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Abstract—Analytical workflows are heavily used in large and
data intensive companies. An important application of such
workflows in Siemens is equipment analytics when equipment
KPIs and reports are computed by aggregating equipment’s
operational, master, and analytical data. In Siemens this
data satisfies big data dimensions and this dependence poses
significant challenges in authoring, reuse, and maintenance of
analytical workflows by engineers and data scientists. In this
work we propose to address these problems by relying on
semantic technologies: we use ontologies to give a high level
representation of equipment’s operational and master data and
offer a high level language to express KPIs over ontologies. We
implemented our approach, integrated it with KNIME, and
evaluated at Siemens. This is a preliminary work and we are
excited about its further extensions.

Motivation. An analytical workflow typically consists of the
following steps: (1) data access when users obtain permis-
sions to enterprise data on different levels, (2) data analysis
and discovery, when users extract and analyse data by inter-
acting with the existing templates for dashboards and extract
relevant knowledge from data, (3) collaboration and sharing
when users find extra insights from the data and knowledge
when shared with colleagues. Modern Business Intelligence
systems and analytical platforms allow to combine these
steps in analytical workflows and to iterate over them.

Step 2 in such workflows is where self-service is crucial.
Indeed, an analytical platform should be easy to use so
that business users from all skill levels can easily re-
use a dashboard or modify and add components. In data
intensive companies such as Siemens such self-service is
often hampered by the fact that re-use and modification of
dashboards and their components require deep knowledge
of schemata and formats of underlying data. Due to the big
data dimensions, such knowledge is only affordable to IT
specialists, as illustrated by the following example.

Siemens Example. Siemens diagnostic engineers work at
service centres and monitor complex industrial equipment
such as power generating turbines. To this end they rely
on analytical workflows that compute key performance

indicators (KPIs) and reports by aggregating equipment’s
operational, master, and analytical data that together satisfy
several important big data dimensions: variety, velocity,
and volume. Indeed, operational data comes from sensors
installed in turbines, a typical Siemens gas turbine has about
2,000 sensors that record and report temperature, pressure,
vibration, etc in raw and aggregated form, and even in
one turbine sensors of the same kind report data in at
least a dozen of different formats. Master data is stored in
several hundreds relational and XML databases, it describes
equipment specification and other knowledge about the
equipment manufacturing, configurations, deployment and
use, it also contains history of weather forecasts, and even
information about databases that store sensor data. Finally,
analytical data are results of monitoring tasks conducted
by Siemdens service centres for the last five years. All in
all the data available for a diagnostic engineer is stored
in several thousand databases and files with hundreds of
different schemata and it is in the order of hundreds of
terabytes: only operational and master data of each turbine
is at least 15 GB, and for a fleet of turbines the data grows
in average 30 GB per day. Thus, a dashboard where the
engineer checks for a relatively simple task whether the
purging1 of a turbine is over has to rely on about 300
queries over at least seventy turbine operational and master
databases, where most of these queries differ only in the
format of the input data, while they compute essentially
the same functions / outputs. In other words the queries
differ in how they compute the same type of answers. Thus,
modifying the purging dashboard would require the engineer
to update these 300 ‘how-queries’ which is time consuming,
error prone, and require a relatively strong IT background:
one should be able to understand the variety of database
schemata behind the 300 queries. Finally, keeping such
dashboard up-to-date requires to add new ‘how-queries’ and
update them in order to be up-to-date with the changes in

1Purging is the process of flushing out liquid fuel nozzles or other parts
which may contain undesirable residues.
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Figure 1. Integration with KNIME

the schemata of the underlying DBs.

Semantic Approach: General Idea. In order to address
this aforementioned challenge at Siemens and to enable the
self-service for a large community of Siemens engineers,
we propose to add on top of Siemens databases an ab-
straction layer that consists of ontologies [7], [16].2 Then,
Siemens engineers will be shielded from the variety of data
formats and instead of modifying the 300 ‘how-queries’ over
Siemens databases, they will have to modify 1 ‘what-query’
over the abstraction layer, that is, the query that essentially
states what has to be extracted from turbine data. The
ontology in this case will provide ‘a single point of semantic
data access’ for the engineers, and allow to pose queries
over the integrated data sources in terms of a user-oriented
conceptual model that abstracts away both the variety of
database schemata and the complexity of implementation-
level details typically encountered in database schemata. In
order to relate the abstraction and the data layer, the ontology
should be connected to the data via a set of ETL-style map-
pings: declarative specifications that relate ontological terms
with queries over the underlying data. Then, a system that
implements query processing over the integrated abstrac-
tion and data layer will automatically translate ontological

2An ontology us a semantically rich conceptual model of the problem
domain that captures the domain in terms of classes and properties that
relate entities that populate classes and assign data values to entities. A
number of standardised machine processable ontology languages have been
proposed and standardised, e.g., RDF, OWL 2. Ontologies were successfully
used in many applications [7], including smart (Web) search [2], [12], [1]
and query formulation [30], [29], [28], [32], [4], [27], medicine [21], e-
commerce [3], media, data integration [25], [9], knowledge modelling [20],
[13], [14], [31], and industry [17], [8], [15], [11], [10].

