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Abstract. Statistical learning of relations between entities is a popular approach
to address the problem of missing data in Knowledge Graphs. In this work we
study how relational learning can be enhanced with background of a special kind:
event logs, that are sequences of entities that may occur in the graph. Events nat-
urally appear in many important applications as background. We propose various
embedding models that combine entities of a Knowledge Graph and event logs.
Our evaluation shows that our approach outperforms state-of-the-art baselines
on real-world manufacturing and road traffic Knowledge Graphs, as well as in a
controlled scenario that mimics manufacturing processes.

1 Introduction
Knowledge Graphs (KGs) nowadays power many important applications including Web
search1, question answering [3], machine learning [19], data integration [10], entity
disambiguation and linking [5, 8]. A KG is typically defined as a collection of triples
〈entity , predicate, entity〉 that form a directed graph where nodes are entities and
edges are labeled with binary predicates (relations). Examples of large-scale KGs range
from general-purpose such as Yago [24] and DBPedia [12] to domain specific ones such
as Siemens [10] and Statoil [9] corporate KGs.

Large-scale KGs are often automatically constructed and highly incomplete [6] in
the sense that they are missing certain triples. Due to their size and the speed of growth,
manual completion of such KGs is infeasible. In order to address this issue, a number
of relational learning approaches for automatic KG completion have been recently pro-
posed, see [6, 16] for an overview. Many of these approaches are based on learning rep-
resentations, or embeddings, of entities and relations [4, 17, 22]. It was shown that the
quality of embeddings can be significantly improved if the embedding’s vector space is
enriched with additional information from an external source, such as a corpora of natu-
ral language text [27] or structural knowledge such as rules [25] or type constraints [11].

An important type of external knowledge that is common in practice and to the best
of our knowledge has not been explicitly considered so far is event log data. Events
naturally appear in many applications including social networks, smart cities, and man-
ufacturing. In social networks the nodes of a KG can be people and locations, and edges
can be friendship relations and places of birth [30], while an event log for a person can
be a sequence of (possibly repetitive) places that the person has visited. In smart cities
a KG can model traffic [21] by representing cameras, traffic lights, and road topology,
while an event log for one day can be a sequence of traffic signals where jams or acci-
dents have occurred. In smart manufacturing an event log can be a sequence of possible

1 https://en.wikipedia.org/wiki/Knowledge_Graph
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Fig. 1: Excerpt of a manufacturing KG and an event log.

states, e.g., overheating or low power of machines such as conveyors, and these logs
can be emitted during a manufacturing process.

In this work we define an event log for a KG as a set of sequences constituted of
entities (possibly with repetitions) that may occur in the KG as nodes. Moreover, we
assume that not every entity from a KG, but only what we call event entities can occur
in logs. In the above: visited cities, traffic signals, and alarms are event entities. As we
see later in the paper this separation of entities in a KG into event and non-event is
important and practically motivated. We now illustrate an industrial KG and event log.

Example 1. Consider an industrial KG that is inspired by a Siemens automated fac-
tory, that we will use later on for experiments, and that contains information about
factory equipment, products, as well as materials and processes to produce the prod-
ucts. The KG was semi-automatically generated by parsing heterogeneous spreadsheets
and other semi-structured data repositories and it is incomplete. In Figure 1 we de-
pict a small excerpt from this KG where solid lines denote relations that are in the
KG while dashed – the missing relations. The KG contains the topology of the con-
veyors A, B, and C and says that two of them (A and B) are connected to each other:
〈ConveyorA, connectedTo,ConveyorB〉. The KG also stores operator control spec-
ifications, in particular, event entities that the equipment can emit during operation.
For example, CoilJam, is an event entity and it can be emitted by conveyor C, i.e.,
〈CoilJam, hasSource, ConveyorC〉. Event entities have further semantics described
by the typing, e.g. CoilJam is of type JamAlarm, severity levels, and possible emit-
ting source locations. At the same time, the KG misses the facts that the conveyors
A and C are connected in the factory; that BoardJam is of type JamAlarm, and
HighEnergy (HE) has the source ConveyorA and is of type EnergyEvent.

Additionally, in the example, we assume that an event log recorded during the op-
eration of the factory consists of three following sequences over event entities:

(HE,LE,LE,BoardJam), (HE,LE,LE,CoilJam), (LE,HE,LE,HE).

Observe that the event log suggests that a jam typically occurs after a sequence of two
consecutive low energy consumption (LE) events. ut

An event log gives external knowledge to the KG by specifying frequent sequential
patterns on the KG’s entities. These patterns capture some processes that the nodes
of a KG can be involved in, i.e., manufacturing with machines described by the KG,
traveling by a person mentioned in the KG, or traffic around traffic signals. This type of
external knowledge has conceptual differences from text corpora where KG entities are
typically described in a natural language and where occurrences of KG entities do not
necessarily correspond to any process. Events are also different from rules or constraints
that introduce formal restrictions on some relations.

The goal of this work is to understand how event logs can enhance relational learn-
ing for KGs. We address this problem by proposing an Event-enhanced Knowledge



Learning (EKL) approach for KG completion that intuitively has two sub–steps:

1. Event alignment, where event entities are aligned in a low-dimensional vector space
that reflects sequential similarity, and

2. KG completion, where the KG is extended with missing edges that can be either
event-specific, e.g., such as the type edge between BoardJam and JamAlarm in
Example 1, or not event-specific, e.g., such as connectedTo between ConveyorA
and ConveyorC in Example 1.

Observe, the event logs directly influence the first step while also indirectly the second
step of EKL. Hence, we expect a collective learning effect in a sense that the overall
KG completion can benefit from event alignment, and vice versa.

