
Ontology-Based Visual Query Formulation:
An Industry Experience

Ahmet Soylu1,2(B), Evgeny Kharlamov3, Dmitriy Zheleznyakov3,
Ernesto Jimenez-Ruiz3, Martin Giese1, and Ian Horrocks3

1 Department of Informatics, University of Oslo, Oslo, Norway
{ahmets,martingi}@ifi.uio.no, ahmet.soylu@hig.no

2 Faculty of Informatics and Media Technology,
GjøVik University College, GjøVik, Norway

3 Department of Computer Science, University of Oxford, Oxford, UK
{Evgeny.Kharlamov,Dmitriy.Zheleznyakov,

Ernesto.Jimenez-Ruiz,Ian.Horrocks}@cs.ox.ac.uk

Abstract. Querying is an essential instrument for meeting ad hoc infor-
mation needs; however, current approaches for querying semantic data
sources mostly target technologically versed users. Hence, there is a need
for methods that make it possible for users with limited technological
skills to express relatively complex ad hoc information needs in an easy
and intuitive way. Visual methods for query formulation undertake the
challenge of making querying independent of users’ technical skills and
the knowledge of the underlying textual query language and the structure
of data. In this paper, we present an ontology-based visual query system,
OptiqueVQS, and report user experiments in two industrial settings.

Keywords: Visual query formulation · Ontology · Usability · SPARQL

1 Introduction

In the semantic web community, various visualisations and user interfaces have
been developed to aid the understanding of different domains – often repre-
sented by large and complex ontologies – and value creation out of vast data
sources (cf. [1,2]). Amongst these, query interfaces are important as they enable
users to express ad hoc information needs, which could not be addressed by
predefined visualisations or queries embedded into applications. However, cur-
rent approaches for querying semantic data sources mostly target technology-
experienced users, although semantic data consumers come from different
backgrounds, and have varying levels of expertise. Hence, there is a need for
providing semantic data consumers who are not technology-experienced users
with the flexibility to pose relatively complex ad hoc queries in an easy and
intuitive way.

Formal textual languages, keyword search, natural language interfaces, visual
query languages (VQL), and visual query systems (VQS) are known approaches
c© Springer International Publishing Switzerland 2015
G. Bebis et al. (Eds.): ISVC 2015, Part I, LNCS 9474, pp. 842–854, 2015.
DOI: 10.1007/978-3-319-27857-5 75

Ontology-Based Visual Query Formulation: An Industry Experience 843

for querying semantic data sources (cf. [3]). Formal textual languages are inac-
cessible to end users, since they demand a sound technical background. Keyword
search and natural language interfaces remain insufficient for querying structured
data, due to low expressiveness and ambiguities respectively. VQLs are based on
a formal visual syntax and notation, and are comparable to formal textual lan-
guages from an end-user perspective, as users need to understand the semantics
of visual syntax and notation. A VQS [4] differs from a VQL, since it is pri-
marily a system of interactions formed by an arbitrary set of user actions that
effectively capture a set of syntactic rules specifying a (query) language. A VQS
might use a VQL for query representation; however, VQSs built on non-formal
visualisations are expected to offer a good usability-expressiveness balance.

In this respect, VQSs primarily undertake the challenge of making querying
independent of users’ technical skills and the knowledge of the underlying textual
query language and the structure of data. To this end, we have been develop-
ing an ontology-based visual query system, namely OptiqueVQS [3], within a
large industrial project, called Optique1 [5], for end users, i.e., domain experts.
OptiqueVQS distinguishes itself from other query interfaces as it (a) does not
use a formal notation and syntax for query representation, but still conforms to
the underlying formalism; (b) employs a formal approach projecting the underly-
ing ontology into a graph for navigation, which constitutes the backbone of the
query formulation process; (c) possesses a set of important quality attributes
such as adaptivity, modularity, and multi-paradigm design; and (d) has been
evaluated with different sets of end users in different contexts, and found to be
promising.

In this paper, we introduce OptiqueVQS from an end-user perspective,
present its quality attributes, describe the underlying formal approach, and then
present the results of usability experiments with domain experts.

