
RDFox: A Highly-Scalable RDF Store

Yavor Nenov1, Robert Piro1, Boris Motik1, Ian Horrocks1,
Zhe Wu2, and Jay Banerjee2

1 University of Oxford
{yavor.nenov,robert.piro,boris.motik,ian.horrocks}@cs.ox.ac.uk

2 Oracle Corporation
{alan.wu,jayanta.banerjee}@oracle.com

Abstract. We present RDFox—a main-memory, scalable, centralised RDF store
that supports materialisation-based parallel datalog reasoning and SPARQL query
answering. RDFox uses novel and highly-efficient parallel reasoning algorithms
for the computation and incremental update of datalog materialisations with ef-
ficient handling of owl:sameAs. In this system description paper, we present an
overview of the system architecture and highlight the main ideas behind our in-
dexing data structures and our novel reasoning algorithms. In addition, we eval-
uate RDFox on a high-end SPARC T5-8 server with 128 physical cores and 4TB
of RAM. Our results show that RDFox can effectively exploit such a machine,
achieving speedups of up to 87 times, storage of up to 9.2 billion triples, memory
usage as low as 36.9 bytes per triple, importation rates of up to 1 million triples
per second, and reasoning rates of up to 6.1 million triples per second.

1 Introduction

An increasing number of Semantic Web applications represent knowledge and data us-
ing the Resource Description Framework (RDF) [12]. Such applications use RDF stores
to efficiently store large amounts of RDF data, manage background knowledge about a
domain, and answer queries. The background knowledge is usually captured using an
OWL 2 ontology [18], possibly extended with SWRL rules [10]. An ontology describes
dependencies between entities, which allows an RDF store to enrich query answers with
results not explicitly stated in the data. Queries are typically expressed in SPARQL [21],
and the main computational service of RDF stores is to evaluate queries over both the
explicit facts and the facts implied by the background knowledge. Answering queries
with respect to arbitrary OWL 2 ontologies is often infeasible in practice due to the high
computational complexity of the logical formalisms that underpin OWL 2 [9]. OWL 2
profiles [13] deal with intractability by restricting the expressivity of the ontology lan-
guage in a way that enables efficient query answering over large datasets. OWL 2 RL
is one such profile that is supported, at least to an extent, by many state of the art RDF
stores. Consequences of OWL 2 RL ontologies can be captured using datalog [1]—a
rule-based language developed by both the database and the knowledge representation
communities. Queries over a datalog program and a dataset can be answered in several
different ways. In scenarios where the performance of query answering is critical, a
common approach is to precompute and explicitly store all consequences of the pro-
gram and the dataset so that subsequent queries can be evaluated without any further



2 Nenov et al.

reference to the program. This approach is also known as materialisation, and it is used
in state of the art systems such as GraphDB [3] and Oracle’s RDF store [22].

In this system description paper we present RDFox—a highly scalable, centralised,
main-memory RDF store that supports materialisation-based parallel datalog reasoning
and SPARQL query answering. It is developed and maintained at the University of
Oxford and is available for download3 under an academic licence. It is available on
Linux, Mac OS X, Solaris, and Windows. It can be integrated as a library into C++, Java,
and Python applications using an efficient native API; moreover, it can also be used as
a standalone server accessible via a SPARQL endpoint. These versatile modes of use,
combined with the very efficient storage and reasoning capabilities that we describe
next, make RDFox suitable for a wide range of Semantic Web application scenarios.

RDFox supports datalog reasoning over RDF data using several novel datalog eval-
uation algorithms. To compute datalog materialisations, RDFox uses a shared-memory
parallel algorithm that evenly distributes workload to threads by partitioning the reason-
ing task into many small, independent subtasks [15]. To support changes to the input
data without recomputing materialisations from scratch, RDFox employs a novel incre-
mental reasoning algorithm [14] that reduces the overall work by identifying early on
whether a fact should be deleted or kept as a consequences of the update.

Many Semantic Web applications use the owl:sameAs property to state equalities
between resources, which should be taken into account during materialisation. With
many equality statements, however, this can significantly increase the memory con-
sumption and degrade the overall reasoning performance [11]. Rewriting is a well-
known technique for efficient equality reasoning [2, 20], where equal resources are sub-
stituted during reasoning by a common representative. The result of this technique is
called an r-materialisation, and it consists of a mapping between resources and their
representatives and a dataset over the representatives. The correct computation of r-
materialisations is not straightforward even on a single thread, since equalities derived
during reasoning may trigger changes of representatives, which may require the dele-
tion of outdated facts as well as changes to the datalog rules. RDFox employs a novel
algorithm that seamlessly incorporates the rewriting technique into the parallel mate-
rialisation processes without sacrificing the benefits of parallelisation [17]. Moreover,
updating r-materialisations incrementally is highly nontrivial, and the main difficulties
stem from the fact that retraction of equalities between resources requires the reevalua-
tion of all facts containing the representative of these resources. RDFox provides sup-
port for the incremental update of r-materialisations using a novel algorithm that was
proved very efficient for small to medium-sized updates [16]. To the best of our knowl-
edge, RDFox is the only system that supports incremental update of r-materialisations.

To ensure scalability of data storage and access, RDFox uses a novel, efficient RDF
storage scheme. It stores RDF triples in RAM, which is much faster than disk-based
schemes, particularly for random access. The storage scheme uses compact data struc-
tures that can store hundreds of millions of triples on commodity PCs, and tens of
billions of triples on high-end servers. The storage scheme comes in two variants: an
economical version that can store up to four billion triples, and a more scalable version
that can store more triples at the expense of using more bytes per triple. The storage

3 http://www.rdfox.org/



RDFox: A Highly-Scalable RDF Store 3

scheme has configurable indexes that support efficient data access. All indexes support
highly scalable, ‘almost’ lock-free parallel updates, which is critical for the performance
of parallel reasoning. A particular challenge is to ensure eager elimination of duplicate
triples, which is important for both the performance and correctness of reasoning.

