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Abstract

Consequence-based (CB) reasoners combine ideas from resolution and (hyper)tableau calculi for solving key reasoning problems
in Description Logics (DLs), such as ontology classification. Existing CB reasoners, however, are only capable of handling DLs
without nominals (such as ALCHIQ), or DLs without disjunction (such as Horn-ALCHOIQ). In this paper, we present a
consequence-based calculus for concept subsumption and classification in the DLALCHOIQ+, which extendsALC with role
hierarchies, inverse roles, number restrictions, and nominals; to the best of our knowledge, ours is the first CB calculus for an
NExpTime-complete DL. By using standard transformations, our calculus extends to SROIQ, which covers all of OWL 2 DL
except for datatypes. A key feature of our calculus is its pay-as-you-go behaviour: our calculus is worst-case optimal for all
the well-known proper fragments of ALCHOIQ+. Furthermore, our calculus can be applied to DL reasoning problems other
than subsumption and ontology classification, such as instance retrieval and realisation. We have implemented our calculus as
an extension of Sequoia, a CB reasoner which previously supported ontology classification in SRIQ. We have performed an
empirical evaluation of our implementation, which shows that Sequoia offers competitive performance. Although there still
remains plenty of room for further optimisation, the calculus presented in this paper and its implementation provide an important
addition to the repertoire of reasoning techniques and practical systems for expressive DLs.
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1. Introduction

Description Logics (DLs) [3] are a prominent family of knowledge representation formalisms with well-defined semantics
that have found applications in a wide range of domains. A DL ontology describes an application domain in terms of concepts
(unary predicates), roles (binary predicates), and individuals (constants). The highly expressive DL SROIQ [24] provides
the formal underpinning for the Web Ontology Language OWL 2 [52], which has been standardised by the World Wide Web
Consortium (W3C). A key reasoning service for DLs is concept subsumption: given ontologyO and concepts C and D, determine
whether each instance of C is also an instance of D in every model of O. In turn, ontology classification is the problem of
computing all subsumption relationships between pairs of concepts named in an ontology.

Concept subsumption in SROIQ is 2NExpTime-complete; however, despite such high complexity, practical calculi for this
logic and other related DLs have been developed and successfully implemented. Tableau and hypertableau calculi [12] underpin
many of the currently available ontology reasoners, including FaCT++ [67], RacerPro [22], Pellet [60], HermiT [56], and Kon-
clude [62]. To check whether a subsumption holds, these calculi attempt to construct a finite representation of a countermodel—
that is, a model of the ontology in which the subsumption does not hold. Tableau-based algorithms face two main sources of
complexity [44]: non-determinism caused by disjunctive statements (or-branching), which can lead to frequent backtracking, and
generation of very large models due to existential restrictions (and-branching). These problems are exacerbated in tasks such
as classification, where a large number of subsumption checks must be performed. Tableau-based algorithms are typically not
worst-case optimal for subsumption and consistency checking, but they have been heavily optimised to reduce the impact of or-
and and-branching. In addition, these calculi use techniques to reduce the number of subsumption checks during classification,
such as the enhanced traversal algorithm [4, 20]. The technique of global caching has been used to ensure worst-case optimal
behaviour in DLs that are ExpTime-complete for concept subsumption [45, 46, 47]; to the best of our knowledge, however, this
technique has not been applied to DLs that simultaneously support disjunction, number restrictions, inverse roles, and nomi-
nals. Furthermore, despite optimisations, the aforementioned sources of complexity can still compromise the performance of
tableaux-based reasoners on complex ontologies.

A second category of DL reasoning calculi are based on first-order resolution [8]. These algorithms transform an ontology into
a set of clauses, and then attempt to derive the empty clause using a resolution-based inference system [29, 16, 32, 54, 28, 17, 38,
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27, 43, 42, 30]. An advantage of this approach is that reasoning can be performed without grounding the clauses, thus avoiding the
construction of an explicit representation of a model. We can identify two different resolution-based approaches to DL reasoning
[29]. The first approach ensures termination and worst-case optimal behaviour while preserving completeness by constraining the
application of resolution inferences by means of carefully defined orderings and selection functions [16, 32, 54, 28, 17, 38, 27];
the KAON2 reasoner [43] implements this approach for the Description Logic SHIQ [42]. The second approach uses resolution
to simulate model-building (hyper)tableau techniques [29, 19], including blocking methods which ensure termination [30, 13].
It has been observed in practice that resolution and tableau algorithms complement each other nicely, because each method
performs best on different types of input [63, 13]. On the one hand, tableau methods terminate as soon as they find a model of
the ontology and hence they are better suited to problems where the input is satisfiable; on the other hand, resolution methods
terminate as soon as the empty clause is derived, and therefore they perform better when the input is unsatisfiable.

Consequence-based (CB) calculi emerged as a promising approach to DL reasoning combining ideas from tableau and res-
olution. On the one hand, similarly to resolution, they derive formulae entailed by the ontology (thus avoiding the explicit
construction of large models), and they are typically worst-case optimal for concept subsumption. On the other hand, clauses
are organised into contexts arranged as a graph structure reminiscent of that used for model construction in (hyper)tableau;
this prevents CB calculi from drawing many unnecessary inferences and yields a nice goal-oriented behaviour. Furthermore,
in contrast to existing resolution and (hyper)tableau calculi, CB methods can verify a large number of subsumptions in a single
execution, allowing for one-pass classification. Finally, CB calculi are very effective in practice, and systems based on them, such
as ELK [37] and Snorocket [41], have shown outstanding performance. The first CB calculi were developed for the EL family
of lightweight DLs [14, 2, 36], and were later extended to the more expressive logics Horn-SHIQ [34], Horn-SROIQ [51],
ALCH [58], SRIQ [11], and SHOI [64].

CB calculi have also been used in combination with other reasoning methods. The CB calculus by Vlasenko et al. [68] for
the DL ELQ relies on an Integer Linear Programming solver to efficiently deal with number restrictions; this approach has been
extended to the DL SHOQ in [33] and implemented in the reasoner Avalanche [68], with encouraging results. The SROIQ
reasoner Konclude [62] is primarily based on a tableau calculus, but it exploits an incomplete CB calculus to efficiently derive
as many entailments as possible. The CB calculus for ALCHI by Kazakov et al. [35] introduces a non-deterministic rule
to handle disjunction, which is analogous to the disjunction rule used in tableaux. The reasoner MORe [1] exploits module
extraction techniques [15] to divide the workload of ontology classification between a CB reasoner for a lightweight DL, and a
tableau-based reasoner for SROIQ.

To the best of our knowledge, however, no CB calculus currently handles DLs supporting simultaneously all Boolean con-
nectives, inverse roles, number restrictions, and nominals. As we discuss in Section 3, the interaction of these features causes a
complexity jump from ExpTime [40, 23, 66] to NExpTime [39] for subsumption checking, and poses major practical challenges
for reasoning algorithms [26, 38]. Furthermore, the presence of nominals in the ontology poses additional challenges specific to
CB approaches; in particular, nominals can be used to express global constraints on models of the ontology, which are difficult
to represent within the CB framework [36].

In Section 4 we present a consequence-based calculus for the DL ALCHOIQ+, which supports all Boolean connectives,
role hierarchies, inverse roles, number restrictions, and nominals. By encoding role inclusion axioms using well-known methods
[24, 57], our calculus extends to SROIQ, which covers all of OWL 2 DL except for datatypes. Following Bate et al. [10], we
encode derived consequences as clauses of first-order equational logic, similar to those used in resolution-based methods for
reasoning in DLs [31], and we handle equality reasoning using a variant of ordered paramodulation. This allows us to exploit
techniques from paramodulation-based theorem proving to show completeness and establish complexity bounds [8, 48, 49, 7].
To handle nominals, we allow for ground atoms in derived clauses, add new inference rules, and introduce a root context where
all inferences on ground atoms are performed.

In Section 5 we introduce a subsumption algorithm that uses our calculus, and we show how this algorithm can be applied
to solve other DL reasoning problems. We also illustrate how variants of the calculus and the algorithm based on it can achieve
worst-case optimal performance for all proper fragments ofALCHOIQ+. In particular, we show how to perform classification
in deterministic exponential time for all of ALCHOI, ALCHOQ, ALCHIQ+ and Horn-ALCHOIQ+, and in polynomial
time for the lightweight DL ELHO. Our algorithm is, however, not worst-case optimal for ALCHOIQ, and it exhibits a
worst-case running time in line with other existing tableau- and resolution-based approaches [44, 38]. The source of additional
complexity is, however, very localised and only manifests itself in non-Horn ontologies when nominals, number restrictions and
inverse roles interact simultaneously (a rare situation in practice).

In Section 6 we compare our approach to other CB calculi for DLs with nominals, and we also compare it to reasoning
algorithms based on resolution and tableau for DLs with disjunction, inverse roles, number restrictions, and nominals. We point
out the similarities and differences between these calculi, and we analyse our comparative strengths and weaknesses.

We have implemented our calculus as an extension of the SRIQ reasoner Sequoia [11]. In Section 7 we discuss in detail all
modifications and novel features in our new version of Sequoia, which supports nominals and can perform additional reasoning
tasks other than classification.

In Section 8, we describe the results of an experimental evaluation of Sequoia’s classification performance on a large corpus of
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real-world ontologies. In our evaluation, we compared Sequoia with the state-of-the-art reasoners Pellet, FaCT++, HermiT, and
Konclude. Our experiments show that Sequoia offers competitive performance, which is overall comparable on our corpus to that
of HermiT. It is, however, worth noticing that the sets of ontologies that Sequoia and HermiT fail to classify have a small overlap,
which reflects the significant differences between the underpinning calculi. Therefore, our results show that Sequoia provides
an important addition to the repertoire of practical implementation techniques for DL reasoning which nicely complements
previously existing approaches. Finally, to test the pay-as-you-go behaviour of Sequoia, we compared its performance with that
of ELK and Snorocket on OWL 2 EL ontologies, and we could verify that the performance of Sequoia is comparable to that of
the aforementioned specialised reasoners on the ontologies that they support.

This article is an extension of our earlier conference publication [65]. New material includes the implementation, optimisa-
tion, and evaluation of the calculus, as well as detailed proofs of all our results.

2. Preliminaries

In this section we recapitulate basic notions and introduce the notation used in the rest of our paper. Section 2.1 introduces
many-sorted first-order equational logic. Following [10, 8, 48, 49, 7], we consider formulas where equality is the only predicate;
as discussed in Section 2.1, this is without loss of generality since first-order atoms with arbitrary predicates can be converted
into equality atoms while preserving satisfiability and entailment [48, 49]. Section 2.2 provides basic definitions related to term
orderings. Finally, Section 2.3 provides an overview of the basics of DLs and defines a clausal form for DL ontologies.

2.1. Many-Sorted Clausal Equational Logic
A many-sorted signature Σ is a pair (ΣS ,ΣF), where ΣS is a non-empty set of sorts, and ΣF is a countable set of function

symbols, where each function symbol f ∈ ΣF is associated to a symbol type: an expression of the form s1 × · · · × sn → s, where
n ∈ N0 is the arity of f , si ∈ ΣS for each 1 ≤ i ≤ n, and s ∈ ΣS is the sort of f . Function symbols of arity 0 are called constants.
For the remainder of this section, we fix an arbitrary many-sorted signature Σ = (ΣS ,ΣF), which we will use in all definitions.

For each sort s ∈ ΣS , let Xs be a countably infinite set of variables of sort s, and suppose that sets of variables of different
sorts are disjoint. If s ∈ ΣS , the set of terms of sort s is the smallest set containing (i) each variable in Xs and (ii) each expression
f (t1, . . . , tn), where n ∈ N0, ti is a term of sort si for 1 ≤ i ≤ n, and f is a function symbol of type s1 × · · · × sn → s. A term of
sort s is often called an s-term. A position p of a term is a finite sequence of positive integers; we represent the empty position
as ε and a non-empty position as i1 · i2 · . . . · in, where i j is the j-th element in the sequence, for 1 ≤ j ≤ n. A position p is proper
if p , ε. Given a term t = f (t1, · · · , tn), the subterm of t at position p, represented t|p, is defined inductively as follows: if p = ε,
then t|p = t; otherwise, p is of the form i · p′, where i ∈ N and p′ is a position, and then t|p is defined as ti|p′ if such subterm
exists, and is undefined otherwise. If t2 is a subterm of t1 at some position p, we say that t1 mentions or has an occurrence of t2.
A term is ground if it mentions no variables. If s1 is an s-subterm of term t at position p, and s2 is an s-term, then t[s2]p denotes
the term obtained when replacing s1 by s2 at position p of t. Furthermore, we denote by t[s1/s2] the result of simultaneously
replacing every occurrence of s1 in t by s2.

An equality is an expression of the form t1 ≈ t2, where t1 and t2 are terms of the same sort. An inequality t1 0 t2 is the
negation of an equality t1 ≈ t2. Equalities and inequalities are symmetric; that is, expression t1 ./ t2 is identical to t2 ./ t1 for
./ ∈ {≈,0}. A literal is either an equality or an inequality. A literal, a conjunction of literals, or a disjunction of literals is ground
if so is each of its terms. We can express ordinary first-order logic atoms in a signature where equality is the only predicate by
assuming existence of a distinguished sort p ∈ ΣS such that, for every function symbol A ∈ ΣF of type s1 × · · · × sn → p, we have
si , p for each 1 ≤ i ≤ n; furthermore, we assume that true is a p-constant. We refer to function symbols of sort p as predicates;
equalities of the form A(t1, . . . , tn) ≈ true then play a role analogous to first-order atoms A(t1, . . . , tn). This correspondence allows
us to transform formulas with arbitrary predicates into formulas with equality as the only predicate, while preserving entailment
and satisfiability [49]. When the meaning is clear from the context, we abbreviate an equality A(t1, . . . , tn) ≈ true, where A is a
predicate, to the expression A(t1, . . . , tn).

A clause is a sentence of the form ∀x1, . . . , xn. (Γ→ ∆) with n ∈ N0, where the body of the clause Γ is a finite conjunction
of equalities, the head of the clause ∆ is a finite disjunction of literals, and expression x1, . . . , xn contains all variables occurring
in Γ → ∆. The quantifier ∀x1, . . . , xn in clauses is omitted for brevity. Conjunctions and disjunctions are treated as sets (we
assume that they are unordered and without repetition), and we use set operations to manipulate them; note that this is a simpler
representation of clauses than the standard bag representation in resolution theorem proving [7]. The empty conjunction is
represented as >, and the empty disjunction is represented as ⊥. A formula (and in particular a clause) is ground if the body and
the head of the clause are ground.