Example 2. During the first step EKL will align BoardJam and CoilJam to be simi-
lar. In the second step EKL will accordingly adjust entitiesConveyorC andConveyorB
and then predict that ConveyorA is likely to also be connected to ConveyorC. In-
tuitively the missing link between the conveyors can be inferred from the sequential
pattern in the event log: the log tells us that both BoardJam and CoilJam occur as
a consequence of two consecutive LE events and therefore exhibit similar semantics.
This similarity is carried to conveyor entities B and C, which leads to an increased like-
lihood that they both follow the same entity ConveyorA. ut

Note that the prediction of event-specific missing links is not the standard task for
relational learning since we are predicting links within the background. Moreover, our
approach can address the zero-shot scenario, where some event entities only appear in
the event log, but they are novel to the KG (it is marked with red in Figure 1). E.g., HE
in Example 1 corresponds to an entity that is missing in the KG, that has to be aligned
during the first step of EKL and then linked to ConveyorA as well as to its type during
the second step of EKL. Thus, EKL can also populate a KG with new (unseen) entities.

The contributions of our work are as follows:

– Several EKL approaches to KG completion that comprise
• two model architectures that allow to combine (representations of) a KG and

an event log for simultaneous training of both representations;
• three models for event logs that reflect different notions of event context.

– An extensive evaluation of our approach and comparison to a state-of-the-art base-
line on real-world data from a factory, on smart city traffic data, and controlled
experiment data. Our results show that we significantly outperform two state-of-
the-art baselines and the advantages are most visible for predicting links between
entities that reflect the sequential process nature within the KG.

Finally, note that we presented a very preliminary version of this work as a short
in-use paper [20]. Here we are significantly different from [20] and extend it, since [20]
does not describe our EKL models and it only focusses on several simple KG extension
scenarios that we do not study here.

2 Existing Methods for KG Completion
We now review the problem of KG completion and the existing methods to address it,
following the standard problem definition, c.f. [4, 26, 22]. Let E be a finite set of (all



possible) entities and R a finite set of relations. A KG K is a set of triples 〈h, r, t〉,
where h, t ∈ E and r ∈ R. Given a KG K and a triple 〈h, r, 〉 (resp. 〈 , r, t〉) where
‘ ’ denotes a missing entity, the KG completion problem is to predict the missing t
(resp. h) by computing for each e∈E a score f(〈h,r,e〉) (resp. f(〈e,r,t〉)) that reflects
the likelihood of the triple 〈h,r,e〉 (resp. 〈e,r,t〉) being in the KG.

Statistical Relational Learning for KG Completion. Statistical relational learning
has gained a lot of attention by the research community, including translation-based
models [4, 26], latent tensor factorization [18], neural tensor networks [23] and others
(see e.g., [16] for an overview). In this work we focus on translation-based models.
They address the KG completion problem by reducing it to a representation learning
task where the main goal is to represent entities h, t and relations r occurring in K in a
low-dimensional, say d-dimensional, vector space h, t, r ∈ Rd, which define the model
parameter matrices WE ∈ R|E|×d and WR ∈ R|R|×d respectively. These parameters
are typically referred to as latent representations or simply embeddings.

Such KG representations have been shown to be effectively learned by using a rank-
ing loss with the objective that true triples should be ranked before false/unknown ones
according to the scoring function. This learning objective is formulated as minimizing
a margin-based ranking loss:

LK=
∑

(h,r,t)∈K

∑
(h′,r,t′)∈N

max(0, γ+f(h, r, t)−f(h′, r, t′)), (1)

where f(·) is some scoring function that operates on the entity and relation embeddings
h, r, t and h′, r, t′ from N , which is a set of negative examples, i.e. presumably false
triples not contained in K. This loss is minimized when the true triples outscore the
false ones by a constant margin γ. In practice the training is done using mini-batches of
K, instead of iterating over all triples, together with stochastic-gradient descent (SGD),
since this introduces more variance in the embedding parameter updates and can prevent
early convergence in local optima.

For example, in the TransE model [4], givenK such f relies on distance or similarity
between vectors. Intuitively, TransE follows the intuition that there is a linear relation
for triples h + r ≈ t, hence the scoring function is defined as a dissimilarity measure
(e.g. `2-norm) f(h, r, t) = ‖h + r − t‖22. This means that translating entity h with
relation r should end up close to its tail entity t in the latent d-dimensional space. In
order to prevent overfitting, the magnitudes of parameters in TransE are normalized
after each mini-batch to unit-norm vectors, i.e. ∀e ∈ E : ‖e‖ = 1.

Enhancing KG Learning with Background Knowledge. It was shown that tradi-
tional representation learning can be improved using background knowledge. Most
prominently, external text corpora can be used as background [27, 28, 31, 29]. The main
approaches follow the idea of computing two separate representations of entities: a text-
based and a KG-based one. There are two proposals to combine both representations:

1. include a linear combination layer to directly modify h, r, and t in LK of Eq 1, or
2. add a dedicated learning objective for text-based representations to LK.

The TEKE model [27] follows the first proposal, by incorporating textual context
of entities into a KG by exploiting a co-occurrence network of entities and words in the
text thus defining a combination between pre-trained language model word embeddings



and KG entities. It includes n(h) as the weight-averaged neighborhood word vector
representation of an entity h and then applies a linear combination ĥ = An(h) + h to
make up the final entity representation used in triple scoring. Furthermore, TEKE uses
a weighted average of the merged neighborhood word embeddings for pairs of entities
h, t in the text as n(h, t) to transform the relation embeddings r̂ = Bn(h, t) + r.

The DKRL [29] follows the second proposal and adds three Li
K to the objective for

text-based representations, where L1
K uses a translation objective within text-based rep-

resentations, L2
K is a mixed translation from text-based to KG-based and L3

K from KG-
based to text-based. Intuitively, DKRL considers correlation between entities within
K, between K and the text and within the text. The text embeddings are learned using
a continuous bag of words or a deep convolutional neural network. The KG and the
text-based representations are then jointly optimized.

SSP [28] and [31] also follow the second proposal and exploit the semantic informa-
tion about KG’s entities given in the form of textual entity descriptions. The SSP method
strengthens the effect of text descriptions by performing the embedding process in the
semantic subspace and a topic model for entity text descriptions. They combine the ob-
jective of KG embeddings LK and of text embeddings LS using the joint formulation:

Ljoint = LK + αLS , (2)

where, α is a hyper-parameter used as a weighting factor. The main advantage of this
approach is that the simultaneous training of both objective functions within an aggre-
gated objective allows both models to influence each other.