2 OptiqueVQS

OptiqueVQS is meant for end users who have no or very limited technical skills
and knowledge, such as on programming, databases, query languages, and have
low/no tolerance, intention, nor time to use and learn formal textual query
languages. As such, they often use computers in their daily life and work, such as
for web browsing, e-mail, and office and entertainment applications. OptiqueVQS
is a visual query system and it is not our concern to reflect the underlying
formality (i.e., query language and ontology) per se. However, user behaviour
is constrained so as to enforce the generation of valid queries, and ontologies
are formally projected into graphs in order to provide simpler representation
and interaction styles for end users. We are also not interested in providing full
expressivity, as simpler interfaces will suffice for majority of end user queries
[6]. End users make a very little use of advanced functionalities and are likely
to drop their own requirements for the sake of having simpler ways for basic
tasks [4].
1 http://www.optique-project.eu.

http://www.optique-project.eu

844 A. Soylu et al.

Fig. 1. An example query in visual mode is depicted.

2.1 User Interface

The interface of OptiqueVQS is designed as a widget-based user-interface
mashup (UI mashup). Apart from flexibility and extensibility, such a modular
approach provides us with the ability to combine multiple representations, inter-
action, and query formulation paradigms, and distribute functionality appropri-
ately.

In Fig. 1, a query is shown as a tree in the upper widget (W1), repre-
senting typed variables as nodes and object properties as arcs. New typed
variables can be added to the query by using the list in the bottom-
left widget (W2). If a query node is selected, the faceted widget (W3) at
the bottom-right shows controls for refining the corresponding typed vari-
able, e.g. setting a value for a data property or switching to a more spe-
cific concept. Once a restriction is set on a data property or a data prop-
erty is selected for output (i.e., using the eye icon), it is reflected in
the label of the corresponding node in the query graph. The user has to fol-
low the same steps to involve new concepts in the query and can always jump
to a specific part of the query by clicking on the corresponding variable-node
in W1. These three widgets are orchestrated by the system, through harvesting
event notifications generated by each widget as the user interacts. At each step
of the query formulation process W2 and W3 provide automatically generated
ranked suggestions to guide users in constructing the query (see [7]).

The user can delete nodes, save/load queries, access query catalogue, and
undo/redo actions by using the buttons at the bottom part of W1. The user can

Ontology-Based Visual Query Formulation: An Industry Experience 845

Fig. 2. An example query in textual mode and result view are depicted.

also switch to editable textual SPARQL mode by clicking on “SPARQL Query”
button at the bottom-right part of the W1 as depicted in Fig. 2. The availability
of a textual mode synchronised with the visual representation enables collabo-
ration between end users and technology-experienced users. Note that SPARQL
mode is compliant, in terms of expressiveness, to what can be represented in the
visual mode.

Finally, we recently extended OptiqueVQS with two new widgets, which pro-
vide evidence on how a widget-based architecture allows us to hide complex
functionality behind layers and combine different paradigms. The first widget is
tabular result widget (W4 – see Fig. 2). It provides an example result list and
also means for aggregation and sequencing operations. Aggregation and sequenc-
ing operations fit naturally to a tabular view, since it is a related and familiar
metaphor. The user can also view the full result list, inspect the individuals,
and export data. The second widget is a map widget (W5 – see Fig. 3), which
is a domain-specific (i.e., geospatial) component allowing the user to constrain
attributes by selecting an input value from a map. For this purpose, a button
with a pin icon is placed next to every appropriate attribute.

There are limits to the supported expressiveness, e.g. no union, negation
etc., however it is possible to construct rather complex queries with a number of
classes, restrictions, and branches. As far as the design rationale is considered,
OptiqueVQS combines multiple familiar representation and interaction para-
digms into a single view. This way the user can have a constant and global
overview of the query, while working with the list and faceted widgets to manip-
ulate and extend it (i.e., view/overview). OptiqueVQS also provides simple

846 A. Soylu et al.

Fig. 3. An example query with the map widget is depicted.

three-shaped query representation, which is free of any SPARQL or ontology
jargon. A unidirectional tree-shaped query representation is employed to avoid
a graph representation for simplicity. For more details on the design and imple-
mentation of OptiqueVQS, we refer interested readers to our earlier work [3].

