its performance on several
synthetic and real-world datasets. Parallelisation was benefi-
cial in all cases, achieving a speedup in materialisation times
of up to 13.9 with 16 physical cores, rising up to 19.3 with 32
virtual cores obtained by hyperthreading. Our system also
proved competitive with OWLIM-Lite (a commercial RDF
system) and our implementation of the seminaı̈ve algorithm
without parallelisation on top of PostgreSQL and MonetDB,
with the latter systems running on a RAM disk. We did not
independently evaluate query answering; however, queries
are continuously answered during materialisation, so we be-
lieve that our results show that our data indexing scheme
also supports efficient query answering over RDF data.

2 Preliminaries
A term is a resource (i.e., a constant) or a variable. Unless
otherwise stated, s, p, o, and t are terms, and x, y, and z are
variables. An (RDF) atom is a triple 〈s, p, o〉 of terms called
the subject, predicate, and object, respectively. A fact is a
variable-free atom. A rule r has the form (1), whereH is the
head atom, and B1, . . . , Bn are body atoms; let len(r) ··= n,
h(r) ··= H , and bi(r) ··= Bi for each 1 ≤ i ≤ n.

B1 ∧ . . . ∧Bn → H (1)

Each rule must be safe: each variable in H must occur in
some Bi. A program P is a finite set of possibly recursive
rules. A substitution σ, its application Aσ to an atom A, and
the composition τθ of substitutions τ and θ are all defined
as usual (Abiteboul, Hull, and Vianu 1995).

Let I be a finite set of facts. Given a rule r, r(I) is
the smallest set containing h(r)σ for each substitution σ
such that bi(r)σ ∈ I for each 1 ≤ i ≤ len(r). Given a dat-
alog program P , let P (I) ··=

⋃
r∈P r(I); let P 0(I) ··= I;

for each i > 0, let P i(I) ··= P i−1(I) ∪ P (P i−1(I)); and let
P∞(I) ··=

⋃
i P

i(I). The latter set is the materialisation of
I with P , and its computation is the topic of this paper.

OWL 2 RL is a fragment of OWL 2 for which reasoning
can be implemented using datalog techniques. Two styles
of OWL 2 RL reasoning are commonly used. First, one
can encode the ontology in RDF triples, store it with the
data in a single RDF graph, and use the fixed (i.e., indepen-
dent from the ontology) datalog program (Motik et al. 2009,
Section 4.3). While conceptually simple, this approach is
inefficient because the fixed program’s rules contain com-
plex joins. Second, one can convert the ontology into a dat-
alog program that depends on the ontology (Grosof et al.
2003), but whose rules are shorter and simpler. This ap-
proach is complete only if the data does not contain ‘non-
sensical’ triples such as 〈rdf:type, rdf:type, rdf:type〉—an as-
sumption commonly met in practice. Our system supports
either style of reasoning, but we use the latter one in our
evaluation because of its efficiency.

3 Parallel Datalog Materialisation
We now present our algorithm that, given a datalog program
P and a finite set of facts I , computes P∞(I) on N threads.

Intuition
A global counter W of waiting threads is first initialised to
zero. Then, each of the N threads extracts an unprocessed
fact F and considers each rule r ∈ P of the form (1). For
eachBi in the body of r unifiable with F using a substitution
σ, the thread computes the partially instantiated rule

B1σ ∧ . . . ∧Bi−1σ ∧Bi+1σ ∧ . . . ∧Bnσ → Hσ (2)

and then matches the body of (2) to the available facts; for
each match, it adds the instantiated rule head to the facts (un-
less already present). The thread repeats these steps until it
cannot extract an unprocessed fact, upon which it increments
W and goes to sleep. When another thread produces a fact,
the sleeping thread wakes up, decrements W , and contin-
ues matching rules. All facts have been processed when W
reaches N , and then all threads terminate.

A naı̈ve application of this idea would be inefficient: with
rule 〈x, rdf:type, A〉 ∧ 〈x, rdf:type, B〉 → 〈x, rdf:type, C〉
and facts 〈a, rdf:type, A〉 and 〈a, rdf:type, B〉, we would de-
rive 〈a, rdf:type, C〉 twice—that is, we would consider the
same rule instance twice. As a remedy, we match the body
atoms in (2) only to the facts that appear before the extracted
fact F , which ensures that derivations are not repeated.

Matching the body of (2) can be solved using an ar-
bitrary join algorithm. Merge join is preferred in RDF



databases (Weiss, Karras, and Bernstein 2008; Neumann and
Weikum 2010), but it requires data to be sorted; since the
data changes continuously during materialisation, maintain-
ing the ordering can be costly. In Section 4 we show how to
index the data using hash-based indexes that allow for effi-
cient parallel updates, but that can also match each instan-
tiated body atom in O(1) time. Then, we match (2) using
index nested loop join with ‘sideways information passing’.