3 Event-Enhanced KG Completion
In this section we present our approach to KG completion enhanced with event logs:
we start with the problem definition, proceed to limitations of existing approaches to
address the problem, propose our adaptation of the joint model formulation to the event-
based setting based on LK and LS , and define several ways to combine LK and LS .

3.1 Problem Definition
Let X ⊆E be a set of event entities. An event log s is a finite sequence (e1 , . . ., em) of
entities fromX and a sequence dataset S a set {s1 , . . ., sn} of event logs. E.g., an event
log (LE ,HE ,BoardJam,ShutdownA) is generated by machines during operation.

The event-enhanced KG completion problem is, given a KG K, a sequence dataset
S, and a triple 〈h, r, 〉 (resp. 〈 , r, t〉), to predict the missing t (resp. h) by exploiting
both K and S for the computation of a score f(〈h, r, e〉) (resp. f(〈e, r, t〉)) for each
e ∈ E . We consider three variations of the event-enhanced completion problem with
respect to the entities h, t in the given/predicted triple: the first setting corresponds to
the standard KG completion problem, while the other two are specific for our scenario.

1. non-event entities: neither given nor predicted entities of 〈h, r, 〉 (resp. 〈 , r, t〉) are
from X , as in 〈ConveyorA, connectedTo,ConveyorB〉 from Example 1,

2. event entities known by KG: each given or predicted event entity of 〈h, r, 〉 (resp.
〈 , r, t〉) is in K, as in 〈BoardJam, type, JamAlarm〉 from Example 1,

3. event entities unknown by KG: either given or predicted event entity of 〈h, r, 〉
(resp. 〈 , r, t〉), does not appear in K, as for HE from Example 1. This corresponds
to the problem of zero-shot learning.



3.2 Limitation of Existing Methods
We now discuss why the existing background-enhanced learning approaches are insuf-
ficient or cannot be naturally applied at all to our setting. Approaches of the first kind
such as TEKE rely on the assumption that all entities of the KG should also appear in
the background. This assumption is critical to TEKE’s enhancement of Bn(h, t), which
is undefined if either h or t have no text representation. In our setting only the event en-
tities occur in the background and in applications such as manufacturing only a small
fragment of KG entities are actually event entities. Moreover, TEKE relies only on mere
co-occurrences of words and KG entities in the text corpora and ignores the sequential
correlation among entity occurrences. Approaches of the second kind including DKRL
and SSP require that a dedicated piece of background, that is, a text corpus, is attached
to each individual entity of the KG, while in our setting all event entities share a single
event log, i.e. the same background is attached to every event entity. Although the con-
volutional version of DKRL is able to respect sequential correlation between the words
in the entity description, it can not be directly applied to sequences of event entities,
since this requires a different embedding objective. Instead of using the final output of
the last convolutional layer as representation of the entity, we need to learn representa-
tions of the actual tokens in the sequence. The same limitations hold for the topic model
of SSP, which also requires a dedicated background for each entity in the KG.

3.3 Adaptation of Joint Model Formulation
Observe that in our setting the KG embedding objective function is dominated by non-
event entities, i.e., pre-trained event embeddings would be continuously marginalized
during training. Thus, we see the joint training objective in Eq. 2 for SSP where there
is an explicit definition of the background for learning as the most natural approach for
our context and adapt to the idea of simultaneous training of both objective functions.

At the same time, adaptation of Eq. 2 to our setting is a non-trivial task that requires
to carefully design three ingredients: (i) an embedding model LK (ii) an embedding
model LS (iii) a way to connect the two models for simultaneous training. In our work
we do not develop a newLK and exploit TransE asLK. The reason is that for our setting
it is a good compromise between computational efficiency and quality of prediction.

In the remaining part of the section we start with our novel proposal on how to
combine the embeddings of LK and LS , and then present our new models for event
embeddings LS that we refer to as event-enhanced knowledge learning (EKL).

3.4 Combining LK and LS

We now propose two architectures to combine LK and LS . The first, shared, is specific
for our setting and different from what was used for text enhanced learning, while the
second, combined, is inspired by TEKE.

Shared Architecture. In contrast to text-enhanced KG embeddings, in our setting both
the KG and the background contain exclusively entities from E . Hence, we can directly
employ an architecture that uses a single shared entity representation for both LK and
LS . In such a shared architecture one can define an identity connection between event
entity embeddings e and h, t, the entity embeddings in the KG, i.e. the event embedding
matrix WX is the |X |-by-d submatrix of WE . During training, the gradients of both
objective functions are averaged and therefore simultaneously updated.
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Fig. 2: Architectures: (a) Shared entity embeddings (b) combination of separated entity
embeddings.

Fig. 2a illustrates this approach on a simplistic example. Starting at the bottom,
given an event sequence and a KG we simultaneously proceed with both objectives LK
and LS as follows: The event entities of the event sequence are directed to the event
embedding model using a shared entity representation. In the example the input event
Event1 uses the vector representation e1. In parallel, head and tail entities h, t of the
input triples from the KG on the right-hand side are also taken from the shared entity
embedding matrix resulting in h and t respectively. The shared aspect is further indi-
cated with the dashed representations stating that h = e1. Note that the representation
of the relation r in the input triple is not affected, since relation embeddings are used
exclusively in the KG embedding model in f(h, r, t). On top of each embedding model
the calculation of the actual objective function LS and LK is carried out and combined
according to Ljoint with negative event sample eneg and negative entity sample t′.