2.2 Quality Attributes

Quality attributes are non-functional requirements that affect run-time behav-
iour, design, and user experience. OptiqeVQS possesses the following interrelated
quality attributes, which effectively increase the benefits gained and decrease the
cost of adoption for end users. Usability is the primary quality attribute, and all
other quality attributes directly or indirectly affect the usability. The attributes
are derived from our conceptual review [8] and discussed in another work [9].

(A1) Usability: The design of OptiqueVQS emphasises harmonies between view
and overview, and exploration and construction. It combines multiple rep-
resentation, interaction, and query formulation paradigms to address differ-
ent set of users and tasks. The functionality is distributed among widgets
with respect to their suitability. Users formulate queries iteratively and
could collaborate with different types of users.

(A2) Modularity: OptiqueVQS employs a widget-based mashup approach,
which provides us with the flexibility to add/remove components easily.
This could include alternative/complementary components for query for-
mulation, exploration, visualisation, etc. with respect to context.

Ontology-Based Visual Query Formulation: An Industry Experience 847

(A3) Scalability: OptiqueVQS provides gradual and on-demand access to the
relevant parts of the underlying ontology to cope with large ontologies,
while the employed ranking approach filters down the amount of ontological
knowledge to be presented at each step.

(A4) Adaptivity & adaptability: The modular architecture of OptiqueVQS,
availability of multiple representation, interaction, and query formulation
paradigms, and ranked suggestions enable OptiqueVQS to provide diverse
user experiences by altering presentation, content, and behaviour automat-
ically or manually with respect to context.

(A5) Extensibility: OptiqeVQS provides flexibility against changing require-
ments both from architectural and design perspectives for sustainable evo-
lution. The modular architecture allows new components to be easily intro-
duced and combined, while new functionalities could be added easily with-
out overloading the interface due to the multi-paradigm design.

(A6) Interoperability: The ability of OptiqueVQS to export data in different
formats ensures that it fits into organisational contexts and broader user
experiences, as the extracted data could be utilised by other applications
in the workflow or the digital ecosystem.

(A7) Portability: OptiqueVQS relies on a domain-agnostic backend, which
projects the underlying ontology into a graph for exploration and query
construction. This provides ability to query other domains, rather than
only a specific domain, without high installation and configuration costs.

(A8) Reusability: OptiqueVQS allows users to store, load, and modify queries.
Queries are stored in a query catalogue with descriptive texts to facilitate
their search and retrieval. End users can reuse existing queries or modify
them to formulate more complex queries.

2.3 Navigation Graph

In OptiqueVQS, user queries have a graph-like structure and interaction with
the ontology happens through graph navigation. However, OWL 2 axioms are
not well-suited for a graph-based navigation. Indeed, note that OWL 2 axioms
do not have a natural correspondence to a graph. Therefore, we need a technique
to extract a suitable graph-like structure from a set of OWL 2 axioms.

Intuitively, OptiqueVQS allows users to construct tree-shaped conjunctive
queries where each path is of the form: Person(x), livesIn(x, y),City(y), ... Each
such path essentially ‘connects’ classes like Person and City via properties like
livesIn. At each query construction step OptiqueVQS suggests the user classes
and properties that are semantically relevant to the already constructed partial
query. We determine this relevance by exploiting the input OWL 2 ontology:
we project the input ontology onto a graph structure that is called navigation
graph [10] and use this graph at query construction time. More precisely, for
each class in the partial query OptiqueVQS suggests only those properties and
classes, which are reachable in the navigation graph in one step. Note that OWL
2 ontologies are essentially sets of first-order logic axioms and thus there is no

848 A. Soylu et al.

immediate relationship between them and a graph. This makes projection of
OWL 2 ontologies onto a navigation graph a non-trivial task.

In the remaining part of this section we will formally introduce navigation
graph, define when a query is meaningful with respect to it, and finally we define
the grammar of queries that users can construct with the help of OptiqueVQS.