A set of clauses N contains a clause Γ→ ∆ up to redundancy if and only if (i) there is a term s such that s ≈ s ∈ ∆, (ii) there
is a pair of terms s, t such that {s ≈ t, s 0 t} ⊆ ∆, or (iii) there exists a clause Γ′ → ∆′ ∈ N such that Γ′ ⊆ Γ and ∆′ ⊆ ∆. If N
contains Γ→ ∆ up to redundancy, we write Γ→ ∆ ∈̂N. This notion of redundancy is the same as that in [11].

A substitution is a mapping σ from variables to terms such that variables x ∈ Xs are mapped to terms of sort s, and all but
finitely many variables are mapped to themselves by σ. The image of variable x by σ is represented as xσ. Substitution σ is
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often written as the set {x1 7→ t1, · · · , xn 7→ tn}, where ti = xiσ for each 1 ≤ i ≤ n, and the domain {x1, . . . , xn} of σ consists of all
variables not mapped to themselves by σ. If α is either a term, a conjunction, a disjunction, or a clause, then ασ is the result of
replacing every occurrence of x in α by xσ. Finally, a substitution {x1 7→ t1, . . . , xn 7→ tn} is ground if each ti is a ground term.

The Herbrand Universe HU is the smallest set containing all ground terms of sort s for each s ∈ ΣS . We assume that for
each s ∈ ΣS there is at least one ground s-term. A Herbrand equality interpretation I is a set of equalities between terms of
HU satisfying the following properties: (i) reflexivity, (ii) symmetry, (iii) transitivity, and (iv) if t|p ≈ s ∈ I, then t ≈ t[s]p ∈ I.
Let α be a ground conjunction, a ground disjunction, a (not necessarily ground) clause, or any set thereof; we say that I satisfies
α if it does so according to the usual criteria, but assuming that each universally quantified variable of sort s ∈ ΣS ranges over
s-terms in HU. We say that I is a model of α, written I |= α, if I satisfies α. A set of clauses α entails a clause Γ → ∆, written
α |= Γ→ ∆, if each model of α satisfies Γ→ ∆.

2.2. Orderings

A strict (partial) order on a set X is a transitive and irreflexive binary relation on X. A strict order � is well-founded if, for
each non-empty subset Y ⊆ X, there exists a ∈ Y such that no b ∈ Y satisfies a � b. A strict order � induces a non-strict (partial)
order � by taking the reflexive closure of �. A total order > on X is a strict order on X such that, given any two distinct elements
a, b ∈ X, either a > b or b > a. For any ◦ ∈ {�,�, >}, we have that if a ∈ X and Y ⊆ X, then a ◦ Y if and only if a ◦ b for every
b ∈ Y . It is well-known that every partial order can be extended to a total order.

A multiset over a set X is a function µ : X → N0. A multiset µ is finite if there is a finite Y ⊆ X such that a < Y implies
µ(a) = 0, for each a ∈ X. The difference µ1\µ2 between multisets µ1 and µ2 over X is the multiset defined as µ1\µ2(a) =

max(0, µ1(a) − µ2(a)). The multiset extension of an order ◦ ∈ {�,�, >} on X is the order ◦mul on all multisets over X defined as:
µ1 ◦ µ2 if and only if ◦ ∈ {�, >} implies µ1 , µ2, and for every a ∈ µ2\µ1 there exists b ∈ µ1\µ2 with b ◦ a.

A term order is an order ◦ ∈ {�,�, >} on HU. A term order ◦ induces an order (also represented as ◦) on literals by treating
each literal t1 ≈ t2 as the multiset {t1, t2}, each literal t1 0 t2 as the multiset {t1, t1, t2, t2}, and comparing literals using the multiset
extension of ◦. A strict term order � is monotonic if, for each pair s1 � s2, each term t ∈ HU, and each proper position p in t,
we have t[s1]p � t[s2]p. A monotonic order is stable under substitutions if s1 � s2 implies s1σ � s2σ for any substitution σ. A
rewrite order is a monotonic order that is stable under substitutions. A reduction order is a well-founded rewrite order. A strict
term order has the subterm property if, for each term s ∈ HU and each proper position p in s, we have s � s|p. A simplification
order is a reduction order with the subterm property.

Let � be an order on a set of function symbols. The lexicographic path order �lpo induced by � is defined as follows: given
terms s = f (s1, . . . , sm) and t = g(t1, . . . , tn), we have s �lpo t if and only if:

1. f � g and s �lpo ti for all i with 1 ≤ i ≤ n; or

2. f = g, and there is j such that si = ti for all i with 1 ≤ i ≤ j − 1, s j �lpo t j, and s �lpo tk for all k with j ≤ k ≤ n; or

3. s j �lpo t for some j with 1 ≤ j ≤ m.

It can be shown that if � is well-founded, then �lpo is a simplification order, and if � is total, then �lpo is total [6].

2.3. ALCHOIQ+ Ontologies

Let B, S, and I be disjoint sets of concept names, role names, and individual names, respectively. The set of roles extends S
with all expressions of the form S − where S ∈ S. The set of concepts is the minimal set containing: (i) each concept name, (ii)
symbols > and ⊥, (iii) ¬C for every concept C, (iv) C1 u C2 and C1 t C2 for each pair of concepts C1,C2, (v) ∃R.C and ∀R.C
for every role R and concept C, (vi) > n R.C and 6 n R.C for each n ∈ N0, each role R, and each concept C, (vii) {o} for each
individual name o ∈ I, and (viii) ∃Self.R for each role R.

AnALCHOIQ+ TBox is a finite set of axioms of the form C1 v C2, R1 v R2, or Disj(R1,R2), where C1 and C2 are concepts,
and R1 and R2 are roles. Note thatALCHOIQ+ is usually defined with some additional types of axioms, such as role reflexivity
or asymmetry [5], which can be easily rewritten into axioms allowed by our definition in a way that preserves satisfiability and
entailment. AnALCHOIQ+ ABox is a finite set of assertions of the form C(o1), R(o1, o2), or ¬R(o1, o2), with C a concept, R a
role, and o1, o2 individual names. A knowledge base is a pair K = (T ,A) with T a TBox andA an ABox inALCHOIQ+. The
first-order interpretation ofALCHOIQ+ knowledge bases is standard [5, Chapter 8]. EveryALCHOIQ+ knowledge base can
be transformed in polynomial time into a normal form consisting of axioms of the forms DL1 to DL11 on the left-hand side of
Table 1 [31]; the normalisation procedure is a variant of the structural transformation [50] used in first-order theorem proving.

The DL SROIQ [24] extends ALCHOIQ+ by allowing in the TBox complex role inclusion axioms (RIAs) of the form
R1 ◦ · · · ◦ Rn v R for some n ∈ N and each Ri a role. ExtendingALCHOIQ+ with RIAs leads to undecidability [25]; however,
RIAs can be eliminated (with an exponential blowup) in knowledge bases satisfying certain global restrictions while preserving
satisfiability and entailment [57]. In particular, RIA elimination can be combined with any worst-case optimal decision procedure
forALCHOIQ+ to obtain a worst-case optimal procedure for SROIQ.
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DL1
d

1≤i≤n
Bi v

⊔
n+1≤i≤m

Bi  
∧

1≤i≤n
Bi(x) →

∨
n+1≤i≤m

Bi(x)

DL2 B1 v > n S .B2  
B1(x) → B2( fi(x)), for 1 ≤ i ≤ n
B1(x) → S (x, fi(x)), for 1 ≤ i ≤ n
B1(x) → fi(x) 0 f j(x), for 1 ≤ i < j ≤ n

DL3 ∃S .B1 v B2  S (z1, x) ∧ B1(x) → B2(z1)

DL4 B1 v 6 n S .B2  
S (z1, x) ∧ B2(x) → S B2 (z1, x)

B1(x) ∧
∧

1≤i≤n+1
S B2 (x, zi) →

∨
1≤i< j≤n+1

zi ≈ z j

DL5 B v ∃S .Self  B(x) → S (x, x)

DL6 ∃S .Self v B  S (x, x) → B(x)

DL7 S 1 v S 2  S 1(z1, x) → S 2(z1, x)

DL8 S 1 v S −2  S 1(z1, x) → S 2(x, z1)

DL9 Disj(S 1, S 2)  S 1(z1, x) ∧ S 2(z1, x) → ⊥

DL10 {o} v B  > → B(o)

DL11 B v {o}  B(x) → x ≈ o

Table 1: NormalisedALCHOIQ+ axioms and transformation to DL-clauses. Each B(i) is a concept name in ΣA; each S (i) is a role name in ΣS ; each fi is a fresh
successor function symbol in Σ f ; symbol o is a constant in Σc. Roles S B2 in DL4 are fresh, contained in ΣS , and determined by S and B2.

A DL signature is a two-sorted signature Σ = {ΣS ,ΣF} where ΣS contains a sort a representing standard FOL terms, and a
predicate sort p satisfying the properties described in Section 2.1. The set of function symbols ΣF is the disjoint union of the
following countable sets: (i) a set Σ f of successor function symbols of type a → a, (ii) a set ΣA of unary predicate symbols of
type a→ p, (iii) a set ΣS of binary predicate symbols of type a × a→ p, and (iv) a set Σc of constant symbols of type → a.

In the remainder of this section, we assume that Σ =
{
{a, p}, {Σ f ] ΣA ] ΣS ] Σc}

}
is a fixed DL signature; any reference to

notions defined in Section 2.1 is implicitly over Σ. For each f ∈ Σ f , the f -successor of a term t is the term f (t); we also say that t
is the predecessor of f (t). We assume there exists a central variable x ∈ Xa, and a set of neighbour variables {zi | i ∈ N} ⊂ Xa. As
we show next, the central variable x will represent an arbitrary element of the domain, and the neighbour variables will represent
elements of the domain connected to x via binary predicates.

A DL-a-term is a term of the form zi for i ∈ N, x, f (x) for some f ∈ Σ f , or o ∈ Σc. A DL-p-term is a term of the form B(zi),
B(x), B( f (x)), B(o), S (zi, x), S (x, zi), S (x, x), S (x, f (x)), S ( f (x), x); where f ∈ Σ f , B ∈ ΣA, S ∈ ΣS , and o ∈ Σc. A DL-atom is an
equality of the form A ≈ true, written A for short, where A is a DL-p-term. A DL-literal is a DL-atom or an equality or inequality
between DL-a-terms. A DL-clause is a clause which contains only DL-atoms of the form B(x), S (x, zi), S (zi, x), or S (x, x) in the
body, and only DL-literals in the head.

Following the well-known correspondence between Description Logics and First-Order Logic, normalised ALCHOIQ+

axioms correspond to DL-clauses as specified in Table 1, where we assume B ⊆ ΣA, S ⊆ ΣS , and I ⊆ Σc. Note that axioms of the
form DL4 would normally be translated into first-order logic as:

B1(x) ∧
∧

1≤i≤n+1

[S (x, zi) ∧ B2(zi)]→
∨

1≤i< j≤n+1

zi ≈ z j. (1)

This is, however, not a DL-clause, due to atoms B2(zi). We do not allow atoms of this form in DL-clauses because ensuring
completeness in presence of these atoms would require making the calculus significantly more involved. Instead, our translation
introduces fresh predicates S B2 for each pair S , B2, then it adds the clause S (z1, x) ∧ B2(x) → S B2 (z1, x), and finally it replaces
conjunction S (x, zi) ∧ B2(zi) in (1) with literal S B2 (x, zi).

We define an ontology as a set O of DL-clauses. An ontology O is ALCHOIQ+ if each DL-clause in O is of one of the
forms given in Table 1. It isALCHIQ+ if it does not contain clauses of the form DL10 or DL11. It isALCHOQ if it does not
contain clauses DL5, DL6, DL8, or DL9. It is ALCHOI if it does not contain clauses DL4 to DL6, or DL9, and if for every
clause of the form DL2 we have n = 1. It is Horn if it does not contain clauses with more than one literal in the head. Finally, it
is ELHO if it is Horn and contains only clauses of the form DL1, DL2 with n = 1, DL3, DL7, DL10, and DL11.

A query clause is a DL-clause ΓQ → ∆Q where all atoms are of the form B(x) for B ∈ ΣA. Query clauses in the CB calculus
for SRIQ [11] also allow atoms of the form S (x, x) in ∆Q; however, these can be replaced with a fresh atom BS (x) if O is
extended with a DL-clause S (x, x)→ BS (x), which is of the form DL6.
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3. Extending Consequence-Based Reasoning toALCHOIQ+

In this section we describe the key challenges in extending the CB calculus for ALCHIQ+ from [11] to ALCHOIQ+

and we discuss informally how our calculus approaches them. In Section 3.1 we provide an overview of the calculus in [11].
In Section 3.2 we examine the problem of combining the local nature of CB reasoning with the global constraints on ontology
models imposed by the use of nominals, and we sketch the intuitions underpinning our solution. Finally, in Section 3.3 we
consider the difficulties caused by the simultaneous interaction between inverse roles, number restrictions, and nominals.

3.1. The Consequence-Based Calculus forALCHIQ+

The calculus forALCHIQ+ proposed in [11] decides whether O |= Q for O an ontology and Q = ΓQ → ∆Q a query clause.
We illustrate how the calculus works using a running example that checks whether O1 |= Q1, with O1 the ontology from Figure 1
and Q1 the query clause A(x)→ D(x).

Following the framework introduced in [59], the rules of the calculus are applied to a context structure—a directed graph
where each vertex v (called a context) can be thought of as representing a collection of domain elements in a model of the input
ontology O. A context structure assigns to each context v the following information.

• A conjunction corev of atoms, called the core of v, involving only two variables x and y. The core of v determines the
collection of domain elements represented by v. Concretely, for each model I of O, context v represents each element c
such that I |= ∃y.corev{x 7→ c}, and we refer to such elements mapped to variable x as the instances of corev in I.