Combined Architecture. The shared architecture proposes a very compact and effi-
cient model with only few parameters. In correspondence to TEKE, we also propose
a more flexible combined architecture that allows two separate representations of WX
and WE , however, without relying on the co-occurrence of head and tail entity. More
precisely, given e from WX and h from WE , we define ĥ with a custom combination
operator denoted as h⊗ e as follows:

ĥ = h⊗ e := h� ar + e� br,

where ar and br are trainable weighting vectors for each relation r and � is the
Hadamard product. Intuitively, this allows the model to adjust the influence of event
embeddings on the KG entity embeddings specifically for each relation in a weighted
average fashion. Fig. 2b shows this combination leading to ĥ being fed into the triple
scoring functions.

Note that both of the above proposed architectures are very general, as in fact any
KG embedding model, e.g. factorization-based, can be ‘plugged’ in them.
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3.5 Defining LS via Negative Sampling
As for the event embeddings, we first propose to learn event embedding parameters that
are given by WX using the following negative sampling adapted softmax loss objective:

LS =
∑
s∈S

∑
ei∈s
− log σ(ei

>ci)− log σ(−eneg>ci), (3)

where σ is the sigmoid function, e, eneg are the vector representations of the target
event and a negative sample event of an additional parameter matrix for the softmax
prediction respectively, whereas c is the representation of the context of the target event,
i.e. some of its predecessors and successors in the event log. Intuitively, this loss is
minimized when the context representations consistently have higher similarity to the
actual target compared to the negative sample. The notion of context is critical for such
definition of LS and we propose two models of context where we assume that the
further an event appears from a given one, the lower is their dependency. We model this
assumption by selecting a sliding window of size m , which stores only those events that
potentially can have effect on each other.

EKLFull Model. In the full model, we define the context as the target’s predecessors
and successors in a sliding window. This is conceptually shown in Fig. 3a, where a slid-
ing window contains a target event entity in the center and its neighboring events (i.e.,
context) are the center event’s possible causes and effects. The goal is to predict the tar-
get event based on the representations of its causes and effects. Following this intuition,
we define the context operation for a given context target ei in a window of size m:

ci =

bm2 c⊕
j=1

ei−j ⊕
bm2 c⊕
j=1

ei+j ,

where ⊕ represents the vector concatenation operation. Since the resulting vector from
the concatenation is of size R(m−1)·d, the size of the vector that represents the target en-
tity e for classification in the softmax has to be adapted as well, i.e., e ∈ R(m−1)·d. Note
that the actual entity representations preserve their original size in the d-dimensional
space, hence the only additional parameters are needed for the prediction of each e.
Therefore, we can still ensure the efficient training of event sequence embeddings. The
window size m is added as an additional hyper-parameter.

EKLCause Model. Further we also address the case where only the causing events
may have influence on the target. In order to preserve the predictive information that a



sequence of events inherently possesses, we propose to concatenate the representation
of the m − 1 event predecessors to predict a given target event, i.e. the m-th event in
the window. Formally this can be denoted as ci =

⊕m−1
j=1 ei−j . In Fig. 3b we illustrate

this idea again for a generic sequence window of event entities. Observe that the target
event here is always the last one in the window.

Note that negative sampling in EKLFull and EKLCause should be done with care. In
order to avoid an accidental inclusion of dependent events as negatives, we make sure
that the negative sample is always taken from outside of the complete sequence, i.e.
after a certain time threshold before and after the target event.

3.6 Defining LS via Autoencoders: EKLAuto Model
Sequence modeling is usually closely related to Recurrent Neural Networks (RNNs).
Based on previous experiments it was known that RNNs do not yield good represen-
tations of the events for our datasets. Another natural way to learn representations of
event sequences is to resort to the family of autoencoder models. The goal here is to
encode the sequence s to a latent representation and then to try decoding this back,
hence, the latent encoding needs to conserve the sequential information within a low-
dimensional vector. Formally, our event embedding objective is the mean-squared error
of the original sequence and its decoding:

LS =
∑
s∈S

(s− φ(ω(s))2, (4)

where s = [e1, e2, · · · , em] is the stacked vector representation of s and φ ◦ ω is
the encoder-decoder function chain. In this work we use a convolutional autoencoder
[13] with different filter sizes (adapted to the window size) on the stacked vectors of
the sequence, i.e. for one filter Wf we have: ω(s) = σ(s ? Wf + b) and φ(h) =

σ(h?W̃f+c), where ? is the convolution operator, σ is the sigmoid activation function,
W̃f is the flipped filter matrix, and b and c are bias terms.

4 Evaluation
We have implemented both of our architectures for event-enhanced KG completion into
a system prototype2 employing the TransE model with the original max-margin objec-
tive and negative sampling techniques in TensorFlow [1]. In contrast to the original im-
plementation provided by the authors, our TensorFlow models use a more efficient train-
ing technique from [15] exploiting the AdaGrad variant of stochastic gradient-descent
[7], which has been shown to yield good quality of prediction for other relational learn-
ing models, due to its frequency-adaptive weighting of updates [17].

The AdaGrad technique is beneficial for parameter updates of entities that are only
sparsely connected in the KG, and on the other hand, it prevents overfitting for densely
connected entities. As suggested for TransE [4], all embeddings were initialized by
sampling from a uniform distribution U [− 6√

d
, 6√

d
]. In terms of negative sampling we

employ the random replacement of head or tail entities relying on the closed-world
assumption and the Bernoulli sampling proposed in [26].

2 Source code of EKL: http://github.com/NetherNova/event-kge



Dataset |K| |S| |E| |R|
Manufacturing 6, 791 56, 000 3,180 (728) 10
Traffic 11, 000 157, 000 13,113 (4,000) 5

Table 1: Characteristics of two domain-specific datasets

4.1 Evaluation Protocol
We evaluated our three novel approaches for event representations, i.e., EKLAuto, EKLFull
and EKLCause, together with the two architectures (shared and combined) for KG com-
pletion by comparing them to plain TransE and the state-of-the-art TEKE model, pre-
cisely the TransE-based TEKE E version, as a baseline for incorporating events, which
are in the TEKE case treated as common text corpus and pre-trained using the word2vec
skipgram model [14]. In each of the experiments, the original KG is split into a train-
ing (70 % of the original KG), validation (10 %) and test (20 %) sets. Final results
on quality of prediction are calculated based on the test set, for which we report two
commonly-used evaluation metrics:

– Mean Rank: the average rank of the entities (head and tail) that would have been
the correct ones;

– Hits@N : the portion of ranks within N highest ranked entities for N ∈ {1, 3, 10}.
The mean rank in our experiments corresponds to the filtered version that has been
originally proposed in [4], i.e. in the test set when ranking a particular triple 〈h, r, t〉,
all 〈h, r, t′〉 triples with t 6= t′ are removed. Employing grid search through the hyper-
parameters we determine the best configuration by mean rank on the validation set with
early stopping over a maximum of 100 epochs.