The nodes of a navigation graph are unary predicates and constants, and
edges are labelled with possible relations between such elements, that is, binary
predicates or a special symbol type. The key property of a navigation graph
is that every X-labelled edge (v, w) is justified by a rule or fact entailed by
O ∪ D which “semantically relates” v to w via X. We distinguish three kinds
of semantic relations: (i) existential, where X is a binary predicate and (each
element of) v must be X-related to (an element of) w in the models of O ∪ D;
(ii) universal, where (each instance of) v is X-related only to (instances of) w
in the models of O ∪ D; and (iii) typing, where X = type, and (the constant) v
is entailed to be an instance of (the unary predicate) w. Formally:

Definition 1. Let O be an OWL 2 ontology and D a knowledge graph. A nav-
igation graph for O and D is a directed labelled multigraph G having as nodes
unary predicates or constants from O and D and s.t. each edge is labelled with
a binary predicate from O or type. Each edge e is justified by a fact or rule αe

s.t. O ∪ C |= αe and αe is of the form given next, where c, d are constants, A,B
unary predicates, and R a binary predicate:

(i) if e is c
R−→ d, then αe is of the form R(c, d) or ∀y.[R(c, y) → y ≈ d];

(ii) if e is c
R−→ A, then αe is a rule of the form �(c) → ∃y.[R(c, y) ∧ A(y)] or

∀y.[R(c, y) → A(y)];
(iii) if e is A

R−→ B, then αe is a rule of the form
∀x.[A(x) → ∃y.[R(x, y) ∧ B(y)]] or ∀x, y.[A(x) ∧ R(x, y) → B(y)];

(iv) if e is A
R−→ c, then αe is a rule of the form ∀x.[A(x) → R(x, c)] or �(c) →

∃y.[R(y, c) ∧ A(y)] or ∀x, y.[A(x) ∧ R(x, y) → y ≈ c];
(v) if e is c

type−−→ A, then αe = A(c).

The first (resp., second) option for each αe in (i)–(iii) encodes the existential
(resp., universal) R-relation between nodes in e; the first and second (resp.,
third) options for each αe in (iv) encode the existential (resp., universal) R-
relation between nodes in e; and (v) encodes typing. A graph may not contain
all justifiable edges, but rather those that are deemed relevant to the given
application.

To realise the idea of ontology and data guided navigation, we require that
interfaces conform to the navigation graph. We assume that all the following
definitions are parametrised with a fixed ontology O and a knowledge graph D.

Definition 2. Let Q be a conjunctive query. The graph of Q is the smallest
multi-labelled directed graph GQ with a node for each term in Q and a directed
edge (x, y) for each atom R(x, y) occurring in Q, where R is different from ≈.
We say that Q is tree-shaped if GQ is a tree. Moreover, a variable node x is

Ontology-Based Visual Query Formulation: An Industry Experience 849

labelled with a unary predicate A if the atom A(x) occurs in Q, and an edge
(t1, t2) is labelled with a binary predicate R if the atom R(t1, t2) occurs in O.

Finally, we are ready to define the notion of conformation.

Definition 3. Let Q be a conjunctive query and G a navigation graph. We say
that Q conforms to G if for each edge (t1, t2) in the graph GQ of Q the following
holds:

– If t1 and t2 are variables, then for each label B of t2 there is a label A of t1

and a label R of (t1, t2) such that A
R−→ B is an edge in G.

– If t1 is a variable and t2 is a constant, then there is a label A of t1 and a label
R of (t1, t2) such that A

R−→ t1 is an edge in G.
– If t1 is a constant and t2 is a variable, then for each label B of t2 there is a

label R of (t1, t2) such that t1
R−→ t2 is an edge in G.

– If t1 and t2 are constants, then a label R of (t1, t2) such that t1
R−→ t2 is an

edge in G.

OptiqueVQS allows constructing conjunctive tree-shaped queries. The gen-
eration is done via reasoning over the navigation graph, which contain edges of
types (iii)–(v) (see Definition 1).

Now we describe the class of queries that can be generated using OptiqueVQS
and show that they conform to the navigation graph underlying the system.
First, observe that the OptiqueVQS queries follow the following grammar:

query:: = A(x)(∧ constr(x))∗(∧ expr(x))∗

expr(x):: = sug(x, y)(∧ constr(x))∗(∧ expr(y))∗

constr(x):: = ∃yR(x, y) | R(x, y) | R(x, c)
sug(x, y):: = Q(x, y) ∧ A(y)

where A is an atomic class, R is an atomic data property, Q is an object property,
and c is a data value. The expression of the form A(∧ B)∗ designates that B-
expressions can appear in the formula 0, 1, and so on, times. An OptiqueVQS
query is constructed using suggestions sug and constraints constr, that are
combined in expressions expr. Such queries are conjunctive and tree-shaped. All
the variables that occur in classes and object properties are output variables and
some variables occurring in data properties can also be output variables.