In our previous work, we have demonstrated the scalability of RDFox on mid-range
servers. In particular, RDFox can store 1.5 G triples in 52 G of RAM [15]; on 16 phys-
ical cores our parallel materialisation algorithms achieve reasoning speedup over the
single-threaded version of up to 13.9 [15, 17]; even in the single-threaded mode, RDFox
often outperforms state of the art solutions based on relational and columnar databases
[15]; and the (r-)materialisation can be efficiently updated for small to medium-sized
updates [14, 16]. To test the limits of the storage and reasoning scalability of RDFox, in
this paper we shift our focus to high-end servers and present the results of a performance
evaluation on a SPARC T5 with TB of RAM and 128 physical cores powering 1024
virtual cores via hyperthreading. Our evaluation shows very promising results: RDFox
achieved speedups of up to 87 times (with 1024 threads) over the single-threaded ver-
sion, storage of up to 9.2 billion triples, memory usage as low as 36.9 bytes per triple,
importation rates of up to 1 million triples per second, and reasoning rates of up to 6.1
million triples per second.

The rest of the paper is structured as follows. In Section 2 we discuss the features
and the different ways of accessing RDFox. In Section 3 we discuss in detail the archi-
tecture of RDFox. In Section 4 we demonstrate by means of an example the key ideas
behind the algorithms used in RDFox. Finally, in Section 5 we describe the results of
our performance evaluation.

2 Features, APIs, and Use Cases of RDFox

We now discuss the features of RDFox, the possible ways in which the system can be
integrated into applications, and practical scenarios in which it has been employed.

RDFox Features. In RDFox, a data store is the basic RDF data management unit.
Each data store is associated with a type that determines the data storage and indexing
strategies. In any application, one can instantiate an arbitrary number of data stores,
each of which provides the following functionality.

– Triples can be added to a data store in one of three possible ways: they can be
imported, after which they are available for querying and reasoning, or they can
be scheduled for incremental addition or incremental deletion, which makes them
available for incremental reasoning. In each case, triples can be added programati-
cally, read from an RDF 1.1 Turtle file, or extracted from an OWL 2 ontology.

– Analogously, a data store can import, or schedule for addition or deletion a set of
datalog rules. Rules can be represented programmatically, read from a file in a cus-
tom RDF datalog format, or extracted from the OWL RL fragment of an ontology.

– A data store can answer SPARQL queries. Currently, RDFox supports most, but
not all of SPARQL 1.1; in particular, we are still working on supporting aggregate
queries and property paths.



4 Nenov et al.

– A data store can materialise the available triples with respect to the current set of
rules. Reasoning can be carried out with or without optimised equality handling; the
data store ensures that observable results in both cases are identical. The materiali-
sation becomes available for querying immediately after reasoning has completed.

– One can incrementally update the materialisation according to the triples and rules
scheduled for addition and/or deletion. RDFox does not support transactional up-
dates; thus, the results of SPARQL queries are uniquely defined only after incre-
mental update terminates.

– The triples in a store can be exported into a Turtle file, and the rules in a store can
be exported into an RDF datalog file.

– The entire contents of a data store can be saved into a binary file, which can later
be loaded to completely restore the state of the data store.

RDFox APIs. The core of RDFox is written in C++, but the system supports a number
of APIs that enable integration with different kinds of applications.

– RDFox can be loaded as a C++ library, and all of its functionality can be easily
accessed using a rich C++ API.

– RDFox can be accessed as a native library from Java and Python using suitable
APIs. The Java and Python APIs act as a façade over the C++ API and provide
access to the commonly used functionality.

– RDFox also supports a simple scripting language that supports command-line in-
teraction with the system. This mode of interaction is particularly useful for ad hoc
tests of the system’s functionality, as well as for exploring the data and the effects
of various operations.

– RDFox can be started in a server mode, providing access via a SPARQL endpoint.
The endpoint currently supports only query answering, but our future plans include
support for SPARQL updates.

Use Cases. RDFox is used in various industrial prototype systems, some of which we
describe next.

– Statoil ASA is a Norwegian multinational oil and gas company, and they are cur-
rently using RDFox as part of a large-scale Semantic Web application that facili-
tates the integration and analysis of oil production and geological survey data.

– Électricité de France (EDF) is a French electric utility company, and they are
currently using RDFox to manage and analyse information about their electricity
distribution network.

– Kaiser Permanente is a US health care consortium, and they are currently using
RDFox to analyse patient data records.

3 System Architecture

The architecture of RDFox is summarised in Figure 1. It consists of a C++ module
CppRDFox, a Java module JRDFox, and a Python module PRDFox. CppRDFox im-
plements most of the functionality of RDFox and we discuss its structure in the rest of



RDFox: A Highly-Scalable RDF Store 5

Shell	   SPARQLEndpoint	  API	  

RDFox	   PRDFox	  CppRDFox	  

SequentialHead	  

SequentialTail	  

ConcurrentHead	  

ConcurrentSimple	  

RDFStore	  

Formats	   Importation	  

Equality	  
Manager	   Dictionary	   Data	  

Type	  
*	  Storage	  

TripleTable	  

ThreeKeysIndex	  

TwoKeysIndex	  

TripleList	  

3	  

OneKeyIndex	  

TableIterator	  

TupleIterator	  

Reasoning	  

Datalog	  
Engine	  

RuleIndex	  

DatalogWorker	  

Materialisation	  

Incremental	  
Deletion	  

Incremental	  
Addition	  

ReasoningTask	  

*	  
*	  

Querying	  

Query	  
Decomposer	  

SPARQL	  
Parser	  

Query	  
Compiler	  

Query	  
Iterator	  

Distinct	  
Iterator	  

Union	  
Iterator	  

…	  Join	  
Iterator	  

*	  

Logic	  

Term	  

Fo
rm

ul
a	  

Atom	  

Query	  

Bind	  
Rule	  

*	  

Conj.	  