4.2 Dataset Descriptions
Our experiments were performed on two real-world datasets enriched with event se-
quences: manufacturing and traffic. The statistical details of these datasets are presented
in Tab. 1, where we report the total number of triples |K|, the number of sequences |S|,
the total number of entities |E| with the number of event entities stated in brackets and
the number of relations |R|. We made both datasets and the corresponding sequences
available online, see the Github link above.

Manufacturing Dataset. The first dataset is an excerpt of a real-world manufacturing
KG from an automated factory that stores data about production equipment, product-
part descriptions, and production processes. It models several automated production
lines and contains entities corresponding to equipments, products, material, and pro-
cesses connected via different domain-specific relations, e.g. connectedTo, madeOf, fol-
lows. The events are messages collected from a subset of the production machines, i.e.
machine event logs. These are mostly alarms and warnings reporting about critical states
of the production process, e.g. alarms about jams at the material intake of a machine.
Some event sequences were known not to influence each other; these bring noise to the
embeddings. To avoid this situation, we pre-processed the raw sequences of events by
splitting them into multiple disjoint ones based on a maximum time gap that was given
by domain experts. This does not bias the embeddings to any of the models, since it just
removes spurious correlations. Then, we set the following parameters: mini-batch size
to 32 samples; d ∈ {40, 60, 80} as embedding size; and η ∈ {0.01, 0.05, 0.1} as learn-
ing rate. For the event embeddings, we set the context window size m ∈ {2, 3, 4, 5}
for EKLCause and EKLAuto, m ∈ {3, 5, 7, 9} for EKLFull and α ∈ {0.1, 0.5, 1.0}. The
number of negative samples for all event embedding models was empirically set to 8.



Model Mean Rank Hits@10 Hits@3 Hits@1

Dataset: Manufacturing

TransE 317 36.1 23.2 7.5
TEKE E 596 24.5 10.8 3.6
EKLFull 285 / 663 37.9 / 23.5 25.0 / 12.3 8.0 / 4.8
EKLCause 280 / 691 38.1 / 21.4 25.8 / 11.5 7.4 / 5.2
EKLAuto 302 / 692 34.5 / 22.5 23.6 / 10.1 9.6 / 2.7

Dataset: Traffic

TransE 4126 26.8 24.6 9.5
TEKE E 897 25.3 22.6 18.9
EKLFull 1118 / 758 27.0 / 27.3 25.3 / 24.5 21.1 / 20.6
EKLCause 999 / 783 27.2 / 27.0 24.7 / 24.4 20.0 / 20.5
EKLAuto 944 / 840 27.5 / 27.7 24.8 / 24.8 22.2/ 20.6

Table 2: KG completion results for EKL and baselines, where m/n denotes completion
results for shared / combined architecture.

Traffic Dataset. Here we took a fragment of the CityPulse data collection3 that was
used in the smart city applications [2] for monitoring traffic with sensors placed on sev-
eral locations in the area of Aarhus in Denmark. From this dataset we engineered a KG
consisting of the sensor locations, streets, routes, and point of interest locations with
typing information crawled from the Google places API4. The event data is based on
the observed vehicle counts for different routes, e.g. IncreasedTrafficEvent between two
streets. Since connected streets as well as similar localities (e.g., schools) should intu-
itively exhibit a similar traffic pattern, the events may be used to complete the data about
street connections and locality information. This dataset is particularly challenging and
interesting, as the number of entities is higher than the number of overall facts, witness-
ing the KG sparsity. To cope with the large number of entities and triples in the KG,
we set the mini-batch size to 64 samples and the embedding size d from {60, 80, 100},
while keeping the rest of the hyper-parameters the same as in the previous scenario.

4.3 Evaluation Results

Overall KG Completion. In Tab. 2 we report the results for the variations (1) and (2) of
the event-enhanced KG completion problem from Sec. 3.1. As expected, our EKL mod-
els significantly outperform TEKE and TransE in both settings. We report that EKLCause
in the shared architecture shows the best results in terms of mean rank and the first two
hits metrics in the manufacturing case. The shared entity embeddings are highly bene-
ficial for the other EKL models as well and show significant improvements compared
to the TEKE E model. In this case, TEKE E performs even worse than default TransE,
confirming that mere co-occurrence between events does not contribute to the comple-
tion. However, in the traffic scenario TEKE E shows much stronger results compared
to TransE, but using our combined architecture achieves consistently better results, as
in terms of mean rank EKLFull outperforms the rest. On the other hand, the EKLAuto
model has highest hits@1 for both datasets using the shared embeddings, therefore it is
the most specific model, but cannot generalize as well as EKLFull and EKLCause.

3 iot.ee.surrey.ac.uk:8080/datasets.html
4 developers.google.com/maps/documentation/javascript/places
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Fig. 4: Meanrank evaluation: (a) zero shot test sets, (b) with increasing branching factor

Impact on Relations. Tab. 3 (top right and left) contains the mean rank for every KG
relation achieved by the best EKL and TEKE E model on the manufacturing and traf-
fic data. For the manufacturing scenario the relations that are semantically closer to
events benefit from the sequential embeddings more than others and we expected this
effect. E.g., the improvement for the connectedTo relation that links equipments to each
other is more evident than for other relations like materials partonomy isPartOf. The
additional knowledge given by the sequences also propagates to the process-oriented
follows relation, for which the significant improvement over TEKE is observed. Similar
conclusions can be made about the traffic scenario. Here, again the EKLCause model per-
forms exceptionally well on the hasStartPoint relation, while for less event-dependent
relations such as locatedAt the difference of EKL compared to TEKE is less apparent.