Facts are assigned to threads as they are extracted, so our
algorithm essentially exploits intraquery parallelism without
any need for load balancing. We see only two situations
in which our approach would not distribute the workload to
threads equitably. First, applying a single rule to a single fact
F may dominate the total computation time so that most of
the computation is done by one thread, but this is extremely
unlikely in practice. Second, the rules may be inherently
serial, as in the following example.

P = {〈x, rdf:type, A〉 ∧ 〈x,R, y〉 → 〈y, rdf:type, A〉} (3)
I = {〈a0, rdf:type, A〉, 〈a0, R, a1〉, . . . , 〈a`−1, R, a`〉} (4)

For each 1 ≤ i ≤ `, fact 〈ai−1, rdf:type, A〉 is needed to de-
rive 〈ai, rdf:type, A〉; hence, our algorithm, as well as all
approaches known to us, become sequential. The existence
of such cases is unsurprising since datalog materialisation is
PTIME-complete and is believed to be inherently serial.

Formalisation
Our algorithm manipulates the set of facts I using operations
that we next describe from an abstract point of view; in Sec-
tion 4, we then discuss how to support these operations effi-
ciently. If I does not contain a fact F , then I.add(F ) adds
F to I and returns true; otherwise, I.add(F ) returns false.
Moreover, I must support iteration over its facts: I.next re-
turns a previously not returned fact from I , or ε if such a fact
does not exist; and I.hasNext returns true if I contains a pre-
viously not returned fact. These operations need not enjoy
the ACID properties, but they must be linearisabile (Her-
lihy and Shavit 2008): each asynchronous sequence of calls
should appear to happen in a sequential order, with the ef-
fect of each call taking place at an instant between the call’s
invocation and response. Accesses to I thus does not require
external synchronisation via locks or critical sections.

Moreover, I must support an interface for answering con-
junctive queries constrained to a subset of I; the latter will
be used to prevent repeated derivations by a rule. To for-
malise this, we assume that I can be viewed as a vector;
then, for F ∈ I a fact, I<F contains all facts that come be-
fore F , and I≤F ··= I<F ∪ {F}. We make no assumptions
on the order in which I.next returns the facts; the only re-
quirement is that, once it returns a fact F , further additions
should not change I≤F —that is, returning F should ‘freeze’
I≤F . An annotated query is a conjunction of RDF atoms
Q = A./1

1 ∧ . . . ∧A./k

k where ./i ∈ {<,≤}. For F a fact
and σ a substitution, I.evaluate(Q,F, σ) returns the set con-
taining each substitution τ such that σ ⊆ τ and Aiτ ∈ I./iF

for each 1 ≤ i ≤ k. Such calls are valid only when set I≤F
is ‘frozen’ and hence does not change via additions.

Finally, for F a fact, P.rulesFor(F ) is the set containing
all 〈r,Qi, σ〉 where r is a rule in P of the form (1), σ is a

substitution such that Biσ = F for some 1 ≤ i ≤ n, and

Qi = B<
1 ∧ · · · ∧B<

i−1 ∧B
≤
i+1 ∧ . . . ∧B

≤
n . (5)

Iterating over P to identify the rules matching F would be
very inefficient; however, RDF atoms in rules often contain
constants, which we can exploit to retrieve the candidate
rules more efficiently. In particular, we index the rules of
P using a hash table H mapping facts to sets. In partic-
ular, for each rule r ∈ P and each body atom Bi in r, let
B′i be obtained by replacing all variables in Bi with a spe-
cial symbol ∗; then, we add 〈r, i,Qi〉 to H[B′i]. To compute
P.rulesFor(F ), we generate all eight triples obtained by re-
placing some resources in F with ∗; then, for each thus ob-
tained triple F ′ and each 〈r, i,Qi〉 ∈ H[F ′], we determine
whether a substitution σ exists such that Biσ = F .

To compute P∞(I), we initialise a global counter W of
waiting threads to 0 and let each of the N threads execute
Algorithm 1. In lines 2–6, a thread acquires an unprocessed
fact F (line 2), iterates through each rule r and each body
atom Bi that can be mapped to F (line 3), evaluates the
instantiated annotated query (line 4), and, for each query
answer, instantiates the head of the rule and adds it to I
(line 5). This can be seen as a fact-at-a-time version of the
seminaı̈ve algorithm (Abiteboul, Hull, and Vianu 1995): set
{F} plays the role of the ‘delta-old’ relation; atoms B<

k in
(5) are matched to the ‘old’ facts (i.e., facts derived before
F ); and atoms B≤k are matched to the ‘current’ facts (i.e.,
facts up to and including F ). Like the seminaı̈ve algorithm,
our algorithm does not repeat derivations: each rule instan-
tiation is considered at most once (but both algorithms can
rederive the same fact using different rule instantiations).