*	  

*	  

*	  

Filter	  

JRDFox	   OWL2RDFox	  JRDFoxAPI	  

Fig. 1. RDFox Architecture

this section. JRDFox and PRDFox implement the Java and Python APIs, respectively,
for the core functionality of CppRDFox. Moreover, OWL2RDFox uses the OWL API
to load OWL 2 ontologies, extract their OWL 2 RL part, and translate the result into
datalog; we discuss this translation in Section 4.2.

3.1 An Overview of CppRDFox

An RDFStore is the central concept of CppRDFox responsible for the storage, ma-
terialisation, and access of RDF data. There are several RDFStore variants, each
differing in its storage capacity, indexing scheme, support for parallel operation, and
support for owl:sameAs reasoning; some of these variants are shown in Figure 1. Cru-
cially, sequential store variants support only single-threaded access but without any
synchronisation overhead, whereas parallel store variants support multi-threaded ac-
cess and parallel materialisation. An RDFStore relies on the TripleTable from the
Storage package for efficient storage of RDF triples and on the DatalogEngine
from the Reasoning package for efficient datalog reasoning. Following common
practice in RDF stores, RDF resources are encoded as integers to support efficient data
storage and access; the Dictionary component manages this encoding. Finally, the
EqualityManager component records the representatives for equal individuals.

The Logic package models well-known concepts from first-order logic, such as
triple patterns, rules, and queries. The classes in this package provide the basis for the
C++ API as they are used to represent the input to most components of the system. In
this way, applications can interact with RDFox programmatically, and not just by repre-
senting triples and rules textually, which can eliminate a significant source of overhead.

The Formats package provides a pluggable architecture for various input/output
formats supported by RDFox. At present, Turtle 1.1 and RDF datalog are fully sup-



6 Nenov et al.

ported, and support for RDF/XML is being finalised. The Importation package im-
plements parallel importation of files. The Querying package handles the evaluation
of SPARQL queries. The Reasoning package implements materialisation and incre-
mental update algorithms. Finally, the API package provides a C façade over the native
C++ API; the Shell package implements the aforementioned scripting language; and
the SPARQLEndPoint package implements a SPARQL endpoint.

3.2 Components of CppRDFox

We next describe the main components of CppRDFox in more detail.

Dictionary. As is common in practice [4], the Dictionary component of RDFox
encodes each RDF resource using a unique integer ID. These IDs are allocated se-
quentially starting from one and are thus ‘small’, which allows us to use the IDs as
array indexes in various parts of the RDFStore component. A Dictionary uses
various DataType implementations to handle different kinds of RDF literals. Each
DataType instance is responsible for converting a lexical literal representation into a
binary one, which involves literal normalisation. For example, integers 007 and 7 are
both represented as the same binary value 7. While such an approach deviates slightly
from the RDF specification, it allows us to store literals efficiently.

Storage. The RDFStore component stores RDF triples using a TripleTable com-
ponent. Each TripleTable consists of a TripleList that stores the actual triples,
as well as a number of indexes that support efficient iteration over subsets of the triples
stored in the TripleList. A TripleList stores RDF triples as a two-dimensional
array with six columns: the first three columns hold the IDs of the subject, predicate,
and object of a triple, while the latter three columns are used for indexing. In particular,
the triples in the TripleList are organised in three linked lists, each of which is
grouped by subject, predicate, and object, respectively; thus, the last three columns in
the TripleList provide the next pointers in the respective lists. These linked lists
are used to efficiently iterate over triples matching a combination of subject, predicate,
and object. The grouping is fully configurable (at compile time), and it is chosen to
support efficient answering of triple patterns of the form (ts, tp, to), where each of
ts, tp, and to is either a variable or a resource identifier; the iteration is achieved via
the TableIterator component. The ThreeKeysIndex implements a hash table
over all triples in the TripleList, thus allowing for efficient duplicate elimination.
We next discuss how RDFox answers different kinds of triple patterns.

Triple patterns not containing individuals are answered by sequentially scanning
the TripleList and skipping over triples that do not match the pattern; for ex-
ample, (x, y, x) is answered by skipping over triples whose subject and object differ.
Triple patterns containing only individuals (i.e., variable-free patterns) are answered by
a lookup into the ThreeKeysIndex. For triple patterns with one or two variables,
a TripleTable relies on three TwoKeysIndex components, one for each of the
components subject, predicate, and object, each maintaining one of the three triple lists.
Each TwoKeysIndex contains a OneKeyIndex that, given a resource ID, locates
the first triple in the relevant list with the given ID. Triple patterns containing just one
resource ID are thus answered by iterating over the relevant list and possibly skipping



RDFox: A Highly-Scalable RDF Store 7

over triples not matching the pattern. Since IDs are ‘small’, OneKeyIndex is imple-
mented as an array, which supports efficient update and access. Triple patterns contain-
ing two resources are answered in two possible ways, depending on the configuration
of the relevant TwoKeysIndex.

In the simple configuration, the TwoKeysIndex works similarly to when just
one component is specified: it iterates over all triples containing the first component,
and skips over the triples not matching the rest of the pattern. For example, if the
triple pattern is (s, p, z), the TwoKeysIndex maintaining the triple list for s uses
its OneKeyIndex to identify all triples containing s in the subject component, and
skips over all triples not containing p in the predicate component. The benefit of this
indexing scheme is simplicity of updates and low memory use, but the drawback is that
answering certain triple patterns can be inefficient due to skipping.