• A set of constant-free context clauses Sv where the only terms allowed are x, y, and functional terms of the form f (x),
for f ∈ Σ f . These variables have a special meaning: for each model I of O, x represents instances of corev in I, and
y represents the predecessor of x. Each context clause Γ → ∆ represents a logical consequence of O and is such that
corev ⊆ Γ; for succinctness, it is written as Γ′ → ∆, where Γ = corev ∧ Γ′.

• Similarly to ordered resolution calculi [8, 31], each context v is parametrised by an ordering �v that determines which
literals and context clauses can be selected by inference rules.

Edges in a context structure are labelled with successor function symbols. If there is an edge from context v to context w, then
v is a predecessor context of w, and w is a successor context of v. An f -labelled edge from a context v to a context w indicates
that, in each model I of O, every element represented by context v may have an f -successor represented by context w, and this
successor is guaranteed to exist if corew , {}. A context structure may have more than one edge from v to w, each labelled with
a different function symbol. A context structure may also contain self-loops.

To check whether O |= Q, the calculus needs a context structure with a context representing (at least) all instances of ΓQ in
a model of O. In our example for O1 and Q1, we introduce a context structure with a single context vA with corevA = {A(x)},
representing all instances of A(x) in a model of O1. Furthermore, we choose an ordering �A for the literals in vA which satisfies
g(x) �A f (x) and makes D(x) smaller than other atoms, and also smaller than equalities between functional terms. The example
is illustrated in Figure 2.

The calculus applies its inference rules to derive logical consequences of O as context clauses in the context structure, until
no rule can be further applied. Given an arbitrary context v, each of the following inference rules can be applied to v.

• Rule Core adds a context clause > → A to v for each atom A ∈ corev. For example, in Figure 2, this rule is triggered after
the creation of the context structure, and it adds context clause (15) to vA, which has core {A(x)}.

• Rule Hyper applies an ordered hyperresolution step [8] using context clauses in v as side premises, and a clause in O as
the main premise. For instance, in Figure 2, the rule is triggered for context clause (15) and ontology clause (2) to produce
context clause (16). Analogous applications of this rule to clause (15) produce context clauses (17) and (18), using
ontology clauses (3) and (6), respectively. Rule Hyper may only pick literals in heads of context clauses that are maximal
with respect to other literals in the head, according to the order �v chosen for context v. For instance, in clause (18),
the Hyper rule can pick G(x) but not D(x), since we have G(x) �A D(x). Two inferences by this rule on clause (18)
produce clauses (19) and (20) from ontology clauses (7) and (8). Finally, the rule can be applied to ontology clause (9) and
clauses (17) and (20) to produce clause (21). Inferences by Hyper can only unify variable x in O with variable x in context
clauses; this ensures that derived consequences preserve the syntactic form of context clauses.

• Rule Eq finds a clause in v with an equality t ≈ s in the head, where t �v s, and combines it with another clause in v that has
a literal A mentioning t, replacing t by s in A. For instance, in Figure 2, we can apply the Eq rule to combine clause (21)
with clause (19), and the result is clause (22). A similar inference produces clause (23) from clause (21) and clause (20).
This rule, together with the next two, implement a form of ordered paramodulation reasoning [7].

• Rule Ineq eliminates literals of the form t 0 t from heads of context clauses in v. For instance, if a context clause
> → f (x) 0 f (x) appears in v, the rule will write > → ⊥ in this context.

6



A v ∃R.B  
A(x) → B( f (x)) (2)
A(x) → R(x, f (x)) (3)

A v ∃S .B  
A(x) → B(h(x)) (4)
A(x) → S (x, h(x)) (5)

A v D tG  A(x) → D(x) ∨G(x) (6)

G v ∃R.C  
G(x) → C(g(x)) (7)
G(x) → R(x, g(x)) (8)

> v 6 1 R.>  R(x, z1) ∧ R(x, z2) → z2 ≈ z1 (9)
B uC v F1  B(x) ∧C(x) → F1(x) (10)
∃R.F1 v D1  R(z1, x) ∧ F1(x) → D1(z1) (11)

B v F2  B(x) → F2(x) (12)
∃S .F2 v D2  S (z1, x) ∧ F2(x) → D2(z1) (13)

D1 u D2 v D  D1(x) ∧ D2(x) → D(x) (14)

Figure 1: Ontology clauses for O1 are represented together with their corresponding equivalentALCHIQ axioms.

vA

>→ A(x) (15)
>→ B( f (x)) (16)
>→ R(x, f (x)) (17)
>→ D(x) ∨G(x) (18)
>→ D(x) ∨C(g(x)) (19)
>→ D(x) ∨ R(x, g(x)) (20)
>→ D(x) ∨ g(x) ≈ f (x) (21)
>→ D(x) ∨C( f (x)) (22)
>→ D(x) ∨ R(x, f (x)) (23)
>→ D(x) ∨ D1(x) (24)
>→ B(h(x)) (25)
>→ S (x, h(x)) (26)
>→ D2(x) (27)
>→ D(x) (28)

vR,B

>→ B(x) (29)
>→ R(y, x) (30)

C(x)→ C(x) (31)
C(x)→ F1(x) (32)
C(x)→ D1(y) (33)

vS ,B

>→ B(x) (34)
>→ S (y, x) (35)
>→ F2(x) (36)
>→ D2(y) (37)

f

h

Figure 2: Context structure generated for O1 and Q1 using the eager expansion strategy. The core of vA is {A(x)}, the core of vR,B is {B(x),R(y, x)}, and the core
of vS ,B is {B(x), S (y, x)}.

• Rule Factor “factors out” a term that appears on the left-hand side of two equalities in the head of a context clause in v;
for example, > → f (x) ≈ y ∨ f (x) ≈ g(x). The rule replaces one of the equalities by the inequality between the terms on
the right-hand side of the equalities. In the previous example, the rule will add > → g(x) 0 y ∨ f (x) ≈ g(x) in v. The new
clause is equivalent to the previous, but smaller with respect to the literal ordering. When the context structure becomes
saturated, this rule ensures that all context clauses are reduced with respect to �v, which is a standard requirement for
completeness in paramodulation-based techniques.

• Rule Elim is used for redundancy elimination within a context. For instance, it will remove a clause G(x) → H(x) from v
if a clause > → H(x) is added to v. It also eliminates clauses with a literal s ≈ s or a disjunction s ≈ t ∨ s 0 t in the head.

The calculus also introduces inference rules involving two neighbouring contexts in the context structure.

• Rule Succ propagates information from v to successor contexts. The rule searches for successor triggers in v, which are
atoms in heads of context clauses that unify with atoms in the body of ontology clauses via a substitution mapping f (x) to
x. For these atoms, the Hyper rule cannot perform the corresponding inference, because it requires that variable x in the
ontology clause must unify with variable x in context clauses, as we discussed above. For instance, in Figure 2 we have
that atom B( f (x)) in the head of clause (16) unifies with the atom in the body of ontology clause (12), but the Hyper rule
cannot be applied to derive F( f (x)). Instead, the Succ rule propagates successor triggers to a successor context w, where
f (x) is replaced by x, and so the Hyper rule can be applied to these atoms in w.

A single application of the Succ rule to a context v selects a successor function symbol f mentioned in v and a set of
successor triggers in different clauses of v that mention f (x). This set is transformed via substitution { f (x) 7→ x, x 7→ y} to
a set K2 of the same form used for context cores. The Succ rule must then find a target context w representing (at least) all
instances of K2 in a model of O, and then add an f -labelled edge from v to w. For instance, in Figure 2, the application of
rule Succ identifies the set K2 = {B(x),R(y, x),C(x)} for term f (x) in vA from clauses (16), (17) and (22).

The Succ rule has a parameter called the expansion strategy which determines how to choose the target context w. The
core of w must satisfy corew ⊆ K2, for otherwise w may not represent all instances of K2 in a model of O. Furthermore,
recall that if there exists an f -labelled edge from v to w and corew is not empty, then every element represented by v must
have an f -successor represented by w in a model of O. Hence, the core of w must also satisfy corew ⊆ K1, where K1 is the
set of all atoms in K2 that appear in Horn clauses of the form > → A in v. In the application of Succ described above for
Figure 2, we have K1 = {B(x),R(y, x)}, from clauses (16) and (17).
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vA

>→ A(x) (15)
>→ B( f (x)) (16)
>→ R(x, f (x)) (17)
>→ D(x) ∨G(x) (18)
>→ D(x) ∨C(g(x)) (19)
>→ D(x) ∨ R(x, g(x)) (20)
>→ D(x) ∨ g(x) ≈ f (x) (21)
>→ D(x) ∨C( f (x)) (22)
>→ D(x) ∨ R(x, f (x)) (23)
>→ D(x) ∨ D1(x) (24)
>→ B(h(x)) (25)
>→ S (x, h(x)) (26)
>→ D2(x) (27)
>→ D(x) (28)

vB

>→ B(x) (38)
R(y, x)→ R(y, x) (39)

C(x)→ C(x) (40)
C(x)→ F1(x) (41)

R(y, x) ∧C(x)→ D1(y) (42)
S (y, x)→ S (y, x) (43)

>→ F2(x) (44)
S (y, x)→ D2(y) (45)

f

h

Figure 3: Context structure generated for O1 and Q1 using the cautious expansion strategy. The core of vA is {A(x)}, and the core of vB is {B(x)}.

The expansion strategy takes as input the conjunction K1 and the function symbol f , and it outputs corew and a decision
as to whether w should be created fresh or selected from those already in the context structure. Bate et al. [11] describe
three examples of expansion strategies:

– The trivial expansion strategy always chooses a fixed context v> with empty core as the target context. If the Succ
rule is triggered and v> is not already in the context structure, then it is created fresh. Since corev> = {}, we trivially
have corev> ⊆ K1 for any K1.

– The eager expansion strategy chooses, for a given K1, a fixed context vK1 with corevK1
= K1. Similarly to the previous

case, if the Succ rule is triggered for some K1 and vK1 is not already in the context structure, then it is created fresh.
The application of Succ on vA and f illustrated in Figure 2 uses the eager expansion strategy. Context vR,B with
corevR,B = {B(x),R(y, x)} is created, since it did not exist previously.

– The cautious expansion strategy first checks, for a given K1 and f , whether f occurs in a single atom of the form
B( f (x)) in O such that B(x) ⊆ K1. If this is the case, it selects a fixed context vB with corevB = {B(x)}, creating it if it
does not exist already. Otherwise, it selects the context v> defined as in the trivial strategy. This strategy is designed
to mimic the EL calculus of [2]. Figure 3 shows an alternate version of our running example for O1 and Q1 where
Succ is applied to f and vA with the cautious strategy.

The choice of expansion strategy can be guided by practical considerations. Expansion strategies that generate a larger
number of contexts are more goal-oriented, since they produce contexts with smaller numbers of clauses, and they make
context clauses simpler; these factors help in the application of Hyper and paramodulation rules. However, strategies that
generate a smaller number of contexts produce fewer repeated consequences. We refer the reader to [59] and [11] for
further discussion about expansion strategies.

Once the target context w has been identified, and the corresponding f -labelled edge has been added, the Succ rule adds
a clause A → A to w for each A ∈ K2\corew. This is necessary to compute all relevant consequences for instances of K2
in models of O. In our example from Figure 2, K2\corevR,B = {C(x)}, so the rule adds clause (31). Indeed, vR,B represents
all instances of {B(x),R(y, x)} in models of O1, but we need to explore the consequences for those instances which also
satisfy C(x). By adding clause (31) to vB, its head atom C(x) becomes available for further inferences, which will produce
clauses with C(x) in the body capturing consequences for instances of K2 in models of O1. Similarly, in our example from
Figure 3, we have K2\corevB = {R(y, x),C(x)}, so now the Succ rule adds clause (40) as well as clause (39) to vB.

A subsequent application of the Succ rule to vA can use function symbol h instead. This can happen after clauses (25)
and (26) have been derived via Hyper from clause (15) and ontology clauses (4) and (5), respectively. In this case,
K2 = K1 = {S (y, x), B(x)}. In Figure 2, the eager expansion strategy creates a new context vS ,B. In contrast, in Figure 3 the
cautious expansion strategy re-uses the context vB with core B(x), and clause (43) is added because S (y, x) ∈ K2\corevB ,
together with an h-labelled edge from vA to vB.

• Rule Pred complements Succ by propagating back to v information from its successors. For this, assume that we can
identify a successor function symbol f and a corresponding set K2 in a context v as in the Succ rule. Furthermore, let w
be a successor of v connected via an f -labelled edge. The Pred rule is triggered when there is a clause in w of the form
K2 → ∆, where each literal in ∆ is a predecessor trigger, namely a literal that holds relevant information for v. Predecessor
triggers can be of three kinds. The first kind consists simply of the equation x ≈ y, showing that entities represented by w
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and v are identical in every model. The second kind comprises atoms that unify with atoms in the body of ontology clauses
via a substitution mapping y to x; these atoms must be propagated to v, where y becomes x, and hence the Hyper rule can
be applied to them in v. The third kind consists of atoms of the form B(y), for any B ∈ ΣA; since the corresponding atom
B(x) might appear in the head of a query clause, they need to be propagated to v to ensure completeness of the calculus.

To propagate the atoms in ∆ back to v, the Pred rule applies a hyperresolution step using as side premises the clauses of v
that produce the atoms of K2, and the clause K2 → ∆ as the main premise. We illustrate an example of this in Figure 2. To
reach the state where Pred can be applied, first clauses (29) and (30) are derived by the Core rule and then the Hyper rule
produces clause (32) from clauses (29) and (31) and ontology clause (10), as well as clause (33) from clauses (30) and (32)
and ontology clause (11). Now, the only atom in the head of clause (33) is a unary atom mentioning y, so the Pred rule is
triggered using this clause as the main premise, and clause (22) as side premise, and it produces clause (24) in vA. Notice
that the elided core atoms B(x) and R(y, x) in the body of clause (33) are implicitly resolved with those in clauses (16)
and (17), respectively. Similarly, in context vS ,R, first clauses (34) and (35) are derived by the Core rule, and then the
Hyper rule produces clause (36) from clause (34) and ontology clause (12), followed by clause (37) from clauses (35)
and (36) and ontology clause (13). Since the only atom in the head of clause (37) mentions y and the body of this clause is
empty, the Pred rule can be applied to derive clause (27) in vA. From here, a simple application of Hyper to clauses (24)
and (27) and ontology clause (14) produces clause (28), which we will be enough to prove the query target.