Further evaluation is focused on the manufacturing scenario, since this dataset has
richer semantics in terms of relations and typing of event entities.

Impact of Window Size. In Tab. 3 (bottom, left) we examine the impact of the window
size on the overall mean rank performance of our models. One can observe that captur-
ing the sequential nature of the event entities is sensitive to the window size parameter.
In our manufacturing scenario the EKLCause model performs very well for small win-
dow sizes, and the results deteriorate after the window size of 4. In the preparation of
EKLFull the window size must always be an odd number, therefore the window size
here is increased by two. It can be observed that EKLFull needs a slightly larger window
to capture the context, and shows best performance at a window size of 7. In case of
EKLAuto we see a deterioration after window size 3.

Zero-shot Learning. The zero-shot learning (variation (3) of the event-enhanced KG
completion problem in Sec. 3.1) addresses the case when triples about event entities
present in the test set are not in the training KG, hence their links to known entities in
the KG can only be inferred through their sequential occurrence.



BF |K| |E|
2 3,459 2,005 (549)
3 11,925 7,102 (2,180)
4 16,578 9,097 (2,155)
5 24,835 15,252 (4,809)

Relation TEKE E EKLFull

hasSource 868 837
hasStartingPoint 970 350

hasEndPoint 1,627 1,104
locatedAt 214 291

type 788 829

Zero-shot Learning. The zero-shot learning addresses the case when triples about
event entities present in the test set are not in the training KG, hence their links to known
entities in the KG can only be inferred through their sequential occurrence. To evaluate
the effectiveness of our EKL models in a zero-shot learning setting, we have accord-
ingly designed tailored KG test sets, by varying the percentage of the out-of-KG event
entities in the test set (10%, 30%, and 50% of the overall set of event entity triples).
Furthermore, we also vary the percentage of out-of-KG event entities in the event log,
where 100% indicates that every out-of-KG entity of the test set has been observed at
least once in one of the sequences. The results of our experiments are reported in Fig. 4a.
Note that in the setting on the right, when 50% of all event entities are solely present
in the test set, the EKLFull model consistently outperforms all other approaches with
respect to mean rank. In other settings, as the sequence dataset proportion is increased,
EKLFull shows best improvement and ends up with lowest mean rank eventually.

It appears that EKLFull is more stable at capturing typing and location of events, due
to its incorporation of future context, compared to EKLCause and EKLAuto. On the other
hand, all EKL models significantly outperform TEKE in all zero-shot settings and seem
to converge with less data. We argue that this is due to their ability to capture sequential
correlations inside the event logs and the joint optimization.

Controlled Topology of Processes. In our real-world manufacturing scenario the pro-
cess entities reflect the topology of physical equipment in the factory. Since our experi-
ments witness that EKL does the best predictions for relations that reflect this topology,
we designed a controlled scenario where we can validate how the changes in topology
affect quality of prediction.

To this end we chose six relations that naturally determine manufacturing topology:
follows, isA, hasSource, involvedEquipment, hasComponent, and connectsTo. We scaled
the topology in two dimensions: structure of the processes and number of events. This
gave us four KGs, each describing a complex tree-shaped manufacturing process, where
one concrete piece of manufacturing equipment is attached to each node of the tree and
multiple events are attached to each piece of equipment. These KGs are described in
Table 3 (middle left), where BF stands for branching factor.

We now describe the concrete procedure that we followed to generate these KGs.
First, we set the branching factor of the process varying from 2 to 5 and the depth of the
process. The intuition behind the branching factor is that, starting from a root process
step, the successor steps can be partly executed in parallel and the branching controls
this degree of parallelism, which is a common characteristic of real-world processes in

Relation TEKE E EKLCause

connectedTo 674.0 28.5
type 807.9 163.9

follows 16.1 7.8
isMadeOf 29.5 12.5
hasSource 289.7 169.9

involvedEquipment 37.15 17.75
hasComponent 234.1 47.3

isPartOf 15.4 64.8
observedBy 525.8 769.9

hasSkill 22.2 14.4

|Window| EKLFull EKLCause EKLAuto

2 - 280 361
3 293 322 302
4 - 306 328
5 301 356 337
7 285 - -
9 287 - -

manufacturing, road traffic, etc. E.g., in a manufacturing case a particular preparation
process may have a fixed set of three successor process steps (branching factor three)
each performing a different operation in parallel to the others. Second, for each process
we iteratively constructed the process-tree starting from the root, until the process depth,
by randomly selecting the number of children in each node to be at most the branching
factor. Using the process-tree, we generate corresponding equipment entities participat-
ing in the process. Then, using multiple random walks through the process-tree (with
restart) we simulated 50, 000 (|S| = 50, 000) event occurrences that are linked to the
equipment of the process. Each random walk follows successor process entities from
the root to the end with uniform probability for all successors and a small probability of
staying in the current process. Hence, we end up with multiple cause and effect event
patterns in the sequence data instead of having a purely linear chaining. Note that the
relative amount of event entities to overall entities in the KG stays roughly at 30%.

Again, we compared our three event-enhanced KG embedding models to TEKE E.
The results are presented in Figure 4b. Observe that, as the branching increases, the
more all EKL models outperform TEKE E, since the alignment of process and ma-
chine entities no longer follows a linear sequence, which is hard to capture without
considering sequential correlations. In general, EKLFull seems to be the most effective
event embedding model in terms of adapting to the non-linear process chains, while we
conjecture that EKLAuto might be more prone to overfit to linear sequences.