In the complex configuration, the TwoKeysIndex maintains its relevant triple list
grouped by an additional component, and it uses a hash table to efficiently locate the
relevant sublist. For example, the TwoKeysIndex can keep the triples organised by
first subject and then predicate; then, the triple pattern (s, p, z) is answered by querying
the hash table by (s, p) to find the triples that contain s and p in their subject and
predicate components, respectively, and by iterating over the triples in the list until the
predicate component becomes different form p. Triple patterns of the form (s, y, o) are
answered as in the case of a simple TwoKeysIndex. This indexing scheme offers
more efficient triple retrieval with no skipping, but comes at the expense of using more
memory and more complex updates.

Currently, RDFox supports two kinds of indexing schemes. The simple indexing
scheme employs a simple TwoKeysIndex for each of the three triple lists. In con-
trast, the complex indexing scheme employs a simple TwoKeysIndex for the predi-
cate triple list, a complex TwoKeysIndex for the subject list grouped by predicate,
and a complex TwoKeysIndex for the object list grouped by predicate. Hence, the
complex indexing scheme can answer directly (i.e. without skipping) all triple patterns
except for patterns of the form (s, y, o), which are delegated to the TwoKeysIndex
responsible for the subject triple list.

Alternative data indexing schemes, such as the one used in RDF-3X [19], maintain
sorted indexes, which allows for high degrees of data compression as well as answer-
ing many queries using very efficient merge joins. However, the maintenance of such
indexes can be very costly and difficult to parallelise, and so such indexing schemes
can be inefficient in scenarios where data changes continuously and in parallel, as is the
case of parallel datalog materialisation. In contrast, the data indexing scheme employed
by RDFox supports efficient, low-contention parallel maintenance, and is thus highly
suitable for parallel datalog materialisation (for full details see [15]).

Querying. The querying package is responsible for SPARQL query answering. To eval-
uate a query, one can construct a Query object either programmatically or by parsing a
SPARQL 1.1 query using the SPARQLParser component. The SPARQLCompiler
component converts a Query object into an TupleIterator component that pro-
vides iteration over the answers. The SPARQLCompiler can optionally be configured
to use a QueryDecomposer to produce query evaluation plans based on the extensive
theory of queries of bounded treewidth [5]. Such query plans have proved critical to an-



8 Nenov et al.

swering certain hard queries, but further investigation is required to make them useful in
general. RDFox contains many different TupleIterator variants, each implement-
ing specific SPARQL constructs. For example, TableIterator supports iteration
over SPARQL triple patterns, DistinctIterator implements the “DISTINCT”
construct of SPARQL, UnionIterator implements the “UNION” construct, and
QueryIterator represents entire queries.

Reasoning. The reasoning package implements datalog materialisation and incremental
updates. The DatalogEngine component organises the reasoning process. To sup-
port parallel reasoning, DatalogEngine uses DatalogWorker components, each
of which can execute on one thread one of the reasoning tasks: Materialisation,
IncrementalDeletion, and IncrementalAddition. Note that incremental
reasoning is split into two tasks since incremental deletion has to be performed before
incremental addition and the latter task cannot start before the former task finishes. Each
task can work with or without rewriting of owl:sameAs. The datalog program loaded
into RDFox is stored in a RuleIndex object, which, given a triple, can efficiently
identify the rules for which the specified triple matches a body triple pattern.

Importation. For parallel RDFStore variants, the Importation package can be
used to import multiple files in parallel. Requests are handled by the ImportEngine,
which initialises a configurable number of ImportWorker components, and a collec-
tion of ImportTask components, one for each file to import. Each ImportWorker
then iteratively extracts and executes an ImportTask until all tasks have been pro-
cessed and so all files have been imported.

4 Datalog Reasoning

In this section, we present an overview of the algorithms that RDFox uses to efficiently
compute and update datalog materialisations of RDF data. These algorithms are also
applicable to the less expressive but more widely used OWL 2 RL language. Towards
this goal, we first discuss how datalog can be integrated with RDF, then we discuss
two different ways of supporting OWL 2 RL reasoning using datalog, and finally we
demonstrate the key ideas behind our reasoning algorithms by means of an example.

4.1 RDF Datalog

A term is a variable or an RDF resource. A triple pattern is a triple (ts, tp, to), where
ts, tp, and to are terms. An (RDF) rule r has the form (1)

H ← B1 ∧ · · · ∧Bk, (1)

where H is the head triple pattern, and each Bi, 1 ≤ i ≤ k, is a body triple pattern. A
program is a finite set of rules. A rule r′ is an instance of a rule r if r′ can be obtained
from r by uniformly replacing the variables in r by RDF resources.



RDFox: A Highly-Scalable RDF Store 9

4.2 Common Approaches to OWL 2 RL Reasoning via Datalog

There are two main approaches to OWL 2 RL reasoning in datalog. In the first approach,
the data and the ontology axioms are encoded as triples, and they are interpreted using
the fixed set of rules from the OWL 2 RL specification [13, Section 4.3]. For exam-
ple, consider the data triple (peter, type, Teacher) (stating that peter is a Teacher) and
the ontological triple (Teacher, subClassOf,Person) (stating that the Teacher class is a
subclass of the Person class). Then triple (peter, type,Person) follows from these two
triples, and it can be derived using the following rule from the OWL 2 RL specification:

(x, type, y2)← (x, type, y1) ∧ (y1, subClassOf, y2) (2)

Using a fixed rule set may seem appealing due to its simplicity, but it can be inefficient.
First, the fixed rules must match both data and ontological triples, and so they often con-
tain many joins. Second, the rule set promotes considerable redundancy. For example,
if we add (Person, subClassOf,Mammal), due to the transitivity of subClassOf we de-
rive (Teacher, subClassOf,Mammal); but then, rule (2) derives (peter, type,Mammal)
twice. In practice, such redundant derivations can incur significant overhead.