A thread failing to extract a fact must wait until either new
facts are derived or all other threads reach the same state.
This termination check is performed in a critical section
(lines 8–16) implemented via a mutex m; only idle threads
enter the critical section, so the overhead of mutex acquisi-
tion is small. Counter W is incremented in line 7 and decre-
mented in line 15 so, inside the critical section,W is equal to
the number of threads processing lines 8–14; since W is in-
cremented before acquiring m, termination does not depend
on fairness of mutex acquisition. IfW = N holds in line 10,
then all other threads are waiting in lines 8–14 and cannot
produce more facts, so termination is indicated (line 11) and
all waiting threads are woken up (line 12). Otherwise, a
thread waits in line 14 for another thread to either produce
a new fact or detect termination. The loop in lines 9–14 en-
sures that a thread stays inside the critical section and does
not decrementW even if it is woken up but no work is avail-
able. Theorem 1 captures the correctness of our algorithm.

Theorem 1. Algorithm 1 terminates and computes P∞(I);
moreover, each combination of r and τ is considered in line
5 at most once, so derivations are not repeated.

Proof. Our discussion of the termination condition (lines 7–
16) in Section 3 shows that all threads terminate only when
I.hasNext returns false. Moreover, the number of different
facts that our algorithm can derive is finite since it is deter-
mined by the number of resources in I and P , and duplicates



Algorithm 1 Threads of the Materialisation Algorithm
Global: I: a set of facts to materialise

P : a datalog program
N : the total number of threads
W : the number of waiting threads (initially 0)

run: a Boolean flag (initially true)
m: a mutex variable

1: while run do
2: while F ··= I.next and F 6= ε do
3: for each 〈r,Qi, σ〉 ∈ P.rulesFor(F ) do
4: for each τ ∈ I.evaluate(Qi, F, σ) do
5: if I.add(h(r)τ) and W > 0 then
6: notify all waiting threads
7: increment W atomically
8: acquire m
9: while I.hasNext = false and run do

10: if W = N then
11: run ··= false
12: notify all waiting threads
13: else
14: release m, await notification, acquire m
15: decrement W atomically
16: release m

are eliminated eagerly. Finally, I.next and I.add(F ) are lin-
earisable, so let F = 〈F1, . . . , Fm〉 be the sequence of dis-
tinct facts extracted in line 2; by a slight abuse of notation,
we treat F as a set when the order of the elements in F is
irrelevant. We next show that F = P∞(I).

One can show that Fi ∈ P∞(I) holds for each 1 ≤ i ≤ m
by a straightforward induction on i: either Fi ∈ I , or Fi is
obtained by applying a rule r ∈ P to I<Fi .

We next prove that F ′ ∈ F holds for each i and each
F ′ ∈ P i(I). This is obvious for i = 0, so assume that
the claim holds for some i and consider an arbitrary fact
F ′ ∈ P i+1(I) \ P i(I). Then, a rule r ∈ P exists that pro-
duces F ′ by matching bj(r) to some F j ∈ P i(I) for each
1 ≤ j ≤ len(r); from the induction assumption, we have
F j ∈ F for each 1 ≤ j ≤ len(r). Now let F be the fact from
{F j |1 ≤ j ≤ len(r)}with the largest index in I , and let k be
the smallest integer such that F k = F . Fact F is returned at
some point in line 2, so the algorithm considers in line 3
the rule r, annotated query Qk, and substitution σ such that
bk(r)σ = F . But then, I.evaluate(Qk, F, σ) returns a sub-
stitution τ such that bj(r)τ ∈ I≤F for each 1 ≤ j ≤ len(r),
and so F ′ = h(r)τ is derived in line 5, as required.

Finally, we prove by contradiction that derivations are not
repeated. To this end, assume that F and F ′ are (not neces-
sarily distinct) facts extracted in line 2, and let Qi and Q′j be
annotated queries for the same rule r and substitution τ con-
sidered in line 5. By the definition of Qi and Q′j , we have
bi(r)τ = F and bj(r)τ = F ′. We consider two cases.

Assume F = F ′, and w.l.o.g. assume that i ≤ j. If i = j,
we have a contradiction since F is extracted in line 2 only
once and Qi = Q′j is considered in line 3 only once. If
i < j, we have a contradiction since ./i =< holds in an-
notated query Q′j , so atom bi(r) cannot be matched to F in
Q′j (i.e., we cannot have bi(r)τ = F ) due to F 6∈ I<F ′

.

Algorithm 2 I.nestedLoops(Q,F, τ, j)
1: if j is larger than the number of atoms in Q then
2: output τ
3: else
4: let B./j

j be the j-th atom of Q
5: for each θ such that Bjτθ ∈ I./jF do
6: I.nestedLoops(Q,F, τ ∪ θ, j + 1)

1	   3	   2	  
2	   1	   4	  
1	   1	   2	  
1	   3	   4	  
2	   1	   3	  
1	   1	   1	  

Rs	   Rp	   Ro	   Nsp	   Np	   Nop	   Ispo	  

Isp	  

Is	  

1	  
2	  

⟨1,3⟩	  
⟨2,1⟩	  
⟨1,1⟩	  

Figure 1: Data Structure for Storing RDF Triples

Assume F 6= F ′, and w.l.o.g. assume that F ′ occurs after
F in I; thus, F ′ 6∈ I≤F . But then, bj(r)τ = F ′ leads to a
contradiction since atom bj(r) cannot be matched to F ′ in
Qi when fact F is extracted in line 2.