3 Evaluation

Three user experiments are conducted with different types of users. The first
experiment is reported in our previous work [3] and involved a movie ontology
and 15 casual users, who are bachelor students in different social science dis-
ciplines. The second and third experiments are conducted with our industrial
partners, which are Statoil ASA and Siemens AG. In the Statoil experiment,

850 A. Soylu et al.

Table 1. Information needs used in the experiments (T1-9 Statoil and T10-14 Siemens).

an oil &gas ontology, which in total includes 253 concepts, 208 relationships
(including inverse properties), and 233 attributes, is used. In the Siemens exper-
iment, a diagnostic ontology, which in total includes five concepts, five relation-
ships (excluding inverse properties), and nine attributes, is used. In both cases
neither ontologies nor data sets are public. The tasks used in Statoil and Siemens
experiments are all conjunctive, see Table 1. A total of seven domain experts are
engaged in the experiments, see Table 2 (Likert scale 1 for “not familiar at all”
and 5 for “very familiar”).

The experiments are designed as a think-aloud study and only a 5 min. intro-
duction is given to participants. Each participant performs the experiment in a
single session, while being watched by an observer. Formulating the query, exe-
cuting it, and inspecting the result set equals to one attempt. Participants have
a maximum of three attempts per task. A task is ended, when the participant
acknowledges completion or exhausts his/her three attempts.

Ontology-Based Visual Query Formulation: An Industry Experience 851

Table 2. Participant profiles (P1-3 Statoil and P4-7 Siemens).

In the Statoil experiment, participants overall have 84 percent correct com-
pletion rate and 69 percent first-attempt correct completion rate (i.e., percentage
of correctly formulated queries in the first attempt), while in the Siemens experi-
ment, correct completion rate is 88 percent and first-attempt correct completion
rate is 72 percent (see Fig. 4). In our earlier experiment with casual users, there
is a full correct completion rate and 80 percent first-attempt correct comple-
tion rate. The results are comparatively better, and this could be attributed to
genericness of the ontology. Statoil users have lower scores and often commented
that the ontology does not match to their understanding of the domain. This
is because the ontology used in the Statoil experiment is automatically gener-
ated (i.e., bootstrapped), while the others are manually created. We acknowledge
the situation and believe that the usability of an ontology is as crucial as the
usability of a query formulation tool and is an overlooked issue in the research
community.

Overall, the results indicate high effectiveness and efficiency suggesting that
OptiqueVQS is a viable tool for users without any technical background to con-
struct considerably complex queries. OptiqueVQS also offers a good learnability
as users can solve complex tasks without any training. The participants praised
the capability of OptiqueVQS for formulating complex information needs into
queries. A common statement was that such a solution will not only improve
their current practices, but also augment their value creation potential.

4 Related Work

We distinguish existing visual methods for querying semantic data sources into
two categories. The first category includes approaches that are primarily built on
a VQL, which has a formal visual syntax and notation. The second category of
approaches mainly employs a system of interactions, i.e., VQSs, which generates
queries in target linguistic form.

The notable examples of the fist category are LUPOSDATE [11], RDF-GL
[12], GQL [13], and QueryVOWL [14]. LUPOSDATE and RDF-GL follow RDF
syntax at a very low level through node-link diagrams representing the subject-
predicate-object notation, while GQL and QueryVOWL represent queries at

852 A. Soylu et al.

Fig. 4. The results of Statoil and Siemens experiments.

comparatively higher level, such as with UML-based diagrams. Each of these
languages are managed by a VQS providing means for construction and manip-
ulation of queries in a visual form. Albeit VQL-based approaches with higher
level of abstraction are closer to end users, they still need to posses a higher
level of knowledge and skills to understand the semantics of visual notation and
syntax and to use it.