In the second approach, an OWL 2 RL ontology is translated into datalog rules that
derive the same data triples. Our example ontology thus produces the following rules:

(x, type,Person)← (x, type, Teacher) (3)
(x, type, Teacher)← (x, type,Mammal) (4)

These rules also derive the triples (peter, type, Teacher) and (peter, type,Mammal);
however, each rule contains only one body triple pattern and so it can be evaluated
more efficiently. Furthermore, all data triples are derived only once.

RDFox can handle arbitrary datalog programs and so it can support both approaches
to OWL 2 RL reasoning. For efficiency, we use the second approach in our evaluation.

4.3 Computing Datalog Materialisations

To compute a datalog materialisation, we must exhaustively apply all rules to the dataset
until no new triples can be derived. We demonstrate this using an example datasetE and
datalog program Σ. The dataset E consists of triples (E1)–(E3), which we call explicit
triples, and the datalog program Σ consists of the rules (R1)–(R4), which correspond
to typical OWL 2 RL axioms.

(john, teach,math) (E1)
(john, teach, phys) (E2)
(peter, teach,math) (E3)
(x, type, Teacher)← (x, type,Person) ∧ (x, teach, y) ∧ (y, type,Course) (R1)
(x, type,Person)← (x, type, Teacher) (R2)
(x, type,Person)← (x, teach, y) (R3)
(y, type,Course)← (x, teach, y) (R4)



10 Nenov et al.

Rules (R1) and (R2) capture the OWL 2 RL consequences of axiom

EquivalentClasses(Teacher
ObjectIntersectionOf (Person ObjectSomeValuesFrom(teach Course))

and rules (R3) and (R4) state that classes Person and Course are the domain and the
range, respectively, of property teach. The materialisation I of E w.r.t. program Σ
extends E with triples (I1)–(I6), which we call implicit.

(john, type,Person) (I1)
(math, type,Course) (I2)
(phys, type,Course) (I3)

(peter, type,Person) (I4)
(john, type, Teacher) (I5)
(peter, type, Teacher) (I6)

In particular, applying rule (R3) to either (E1) or (E2) produces (I1); applying rule
(R4) to either (E1) or (E3) produces (I2); applying rule (R4) to (E2) produces (I3); and
applying rule (R3) to (E3) produces (I4). Moreover, applying rule (R1) to (I1), (I2), and
(E1) produces (I5), and applying rule (R1) to (I2), (I4), and (E3) produces (I6). At this
point, applying rules (R1)–(R4) to I derives no new triples, so materialisation finishes.

A naı̈ve materialisation approach is to repeatedly apply the rules to the available
triples as long as any fresh triples are derived. Using such an approach, we would com-
pute the materialisation as follows: we first apply rules (R1)–(R4) to triples (E1)–(E3)
to derive (I1)–(I4); then, we apply (R1)–(R4) again to (E1)–(E3) and (I1)–(I4) to de-
rive (I5)–(I6). This, however, would be very inefficient as in the second application of
the rules we would again derive (I1)–(I4) only to discover that these triples have already
been derived in the first iteration. Such redundant derivations would pose a considerable
source of inefficiency, so such naı̈ve approaches are unsuitable for practical use.

To prevent redundant derivations from the previous paragraph, RDFox uses a novel
materialisation algorithm [15] that captures the idea behind the well-known seminaı̈ve
materialisation approach [1]. The algorithm avoids redundant derivations by consider-
ing only rule instances with at least one freshly derived body triple. Roughly speaking,
each thread in RDFox extracts an unprocessed triple from the current dataset, matches
the triple in all possible ways to triple patterns in a rule body, extends each such match
to a rule instance by querying the already processed triples, and adds the instantiated
rule head to the dataset. Whenever a thread adds a new triple to the dataset, it notifies
all threads that work is available. When there are no more triples to be extracted, the
thread goes to sleep if there are still active threads; otherwise, it notifies all threads (all
of which must be sleeping) that the materialisation has been completed.

This algorithm breaks down the reasoning process into as many subtasks as there
are triples in the materialisation, and these subtasks are dynamically assigned to threads
without any need for scheduling or any form of explicit load balancing. Consequently,
in all but pathological cases, the algorithm distributes the work to threads evenly. This is
in contrast to known approaches that parallelise materialisation by statically assigning
either rules or rule instances to threads and are thus often susceptible to data skew.

We next show using our example how our algorithm avoids repeating derivations.
A thread first extracts (E1) to derive (I1) and (I2); then, it extracts (E2) to derive (I3);
and it extracts (E3) to derive (I4). When the thread extracts (I1), it matches the triple
to the first body triple pattern of (R1), but this fails to produce an instance of (R1):



RDFox: A Highly-Scalable RDF Store 11

although (I2) is available, it has not been processed yet. A thread then extracts (I2) and
matches it to the third body triple pattern of (R1); the rule can now be instantiated using
only processed triples to derive (I5); thus, the rule instance of (R1) that derives (I5) is
considered only once.

4.4 Updating Datalog Materialisations

Instead of recomputing the materialisation from scratch when some of the explicit
triples change, it is often desirable to update the materialisation incrementally—that
is, with as little work as possible. Different such approaches have been considered:
some require collecting information during the initial materialisation, whereas others
require no extra information; please refer to [14] for an overview. We found the latter
approaches more suitable for main-memory systems such as RDFox, where low mem-
ory consumption is critical. Moreover, adding explicit triples is generally easy because
one can just restart the initial materialisation process, so in the rest of this section we
focus on triple deletion.