Compare the execution of the calculus described in the previous paragraph with Figure 3. The derivations via Hyper of
clause (41) and clause (42) are analogous to the previous case. When the Pred rule is triggered by clause (42), however, we
need two side premises in vA, namely clause (22) and clause (23), and this produces again clause clause (24) in vA. Observe
also that the inferences performed in context vS ,R of Figure 2 are now performed in the same context vB of Figure 3. Indeed,
the Hyper rule produces clause (44) from clause (43) and ontology clause (12), followed by clause (45) from clauses (43)
and (44) and ontology clause (13). Finally, the Pred rule is triggered on clause (45) with clause (26) as a side premise to
derive clause (27) in vA, and then clause (28) is obtained as before.

The context structure will become saturated after a finite number of steps if the expansion strategy introduces a finite number
of contexts for a given (finite) signature, because no inference rule is applied twice. The trivial, eager, and cautious strategies
all introduce a finite number of contexts for a given signature, so the calculus is terminating if either of them is used. There
exist, however, expansion strategies that can produce an infinite number of contexts. For instance, consider a variant of the eager
strategy which creates a new context w with corew = K1 every time Succ is triggered for some K1. Then, if we extend O1 with
clauses expressing the DL-axiom A v ∃R.A, namely A(x) → A(h′(x)) and A(x) → R(x, h′(x)), the strategy will generate an
infinite number of contexts in Figure 2, each with core {A(x),R(y, x)}.

Once the context structure is saturated, the soundness property of the calculus ensures that derived context clauses are indeed
logical consequences of the ontology: if Γ → ∆ is a clause in v, then O |= corev ∧ Γ → ∆. In our example from Figure 2, we
deduce O1 |= Q1 from clause (28). Conversely, the completeness property ensures that if O |= Q, then each properly initialised
context v will contain clause Q up to redundancy. In particular, the initialisation requirements for completeness are: (i) having
clauses of the form A → A up to redundancy in v for each A ∈ ΓQ\corev; and (ii) ensuring that the order �v does not block
relevant inferences in v, by making the atoms in ∆Q as small as possible, analogously to the answer literal technique in [21].
Therefore, a typical method for CB reasoning will introduce a context structure vQ with corevQ = ΓQ and an order �vQ making
smallest the atoms in ∆Q. Then, > → ∆Q will be contained up to redundancy in vQ if and only if O |= Q.

This calculus is worst-case optimal forALCHIQ+ and runs in polynomial time on ELH ontologies. One-pass classification
can be achieved by initialising the context structure with a context vAi with corevi = Ai(x) for each unary predicate Ai in O.
Goal-oriented behaviour results from initialising the context structure with contexts representing elements of a model of O that
disprove Q, adding (or reusing) contexts only on demand, and applying resolution rules only to clauses in the same context.
This behaviour imitates forward chaining as used in (hyper-)tableau-based calculi, which typically introduce a fresh individual
c, define a model fragment which satisfies atom A(c) and literal ¬D(c), and then resolve A(c) with ontology clauses in order to
generate new ground facts.

3.2. Reconciling Nominals with Local Reasoning

Reasoning in CB calculi is essentially local. On the one hand, contexts exchange information only with their neighbours; on
the other hand, context clauses mention only terms x, f (x), and y, where the latter variable appears only in clauses with body
atoms of the form S (y, x) or S (x, y). Breaking up inferences into local clauses has important benefits.

1. Similar resolution inferences can be combined into a single CB inference. For instance, in our example from Section 3.1,
individual resolution steps can be applied to clause (12) and each of clauses (2) and (4) to yield clauses A(x) → F2( f (x))
and A(x) → F2(h(x)), respectively. In contrast, in Figure 3, these two inferences are carried out simultaneously in context
vB, when rule Hyper is applied to clause (38) and ontology clause (12) to derive clause (44).
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A v ∃R.B  
A(x) → B( f (x)) (46)
A(x) → R(x, f (x)) (47)

B v F t D2  B(x) → F(x) ∨ D2(x) (48)

A v ∃R.C  
A(x) → C(g(x)) (49)
A(x) → R(x, g(x)) (50)

C v ∃R.G  
C(x) → G(h(x)) (51)
C(x) → R(x, h(x)) (52)

G v D1  G(x) → D1(x) (53)
D1 u D2 v ⊥  D1(x) ∧ D2(x) → ⊥ (54)
∃R.F v F  R(z1, x) ∧ F(x) → F(z1) (55)

Figure 4: Ontology clauses for O2 are represented together with their corresponding equivalentALCHIQ axioms.

vA

>→ A(x) (56)
>→ B( f (x)) (57)
>→ R(x, f (x)) (58)
>→ C(g(x)) (59)
>→ R(x, g(x)) (60)

vR,B

>→ B(x) (61)
>→ R(y, x) (62)
>→ F(x) ∨ D2(x) (63)
>→ F(y) ∨ D2(x) (64)

vR,C

>→ C(x) (65)
>→ R(y, x) (66)
>→ D1(h(x)) (67)
>→ R(x, h(x)) (68)

vR,G

>→ G(x) (69)
>→ R(y, x) (70)
>→ D1(x) (71)

f

g

h

Figure 5: Context structure generated for O2 and query A(x)→ F(x) using the eager expansion strategy. The core of vA is {A(x)}, the core of vR,B is {B(x),R(y, x)},
the core of vR,C is {C(x),R(y, x)}, and the core of vR,G is {G(x),R(y, x)}.

2. Context structures used for checking entailment of a query clause Q can be reused for checking entailment of other query
clauses. The context structures in Figures 2 and 3 were created while checking O1 |= A(x)→ F(x), but they can be reused,
for instance, to check whether O1 |= B(x)→ F2(x).

3. It ensures that the number of clauses that can be derived within each context is bounded, which simplifies both termination
and complexity arguments.

The presence of nominals in the ontology, however, requires some form of non-local reasoning. To illustrate this, we use
a new example where we check whether O2 |= A(x) → F(x), for O2 the ontology in Figure 4, using the ALCHIQ+ calculus
outlined in Section 3.1. We first introduce a single context vA with corevA = {A(x)}, and then we apply the inference rules of the
calculus with the eager expansion strategy, as in the example in Figure 2. This results in the context structure shown in Figure 5.

LetO′2 be the ontology extendingO2 with the following clauses (which we also provide in the form ofALCHOIQ+ axioms):

D1 v {o}  D1(x) → x ≈ o (72) D2 v {o}  D2(x) → x ≈ o (73)

It is easy to verify that O′2 |= A(x) → F(x). Indeed, if I is a model of O′2 and c is an arbitrary instance of A(x) in I, then
f (c) is an instance of the core {R(y, x), B(x)} and h(g(c)) is an instance of {R(y, x),G(x)} in I. By soundness of the calculus and
the fact that O2 ⊆ O

′
2, clause (63) guarantees that every instance of {R(y, x), B(x)} in I is an instance of either F(x) or D2(x).

Similarly, clause (71) ensures that every instance of {R(y, x),G(x)} in I is an instance of D1(x). However, ontology clauses (54),
(72) and (73) together imply that D1(x) and D2(x) cannot be both realised in I. Therefore, f (c) must be an instance of F(x) in I.
By clause (55), this implies I |= F(c), and therefore we conclude I |= A(x)→ F(x).

This example suggests that a complete CB procedure for ALCHOIQ+ should perform inferences that involve clauses (63)
and (71), as well as ontology clauses (54), (72) and (73). The problem lies in the fact that clauses (63) and (71) belong to contexts
that are not adjacent, which seems to require some form of non-local reasoning.

Our solution addresses this issue in a way that preserves the aforementioned benefits of local reasoning in previous CB
calculi. The key idea is to allow constants to appear in context clauses, and then make sure that relevant literals with constants,
including ground atoms, can be freely propagated from context to context. We also introduce new inference rules that perform
ground atom resolution between clauses in the same context. All these new inference rules still involve at most two contexts, and
non-ground terms in context clauses preserve the same form as in theALCHIQ+ calculus.

For example, our calculus can prove O′2 |= A(x) → F(x) as follows. First, it generates the context structure in Figure 5 in
the same way as the ALCHIQ+ calculus. Then, it uses the Hyper rule to derive > → x ≈ o in context vR,G from clause (71)
and ontology clause (73). This clause is propagated to vR,C as > → h(x) ≈ o, where we can perform a paramodulation with
clause (67) to derive a clause > → D1(o) in vR,C . This clause shows that every model of O′2 that realises {R(y, x),C(x)} must
satisfy D1(o). Then, the inference rules of our calculus allow us to propagate this clause to vA. Clause > → D1(o) in vA shows
that every model of O′2 that realises {A(x)} must satisfy D1(o). Using a similar sequence of inferences, the calculus derives a
clause > → F(x) ∨ D2(o) in vA, representing that if some instance of A(x) in a model of O′2 is not also an instance of F(x),
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then the model satisfies D2(o). Finally, the calculus implements a ground resolution step with ontology clause (54) and clauses
> → D1(o) and > → F(x) ∨ D2(o) in vA, which produces > → F(x) in vA. This suffices to prove the target query.

Our calculus also introduces a root context to carry out inferences involving ground atoms and ontology clauses, which can
then be propagated to other contexts if necessary. For instance, if we add a clause > → A(o) to O′2, the calculus will initialise
the root context and copy this clause in it. Next, using a procedure analogous to our previous example, the calculus will derive a
clause > → F(o) in the root context, which then can be propagated to other contexts.

3.3. Interaction of I, Q, and O.

Extending ALCHIQ with nominals presents well-known additional difficulties for reasoning; these are caused by the in-
teraction between nominals, inverse roles, and number restrictions [44, 26]. The following example shows how this interaction
compromises the forest model property of DLs. Consider the ontology O′′2 extending O2 with the following clauses, which use
inverse roles (clauses (79) and (80)), number restrictions (clause (81)), and nominals (clause (78)):

D1 v ∃S .D  
D1(x) → D( f1(x)) (74)
D1(x) → S (x, f1(x)) (75)

D2 v ∃S .D  
D2(x) → D( f2(x)) (76)
D2(x) → S (x, f2(x)) (77)

D v {o}  D(x) → x ≈ o (78)
S v U−  S (z, x) → U(x, z) (79)
U v S −  U(z, x) → S (x, z) (80)
> v 6 1 U.>  U(x, z1) ∧ U(x, z2) → z1 ≈ z2 (81)

In proving O′′2 |= A(x)→ F(x), clauses (74) through (81) interact in a non-trivial way. Let I be an arbitrary model of O′′2 , and
let c be an arbitrary instance of D1(x). By clause (74), f1(c) is an instance of D(x) in I. However, by clause (78), f1(c) must be
equal to o. Furthermore, by clause (75), we have I |= S (c, o), and therefore by clause (79), I |= U(o, c). This implies, together
with clause (81), that D1(x) has at most one instance in I. A symmetric argument applies to D2(x). Moreover, if c1 is an instance
of D1(x), and c2 is an instance of D2(x), then c1 and c2 must be identical. Hence, the behaviour of clauses (74) through (81)
reproduces that of clauses (72) and (73) in our previous example.

Atoms D1(x) and D2(x) function as nominals in O′′2 , except that they need not be realised in each model of the ontology.
As a result, the simple form of forest model property enjoyed by ExpTime DLs lacking either inverse roles, number restrictions
or nominals no longer holds. In such DLs, satisfiable ontologies always have a model consisting of a “cloud” of arbitrarily
interconnected elements representing constants, a collection of tree-shaped fragments rooted in elements of this cloud, and role
links between these two parts of the model. The proofs of correctness and completeness for tableau, resolution, and CB algorithms
rely on this property. In our example, however, an instance c of D1(x) or D2(x) may be connected to any other element in the
model, including those that do not represent constants and lie in different tree-shaped fragments.

The tableau algorithm in [26] and the resolution calculus in [38] address this issue in a similar way: they introduce rules that
name anonymous domain elements connected to a nominal o via a role R whenever the inverse of R is constrained by an at-most
number restriction. The tableau calculus directly introduces fresh elements acting as named individuals in a model, whereas
the resolution calculus introduces new constants that may have different interpretations in different models. Furthermore, when
applying an at-most number restriction with integer n, the tableau algorithm guesses the number of individuals (up to n) to
be introduced, whereas the resolution calculus introduces n constants, and it may later derive equalities between them. Fresh
nominals may themselves trigger the introduction of new nominals; both calculi must ensure that the generation of nominals is
bounded to guarantee termination.

Our CB calculus follows a similar approach to the resolution calculus in [38]. It introduces a rule Nom that generates new
constants to represent anonymous elements behaving like nominals. This rule first searches for two atoms of the form B(o) and
S (o, x) in heads of two distinct clauses in the same context such that there is an ontology clause of the form DL4 in Table 1 with
B = B1 and S = S B2 . The rule then combines these two clauses and replaces atoms B(o) and S (o, x) with an equality of the
form x ≈ oS 1 ∨ . . . ,∨x ≈ oS n , where each oS i is a constant not mentioned in the ontology, and n + 1 is the number of neighbour
variables in the corresponding ontology clause. Intuitively, oS i is interpreted as a domain element t satisfying S (o, t) in models
where such t exists, and it is interpreted arbitrarily in all other models. The string S i annotating the constant, which we call a
nominal label, indicates that oS i is a successor of o via S generated by the Nom rule. The rule introduces n constants of this form,
distinguished by the indices i, since no more than n successors of o via S may exist in a model. The precise interpretation of each
constant oS i is not fixed, and in a model of the ontology some of these constants may be equal. Rule Nom can also be applied
to atoms mentioning a constant oρ introduced in a previous inference, with ρ a nominal label. In this case, the nominal labels of
the newly introduced constants will be of the form ρ · S i, where the suffix S i is appended to ρ to indicate the relevant information
associated to the latest application of the rule. To ensure termination, our calculus imposes a depth limit on the length of nominal
labels; furthermore, we establish lower bounds on such depth limit ensuring completeness.