5 Conclusions

We proposed EKL, a novel method for event-enhanced learning of knowledge graph
embeddings by jointly modeling representations of KGs and event logs consisting of
sequences of event entities. Our approach has many applications across domains such
as manufacturing, smart cities, and social networks. More specifically, we proposed two
different architectures, using a single shared entity embedding layer and another one
using combined embeddings for joint optimization. Furthermore, we presented several
event embedding models with various notions of context concatenation and an event

BF |K| |E|
2 3,459 2,005 (549)
3 11,925 7,102 (2,180)
4 16,578 9,097 (2,155)
5 24,835 15,252 (4,809)

Traffic Rel TEKE E EKLFull

hasSource 868 837
hasStartingPoint 970 350

hasEndPoint 1,627 1,104
locatedAt 214 291

type 788 829

Zero-shot Learning. The zero-shot learning addresses the case when triples about
event entities present in the test set are not in the training KG, hence their links to known
entities in the KG can only be inferred through their sequential occurrence. To evaluate
the effectiveness of our EKL models in a zero-shot learning setting, we have accord-
ingly designed tailored KG test sets, by varying the percentage of the out-of-KG event
entities in the test set (10%, 30%, and 50% of the overall set of event entity triples).
Furthermore, we also vary the percentage of out-of-KG event entities in the event log,
where 100% indicates that every out-of-KG entity of the test set has been observed at
least once in one of the sequences. The results of our experiments are reported in Fig. 4a.
Note that in the setting on the right, when 50% of all event entities are solely present
in the test set, the EKLFull model consistently outperforms all other approaches with
respect to mean rank. In other settings, as the sequence dataset proportion is increased,
EKLFull shows best improvement and ends up with lowest mean rank eventually.

It appears that EKLFull is more stable at capturing typing and location of events, due
to its incorporation of future context, compared to EKLCause and EKLAuto. On the other
hand, all EKL models significantly outperform TEKE in all zero-shot settings and seem
to converge with less data. We argue that this is due to their ability to capture sequential
correlations inside the event logs and the joint optimization.

Controlled Topology of Processes. In our real-world manufacturing scenario the pro-
cess entities reflect the topology of physical equipment in the factory. Since our experi-
ments witness that EKL does the best predictions for relations that reflect this topology,
we designed a controlled scenario where we can validate how the changes in topology
affect quality of prediction.

To this end we chose six relations that naturally determine manufacturing topology:
follows, isA, hasSource, involvedEquipment, hasComponent, and connectsTo. We scaled
the topology in two dimensions: structure of the processes and number of events. This
gave us four KGs, each describing a complex tree-shaped manufacturing process, where
one concrete piece of manufacturing equipment is attached to each node of the tree and
multiple events are attached to each piece of equipment. These KGs are described in
Table 3 (middle left), where BF stands for branching factor.

We now describe the concrete procedure that we followed to generate these KGs.
First, we set the branching factor of the process varying from 2 to 5 and the depth of the
process. The intuition behind the branching factor is that, starting from a root process
step, the successor steps can be partly executed in parallel and the branching controls
this degree of parallelism, which is a common characteristic of real-world processes in

Table 3: Evaluation results and controlled experiment statistics

Manufacturing Rel TEKE E EKLCause

connectedTo 674.0 28.5
type 807.9 163.9

follows 16.1 7.8
isMadeOf 29.5 12.5
hasSource 289.7 169.9

involvedEquipment 37.15 17.75
hasComponent 234.1 47.3

isPartOf 15.4 64.8
observedBy 525.8 769.9

hasSkill 22.2 14.4

event log, where 100% indicates that every out-of-KG entity of the test set has been ob-
served at least once in one of the sequences. The results of our experiments are reported
in Fig. 4a. Note that in the setting on the right, when 50% of all event entities are solely
present in the test set, the EKLFull model consistently outperforms all other approaches
w.r.t. mean rank. In other settings, as the sequence dataset proportion is increased,
EKLFull shows best improvement and ends up with the lowest mean rank eventually.

It appears that EKLFull is more stable at capturing typing and location of events, due
to its incorporation of future context, compared to EKLCause and EKLAuto. On the other
hand, all EKL models significantly outperform TEKE in all zero-shot settings and seem
to converge with less data. We argue that this is due to their ability to capture sequential
correlations inside the event logs and the joint optimization.

Controlled Topology of Processes. In our real-world manufacturing scenario the pro-
cess entities reflect the topology of physical equipment in the factory. Since our experi-
ments witness that EKL does the best predictions for relations that reflect this topology,
we designed a controlled scenario where we can validate how the changes in topology
affect quality of prediction.

To this end we chose six relations that naturally determine manufacturing topology:
follows, isA, hasSource, involvedEquipment, hasComponent, and connectsTo. We scaled
the topology in two dimensions: structure of the processes and number of events. This
gave us four KGs, each describing a complex tree-shaped manufacturing process, where
one concrete piece of manufacturing equipment is attached to each node of the tree and
multiple events are attached to each piece of equipment. These KGs are described in
Tab. 3 (bottom right), where BF stands for branching factor.

Table 3: Evaluation results and controlled experiment statistics

To evaluate the effectiveness of our EKL models in a zero-shot learning setting, we
have accordingly designed tailored KG test sets, by varying the percentage of the out-
of-KG event entities in the test set (10%, 30%, and 50% of the overall set of event entity
triples). Furthermore, we also vary the percentage of out-of-KG event entities in the
event log, where 100% indicates that every out-of-KG entity of the test set has been ob-
served at least once in one of the sequences. The results of our experiments are reported
in Fig. 4a. Note that in the setting on the right, when 50% of all event entities are solely
present in the test set, the EKLFull model consistently outperforms all other approaches
w.r.t. mean rank. In other settings, as the sequence dataset proportion is increased,
EKLFull shows best improvement and ends up with the lowest mean rank eventually.

It appears that EKLFull is more stable at capturing typing and location of events, due
to its incorporation of future context, compared to EKLCause and EKLAuto. On the other
hand, all EKL models significantly outperform TEKE in all zero-shot settings and seem
to converge with less data. We argue that this is due to their ability to capture sequential
correlations inside the event logs and the joint optimization.