Procedure I.evaluate(Qi, F, σ) in line 3 can use any join
method, but our system uses index nested loops. To this end,
we reorder the atoms of each Qi to obtain an efficient left-
to-right join orderQ′i and then storeQ′i in our rule index; we
use a simple greedy strategy, but any known planning algo-
rithm can be used too. We then implement line 4 by calling
I.nestedLoops(Q′i, F, σ, 1) shown in Algorithm 2. The lat-
ter critically depends on the efficient matching of atoms in
I<F and I≤F , which we discuss in Section 4.

4 RAM-Based Storage of RDF Data
We next describe a main-memory RDF indexing scheme that
(i) can efficiently match RDF atoms in line 5 of Algorithm 2,
but also (ii) supports concurrent updates. Weiss, Karras, and
Bernstein (2008) and Neumann and Weikum (2010) satisfy
(i) using ordered, compressed indexes, but maintaining the
ordering can be costly when the data changes continuously
and concurrently. Instead, we index the data using hash ta-
bles, which allows us to make insertions ‘mostly’ lock-free.

As is common in RDF systems, we encode resources as
integer IDs using a dictionary. IDs are produced by a count-
ing sequence, and so they can be used as array indexes.

We store the encoded triples in a six-column triple table
shown in Figure 1. Columns Rs, Rp, and Ro contain the in-
teger encodings of the subject, predicate, and object of each
triple. Each triple participates in three linked lists: an sp-list
connects all triples with the same Rs grouped (but not nec-
essarily sorted) by Rp, an op-list connects all triples with
the same Ro grouped by Rp, and a p-list connects all triples
with the same Rp without any grouping; columns Nsp, Nop,
and Np contain the next-pointers. Triple pointers are imple-
mented as offsets into the triple table.

We next discuss RDF atom matching and the indexes
used. There are eight different ‘binding patterns’ of RDF



atoms. We can match pattern 〈x, y, z〉 by iterating over the
triple table; if, for example, x = y, we skip triples with
Rs 6= Rp. For the remaining seven patterns, we maintain
six indexes to pointers into the sp-, op- and p-lists. Index
Ispo contains each triple in the table, and so it can match
RDF atoms 〈s, p, o〉. Index Is maps each s to the head Is[s]
of the respective sp-list; to match an RDF atom 〈s, y, z〉 in I ,
we look up Is[s] and traverse the sp-list to its end; if y = z,
we skip triples with Rp 6= Ro. Index Isp maps each s and
p to the first triple Isp[s, p] in an sp-list with Rs = s and
Rp = p; to match an RDF atom 〈s, p, z〉 in I , we look up
Isp[s, p] and traverse the sp-list to its end or until we en-
counter a triple with Rp 6= p. We could match the remain-
ing RDF atoms analogously using indexes Ip and Ipo, and
Io and Ios; however, in our experience, RDF atoms 〈s, y, o〉
occur rarely in queries, and Ios can be as big as Ispo since
RDF datasets rarely contain more than one triple connecting
the same s and o. Therefore, we use instead indexes Io and
Iop to match 〈x, y, o〉 and 〈x, p, o〉, and an index Ip to match
〈x, p, z〉. Finally, we match 〈s, y, o〉 by iterating over the sp-
or op-list skipping over triples with Rs 6= s or Ro 6= o; we
keep in Is[s] and Io[o] the sizes of the two lists and choose
the shorter one. To restrict any of these matches to I<F or
I≤F , we compare the pointer to F with the pointer to each
matched tuple, and we skip the matched tuple if necessary.

Indexes Is, Ip, and Io are realised as arrays indexed by
resource IDs. Indexes Isp, Iop, and Ispo are realised as open
addressing hash tables storing triple pointers, and they are
doubled in size when the fraction of used buckets exceeds
some factor f . Hash codes are obtained by combining the
relevant resource IDs via Jenkings hashing. To determine
the worst-case memory usage per triple (excluding the dic-
tionary), let n be the number of triples; let p and r be the
numbers of bytes used for pointers and resources; and let
dsp and dop be the numbers of distinct sp- and op-groups
divided by n. Each triple uses 3(r + p) bytes in the triple
table. Index Ispo uses most memory per triple just after
resizing: 2n/f buckets then require 2p/f bytes per triple.
Analogously, worst-case memory usage for Isp and Iop is
dsp · 2p/f and dop · 2p/f . Finally, Is, Ip, and Io are usually
much smaller than n so we disregard them. Thus, for the
common values of r = 4, p = 8, f = 0.7, dsp = 0.5, and
dpo = 0.4, we need at most 80 bytes per triple; this drops to
46 bytes for p = 4 (but then we can store at most 232 triples).