•  Service = SpeedSensor > RangeMaxValue  
&& (MainFlameSensor >= RangeMaxValue if Type = GasTurbine)  
&& PowerSensor > RangeMaxValue  
(PressureSensor > RangeMaxValue if Type = TurboCompressor) 
Otherwise Outage 

Figure 2. A semantic query and an analytical function over an ontology

queries, e.g., expressed in the SPARQL query language 3,
into database queries, i.e., expressed in SQL, and delegate
execution of SQL queries to the database systems hosting the
data. We refer the reader for further details of such semantic
approach to the literature on Ontology-Based Data Access
(OBDA) [26].

Implementation of Semantic Approach for Siemens. We
implemented the semantic approach and deployed our sys-
tem at Siemens for evaluation and testing. For this purpose
we extended KNIME 4 data analytics system to streamline
query answers into analytics, and a configurable plug-in for
R analytics 5. In Figure 1 we give an example of three
KNIME analytical workflows extended with our semantic
layer. The first workflow computes a turbine KPI, the second
compares joint bearings of two compressors, while the third
performs failure analyses for burner tips of a turbine. Ob-
serve that the engineer has to define nodes in the analytical
workflows only in the semantic and analytical layers (the
yellow and pink vertical stripe in the screenshot), and the
connection to the data layer is then done automatically (the
blue stripe).

Example Semantic Analytical Task. To further illustrate
our approach, observe in Figure 2 an example SPARQL
query over the Siemens turbine ontology. The data is pro-
duced by this query are then used to compute KPIs and to
check for outage in the turbines. Observe that the node of

3https://www.w3.org/TR/rdf-sparql-query/
4KNIME, the Konstanz Information Miner, is an open source data

analytics, reporting and integration platform. KNIME integrates various
components for machine learning and data mining through its modular
data pipelining concept. A graphical user interface allows assembly of
nodes for data preprocessing (ETL: Extraction, Transformation, Loading),
for modeling and data analysis and visualization.

5https://www.r-project.org/
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the workflow diagram that corresponds to KPI computation
is defined using KNIME rules that rely on the our extension
of the standard KNIME syntax and they are formulated
against the ontological concepts. We developed the syntax
and semantics of these rules in order to support Siemens
turbine diagnostic and KPI computation tasks [23], [22],
[24], [19], [18]. These rules say that a turbine is deemed
to be in service at any time if either it is a gas turbine
or a turbo compressor that satisfies extra conditions. In
the former case these conditions say that the sensor signal
of the rotor speed sensor should have readings above its
characteristic operational speed value, the main flame sensor
reading should show that the flame is on, and the turbine
should generate power, i.e., Power Sensor should be above
the value characteristic for that turbine while generating
power. In the latter case the conditions are that the generated
pressure should be at or above the nominal pressure specified
for the machine.

Observe that due to ontologies each occurrence of
“RangeMaxValue” in the KNIME rules is a different type of
value read from the static configuration data of the machine
and this can be encoded using property hierarchy. Indeed,
for the latter case one can achieve it by stating that “Run-
ningSpeedConfigValue” is a sub-property or “RangeMax-
Value” and in the latter case that “MainFlameOnSignal” is a
sub-property of “RangeMaxValue”. Moreover, an advantage
of such semantically-backed KNIME diagrams is that one
can talk about specific values in turbines and even compres-
sors of different types at an abstract level, without giving
details of such appliances. Finally, observe that KNIME has
a sophisticated reporting functionality which we exploit in
our system: the last node in the work-flow diagram, called
Data to Report, summarises the KPI for all turbines across
a specific fleet and builds a ready-to-use report for them.

Conclusions and Future Work. Analytical workflows are
heavily used in large and data intensive companies. In
Siemens this kind of analytics is heavily data dependent and
this dependence poses significant challenges in authoring,
reuse, and maintenance of analytical workflows by engineers
and data scientists due to the big data dimensions. In this
work we propose to address these problems by relying on
semantic technologies: we use ontologies to give a high
level representation of equipment’s operational and master
data and offer a high level language to express KPIs over
ontologies. We implemented our approach and integrated
it with KNIME. We are currently evaluating our work at
Siemens and plan to develop rule learning techniques [5],
[6]. This is a preliminary work and we are excited about
further steps and would like to share it with the IEEE Big
Data community.
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[9] Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Dmitriy
Zheleznyakov, Ian Horrocks, Christoph Pinkel, Martin G.
Skjæveland, Evgenij Thorstensen, and José Mora. BootOX:
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