The prominent examples of the second category are gFacet [15], SparqlFilter-
Flow [16], Konduit VQB [17], and Rhizomer [18]. gFacet and SparqlFilterFlow
employ a diagram-based approach; however, diagrams representing the queries
are rather informal. Konduit VQB and Rhizomer employ a form-based para-
digm. Diagram-based approaches are good in providing a global overview; how-
ever, they remain insufficient for view (i.e., zooming into a specific concept for
filtering and projection). This is because the visual space as a whole is mostly
occupied for query overview. Form-based approaches provide a good view; how-
ever, they provide a poor overview, since the visual space as a whole is mostly
occupied with the properties of the focus concept. Approaches combining mul-
tiple representation and interaction paradigms are known to be better as they
could combine view and overview. Finally, gFacet and Rhizomer are originally
meant for data browsing, that is they operate on data level rather than schema
level and every user interaction generates and sends SPARQL queries in the
background. Yet they are highly data-intensive, which is often impractical for
large data sources.

Ontology-Based Visual Query Formulation: An Industry Experience 853

5 Conclusion

OptiqueVQS enables end users to easily formulate comparatively complex
queries at a conceptual level. It employs a formal ontology to graph projection
method to support query formulation and ontology navigation, while the user
interface remains rather informal and possesses important quality attributes.

OptiqueVQS is intentionally limited in expressiveness to achieve a usability -
expressiveness balance, for instance unions, cardinality restrictions, intersection,
and individuals are not supported. However the future work includes implemen-
tation of more features without compromising the usability, such as optionals
and inequality relationships for data properties.

Acknowledgements. This research is funded by “Optique” (EC FP7 318338), as well
as the EPSRC projects Score!, DBOnto, and MaSI3.

References

1. Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Seman.
Web 2(2), 89–124 (2011)

2. Katifori, A., et al.: Ontology visualization methods - a survey. ACM Comput.
Surv. 39(4), 1–43 (2007)

3. Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Univ. Access Inf. Soc. (in press) 1–24 (2014)

4. Catarci, T., et al.: Visual query systems for databases: a survey. J. Vis. Lang.
Comput. 8(2), 215–260 (1997)

5. Giese, M., et al.: Optique: zooming in on big data. IEEE Comput. Mag. 48(3),
60–67 (2015)

6. Leone, S., et al.: Exploiting tag clouds for database browsing and querying. In:
CAiSE 2010 (2011)

7. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Hor-
rocks, I.: Towards exploiting query history for adaptive ontology-based visual
query formulation. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.)
MTSR 2014. CCIS, vol. 478, pp. 107–119. Springer, Heidelberg (2014)

8. Soylu, A., et al.: Ontology-based end-user visual query formulation: why, what,
who, how, and which? Universal Access in the Information Society (submitted)

9. Soylu, A., Martin, G.: Qualifying ontology-based visual query formulation. In:
FQAS 2015 (2015)

10. Arenas, M., et al.: Faceted search over ontology-enhanced RDF data. In: CIKM
2014 (2014)

11. Ambrus, O., et al.: Visual query system for analyzing social semantic web. In:
WWW 2011 (2011)

12. Hogenboom, F., et al.: RDF-GL: A SPARQL-based graphical query language for
RDF. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, A.-E. (eds.) Emergent
Web Intelligence, pp. 87–116. Springer London (2010)

13. Barzdins, G., et al.: Graphical query language as SPARQL frontend. In: ADBIS
2009 (2009)

14. Haag, F., et al.: Visual querying of linked data with QueryVOWL. In: SumPre
2015 and HSWI 2014–2015 (2015)

854 A. Soylu et al.

15. Heim, P., Ziegler, J.: Faceted visual exploration of semantic data. In: HCIV 2009
(2011)

16. Haag, F., et al.: Visual SPARQL querying based on extended filter/flow graphs.
In: AVI 2014 (2014)

17. Ambrus, O., et al.: Konduit VQB: a visual query builder for SPARQL on the
social semantic desktop. In: VISSW 2010 (2010)

18. Brunetti, J.M., et al.: From overview to facets and pivoting for interactive explo-
ration of semantic web data. Int. J. Seman. Web Inf. Syst. 9(1), 1–20 (2013)

	Ontology-Based Visual Query Formulation: An Industry Experience
	1 Introduction
	2 OptiqueVQS
	2.1 User Interface
	2.2 Quality Attributes
	2.3 Navigation Graph

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