‘Mostly’ Lock-Free Insertion of Triples
Lock-freedom is usually achieved using compare-and-set:
CAS(loc, exp, new) loads the value stored at location loc
into a temporary variable old, stores the value of new into
loc if old = exp, and returns old; hardware ensures that all
steps are atomic (i.e., without interference). Lock-free triple
insertion is difficult as one must atomically query Ispo, add
the triple to the table, and update Ispo. CAS does not directly
support atomic modification of multiple locations, so de-
scriptors (Fraser and Harris 2007) or multiword-CAS (Har-
ris, Fraser, and Pratt 2002) are needed. These techniques can
be costly, so we instead resort to localised locking, cf. Algo-
rithm 3. Here, Ispo.buckets is the bucket array of the Ispo
index; |Ispo.buckets| is the array’s length; and, for T a triple

Algorithm 3 add−triple(s, p, o)
Input: s, p, o: the components of the inserted triple

1: i ··= hash(s, p, o) mod |Ispo.buckets|
2: do
3: If needed, handle resize and recompute i
4: while T ··= Ispo.buckets[i] and T 6= null do
5: if T = INS then continue
6: if 〈T.Rs, T.Rp, T.Ro〉 = 〈s, p, o〉 then return
7: i ··= (i+ 1) mod |Ispo.buckets|
8: while CAS(Ispo.buckets[i], null, INS) 6= null
9: Let Tnew point to a fresh triple in the triple table

10: Tnew.Rs ··= s, Tnew.Rp ··= p, Tnew.Ro ··= o
11: Ispo.buckets[i] ··= Tnew
12: Update all remaining indexes

pointer, T.Rs is the subject of the triple that T points to, and
T.Rp, T.Ro, T.Nsp, T.Np, and T.Nop are analogous.

Lines 1–11 of Algorithm 3 are similar to the standard ap-
proach for open hashing: we determine the first bucket index
(line 1), and we scan the buckets until we find an empty one
(line 4–7) or encounter the triple being inserted (line 6). The
main difference is that, once we find an empty bucket, we
lock it so that we can allocate a new triple. This is com-
monly done by introducing a separate lock that guards ac-
cess to a range of buckets (Herlihy and Shavit 2008). We,
however, avoid the overhead of separate locks by storing into
the bucket a special marker INS (line 8), and we make sure
that other threads do not skip the bucket until the marker
is removed (line 5). We lock the bucket using CAS so only
one thread can claim it, and we reexamine the bucket if CAS
fails as another thread could have just added the same triple.
If CAS succeeds, we allocate a new triple Tnew (line 9); if
the triple table is big enough this requires only an atomic in-
crement and is thus lock-free. Finally, we initialise the new
triple (line 10), we store Tnew into the bucket (line 11), and
we update all remaining indexes (line 12).

To resize the bucket array (line 3), a thread temporarily
locks the index, allocates a new array, initialises a global
counter of 1024-bucket blocks in the bucket array, and un-
locks the index. When any thread accesses the index, as long
as the global counter is not zero, the thread transfers a block
of 1024 buckets from the old array into the new array (which
can be done lock-free since triples already exist in the table)
and decrements the counter; moreover, the thread detecting
that the counter dropped to zero deallocates the old bucket
array. Resizing is thus divided among threads and is lock-
free, apart from the array allocation step.

To update the Isp index in line 12, we scan its buckets
as in Algorithm 3. If we find a bucket containing some T
with T.Rs = s and T.Rp = p, we insert Tnew into the sp-
list after T , which can be done lock-free as shown in Algo-
rithm 4: we identify the triple Tnext that follows T in the
sp-list (line 2), we modify Tnew.Nsp so that Tnext comes
after Tnew (line 3), and we update T.Nsp to Tnew (line 4); if
another thread modifies T.Nsp in the meantime, we repeat
the process. If we find an empty bucket while scanning Isp,
we store Tnew into the bucket and make Tnew the head of
Is[s]; since this requires multiword-CAS, we again use lo-



Algorithm 4 insert−sp−list(Tnew, T )
Input:Tnew: pointer to the newly inserted triple

T : pointer to the triple that Tnew comes after
1: do
2: Tnext ··= T.Nsp

3: Tnew.Nsp ··= Tnext
4: while CAS(T.Nsp, Tnext, Tnew) 6= Tnext

cal locks: we store INS into the bucket of Isp, we update
Is lock-free analogously to Algorithm 4, and we store Tnew
into the bucket of Isp thus unlocking the bucket.

We update Iop and Io analogously, and we update Ip lock-
free as in Algorithm 4. Updates to Ispo, Ip, Isp and Is, and
Iop and Io are independent, which promotes concurrency.

Reducing Thread Interference
Each processor/core in modern systems has its own cache
so, when coreA writes to a memory location cached by core
B, the cache of B is invalidated. If A and B keep writ-
ing into a shared location, cache synchronisation can sig-
nificantly degrade the performance of parallel algorithms.
Our data structure exhibits two such bottlenecks: each triple
〈s, p, o〉 is added at the end of the triple table; moreover, it is
always added after the first triple in the sp- and op-groups,
which changes the next-pointer of the first triple.