Assume that we want to delete triple (E1) from our running example. Then, we
must identify all triples that can be derived directly or indirectly using (E1), and then
determine whether these triples have alternative derivations or need to be deleted as
well. The delete/rederive (DRed) algorithm [8] is a well-known algorithm that follows
this approach, and it proceeds as follows. First, in the overdeletion stage, the algorithm
identifies all triples that have (directly or indirectly) been derived from (E1). Concretely,
the algorithm applies rules (R1), (R3), and (R4) to I while matching at least one body
triple pattern to (E1); consequently, triples (I5), (I1), and (I2) are deleted as well. By
applying this process further, all implicit triples except (I3) are deleted. All of these
triples, however, have an alternative derivation from (E2)–(E3); hence, in the rederiva-
tion stage, DRed reintroduces all such triples by applying the rules to the ‘surviving’
explicit triples. As this example demonstrates, the algorithm can potentially delete a
large portion of the materialised dataset just to reintroduce it later, which can be ineffi-
cient. This problem is particularly acute when triples have many alternative derivations,
which is often the case in Semantic Web applications.

DRed propagates the deletion of a triple regardless of whether the triple has alterna-
tive derivations or not. As a remedy, RDFox uses the backward/forward (B/F) algorithm
[14]: before deleting a triple, the algorithm checks using a combination of backward and
forward chaining whether an alternative derivation exists, and it deletes a triple only if
that is not the case. Consider again the deletion of (E1). The B/F algorithm first tries to
identify an alternative derivation by matching (E1) to the head of a rule; as this cannot
be done, the algorithm deletes (E1). It then examines the direct consequences of (E1)
in exactly the same ways as in DRed, and thus identifies (I1), (I2), and (I5) as the direct
consequences of (E1). For each of these triples, B/F next tries to identify an alternative
proof. In particular, the algorithm determines that (I1) is derivable using rule (R3) the
the explicit ‘surviving’ triple (E2), and so it will not delete (I1); this will prevent the
algorithm from further considering the consequences of (I1), which improves the over-
all performance of the algorithm. The checking of alternative proofs is more involved
due to the need to ensure termination of backward chaining in the presence of recursive
rules; please refer to [14] for details.



12 Nenov et al.

4.5 Handling owl:sameAs using Rewriting

The owl:sameAs property states that two resources are equal: if (a, owl:sameAs, b)
holds, then a and b can be used interchangeably. The semantics of owl:sameAs can
be captured using the following rules:

(xi, owl:sameAs, xi)← (x1, x2, x3) for 1 ≤ i ≤ 3 (EQ1)
(x′1, x2, x3)← (x1, x2, x3) ∧ (x1, owl:sameAs, x′1) (EQ2)
(x1, x

′
2, x3)← (x1, x2, x3) ∧ (x2, owl:sameAs, x′2) (EQ3)

(x1, x2, x
′
3)← (x1, x2, x3) ∧ (x′3, owl:sameAs, x3) (EQ4)

Rules (EQ2)–(EQ4) ‘copy’ triples between equal resources, which can adversely impact
memory consumption [11] and reasoning performance [17].

Rewriting is an optimisation widely used by datalog materialisation algorithms to
efficiently handle owl:sameAs reasoning. The idea is to replace all equal individuals by
a common representative. The result of this technique is called an r-materialisation and
it consists of a mapping between resources and their representatives and a dataset over
the representatives. Consider, for example, the dataset E and the program Σeq obtained
by extending Σ with rule (R5) that makes property teach inverse-functional.

(x, owl:sameAs, y)← (x, teach, z) ∧ (y, teach, z) (R5)

By applying (R5) to (E1) and (E3), we determine that john and peter are equal. To
apply rewriting, we choose one of the two resources as the representative of the other;
for example, let us choose john as the representative of peter. The r-materialisation of
E w.r.t. Σeq then contains triples (I1)–(I3) and (I5), which are obtained from (I1)–(I6)
by replacing peter with john.

The parallel r-materialisation algorithm of RDFox [17] extends the algorithm from
Section 4.3. In the extended algorithm, each thread can perform one of three possible
actions. First, a thread can extract and process a triple in the dataset; if the triple is out-
dated (i.e., it contains a resource for which a different representative has been defined),
then the triple is deleted and its updated version is added to the dataset; if the triple is
of the form (s, owl:sameAs, o) with s 6= o, then the thread identifies one resource as the
representative of the other and adds the outdated resource to a special list; and in all
other cases the thread applies rules to the triple as in the original materialisation algo-
rithm. Second, a thread can extract an outdated resource c, delete each triple containing
c and add its updated version to the dataset, and update all rules containing c. Third, a
thread can evaluate a rule that was updated in the previous case.

Updating r-materialisations is nontrivial. First, deleting an equality may actually
require adding triples. Consider again the dataset E, the program Σeq , and their r-
materialisation computed as explained above, and assume again that we delete triple
(E1). After the deletion, john is no longer equal to peter, and so (I4) and (I6) must be
added to the r-materialisation; thus, the r-materialisation after deletion contains (I1)–
(I6). Second, if we delete an equality containing a resource c, we must reevaluate
each triple that contains a resource that c represents. RDFox supports incremental r-
materialisation updates using a novel algorithm that has been shown to be very efficient
for small to medium-sized updates [16].