Controlled Topology of Processes. In our real-world manufacturing scenario the pro-
cess entities reflect the topology of physical equipment in the factory. Since our experi-
ments witness that EKL does the best predictions for relations that reflect this topology,
we designed a controlled scenario where we can validate how the changes in topology
affect quality of prediction.

To this end we chose six relations that naturally determine manufacturing topology:
follows, isA, hasSource, involvedEquipment, hasComponent, and connectsTo. We scaled
the topology in two dimensions: structure of the processes and number of events. This
gave us four KGs, each describing a complex tree-shaped manufacturing process, where
one concrete piece of manufacturing equipment is attached to each node of the tree and
multiple events are attached to each piece of equipment. These KGs are described in
Tab. 3 (bottom right), where BF stands for branching factor.

We now describe the concrete procedure that we followed to generate these KGs.
First, we set the branching factor of the process varying from 2 to 5 and the depth of the
process. The intuition behind the branching factor is that, starting from a root process
step, the successor steps can be partly executed in parallel and the branching controls
this degree of parallelism, which is a common characteristic of real-world processes in
manufacturing, road traffic, etc. E.g., in a manufacturing case a particular preparation
process may have a fixed set of three successor process steps (branching factor three)
each performing a different operation in parallel to the others. Second, for each process



we iteratively constructed the process-tree starting from the root, until the process depth,
by randomly selecting the number of children in each node to be at most the branching
factor. Using the process-tree, we generate corresponding equipment entities participat-
ing in the process. Then, using multiple random walks through the process-tree (with
restart) we simulated 50, 000 (|S| = 50, 000) event occurrences that are linked to the
equipment of the process. Each random walk follows successor process entities from
the root to the end with uniform probability for all successors and a small probability of
staying in the current process. Hence, we end up with multiple cause and effect event
patterns in the sequence data instead of having a purely linear chaining. Note that the
relative amount of event entities to overall entities in the KG stays roughly at 30%.

Again, we compared our three event-enhanced KG embedding models to TEKE E.
The results are presented in Fig. 4b. Observe that, as the branching increases, the more
all EKL models outperform TEKE E, since the alignment of process and machine en-
tities no longer follows a linear sequence, which is hard to capture without considering
sequential correlations. In general, EKLFull seems to be the most effective event embed-
ding model in terms of adapting to the non-linear process chains, while we conjecture
that EKLAuto might be more prone to overfit to linear sequences.

5 Conclusions
We proposed EKL, a novel method for event-enhanced learning of knowledge graph
embeddings by jointly modeling representations of KGs and event logs consisting of
sequences of event entities. Our approach has many applications across domains such
as manufacturing, smart cities, and social networks. More specifically, we proposed two
different architectures, using a single shared entity embedding layer and another one
using combined embeddings for joint optimization. Furthermore, we presented several
event embedding models with various notions of context concatenation and an event
sequence Autoencoder model. Evaluation on two real-world scenarios and a controlled
experiment showed the effectiveness of our approach compared to the state-of-the-art
TEKE model. Especially process-oriented parts of KGs exhibit significantly improved
completion performance when provided with event embeddings. Our EKL models are
also capable of zero-shot learning, in which event entities are not linked to the KG. The
scaled zero-shot experiments showed that EKL models significantly improve handling
of zero-shot event entities in the KG completion.
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Soylu, A., Lanti, D., Rezk, M., Zheleznyakov, D., Giese, M., Lie, H., Ioannidis, Y.E., Kotidis,
Y., Koubarakis, M., Waaler, A.: Ontology based data access in statoil. JWS 44, 3–36 (2017)

10. Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö.L., Roshchin, M., Solo-
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13. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for
hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.)
ICANN. pp. 52–59. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Distributed Representations of Words and
Phrases and their Compositionality. In: NIPS. pp. 1–9 (2013)

15. Minervini, P., Fanizzi, N., D’Amato, C., Esposito, F.: Scalable learning of entity and predi-
cate embeddings for knowledge graph completion. In: ICMLA. pp. 162–167 (2015)

16. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

17. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In:
AAAI. pp. 1955–1961 (2016)

18. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-
relational data. ICML (2011)

19. Ringsquandl, M., Lamparter, S., Brandt, S.P., Lepratti, R.: Semantic-guided Feature Selec-
tion for Industrial Automation Systems. In: ISWC. Springer (2015)

20. Ringsquandl, M., Lamparter, S., Kharlamov, E., Lepratti, R., Stepanova, D., Kroeger, P.,
Horrocks, I.: On event-driven learning of knowledge in smart factories: The case of siemens.
In: IEEE Big Data (2017)

21. Santos, H., Dantas, V., Furtado, V., Pinheiro, P., McGuinness, D.L.: From data to city indica-
tors: A knowledge graph for supporting automatic generation of dashboards. In: ESWC. pp.
94–108 (2017)

22. Shi, B., Weninger, T.: ProjE : Embedding Projection for Knowledge Graph Completion.
AAAI 2017 pp. 1–14 (2017)

23. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning With Neural Tensor Networks
for Knowledge Base Completion. NIPS pp. 1–10 (2013)

24. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proc. of
WWW. pp. 697–706 (2007)

25. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In:
IJCAI. pp. 1859–1866 (2015)

26. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge Graph Embedding by Translating on
Hyperplanes. AAAI pp. 1112–1119 (2014)

27. Wang, Z., Li, J.Z.J.: Text-Enhanced Representation Learning for Knowledge Graph. IJCAI
pp. 1293–1299 (2016)

28. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: Semantic Space Projection for Knowledge
Graph Embedding with Text Descriptions. AAAI pp. 1–10 (2017)

29. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation Learning of Knowledge Graphs
with Entity Descriptions. IJCAI pp. 2659–2665 (2016)



30. Yang, Z., Tang, J., Cohen, W.W.: Multi-modal bayesian embeddings for learning social
knowledge graphs. In: IJCAI. pp. 2287–2293 (2016)

31. Zhong, H., Zhang, J., Wang, Z., Wan, H., Chen, Z.: Aligning knowledge and text embeddings
by entity descriptions. In: EMNLP. pp. 267–272 (2015)