For the first bottleneck, each thread reserves a block of
space in the triple table. When inserting 〈s, p, o〉, the thread
writes 〈s, p, o〉 into a free location Tnew in the reserved
block, and it updates Ispo using a variant of Algorithm 3:
since Tnew is known beforehand, one can simply write Tnew
into Ispo.buckets[i] in line 8 using CAS; moreover, if one
detects in line 6 that Ispo already contains 〈s, p, o〉, one can
simply reuse Tnew later. Different threads thus write to dis-
tinct portions of the triple table, which reduces memory con-
tention; moreover, allocating triple space in advance allows
Algorithm 3 to become fully lock-free.

For the second bottleneck, each thread i maintains a ‘pri-
vate’ hash table Iisp holding ‘private’ insertion points into
the sp-lists. To insert triple 〈s, p, o〉 stored at location Tnew,
the thread determines T ··= Iisp[s, p]. If T = null, the thread
inserts Tnew into the global indexes Isp and Is as usual and
sets Iisp[s, p] ··= Tnew; thus, Tnew becomes a ‘private’ inser-
tion point for s and p in thread i. If T 6= null, the thread
adds Tnew after T ; since T is ‘private’ to thread i, updates
are interference-free and do not require CAS. Furthermore,
for each s the thread counts the triples 〈s, p, o〉 it derives, and
it uses Iisp[s, p] only once this count exceeds 100. ‘Private’
insertion points are thus maintained only for commonly oc-
curring subjects, which keeps the size of Iisp manageable.
Thread i analogously maintains a ‘private’ index Iiop.

The former optimisation introduces a problem: when
I.next eventually reaches a reserved block, the block cannot
be skipped since further additions into the reserved space
would invalidate the assumptions behind Theorem 1. There-
fore, when I.next reaches a reserved block, all empty rows
in the reserved blocks are marked as unused, and from this
point onwards all triples are added at the end of the table;
furthermore, I.next skips over all unused rows in the table.

5 Evaluation
We implemented and evaluated a new system called RDFox.
The system is written in C++, and it works on x86-64 com-
puters running Windows, Linux, or Mac OS X. It provides
three versions of our RDF storage scheme. The ‘sequen-
tial’ version does not use CAS operations; it represents triple
pointers using 6 bytes, and so it can store at most 281 · 1012
triples. The ‘parallel narrow’ and ‘parallel wide’ versions
support concurrent access. To ensure atomicity of memory
operations, they represent triple pointers using native word
lengths of 4 and 8 bytes, respectively, and can thus store at
most 4 · 109 and 18 · 1018 triples, respectively. We used the
‘sequential’ and ‘parallel narrow’ versions in our tests.

We evaluated different aspects of our approach in the fol-
lowing four ways. First, we compared the ‘sequential’ and
the ‘parallel’ versions of RDFox on a single thread in order
to estimate the overhead of concurrency support. Second,
we investigated how materialisation in the ‘parallel’ version
of RDFox scales with the number of threads. Third, we
compared RDFox with OWLIM-Lite—a commercial RDF
system that also stores triples in RAM. Fourth, we investi-
gated how our approach compares with state of the art ap-
proaches for RDF storage and materialisation based on rela-
tional databases. All datasets, test systems, scripts, and test
results are available online.1

Test Data
Table 1 summarises our test datasets. LUBM (Guo, Pan,
and Heflin 2005) and UOBM (Ma et al. 2006) are synthetic
datasets: given a parameter n, one can generate RDF graphs
LUBMn and UOBMn. DBpedia contains information about
Wikipedia entities. Finally, Claros integrates cultural her-
itage data using a common vocabulary. The ontologies of
LUBM, UOBM, and Claros are not in OWL 2 RL. Zhou
et al. (2013) convert such an ontology O into programs OL

and OU such that OU |= O and O |= OL; thus, OL (OU )
captures a lower (upper) bound on the consequences of O.
Program OL is largely equivalent to the one obtained from
O using the transformation by Grosof et al. (2003), and is
a natural test case since most RDF systems consider only
OL. Program OU is interesting because its rules are more
complex. To obtain even more complex programs, we man-
ually extended OL to OLE with chain rules that encode re-
lations specific to the domain ofO; for example, we defined
in DBpediaLE ‘teammates’ as pairs of football players play-
ing for the same team. Programs obtained from ontologies
other than LUBM contain rules with the owl:sameAs prop-
erty in the head, which we axiomatised explicitly—that is,
we make it symmetric and transitive, and, for each property
R and class C in P , we introduce the following rules.

〈x, rdf:type, C〉 ∧ 〈x, owl:sameAs, y〉 → 〈y, rdf:type, C〉
〈x1, R, x2〉 ∧ 〈x1, owl:sameAs, y1〉 → 〈y1, R, x2〉
〈x1, R, x2〉 ∧ 〈x2, owl:sameAs, y2〉 → 〈x1, R, y2〉

We identify each test by combining the names of the datalog
program and the RDF graph, such as LUBMLE 01K.