RDFox: A Highly-Scalable RDF Store 13

LUBM-50K Claros DBpedia
Threads sec speedup sec speedup sec speedup
import 6.8k — 168 — 952 —
1 27.0k 1.0x 10.0k 1.0x 31.2k 1.0x
16 1.7k 15.7x 906.0 11.0x 3.0k 10.4x
32 1.1k 24.0x 583.3 17.1x 1.8k 17.5x
48 920.7 29.3x 450.8 22.2x 2.0k 16.0x
64 721.2 37.4x 374.9 26.7x 1.2k 25.8x
80 523.6 51.5x 384.1 26.0x 1.2k 26.7x
96 442.4 60.9x 364.3 27.4x 825 37.8x
112 400.6 67.3x 331.4 30.2x 1.3k 24.3x
128 387.4 69.6x 225.7 44.3x 697.9 44.7x
256 — — 226.1 44.2x 684.0 45.7x
384 — — 189.1 52.9x 546.2 57.2x
512 — — 153.5 65.1x 431.8 72.3x
640 — — 140.5 71.2x 393.4 79.4x
768 — — 130.4 76.7x 366.2 85.3x
896 — — 127.0 78.8x 364.9 86.6x
1024 — — 124.9 80.1x 358.8 87.0x
size B/trp Triples B/trp Triples B/trp Triples
aft imp 124.1 6.7G 80.5 18.8M 58.4 112.7M
aft mat 101.0 9.2G 36.9 539.2M 39.0 1.5G
import rate 1.0M 112k 120k
mat. rate 6.1M 4.2M 4.0M

Table 1. Summarisation of the conducted tests

5 Evaluation

We tested RDFox on an Oracle SPARC T5-8 server. The system has 8 SPARC V9
processors with 16 physical cores per processor, each supporting 8 threads via hyper-
threading; thus, the system supports 128 physical and 1024 virtual threads in total. The
processors run at 3.6GHz, and each processor has 16KB of instruction cache, 16KB of
data cache, 128KB of L2 cache, and 8MB of L3 cache. The system has 4TB of DDR3
memory and is running Solaris 11.1.

Test Data. We now describe the datasets that we used to evaluate RDFox; all datasets
are available online.4 The Lehigh University Benchmark (LUBM) [7] is a widely used
synthetic benchmark for RDF systems. The LUBM ontology describes the university
domain, and the data is generated by specifying a number of universities, with each
university contributing about 100k triples. We used the LUBM-50K dataset with 50,000
universities, which in compressed form was 37 GB. For the rules, we extracted the
lower bound from the LUBM ontology—that is, we identified the OWL 2 RL part of
the ontology and converted it into an RDF datalog program using the transformation by
[6]; we call the resulting program LUBML. Claros is a cultural database cataloguing
archaeologic artefacts. For the rules, we extracted the lower bound as above, but, to push
the limits of RDFox, we extended the lower bound with some manually generated rules;
we call the resulting datalog program ClarosLE . DBpedia represents structured data
extracted from Wikipedia. As in the case of Claros, we extracted the lower bound and
extended it with several challenging rules; we call the resulting program DBpediaLE .

4 https://krr-nas.cs.ox.ac.uk/2015/ISWC/index.html



14 Nenov et al.

Materialisation Tests. Table 1 summarises the results of our materialisation tests. For
each dataset, we measured the time needed to import the data (shown under ‘import’)
without any materialisation, and the memory usage per triple (‘B/trp’ ) and the num-
ber of triples (‘Triples’) after import (‘aft imp’). The number of threads using dur-
ing import was limited by the number of files storing the data; thus, we used just one
thread for Claros and DBpedia, and 11 threads for LUBM-50K. We then computed the
materialisation of the dataset while varying the number of threads. For each test, we
show the overall time in seconds, as well as the speedup over using just one thread.
For each dataset, we show the memory usage per triple (‘B/trp’) and the number of
triples (‘Triples’) after materialisation (‘aft mat’). Finally, for each dataset we show the
maximum rates in triples/second achieved during import (‘import rate’) and material-
isation (‘mat. rate’); the former is the number of triples before materialisation divided
by the import time, and the latter is the difference in the numbers of triples after and
before materialisation divided by materialisation time. Note that we could use just one
thread while importing Claros and DBPedia, so the import rate is primarily limited by
the speed of our Turtle parser. LUBM does not use owl:sameAs, so for we used the
RDFStore without support for rewriting; in contrast, for Claros and DBpedia we used
the RDFStore with rewriting support. In all cases we used the complex RDFStore
variant, as it provides more efficient query evaluation.

We were unable to complete tests on LUBM-50K with more than 128 threads. As
we discussed in [15], to reduce thread interference, each reasoning thread uses addi-
tional memory that depends on the number of triples; hence, RDFox exhausted the
available memory with more than 128 threads. Optimising memory consumption with
many threads is an important topic for our future work.

Memory Usage. For LUBM-50K, we used a version of RDFStore that uses 8-byte
pointers and can thus store 264 triples. We initialised the store to preallocate sufficient
space for the target number of triples after materialisation. This eliminated the need for
hash table resizing during import and materialisation, but due to a safety margin on the
number of triples, RDFox used 101 bytes/triple, which is more than necessary: without
preallocation, LUBM-50K could store the materialised dataset using 89.7 bytes/triple.

For Claros and DBpedia, we used a version of RDFStore that uses 4-byte pointers
and can thus store 232 triples. Claros was the smallest dataset; however, due to complex
rules, materialisation increases the size of the data by a factor of 28. Due to this increase,
the share of the size of the Dictionary drops from 30% before materialisation to
2%. The resulting dataset contains several large cliques of connected resources, so the
variation in the number of different subject–property and object–property pair is low;
this ensures that indexes are several orders of magnitude smaller than the number of
triples, so the entire dataset can be stored in only 36.9 bytes/triple. DBpedia is larger
than Claros, but its rule set is similar in that it creates cliques of connected individuals.
Hence, in the same way as in Claros, the dataset after materialisation can be stored very
efficiently, using only 39 bytes/triple.