To illustrate how the rule Nom works, we provide a rough sketch of how our calculus can prove O′′2 |= A(x) → F(x) using
the eager strategy. First, we generate again the context structure in Figure 5. Then, following a chain of inferences similar to
those used in Section 3.2 to derive > → D1(o) in vR,C , our calculus derives a clause of the form > → U(o, x) in context vR,G.
This clause represents that, in every model of O′′2 that realises {R(y, x),G(x)}, the interpretation of o is connected by role U to
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each instance of {R(y, x),G(x)}. In such cases, by clause (81), there can be only one instance of {R(y, x),G(x)}. To capture this
nominal-like behaviour, our calculus uses the Nom rule to introduce a clause > → x ≈ oU1 in vR,G. Constant oU1 represents the
only successor of o by U, so the context clause claims that all instances of {R(y, x),G(x)} in a model of O′′2 must be identical
to oU1 . The calculus then uses this clause in the same way as clause > → x ≈ o in vR,G in the example from Section 3.2 to
derive > → D1(oU1 ) in context vA. A similar chain of inferences yields clause > → F(x) ∨ D2(oU1 ) in vA, and then the rules
implementing ground resolution derive > → F(x), as in Section 3.2.

4. The Consequence-Based Calculus forALCHOIQ+

In this section we formalise our calculus for ALCHOIQ+, which we have informally described in Section 3. Our calculus
is designed such that, in the absence of nominals, it behaves identically to the calculus forALCHIQ+ from [11].

In Section 4.1 we introduce the notion of context structure and define the inference rules of the calculus. In Section 4.2 we
establish its soundness and completeness. In Section 4.3 we define a variant of the calculus designed for Horn ontologies with
nominals, and finally in Section 4.4 we illustrate the calculus on two fully worked out examples. We fix in the remainder of this
section an arbitraryALCHOIQ+ ontology O over a DL signature Σ.

4.1. Context Structures and Inference Rules
We start the description of our calculus by defining the notion of a nominal label attached to a constant.

Definition 1 (Nominal Labels). The set of nominal labels consists of the empty string ε and each string ρ of the form S i1
1 · S

i2
2 ·

. . . · S in
n , with {n, i1, . . . , in} ⊆ N, and S k ∈ ΣS for each 1 ≤ k ≤ n.1 The length of a nominal label ρ is represented as |ρ|. We define

Σu as the subset of all constants of the form oρ, where o ∈ Σc and ρ is a nominal label.

Observe that each constant o in O is in Σu since it can be written as oε . We distinguish between original constants of the form
oε and auxiliary constants of the form oρ with ρ , ε. The depth of an auxiliary constant oρ is defined as |ρ|.

We next define the notions of context term, context atom, and context clause, which extend those in [59, 11] by allowing for
the occurrence of constants.

Definition 2 (Context terms, atoms and clauses). A context a-term is a term of the form x, y, f (x), u, or f (u), where f ∈ Σ f and
u ∈ Σu. A context p-term is a term of one of the following forms:

• B(t), S (x, t), or S (t, x), with B ∈ ΣA, S ∈ ΣS , and t a context a-term of the form x, y, f (x), or u, with f ∈ Σ f and u ∈ Σu; or

• B(t), S (u, t), or S (t, u), where S ∈ ΣS , u ∈ Σu, and t is either in {y} ∪ Σu or of the form f (u) for some f ∈ Σ f .

A context atom is an equality of the form A ≈ true, where A is a context p-term. A context literal is either a context atom, or an
expression of the form l ./ r, where l and r are a-terms and ./ ∈ {≈,0}.

Finally, a context clause is a clause where the head contains only context literals, and the body contains only context atoms,
or equalities of the form u1 ≈ u2 with u1, u2 ∈ Σu.

Let ΣOf , ΣOA , ΣOS be the subsets of Σ f , ΣA, and ΣS containing all elements mentioned in O for each respective set. Furthermore,
let ΣOu be the subset of Σu containing exactly every constant oρ such that o is in O and all binary predicates in ρ are in O. We are
now ready to introduce context structures. Similarly to [11], context structures define a context order for each context, which is
used to compare terms and literals. Unlike previous CB calculi, however, our calculus introduces a distinguished root context,
and allows for equalities between constants to occur in the body of context clauses.

Definition 3 (Context Structure). A context structure for O is a tupleD = 〈V,E, core,S, θ〉, where:

• V is a finite set of contexts containing a distinguished root context vr;

• E is a subset ofV ×V × (ΣOf ∪ ΣOu );

• core is a function that maps the root context vr to the empty set and each other context in V to a (possibly empty) set of
context atoms of the form B(x), S (x, y), S (y, x), or S (x, x), for B ∈ ΣOA and S ∈ ΣOS ;

• S is a function that maps vr to a set Svr of context clauses in the signature of O that do not contain variable x, and each
v , vr to a set of clauses in the signature of O that do not contain terms of the form f (u) for f ∈ ΣOf and u ∈ ΣOu ; and

• θ is a function that maps each context v ∈ V to a strict order �v on terms, which we call a context order.

1Please note that the numbers i1, . . . , in are simply labelling indices, so they do not represent exponentiation of the symbols S 1, . . . , S n, respectively.
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C
or

e If A ∈ corev,
then add > → A to Sv.

H
yp

er

If
∧n

i=1 Ai → ∆ ∈ O,
σ is a substitution such that σ(x)= x if v , vr, and σ(x)∈ ΣOu otherwise,
Γi → ∆i ∨ Aiσ ∈ Sv with ∆i �v Aiσ, for 1 ≤ i ≤ n,

then add
∧n

i=1 Γi →
∨n

i=1 ∆i ∨ ∆σ to Sv.
E

q

If Γ1 → ∆1 ∨ s1 ≈ t1 ∈ Sv with t1 �v s1 and ∆1 �v s1 ≈ t1,
Γ2 → ∆2 ∨ s2 ./ t2 ∈ Sv with t2 �v s2 and ∆2 �v s2 ./ t2, where ./ ∈{≈,0},
p is a position such that s2|p = s1, and s1 ≈ t1 is not of the form x ≈ y or y ≈ u,
if s2|p = x then s2 contains no f ∈ ΣOf and no y,

then if v = vr and s1 ∈ Σu, add Γ1 ∧ Γ2 → ∆1 ∨ ∆2 ∨ s2[s1/t1] ./ t2 to Sv,
and otherwise add Γ1 ∧ Γ2 → ∆1 ∨ ∆2 ∨ s2[t1]p ./ t2 to Sv.

In
eq If Γ→ ∆ ∨ t 0 t ∈ Sv,

then add Γ→ ∆ to Sv.

Fa
ct

or If Γ→ ∆ ∨ s ≈ t1 ∨ s ≈ t2 ∈ Sv with t2 �v s and ∆ ∨ s ≈ t1 �v s ≈ t2,
then add Γ→ ∆ ∨ t1 0 t2 ∨ s ≈ t2 to Sv.

E
lim

If Γ→ ∆ ∈ Sv,
Γ→ ∆ ∈̂ Sv\{Γ→ ∆},

then remove Γ→ ∆ from Sv.

Jo
in

If Γ1 → ∆1 ∨ A ∈ Sv with ∆1 �v A,
where A is a ground atom or equality of the form u1 ≈ u2 for distinct u1, u2 ∈ ΣOu ,
A ∧ Γ2 → ∆2 ∈ Sv,

then add Γ1 ∧ Γ2 → ∆1 ∨ ∆2 to Sv.

N
om

If B1(x) ∧
∧n+1

i=1 S B2 (x, zi)→
∨

1≤ i< j≤ n zi ≈ z j ∈ O,
Γ1 → ∆1 ∨ B1(oρ) ∈ Sv with ∆1 �v B1(oρ), for some oρ ∈ ΣOu with |ρ| < Λ,
Γ2 → ∆2 ∨ S B2 (oρ, x) ∈ Sv with ∆2 �v S B2 (oρ, x),

then add Γ1 ∧ Γ2 → ∆1 ∨ ∆2 ∨
∨n

i=1 x ≈ oρ·S i
B2

to Sv.

Table 2: Single-context inference rules from our calculus for O and an arbitrary context v ∈ V. To avoid clutter, we have omitted the precondition Γ → ∆ 6∈̂ Sv
from each inference rule except Elim, where Γ→ ∆ is the conclusion in the inference rule.

We next introduce the inference rules of our calculus, starting with the rules that can be independently applied to each context.
The single-context rules of our calculus are given in Table 2.

Let v be an arbitrary, fixed context ofV. Rules Core, Hyper, Eq, Ineq, Factor, and Elim are analogous to the corresponding
rules in theALCHIQ+ calculus [11]. Rule Hyper has been modified so that, whenever it is applied to the root context vr, variable
x in ontology clauses must unify with a constant in ΣOu . This stands in contrast to the behaviour of the rule for non-root contexts,
where variable x in ontology clauses must unify with variable x in context clauses. Rules Eq, Ineq, and Factor implement
paramodulation-based equality reasoning as in [11]; however, in our calculus the Eq rule can be used to replace x with a constant
in ΣOu or vice-versa. Rule Join implements a simple ground resolution step between two clauses in the same context. Finally, rule
Nom introduces auxiliary constants when it detects a simultaneous interaction of an inverse role, an at-most number restriction,
and a nominal as discussed in Section 3.3. The application of the Nom rule is constrained by the depth limit Λ—a parameter of
the calculus which is used to ensure that no auxiliary constants of depth greater than Λ are introduced in the context structure.
The existence of such limit on the depth of auxiliary constants is crucial to ensure termination.

Next, we will define multi-context inference rules, which exchange information between contexts. As in [11], we first identify
trigger sets of literals that may trigger the application of a multi-context inference rule. The set of successor triggers contains
literals in a context v which can trigger propagation of information to non-root successors of v along edges labelled by symbols
of ΣOf . Conversely, the set of predecessor triggers contains literals that need to be propagated from a non-root context v to its
predecessor w. Our definition of successor and predecessor trigger sets extends that in [11] to include ground atoms, equalities
between elements of ΣOu , and equalities of the form x ≈ u and y ≈ u for any u ∈ ΣOu . Additionally, we define two new trigger sets
to deal with exchanges of information involving the special root context. The set of root successor triggers contains literals that
trigger propagation of information from a non-root context v to vr along edges labelled with symbols of ΣOu . Conversely, the set
of root predecessor triggers contains literals that trigger propagation of information from vr to its non-root predecessors.

Definition 4 (Triggers). The set of successor triggers Su(O) for O consists of:

1. atoms B(x) and {B(u) | u ∈ ΣOu } for each atom of the form B(x) in the body of a clause in O;

2. atom S (x, y) for each atom of the form S (x, zi) with i ∈ N in the body of a clause in O;

3. atom S (y, x) for each atom of the form S (zi, x) with i ∈ N in the body of a clause in O;
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4. atoms S (u1, u2) for each pair {u1, u2} ⊆ ΣOu and predicate S mentioned in the body of a clause in O; and

5. each equality of the form u1 ≈ u2 with {u1, u2} ⊆ ΣOu .

The set of predecessor triggers Pr(O) for O consists of:

1. atoms B(y) and {B(u) | u ∈ ΣOu } for each unary predicate B ∈ ΣOA;

2. atom S (x, y) for each atom of the form S (zi, x) with i ∈ N in the body of a clause in O;

3. atom S (y, x) for each atom of the form S (x, zi) with i ∈ N in the body of a clause in O;

4. atoms S (u1, u2) for each pair {u1, u2} ⊆ ΣOu and predicate S mentioned in the body of a clause in O; and

5. equality x ≈ y, and each equality of the form x ≈ u, y ≈ u, or u1 ≈ u2 with u, u1, u2 ∈ ΣOu .

The set of root successor triggers Sur(O) for O consists of each literal of the form B(u), S (y, u), S (u, y), S (u1, u2), and u1 ≈ u2,
with B ∈ ΣOA , S ∈ ΣOS , and {u, u1, u2} ⊆ ΣOu . The set of root predecessor triggers Prr(O) for O extends Sur(O) with each atom of
the form B(y) with B ∈ ΣOA , and each equality of the form y ≈ u with u ∈ ΣOu .

The policy for reusing a context or creating a new context when expanding the context structure is determined by an expansion
strategy, which we define in the same way as in [59, 11].

Definition 5. An expansion strategy strat for O is a function which takes as input a triple ( f ,K1,D), where f ∈ ΣOf , K1 ⊆ Su(O),
and D = 〈V,E,S, core, θ〉 is a context structure for O, and returns a triple (v, core,�) where core ⊆ K1, � is a context order,
and either v < V (i.e. is a new context) or otherwise v ∈ V with v , vr, core = corev and � = �v.

The trivial strategy [59] does not introduce new contexts, and always reuses the trivial context v> with an empty core; it is
defined as triv( f ,K1,D) = 〈v>, ∅,�>〉, where �> is an arbitrary context order. The eager strategy [59] never reuses contexts,
and introduces instead a fresh context for every K1; it is defined as eager( f ,K1,D) = 〈vK1 ,K1,�K1〉, where �K1 is an arbitrary
context order, and both vK1 and �K1 are uniquely determined for each K1. We refer the reader to Section 3 and to [59] and [11]
for additional examples of expansion strategies and a discussion of their comparative strengths and weaknesses.

Table 3 shows the multi-context inference rules of our calculus. Rules Succ and Pred are analogous to the corresponding
rules in [11]. As in the case of Hyper, these rules have been adapted to ensure that the correct substitution is used whenever they
propagate information from the root context to a non-root successor, or from a non-root successor to the root context (acting as
predecessor). Ground literals receive a special treatment in rule Pred: if they appear in the head of a clause to be propagated to
a predecessor context, they are added to the head of the corresponding clause in the predecessor. Similarly, if ground atoms or
equalities appear in the body of a clause to be propagated by Pred, they can be added to the body of the corresponding clause
in the predecessor. This allows us to propagate ground atoms between contexts, which we need in order to simulate non-local
reasoning, as discussed in Section 3.2. To ensure soundness of the Pred rule when it propagates clauses from a non-root context
v to vr, we require that the atoms of corev should appear maximally in clauses of vr, and in a suitably grounded form. Finally, we
introduce two new rules to address the case where the root context is acting as a successor of a non-root context. Rule r-Succ
propagates relevant literals forward to the ground context, and works analogously to the Succ rule. Rule r-Pred propagates
relevant literals backward from the root context to general contexts, and it works analogously to Pred.

A (possibly infinite) sequence of rule applications to a context structure D0 for O defines a derivation (D0,D1, . . . ) with
respect to O where, for each i ≥ 0, Di+1 is a context structure for O obtained by applying a rule from Tables 2 and 3 to Di. A
context structureD for O is derivable fromD0 if there exists a finite derivation (D0,D1, · · · ,D).