1http://www.cs.ox.ac.uk/isg/tools/RDFox/tests/



Table 1: Test Datalog Programs and RDF Graphs
LUBM UOBM DBpedia Claros

Ontology OL OLE OU OL OU OL OLE OL OLE OU

Rules 98 107 122 407 518 7,258 7,333 2,174 2,223 2,614

RDF Graph 01K 05K 010 01K
Resources 32.9M 164.3M 0.4M 38.4M 18.7M 6.5M
Triples 133.6M 691.1M 2.2M 254.8M 112.7M 18.8M

Comparison Systems
Most existing systems do not target our setting exactly:
many cannot materialise recursive rules (Abadi et al. 2009;
Weiss, Karras, and Bernstein 2008; Neumann and Weikum
2010; Zou et al. 2011) and many are disk-based (Chong et
al. 2005). To our knowledge, OWLIM-Lite is the only sys-
tem that supports recursive rules and stores triples in RAM,
so we used it for a direct performance comparison. Further-
more, RDF is often managed using relational databases, so
we implemented a new test system, DBRDF, that stores RDF
using two well-known storage schemes and materialises re-
cursive rules using the seminaı̈ve algorithm. OWLIM-Lite
and DBRDF do not parallelise computation, so we con-
ducted all comparison tests on a single thread. Comparing
RDFox with (possible) parallel variants of the known ap-
proaches might be interesting, but it is not strictly necessary:
our comparison provides us with a baseline, and we show in-
dependently that RDFox parallelises computation very well.
We next discuss the comparison systems in more detail.

OWLIM-Lite, version 5.3, is a commercial RDF system
developed by Ontotext.2 It stores triples in RAM, but keeps
the dictionary on disk, so we stored the latter on a RAM disk
drive. We configured OWLIM-Lite to use our custom data-
log programs, rather than the fixed OWL 2 RL/RDF rule set.
Due to simpler rules, OWLIM-Lite consistently processed
the custom datalog programs several times faster than the
fixed OWL 2 RL/RDF rules, so we do not believe that using
custom programs put OWLIM-Lite at a disadvantage. More-
over, OWLIM-Lite always materialises rules during import
so, to estimate the materialisation overhead, we loaded each
RDF graph once with the test program and once with no pro-
gram and subtracted the two times. Ontotext have confirmed
that this is a fair way to use their system.

DBRDF simulates RDF systems based on row and col-
umn stores (Abadi et al. 2009; Broekstra, Kampman, and
van Harmelen 2002; Wu et al. 2008) by storing RDF data in
PostgreSQL (PG) 9.2 and MonetDB (MDB), Feb 2013-SP3
release. We stored the data on a RAM disk drive; while this
clearly does not mimic the performance of a purely RAM-
based system, it mitigates the overhead of disk access. On
PG, we created all tables as UNLOGGED to eliminate the
fault recovery overhead, and we configured the database to
aggressively use memory using the following options:

fsync = off, synchronous commit = off,
full page writes = off, bgwriter lru pages = 0,
shared buffers = 16GB, work mem = 16GB,
effective cache size = 16GB.

DBRDF can store RDF data using one of the two well-
known storage schemes. In the vertical partitioning (VP)

2http://www.ontotext.com/

variant (Abadi et al. 2009), a triple 〈s, rdf:type, C〉 is stored
as tuple 〈s〉 in a unary relation C, and a triple 〈s,R, o〉 with
R 6= rdf:type is stored as tuple 〈s, o〉 in a binary relation R.
Moreover, each unary relation C(s) is indexed on s, and
each binary relation R(s, o) is indexed on 〈s, o〉 and o. In
the triple table (TT) variant (Chong et al. 2005; Broekstra,
Kampman, and van Harmelen 2002), each triple〈s, p, o〉 is
stored directly in a common ternary table, and the latter is
indexed on 〈s, p, o〉, 〈p, o〉, and 〈o, s〉. In either case, the
data was not clustered explicitly: MDB manages data dis-
position internally, and clustering in PG makes no sense as
data changes continuously during materialisation.

Neither PG nor MDB support recursive datalog rules,
so DBRDF implements the seminaı̈ve algorithm. Given
a datalog program P , DBRDF analyses the dependency
graph (Abiteboul, Hull, and Vianu 1995) of P and
partitions the latter into programs P1, . . . , Pn such that
P∞(I) = P∞n (. . . P∞1 (I) . . .); then, DBRDF applies the
seminaı̈ve algorithm (Abiteboul, Hull, and Vianu 1995) to
each Pi. The ‘old’, ‘delta-old’, and ‘new’ relations from
the seminaı̈ve algorithm are implemented as temporary ta-
bles. The rules in Pi are translated into INSERT INTO
. . . SELECT . . . statements; for example, with VP, rule
〈x,R, y〉 ∧ 〈y,R, z〉 → 〈x, S, z〉 is translated as follows:

INSERT INTO S(s,o) SELECT DISTINCT t1.s, t2.o
FROM R t1, R t2 WHERE t1.o = t2.s AND NOT EXISTS
(SELECT 1 FROM S ex WHERE ex.s = t1.s AND ex.o = t2.o)

Here, DISTINCT and NOT EXISTS eliminate duplicates,
which is essential for termination and not repeating deriva-
tions. All statements were evaluated using the ‘read uncom-
mitted’ transaction isolation level. On PG, SQL statements
were combined into a PL/pgSQL script that is evaluated se-
quentially inside the database; all scripts used in our evalu-
ation are available online. On MDB, SQL statements were
issued sequentially from a Java program. MDB can paral-
lelise query evaluation, but we observed that this achieved a
speedup of at most two; thus, for fairness we restricted the
number of threads in all tests to one.