Reasoning Speedup. The target server supports only 128 physical cores, so 128 is
the maximal possible speedup one can expect. As one can see from Table 1, RDFox
achieved between 54% and 68% of the maximum, suggesting that our approach to par-
allelisation of reasoning is very effective. As one can see, parallelisation can be critical



RDFox: A Highly-Scalable RDF Store 15

for dealing with large datasets and/or complex programs; for example, parallelisation
reduces materialisation times on DBpedia from almost 9 hours to just under 6 minutes.

Materialisation in RDFox is a memory-bound task due to random index access, and
so each core is susceptible to stalls due to CPU cache misses. However, as one can see
from Table 1, hyperthreading seems to effectively compensate for this: on both Claros
and DBpedia it roughly doubles the materialisation speed. Please refer to [15] for a
more in-depth discussion about the problems related to CPU cache locality.

Incremental Maintenance. To tests our incremental update algorithms, we extracted
five subsets of 5,000 triples from the LUBM-50K dataset; for each subset, we measured
the time used to update the materialisation after deletion. On average, RDFox could
update the materialisation in 0.49s while removing 8525.8 triples in total; the fastest
update took 0.42s and required deleting 8,451 triples, while the longest one took 0.6s
and required deleting 8,520 triples.

6 Conclusion

In this paper, we have presented RDFox, a main-memory RDF store that supports par-
allel datalog reasoning. We have described the system architecture of RDFox together
with its numerous APIs, its highly-efficient and flexible storage scheme, and its state-
of-the-art datalog reasoning algorithms. Its open-source cross-platform implementation
also allows for easy integration in a wide range of Semantic Web application scenar-
ios. With storage capabilities of up-to 9.2 billion triples, datalog reasoning speeds of
up-to 6.1 million triples per second, and parallel reasoning speedups of up to 87 times,
RDFox opens new possibilities for data intensive applications requiring expressive and
highly-scalable reasoning. With memory consumption as low as 36.9 bytes per triple,
RDFox is also suitable for smaller-scale applications managing up to hundreds of mil-
lions of triples on commodity hardware. RDFox thus provides a unique combination of
versatility, rich functionality, high performance, and scalability.

In our future work, we plan to extend the functionality of RDFox and improve its
performance in a number of ways. Firstly, we plan to add support to all of SPARQL
1.1, and we are already working on an improved query answering algorithm. Secondly,
we plan to add support for named graphs, which are becoming increasingly popular
in Semantic Web applications, as well as support for reasoning with non-monotonic
negation. Finally, we are in the process of building a shared-nothing, distributed version
of the system, which will allow for the efficient storing, querying, and reasoning with
larger datasets using less powerful hardware.

Acknowledgments

We thank Hassan Chafi and Brian Whitney for providing access to the T5 system and
their support on hardware and OS questions. This work was funded by the EPSRC
projects MaSI3, Score!, and DBOnto, and the FP7 project Optique.



16 Nenov et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. AW (1995)
2. Baader, F., Nipkow, T.: Term Rewriting and All That. CUP (1998)
3. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A

family of scalable semantic repositories. Sem. Web 2(1), 33–42 (2011)
4. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying

scheme. In: Proc. VLDB. pp. 1216–1227 (2005)
5. Flum, J., Frick, M., Grohe, M.: Query Evaluation via Tree-Decompositions. Journal of the

ACM 49(6), 716–752 (2002)
6. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining

Logic Programs with Description Logic. In: WWW. pp. 48–57 (2003)
7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. JWS

3(2-3), 158–182 (2005)
8. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining Views Incrementally. In: Proc.

SIGMOD. pp. 157–166 (1993)
9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. of the 10th

Int. Conf. on Principles of Knowledge Representation and Reasoning (KR2006). pp. 57–67
(2006)

10. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A se-
mantic web rule language combining OWL and RuleML. W3C Member Submission (2004)

11. Kolovski, V., Wu, Z., Eadon, G.: Optimizing enterprise-scale OWL 2 RL reasoning in a
relational database system. In: Proc. ISWC. pp. 436–452 (2010)

12. Manola, F., Miller, E., McBride, B.: RDF Primer. W3C Rec. 10, 1–107 (2004)
13. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-

ogy Language Profiles (2nd Edition) (2012), W3C Rec.
14. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog materialisation:

The Backward/Forward algorithm. In: Proc. AAAI. pp. 1560–1568 (2015)
15. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of datalog

programs in centralised, main-memory RDF systems. In: Proc. AAAI. pp. 129–137 (2014)
16. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Combining rewriting and incremental mate-

rialisation maintenance for datalog programs with equality. In: Proc. 2015 (2015), to appear
17. Motik, B., Nenov, Y., Piro, R.E.F., Horrocks, I.: Handling owl:sameAs via rewriting. In:

Proc. AAAI. pp. 231–237 (2015)
18. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra, R.,

Horrocks, I., Ruttenberg, A., Sattler, U., et al.: OWL 2 web ontology language: Structural
specification and functional-style syntax. W3C Rec. 27, 17 (2009)

19. Neumann, T., Weikum, G.: The RDF-3X Engine for Scalable Management of RDF Data.
VLDB Journal 19(1), 91–113 (2010)

20. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 7, pp. 371–443. El-
sevier Science (2001)

21. SPARQL 1.1 Overview. W3C Recommendation (21 March 2013)
22. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Imple-

menting an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle.
In: ICDE. pp. 1239–1248 (2008)