4.2. Soundness and Completeness

In this section we state the soundness and completeness claims for our calculus. Proofs of these claims are given in Appendix
B and Appendix D, respectively.

As in previous CB calculi, we define a notion of soundness for a context structure ensuring that derived clauses correspond
to logical consequences of O.

Definition 6 (Sound Context Structure). Given a context structureD = 〈V,E, core,S, θ〉 for O, let CD be the set containing the
following clause for each ontology clause of the form DL4 from Table 1 in O and each oρ ∈ Σu occurring inD:

B1(oρ) ∧ S B2 (oρ, x)→
n∨

i=1

x ≈ oρ·S i
B2
. (82)

We say thatD is sound if the following conditions hold:
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S
uc

c

If Γ→ ∆ ∨ A ∈ Sv where ∆ �v A,
if v , vr then A contains f (x) and otherwise A contains f (u) for u ∈ ΣOu ,
there is no 〈v,w, f 〉 ∈ E such that A′ → A′ ∈̂ Sw for each A′ ∈ K2\corew,

then let 〈w, core′,�′〉 = strat( f ,K1,D),
if w < V then add w toV, set corew = core′, �w =�′, and Sw = ∅,
if 〈v,w, f 〉 < E then add 〈v,w, f 〉 to E,
if v = vr, and 〈v,w, u〉 < E then add 〈v,w, u〉 to E,
add A′ → A′ to Sw for each A′ ∈ K2\corew,

where if v , vr then σ = {y 7→ x, x 7→ f (x)} and otherwise σ = {y 7→ u, x 7→ f (u)},
K1 = {A′ ∈ Su(O) | A′ mentions xσ and > → A′σ ∈ Sv},
K2 = {A′ ∈ Su(O) | Γ′ → ∆′ ∨ A′σ ∈ Sv} and ∆′ �v A′σ.

P
re

d

If v , vr, and there is 〈w, v, f 〉 ∈ E,∧m
i=1 Ai ∧

∧n
i=1 Ci →

∨k
i=1 Li ∈ Sv, where if w , vr then Li ∈ Pr(O) for each

non-ground Li, and if w = vr then for each non-ground Li

either Li ∈ Pr(O) or it is of the form S (x, u) or S (u, x),
Ai is ground for 1 ≤ i ≤ m,
Γi → ∆i ∨Ciσ ∈ Sw with ∆i �w Ciσ for 1 ≤ i ≤ n′,

then add
∧n′

i=1 Γi ∧
∧m

i=1 Ai →
∨n′

i=1 ∆i ∨
∨k

i=1 Liσ to Sw,
where if w , vr then σ = {y 7→ x, x 7→ f (x)}, and n′ = n,

and otherwise σ = {y 7→ u, x 7→ f (u)} for some u ∈ ΣOu , and {Cn+1, . . . ,Cn′ } = corev.

r-
S

uc
c

If v , vr,
Γ→ ∆ ∨ Aσ ∈ Sv where ∆ �v Aσ with σ = {y 7→ x}, A ∈ Sur(O) and contains u ∈ ΣOu ,
there is no 〈v, vr, u〉 ∈ E such that A→ A ∈̂ Svr ,

then add 〈v, vr, u〉 to E,
add A→ A to Svr .

r-
P

re
d

If
∧n

i=1 Ci →
∨k

i=1 Li ∈ Svr ,
Li ∈ Prr(O) for each nonground Li,
Ci ∈ Sur(O), and ui is the named individual in Ci; and
there is 〈v, vr, ui〉 ∈ E for each ui such that
Γi → ∆i ∨Ciσ ∈ Sv where ∆i �v Ciσ and σ(y) = x,

then add
∧n

i=1 Γi ∧
∧m

i=1 Ai →
∨n

i=1 ∆i ∨
∨k

i=1 Liσ to Sv.

Table 3: Multi-context inference rules from our calculus for O. To avoid clutter, we have omitted the precondition Γ → ∆ 6∈̂ Sv from Pred, and r-Pred, where
Γ→ ∆ is the conclusion in each rule.

S1. O ∪ CD |= corev ∧ Γ→ ∆ for each v ∈ V and Γ→ ∆ in Sv; and

S2. O ∪ CD |= corev → corew{x 7→ f (x), y 7→ x} for each 〈v,w, f 〉 ∈ E such that v , vr.

Clauses of the form (82) ensure that auxiliary constants have the intended meaning described in Section 3.3. Furthermore,
whenever corew is empty, the expression corev → corew{x 7→ f (x), y 7→ x} is equal to corev → >, which is trivially satisfied by
any interpretation. Observe that condition S2 does not apply if v = vr; this is due to the fact that outgoing edges from vr define
successors only for specific constants mentioned in vr, and not necessarily for every individual represented by vr.

Theorem 1 (Soundness). Given a context structure D for O which is sound and an expansion strategy for O, the application of
a rule from Table 2 or Table 3 toD yields a context structure for O that is also sound.

To ensure completeness (i.e., that all relevant inferences are derived), we need to impose certain admissibility conditions on
context orders, which extend those presented in [11]. For instance, all context orders in a context structure must agree on how
constants are ordered, and constants with longer nominal labels should be greater than constants with shorter nominal labels to
ensure well-foundedness. Variables x and y may represent model elements that can be equal, smaller, or greater than constants;
thus, we require that the order must not compare variables x and y with any u ∈ Σu. Finally, as in [11], Condition 5 in the
following definition ensures that all literals in the head of a context clause in v which could be propagated to a predecessor
context should not block other literals in the same clause that may be relevant to inferences in v.

Definition 7 (Admissible Context Order). Let m be a total order defined on Σ f ∪ Σu. We say that m is a-admissible if oρ m aρ′
whenever |ρ| > |ρ′|, or both |ρ| = |ρ′| and om a, for any oρ, aρ′ ∈ Σu, and f m u for each f ∈ Σ f and u ∈ Σu. A context order � is
admissible with respect to m if it satisfies the following properties.

1. For each context term s , true, we have s � true.

2. For each context p-term A with A , true we have A � x, and for each u ∈ Σu, we have u � A.
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3. Order � contains the comparisons in the lexicographic path order induced bym on context a-terms; furthermore, it contains
x � y, f (x) � g(x) for each f , g ∈ Σ f with f m g, and f (x) � a for every f ∈ Σ f and u ∈ Σu. Finally, for every s ∈ {x, y} and
u ∈ Σu, we have s � u and u � s.

4. Order � is monotonic and it has the subterm property.

5. If A � s for some function-free context p-term A mentioning variable y or a constant in Σu then, either s ∈ {true, x, y} ∪ Σu,
or s is obtained by replacing context a-terms in A with smaller a-terms relative to m.

The context order � implemented in our system Sequoia is obtained as follows. Given an arbitrary a-admissible total order
m on Σ f ∪ Σu. order � is constructed as the the minimal context order containing the lexicographic path order induced by m on
context a-terms as well as all of the following comparisons:

1. x � y.

2. f (x) � g(x) for each pair f , g ∈ Σ f with f m g.

3. f (x) � s for each f ∈ Σ f and s ∈ Σu ∪ {x, y}.

4. s � true for every context term s , true.

5. A � x and A � y for every context p-term A.

6. A � s for each context p-term A, a-term s, and proper position p such that A|p � s.

7. A1 � A2 for each pair of distinct p-terms A1 and A2 such that A2 is obtained from A1 by replacing context a-terms with
smaller a-terms relative to �.

In Appendix A we prove that this context order is admissible with respect to m.
We are ready to formulate the completeness claim. Intuitively, our calculus ensures that, if the context structure is suitably

initialised, and the parameter Λ controlling the depth of auxiliary constants generated by the Nom rule is large enough, then
any saturated context structure derivable from the initial one, where all context orders are admissible with respect to a single
a-admissible orderm on function symbols and constants, will contain a well-defined set of query clauses entailed by the ontology.

Theorem 2 (Completeness). LetD be a context structure for O satisfying the following properties:

• it is derivable from a sound context structure for O that mentions no auxiliary constants;

• there exists an a-admissible total order m on Σ f ∪ Σu such that every context is assigned a context order admissible with
respect to m; and

• no rule in Table 2 or Table 3 can be applied.

Assume that the parameter Λ used in the Nom rule satisfies Λ ≥ 2τSu · 2τPr ·ω, with τSu the number of atoms in Su(O) of the form
B(x), S (y, x) or S (x, y), τPr the number of atoms in Pr(O) of the form B(y), S (y, x) or S (x, y), and ω the number of contexts inD.

Then, ΓQ → ∆Q ∈̂ Sq holds for each query clause ΓQ → ∆Q with O |= ΓQ → ∆Q and each context q ∈ V satisfying both of
the following properties, where �q and Sq respectively denote the context order and set of clauses assigned to q inD:

C1. for each A ∈ ΓQ, we have ΓQ → A ∈̂ Sq; and

C2. for each context atom A ≈ true ∈ ∆Q and each context term s not mentioning y and distinct from x and true such that
A �q s, we have s ≈ true ∈ ∆Q.

The context order for Sequoia described above satisfies Condition C2 of Theorem 2 for any query Q. Given a specific query
Q, however, the efficiency of the calculus can be improved by introducing a context q in the context structure with a context order
�q especially tailored for Q. For example, we can strengthen the context order described above by comparing all binary atoms as
well as unary atoms not mentioned in Q. Such order is still admissible with respect tom and satisfies Condition C2 of Theorem 2
for Q. We use this technique to improve the performance of concept subsumption and classification in Sequoia.
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i=1 Ai → ∆ ∈ O,
σ is a substitution such that σ(x)= x or
σ(x)∈ Σu if either v = vr or Aiσ contains x for some 1 ≤ i ≤ n,
Γi → ∆i ∨ Aiσ ∈ Sv with ∆i �v Aiσ, for 1 ≤ i ≤ n,

then add
∧n

i=1 Γi →
∨n

i=1 ∆i ∨ ∆σ to Sv.

r-
S

uc
c

If v , vr,
Γ→ ∆ ∨ Aσ ∈ Sv where ∆ �v Aσ with σ = {y 7→ x},
A is ground, is contained in Sur(O), and contains u ∈ ΣOu ,
there is no 〈v, vr, u〉 ∈ E such that > → A ∈̂ Svr ,

then add 〈v, vr, u〉 to E and > → A to Svr .

Table 4: Modified versions of the Hyper and r-Succ rules for O.

4.3. Variant of the Calculus for Horn Ontologies

We now define a variant of our calculus that is applicable to Horn ontologies and enjoys better computational properties when
checking entailment of a single query clause with respect to Horn ontologies containing nominals (as we discuss in Section 5).

The modified calculus replaces the Hyper rule from Table 2 and the r-Succ rule from Table 3 with the rules shown in Table 4.
The version of the r-Succ rule in Table 4 differs from that in Table 3 as it only derives clauses with an empty body; this ensures
that context clauses derived by this rule satisfy condition Z1 of Definition 8. Furthermore, the r-Succ rule in Table 4 is not
triggered for atoms of the form S (u, x) and S (x, u), since doing so could lead to the derivation of unsound consequences. To
retain completeness, the Hyper rule has been modified so that inferences which unify x with some u ∈ ΣOu are allowed in non-root
contexts if an atom of the form S (u, x) or S (x, u) is selected in a context clause.

The notion of soundness for a context structure in this variant of the calculus differs from Definition 6 in that it is relative to
a conjunction K of atoms of the form B(x). In particular, the context clauses derived in D are only guaranteed to be satisfied by
models of O for which the interpretation of K is not empty.

Definition 8. Let K = B1(x) ∧ · · · ∧ Bn(x) be a conjunction of atoms where Bi ∈ ΣOA for 1 ≤ i ≤ n. Let D be a context structure
〈V,E, core,S, θ〉 for O and let CD be the clause set defined in Definition 6. Context structureD is sound for K if we have that:

Z1. there is a context v ∈ V with corev = K such that every w ∈ V distinct from vr is reachable from v or vr via edges in E
labelled with symbols of ΣOf ;

Z2. for every context v ∈ V and clause Γ→ ∆ ∈ Sv, we have Γ = > and ∆ contains at most one literal;

Z3. for every model I such that I |= O ∪ CD and I 6|= B1(x) ∧ · · · ∧ Bn(x)→ ⊥, we have:

• I |= corev ∧ Γ→ ∆ for each v ∈ V and Γ→ ∆ in Sv;

• I |= corev → corew{x 7→ f (x), y 7→ x} for each 〈v,w, f 〉 ∈ E such that v , vr; and

• I 6|= corev → ⊥ for each v ∈ V with v , vr such that 〈vr, v, f 〉 ∈ E for some f ∈ ΣOf .

Theorem 3 (Soundness). Assume that O is Horn and K is a conjunction of atoms of the form B(x) for B ∈ ΣOA . Given a context
structure D for O which is sound for K, the application to D of a rule from Table 4, a rule from Table 2 other than Hyper, or a
rule from Table 3 other than r-Succ, with the eager context strategy, yields a context structure for O which is sound for K.

The proof of Theorem 3 is analogous to that of Theorem 1, and it is presented in Appendix E. The completeness statement
is similar to Theorem 2, but is restricted to query clauses of the form K → ∆, where the saturated context structure is sound for
K. As a result, context structures created to decide a query clause of the form K → ∆ cannot generally be reused for deciding
entailment of query clauses with different bodies. The proof of Theorem 4 is given in Appendix E.