Test Setting
We tested RDFox on a Dell computer with 128 GB of RAM,
64-bit Red Hat Enterprise Linux Server 6.3 kernel version
2.6.32, and two Xeon E5-2650 processors with 16 physical
cores, extended to 32 virtual cores via hyperthreading (i.e.,
when cores maintain separate state but share execution re-
sources). This computer provided us with many cores for
the speedup tests, but we could not run MDB and PG on
it for administrative reasons; hence, we ran the comparison
tests on another Dell computer with 128 GB of RAM, 64-bit
CentOS 6.4 kernel version 2.6.32, and two Xeon E5-2643
processors with 8/16 cores. RDFox was allowed to use at
most 100 GB of RAM. We stored the databases of MDB and
PG on a 100 GB RAM disk and allowed the rest to be used
as the systems’ working memory; thus, PG and MDB could
use more RAM in total than RDFox. We kept the dictionary
of OWLIM-Lite on a 50 GB RAM disk. Each test involved
importing an RDF graph and materialising a datalog pro-
gram, and we recorded the wall-clock times for import and
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Active 93.3% 98.8% 28.1% 94.5% 66.5% 90.3% 85.3% 66.5% 90.3% 85.3% 99.7% 99.1%
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(b) Comparison of RDFox with DBRDF and OWLIM-Lite
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Figure 2: Results of our Empirical Evaluation (All Times Are in Seconds)

materialisation, the final number of triples, and the memory
usage before and after materialisation. Each run was limited
to 10 hours, and we report averages over three runs.

Test Results
The graphs and Table (a) in Figure 2 show the speedup of
RDFox with the number of used threads. The middle part of
Table (a) shows the sequential and parallel import times, and
the percentage slowdown for the parallel version. The lower
part of Table (a) shows the number of triples and memory
consumption after materialisation (the number of triples be-
fore is given in Table 1), and the percentage of active triples
(i.e., triples to which a rule was applied). As one can see,
import times differ by at most 5% between the sequential
and the parallel version. For materialisation, the overhead
of lock-free updates is between 10% and 30%, so paralleli-
sation pays off even with just two threads. With all 16 phys-
ical cores, RDFox is up to 13.9 times faster than with just
one core; this increases to 19.5 with 32 virtual cores, sug-
gesting that hyperthreading and a high degree of parallelism
can mitigate the effect of CPU stalls due to random mem-
ory access. The flattening of the speedup curves is due to
the more limited capabilities of virtual cores, and the fact
that each thread contributes to system bus congestion. Per-
thread indexes (see Section 4) proved very effective at re-
ducing thread interference, although they did cause memory
exhaustion in some tests; however, the comparable perfor-
mance of the sequential version of RDFox (which does not
use such indexes) suggests that the cost of maintaining them
is not high. The remaining source of interference is in the
calls to I.next, which are more likely to overlap when there
are many threads but few active triples. The correlation be-
tween the speedup for 32 threads and the percentage of ac-

tive triples is 0.9, explaining the low speedup on DBpediaL.
Table (b) in Figure 2 compares RDFox with OWLIM-Lite

and DBRDF on PG and MDB with the VP or TT scheme.
Columns T show the times in seconds, and columns B/t
show the number of bytes per triple. We do not know
how OWLIM-Lite splits the dictionary between the disk
and RAM, so its memory consumption is a ‘best-case’ es-
timate. Import in DBRDF is about 20 times slower than in
RDFox, but half of import time is used by the Jena RDF
parser. VP is 33% more memory efficient than TT, as it
does not store triples’ predicates, and MDB-VP can be up to
34% more memory-efficient than RDFox; however, MDB-
TT is not as efficient as RDFox, which is surprising since
RDFox does not compress data. On materialisation tests,
both MDB-TT and PG-TT ran out of time in all but one case
(MDB-TT completed DBpediaL in 11,958 seconds): self-
joins on the triple table are notoriously difficult for RDBMSs
(Abadi et al. 2009). MDB-VP was faster than RDFox on two
tests (LUBML01K and UOBML01K), but it often ran out of
memory. PG-VP was always much slower, and it also could
not complete many tests. In contrast, RDFox successfully
completed all tests, although it essentially implements TT.

6 Conclusion & Outlook
We presented an efficient novel approach to parallel mate-
rialisation of datalog rules in main-memory RDF databases.
We see two main challenges for our future work. First, we
shall extend the approach to handle the owl:sameAs property
via rewriting—that is, by replacing all equal resources with
a single representative. Second, we shall adapt the RDF in-
dexing scheme to secondary storage. The main difficulty is
to reduce the need for random access (e.g., to locate the keys
of hash table entries or follow list pointers).
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