Theorem 4 (Completeness). Assume that O is Horn. LetD be a context structure for O satisfying the following properties:

• it is derivable from a context structure for O that is sound for K and mentions no auxiliary constants;

• there exists an a-admissible total order m on Σ f ∪ Σu such that every context is assigned a context order admissible with
respect to m; and

• no rule from Table 4, or Table 2 except Hyper, or Table 3 except r-Succ, can be applied.
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A v ∃R.B  
A(x) → B( f (x)) (83)
A(x) → R(x, f (x)) (84)

B v ∃S .C  
B(x) → C(g(x)) (85)
B(x) → S (x, g(x)) (86)

C v F t D  C(x) → F(x) ∨ D(x) (87)

C u D v E  C(x) ∧ D(x) → E(x) (88)
∃R.F v F  R(z1, x) ∧ F(x) → F(z1) (89)
∃S .E v F  S (z1, x) ∧ E(x) → F(z1) (90)

C v {o}  C(x) → x ≈ o (91)
D v {o}  D(x) → x ≈ o (92)

Figure 6: Ontology O3.

vA

>→ A(x) (93)
>→ F(x) ∨ D(x) (94)
>→ F(x) ∨ x ≈ o (95)
>→ F(x) ∨ D(o) (96)
>→ B( f (x)) (97)
>→ R(x, f (x)) (98)
>→ F(x) (99)

vC

>→ C(x) (100)
S (y, x)→ S (y, x) (101)

D(o)→ D(o) (102)
>→ x ≈ o (103)

vB

>→ B(x) (104)
R(y, x)→ R(y, x) (105)

D(o)→ D(o) (106)
>→ C(g(x)) (107)
>→ S (x, g(x)) (108)
>→ g(x) ≈ o (109)
>→ C(o) (110)
>→ S (x, o) (111)

D(o)→ F(x) (112)
D(o) ∧ R(y, x)→ F(y) (113)

vr

D(o)→ D(o) (114)
C(o)→ C(o) (115)

S (y, o)→ S (y, o) (116)
C(o) ∧ D(o)→ E(o) (117)

C(o) ∧ D(o) ∧ S (y, o)→ F(y) (118)

f go

o

Figure 7: Calculus execution for Example 1. This figure summarises inferences and clauses that are relevant for deriving the query clause. Clauses (93)
through (99) belong to context vA with core {A(x)}; clauses (104) through (113) belong to context vB with core {B(x)}, clauses (100) through (103) belong to
context vC with core {C(x)}; all other clauses belong to vr with empty core.

Assume that the parameter Λ used in the Nom rule satisfies Λ ≥ τ2
Su, with τSu defined as in Theorem 2, and that no two contexts

inD have the same core.
Then, K → ∆Q ∈̂ Sq holds for each query clause K → ∆Q such that O |= K → ∆Q and each context q ∈ V satisfying the

following properties, where �q and Sq respectively denote the context order and set of clauses assigned to q inD:

C1. for each A ∈ K, we have > → A ∈̂ Sq;

C2. for each context atom A ≈ true ∈ ∆Q and each context term s not mentioning y and distinct from x and true such that
A �q s, we have s ≈ true ∈ ∆Q; and

C3. every context distinct from vr is reachable from q or vr via edges in E labelled with symbols of Σ f .

4.4. Examples

The following examples illustrate in detail the way in which our calculus deals with nominals. The first example focuses
on non-local reasoning, whereas the second illustrates how the calculus behaves when it encounters a simultaneous interaction
between nominals, inverse roles, and number restrictions.

Example 1. Consider ontology O3 from Figure 6. We apply our calculus to prove O3 |= A(x) → F(x). To ensure that Condition
C1 in Theorem 2 is satisfied, we start from a context structure D with root context vr and a context vA with core {A(x)}. We use
an expansion strategy that, on input K1, always selects the context vK for K the set of unary atoms in K1; if such context does not
yet exist inD, the strategy creates it. We assume that all contexts use the context order defined in Section 4.2.

Rule Core adds clause (93), which ensures that vA represents all instances of A in an arbitrary model. An application of
Hyper on clause (93) with ontology clause (83) yields clause (94). Since F(x) cannot be bigger than D(x) by our choice of �vA ,
we can apply Hyper to D(x) in clause (94) and ontology clause (92) to obtain clause (95). Once again, we have that F(x) cannot
be bigger than o, so we can apply Eq to x ≈ o in clause (95) and D(x) in clause (94) to generate clause (96). This clause requires
that, in any model where t is an instance of A, either t is also an instance of F, or ground atom D(o) is satisfied. Ground atom
D(o) is then propagated to the root context by the r-Succ rule, which adds clause (114) to vr and an edge 〈vA, vr, o〉. This clause
illustrates that considering models where ground atom D(o) is satisfied can be relevant for deciding our target query.

Clauses (97) and (98), and then clauses (104) through (108) and clauses (100) through (103), are derived by applications of
rules Core, Succ, and Hyper that are analogous to those in the example in Figure 3 of Section 3.1. Next, notice that clause (103)
can be back-propagated to vB via Pred, and this leads to clause (109) in vB. An application of Eq to such clause and clause (107)
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vA

· · ·

> → F(x) ∨ D(o)
· · ·

vB1

· · ·

D(o) ∧ Γ1 → ∆1
· · ·

vBn

· · ·

D(o) ∧ Γn → ∆n

· · ·

vB

· · ·

R(y, x)→ R(y, x)
D(o)→ F(x)

D(o) ∧ R(y, x)→ F(y)

f1
fn+1

Figure 8: Sketch of a context structure representing an interaction analogous to Example 1, but where contexts vA and vB are arbitrarily distant

leads to clause (110). Please observe that this clause does not represent thatO |= C(o); instead, this clause must be interpreted as
saying that C(o) is satisfied in those models where the interpretation of B is non-empty. Another application of Eq to clause (109),
with clause (108), yields clause (111). This clause, together with clause (110), can be propagated via r-Succ to the root context,
where they are written as clause (116) and clause (115), respectively. Observe that the heads of clauses (114) and (115) unify
with the body of clause (88), and since the ground context allows applications of Hyper which unify x with a constant, we
obtain clause (117). In turn, this clause and clause (116) can participate in a new Hyper inference with clause (90) to produce
clause (118). The latter clause contains variable y, and hence it may be relevant in contexts representing elements connected
to nominals, such as vB. Rule r-Pred allows us to propagate clause (118) to vB, using also clauses (106), (110) and (111), to
produce clause (112).

Deriving clause (112) would not have been possible without generating clause (114), which highlights the relevance of atom
D(o) in determining whether the target query holds. Now we have expanded upon this result by proving that, if D(o) is satisfied
by a model, then any instance of B in the model is also an instance of F. Clauses (105) and (112) can participate in a Hyper
inference with clause (89) to produce clause (113). The head of this clause triggers Pred with clause (98) and clause (96), and
propagates as clause (99) to vA, which proves O |= A(x)→ F(x).

Example 1 illustrates how ground literals in separate contexts can interact with each other via the root context. Although
in this example the interaction involves contexts which are next to each other, it can also involve non-root contexts that are
arbitrarily far apart from each other. To see this, consider Figure 8 and suppose the ontology is such that clause (113) can be
back-propagated via Pred to a clause of the form D(o) ∧ Γn → ∆n in a predecessor vBn of vB, with Γn → ∆n an arbitrary context
clause. In turn, it could be the case that clause D(o) ∧ Γn → ∆n later participates in inferences which eventually result in the
generation via Pred of a clause of the form D(o) ∧ Γn−1 → ∆n−1 in vBn−1 , again with Γn−1 → ∆n−1 an arbitrary context clause.
If this situation keeps recurring for n contexts vB1 , . . . , vBn between vA and vB, eventually rule Pred may resolve the body atom
D(o) in clause D(o) ∧ Γ1 → ∆1 with the head atom D(o) in clause (96), similarly to the last inference of Example 1.

The next example shows how our calculus deals with the interaction between nominals, inverse roles, and number restrictions.

Example 2. Let O4 be the ontology from Figure 9 and let us consider again the query A(x)→ F(x). Our initial context structure
contains the root context vr and a context vA with core {A(x)}. We choose the eager strategy, which will produce shorter clauses
and simplify the example, and assume that all contexts use the context order defined in Section 4.2. We skip the discussion of
the derivation of clauses (132) through (136), clauses (143) through (146), and clauses (164) and (165), since these clauses can
be obtained through inferences analogous to those in the example from Figure 2 in Section 3.1. Such clauses ensure that every
instance of A in a model has a successor via R which is an instance of B1, and every such element has a successor via S 1 which
is an instance of C. Clause (128) represents that S 2 is the inverse of S 1, and so an inference by Hyper with clause (165) leads to
clause (166). Now, we apply Hyper to clauses (127) and (164) to derive clause (167). The last two clauses in this context can be
propagated via Pred to produce clauses (147) and (148). An inference with Eq using these two clauses yields clause (149).

The inverse role S 2 is now interacting with nominal o and the number restriction in ontology clause (131). Indeed, clause (149)
shows that (the interpretation of) o connects via S 2 to every instance of {B1(x),R(y, x)} in a model of O4. By clause (131), how-
ever, o can only have one successor via S 2. Thus, all instances of {B1(x),R(y, x)} in a model of O4 must be identical, and hence
context vB1 acts like a nominal. To capture this behaviour explicitly, rule Nom derives clause (150) from clause (149) in vB1 , with
oρ = oS 1

2
a fresh auxiliary constant. We can see clause (150) as capturing a consequence of clause (131) that is relevant for our

derivation: every instance of {B1(x),R(y, x)} must be equal to the interpretation of individual oρ, where o is connected to oρ via
S 2. Next, this clause can be propagated to vA with Pred to yield clause (137), which we use in two inferences by Eq on vA and
clauses (133) and (134) to yield clauses (138) and (139), respectively.

The derivation illustrated so far can be straightforwardly “mirrored” starting from clauses (135) and (136), and using context
vB2 . This eventually results in the derivation of clauses (140) and (141) in vA, analogous to clauses (137) and (138). Notice that
the presence of oρ in this context ensures that r-Succ is triggered and clauses (159) through (161) are generated in the root
context. As in Example 1, the fact that these clauses appear in the root context allows us to apply the Hyper rule unifying x with
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A v ∃R.B1  
A(x) → B1( f (x)) (119)
A(x) → R(x, f (x)) (120)

A v ∃R.B2  
A(x) → B2(g(x)) (121)
A(x) → R(x, g(x)) (122)

B1 v ∃S 1.C  
B1(x) → C(h(x)) (123)
B1(x) → S 1(x, h(x)) (124)

B2 v ∃S 1.C  
B2(x) → C(h′(x)) (125)
B2(x) → S 1(x, h′(x)) (126)

C v {o}  C(x) → x ≈ o (127)
S 1 v S −2  S 1(z1, x) → S 2(x, z1) (128)

B1 u B2 v B  B1(x) ∧ B2(x) → B(x) (129)
∃R.B v F  R(z1, x) ∧ B(x) → F(z1) (130)
> v 6 1 S 2.>  S 2(x, z1) ∧ S 2(x, z2) → z1 ≈ z2 (131)

Figure 9: Ontology O4.

vA

>→ A(x) (132)
>→ B1( f (x)) (133)
>→ R(x, f (x)) (134)
>→ B2(g(x)) (135)
>→ R(x, g(x)) (136)
>→ f (x) ≈ oρ (137)
>→ B1(oρ) (138)
>→ R(x, oρ) (139)
>→ g(x) ≈ oρ (140)
>→ B2(oρ) (141)
>→ F(x) (142)

vB1

> → B1(x) (143)
> → R(y, x) (144)
> → C(h(x)) (145)
> → S 1(x, h(x)) (146)
> → S 2(h(x), x) (147)
> → h(x) ≈ o (148)
> → S 2(o, x) (149)
> → x ≈ oρ (150)

vB2

> → B2(x) (151)
> → R(y, x) (152)
> → C(h′(x)) (153)
> → S 1(x, h′(x)) (154)
> → S 2(h′(x), x) (155)
> → h′(x) ≈ o (156)
> → S 2(o, x) (157)
> → x ≈ oρ (158)

vr

B1(oρ)→ B1(oρ) (159)
R(y, oρ)→ R(y, oρ) (160)
B2(oρ)→ B2(oρ) (161)

B1(oρ) ∧ B2(oρ)→ B(oρ) (162)
R(y, oρ) ∧ B1(oρ) ∧ B2(oρ)→ F(y) (163)

vC

> → C(x) (164)
> → S 1(y, x) (165)
> → S 2(x, y) (166)
> → x ≈ o (167)

oρ

f

g

o

o

h

h′

Figure 10: Relevant clauses for Example 2. Clauses (132)–(142) belong to vA with core {A(x)}; clauses (143)–(150) to vB1 with core {B1(x),R(y, x)}; clauses
(151)–(158) to vB2 with core {B2(x),R(y, x)}; clauses (164)–(167) to vC with core {C(x), S 1(y, x)}; all other clauses belong to vr with empty core.
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oρ, which leads to the derivation of clauses (162) and (163) using ontology clauses (129) and (130), respectively. The head of
the latter clause triggers r-Pred, and we can propagate it to vA with the help of clauses (138), (139) and (141). This leads to our
target query, represented by clause (142).

5. Solving DL reasoning Problems Using the Calculus

This section describes how our calculus can be exploited to decide the following standard DL reasoning tasks:

• Consistency checking: decide whether there exists a model of a given ontology O.

• Subsumption: given concepts C and D and ontology O, decide whether each instance of C is also an instance of D in each
model of O.

• Classification: given ontology O, decide whether B1 is subsumed by B2 for each pair of concept names in O.

• Instance retrieval: given ontology O, find all constants in O that are instances of a given concept C in all models of O.

• Realisation: for each constant o in a given ontology O, compute the set of concept names B such that o is an instance of B
in each model of O, and there is no other concept name B′ subsumed by B such that o is also an instance of B′.

In Section 5.1 we propose a general algorithm which, given an ALCHOIQ+ ontology and a set of query clauses, returns
those entailed by the ontology. We then establish soundness, completeness, and termination of the algorithm, we discuss its
worst-case complexity, and we show that the parameters of the algorithm can be adjusted to ensure pay-as-you-go behaviour
for ALCHIQ+, ALCHOQ, ALCHOI, and ELH ontologies. Finally, we show how the algorithm can be applied to solve
the reasoning tasks listed above. Then, in Section 5.2, we describe a variant of the algorithm based on the modified calculus
described in Section 4.3, and we show that this variant of the algorithm is worst-case optimal for classification in Horn fragments
of ALCHOIQ+ with nominals. Similarly to the previous section, we fix an arbitrary ALCHOIQ+ ontology O over a DL
signature Σ for the remainder of this section.

5.1. The General Subsumption Checking Algorithm

Given a set of query clauses Q = {Q1, . . . ,Qn} defined over Σ, Algorithm 1 returns the subset Q+ ⊆ Q such that Qi ∈ Q+ if
and only if O |= Qi. Algorithm 1 generalises the algorithm in [11] for checking query clause entailment inALCHIQ+.

Step A1 initialises the context structure with the root context vr containing no clauses; it also chooses an a-admissible order
on successor function symbols and constants, and introduces a context order for vr admissible with respect to m.

Step A2 creates contexts with the appropriate parameters and initial clauses to ensure that, once they are saturated, we can
read whether each query clause is entailed or not by looking at the consequences derived in these contexts.

For the algorithm to terminate, we need to ensure that the expansion strategy does not introduce an infinite number of contexts.
Hence, in Step A3 our algorithm selects an admissible expansion strategy (as defined next). This definition also requires that
each application of the expansion strategy during the saturation phase can be performed in polynomial time.

Definition 9. An expansion strategy strat for O is admissible if it is computable in polynomial time and there exists a ω ∈ N
such that for every context structure D for O and every Λ ∈ N, the saturation of D by the rules from Table 2 and Table 3 using
parameters strat and Λ adds at most ω contexts toD.

All expansion strategies discussed in Section 3.1 and Section 4.1 are admissible. In particular, each application of these
strategies can be computed in polynomial time; furthermore, for m and m′ the numbers of unary and binary predicates in O, the
eager strategy introduces at most 2m+m′+1 contexts, whereas the cautious strategy can introduce at most m contexts.

Having fixed the expansion strategy, in Step A4 the algorithm selects a depth limit Λ for the nominal labels which is large
enough to satisfy the corresponding condition in Theorem 2.

Finally, Step A5 saturates the initial context structure, and Step A6 checks whether each target query has been derived in the
corresponding context that was introduced during initialisation.

Soundness and completeness of Algorithm 1 are a consequence of Theorems 1 and 2.

Corollary 1 (Soundness and Completeness). Let Q be a set of query clauses over Σ, and let Q+ be the output of Algorithm 1 on
input Q. Then, for each Q ∈ Q, we have that Q ∈ Q+ if and only if O |= Q.

Proof. Assume that Q ∈ Q+ and let I be a model of O. Let D be the saturated context structure obtained after Step A5. Let J
be the extension of I to ΣOu defined inductively as given next:

• oJε = oIε ;
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Algorithm 1 Given Q, this algorithm decides whether O |= ΓQi → ∆Qi for each Qi ∈ Q

A1. Create a context structure D for O with V = {vr}, E = ∅, and Svr = ∅. This step includes the selection of an a-admissible order m on
Σ f ∪ Σu and a choice of context order �vr admissible with respect to m.

A2. For each Qi ∈ Q, either:

• Select a context vi ∈ D with corevi ⊆ ΓQi with a context order �vi which satisfies condition C2 of Theorem 2 w.r.t. ∆Qi ,

or

• Add a context vi to D with corevi ⊆ ΓQi , and define a context order θ(vi) = �vi admissible for m and satisfying condition C2 of
Theorem 2 w.r.t. ∆Qi .

then add A→ A to Svi for each A ∈ ΓQi\corevi .

A3. Select an admissible expansion strategy strat for O which can introduce at most ω contexts and such that all context orders it introduces
are admissible with respect to m .

A4. Select a depth limit Λ for the nominal labels equal to 2τSu · 2τPr · (ω + ωD), where τSu and τPr are defined as in Theorem 2, and ωD is the
number of contexts inD.

A5. Apply the inference rules from Table 2 and Table 3 using the parameters strat and Λ, until no new inferences are possible.

A6. Return Q+ = {Qi ∈ Q | Γi → ∆i ∈̂ Svi }.

• oJρ with ρ = ρ′ · S i
B2

is defined as follows: if there are exactly m domain elements a1, . . . am in I such that (oIρ′ , ai) ∈ S IB2

for each 1 ≤ i ≤ m, then we define oJρ = ai if 1 ≤ i ≤ m, and we define oJρ arbitrarily if i > m. Otherwise, i.e. if no such
elements exist or if there exist infinitely many, oJρ is defined arbitrarily.

Clearly, J |= O∪CD, with CD as in Definition 6. Thus, by Theorem 1, we have J |= Q, and since J is a conservative extension
of I, and Q does not contain auxiliary constants, we have I |= Q and thus O |= Q.

Finally, assume O |= Q. Let q be the context chosen in Step A2 for Q, let strat and Λ be the parameters chosen in Steps A3
and A4, and letD be the saturated context structure. Notice thatD is derivable from the context structure initialised in Step A2,
which is trivially sound and mentions no auxiliary constants. Furthermore, according to Step A3, each context in D is assigned
a context order admissible with respect to m. Next, since strat is admissible, the number of contexts in D is smaller or equal to
ω +ωD. Finally, our choice of parameters in Step A2 ensures that Conditions C1 and C2 are satisfied for Q and q. Therefore, by
Theorem 2, we conclude Q ∈̂ Sq. Step A6 of Algorithm 1 then ensures Q ∈ Q+.

As already mentioned, termination is guaranteed for admissible expansion strategies. Indeed, the signature of the context
structure is finite, and no inference is performed twice, so there is a limit on the total number of context clauses that the calculus
can derive. Furthermore, if the number of contexts generated by the expansion strategy can be bound exponentially in the size
of O (as is the case for the trivial, eager, and cautious strategies), our choice of Λ ensures that our algorithm runs in triple
exponential time—a bound that is in line with those obtained using the tableau and resolution-based procedures discussed in
Section 6 [38, 24]. We refer the reader to Appendix F for a proof of Theorem 5.

Theorem 5 (Termination). Algorithm 1 is terminating. Furthermore, Algorithm 1 runs in triple exponential time in the size of O
if the strategy strat selected in Step A3 introduces at most exponentially many contexts on the size of O.

Our algorithm is therefore not worst-case optimal forALCHOIQ+, which is an NExpTime-complete logic [39]. This is due
to the fact that the Nom rule can introduce a doubly exponential number of auxiliary constants in the size of the input ontology.
If, however, rule Nom is not triggered at any point during saturation, Algorithm 1 will run in exponential time if the strategy
introduces at most exponentially many contexts. Rule Nom fires only when an inverse role interacts with a number restriction and
a nominal simultaneously; hence, Algorithm 1 is worst-case optimal for fragments of ALCHOIQ+ which lack either inverse
roles, number restrictions, or nominals. Furthermore, in the case ofALCHIQ+ ontologies, the inferences of our calculus mimic
those of the ALCHIQ+ calculus in [11]. By carefully choosing the expansion strategy, the algorithm can also be worst-case
polynomial (and therefore optimal) for classification in the DL ELH .

Theorem 6 (Pay-as-you-go Behaviour). Let strat be an expansion strategy for O introducing at most exponentially many con-
texts. If Step A3 selects strat, then Algorithm 1 runs in exponential time in the size of O if this ontology is either ALCHIQ+,
ALCHOQ, or ALCHOI; furthermore, if O is ELH , the algorithm runs in polynomial time in the size of O with either the
cautious or the eager strategy.

We next show how, by adjusting the initialisation parameters, we can exploit Algorithm 1 to solve each of the standard DL
reasoning tasks.
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To solve consistency checking, it suffices to set Q = {> → ⊥}. Since query clause > → ⊥ is inconsistent, O |= > → ⊥ if and
only if O is also inconsistent, and the algorithm returns Q+ = ∅ if and only if O is consistent.

To check whether C is subsumed by D with respect to O, we can use Algorithm 1 directly in the obvious way provided that
both C and D are named concepts. Otherwise, we extend O with the normalisation and clausification of axioms C v BC and
BD v D to obtain O′, where BC and BD are fresh and in ΣA. This leads to a polynomial increase in the size for O. Finally, we run
Algorithm 1 on O′ and query {BC(x)→ BD(x)} since O |= C v D if and only if O′ |= BC v BD.

To solve classification, we run Algorithm 1 with the query Q = {Bi(x) → B j(x) | Bi, B j are unary predicates in O}. The result
Q+ consists of all subsumptions of the form Bi(x) → B j(x) entailed by O, and it can be used to build a taxonomy. To improve
performance, it is often helpful to introduce in Step A2 a single context vi with core {Bi(x)} for each unary predicate Bi and ensure
that the corresponding context order �i makes all unary atoms incomparable with each other.

To compute all instances of a (possibly complex) concept C, we extend O with the normalisation and clausification of axiom
C v BC , where BC is fresh and in ΣA. We then introduce a fresh unary Bo for each oε ∈ ΣOu , and extend O also with the set

Cu =
⋃

oε∈ΣOu

{ Bo(x)→ x ≈ o, > → Bo(o) }

to obtain O′. We can then run Algorithm 1 on O′ and query Q = {Bo(x) → BC(x) | oε ∈ ΣOu } since O′ |= Bo(x) → BC(x) if and
only if O |= C(o). To recover the instances of C, simply output constant o for each Bo mentioned in Q+.

Finally, to solve realisation, we extend O with the aforementioned set of clauses Cu to obtain O′ and run Algorithm 1 on O′

and Q = {Bo(x) → B(x) | oε ∈ ΣOu , B a unary predicate}. It holds that O ∪ Cu |= Bo(x) → B(x) if and only if O |= B(o); hence, for
each oε ∈ ΣOu , we know that Bo(x) → B(x) is in the output Q+ if and only if B realises o. We can use these results to construct
the set of unary predicates instantiated by oε . To compute the subset of most specific such concepts, we extend Q with the set
{Bi(x)→ B j(x) | Bi, B j unary predicates}, so that we can use Q+ to compute the taxonomy of O as we did for classification.

It is important to note that a saturated context structureD used to solve any of these tasks can be reused to solve other tasks.
For this, one can simply run Algorithm 1 by replacing the initialisation of a new context structure in Step A1 with the saturated
context structure D from the previous task. Then, instead of introducing a new context in Step A2, one can simply choose one
of the contexts that already exist and weaken the context order to ensure that condition C2 of Theorem 2 is satisfied. Soundness
of this method is also guaranteed because Theorem 1 does not depend on the initialisation of the context structure.

5.2. Modified Algorithm for Horn Ontologies and Single Subsumptions
The algorithm presented in the previous section runs in triple exponential time if O is in Horn-ALCHOIQ+; this is so

because the Nom rule can fire. Furthermore, the algorithm runs in exponential time for ELHO ontologies, even with the eager
strategy, because the number of ground atoms in the body of context clauses can be exponential in the size of the signature.
In order to achieve worst-case optimal behaviour for such cases we introduce in this section a variant of Algorithm 1 which is
based on the calculus from Section 4.3 for Horn ontologies. Our algorithm only works for queries of the form {K → ∆1,K →
∆2, · · · ,K → ∆n} having the same body K consisting of a conjunction of unary atoms of the form B(x).

In order to ensure that the context structure generated by the algorithm is sound for K, Algorithm 2 must initialise the context
structure with just a single context v other than vr, and set corev = K. Furthermore, the eager strategy for O is fixed as the
expansion strategy of Algorithm 2. This ensures that any context structure derived by the algorithm preserves soundness for K.

Algorithm 2 Given Q of the form {K → ∆Q1 , · · · ,K → ∆Qn }, where K is a conjunction of atoms of the form B(x) with B ∈ ΣOA , this algorithm
decides whether O |= K → ∆Qi for each Qi ∈ Q, in the case where O is Horn.

A1. Create a context structure D for O withV = {vr}, E = ∅, and Svr = ∅. This step includes the selection of an a-admissible order m and a
choice of context order �vr compatible with m.

A2. For each Qi ∈ Q:

• If i = 1 add a context v1 toD with corev1 = K, and define the order θ(v1) = �v1 satisfying condition C2 of Theorem 4 w.r.t. ∆Q1 .

• If i , 1, select context v1 and weaken the context order �v1 so that it satisfies condition C2 of Theorem 4 w.r.t. ∆Qi ,

A3. Select depth limit Λ = τ2
Su for nominal labels, with τSu defined as in Theorem 2.

A4. Apply the inference rules from Table 4, Table 2 minus Hyper, and Table 3 minus r-Succ, toD and O, with the eager expansion strategy,
until no new inferences are possible.

A5. Return Q+ = {Qi ∈ Q | Γi → ∆i ∈̂ Svi }.

Corollary 2 (Soundness and Completeness). Suppose that O is Horn. Let Q be a set of query clauses over Σ of the form
{K → ∆Q1 , · · · ,K → ∆Qn }, where K is a conjunction of atoms of the form B(x) with B ∈ ΣOA , and let Q+ be the output of
Algorithm 2 on input Q. For each Q ∈ Q, we have that Q ∈ Q+ if and only if O |= Q.
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Proof. Assume that Q ∈ Q+ and let I be a model of O. The proof of soundness is analogous to that of Corollary 1: we simply
observe that if J |= K → ⊥, then O |= Q trivially, and otherwise we can apply Theorem 3 to obtain J |= Q. Similarly, the
proof of completeness is analogous to that in Corollary 1, because the initial context structure defined in Steps A1 and A2 is
clearly sound for K by Theorem 3, and therefore D is sound for K. Furthermore, Λ is large enough to satisfy the corresponding
condition in Theorem 4, and the eager strategy never introduces two contexts with the same core.

The termination and relevant complexity results for Horn DLs are stated in Theorem 7; the proof is given in Appendix F.

Theorem 7 (Termination & Pay-as-you-go Behaviour). Algorithm 2 is terminating and runs in exponential time in the size of O.
Furthermore, if O is ELHO and the Hyper rule is applied eagerly, then Algorithm 2 runs in polynomial time in the size of O.

Algorithm 2 can be used to solve consistency checking and concept subsumption in the same way as Algorithm 1, since the
queries in these problems contain only a single subsumption each. To solve classification, however, we need to run the algorithm
once for each unary predicate B using the query {B(x) → B′(x) | B′ is a unary predicate in O}. Similarly, for instance retrieval
and realisation, the algorithm must be run once for each oε ∈ ΣOu , plus once for each unary predicate B, since we require that
concept names in the output should be as specific as possible. Therefore, even though Algorithm 2 is worst-case optimal, it may
not be faster in practice, as it cannot reuse context structures across subsumption tests.

Hence, there exists a trade-off between worst-case optimal complexity for classification of Horn ontologies with nominals
(as achieved by Algorithm 2), and one-pass classification and maximal reuse of context structures (as achieved by Algorithm 1).
Practical considerations should dictate the choice between Algorithm 1 and Algorithm 2 when using our consequence-based
approach for solving DL reasoning problems in Horn ontologies with nominals. In particular, we have observed that most ELHO
ontologies contain a small number of nominals or use them trivially, and hence it may very well pay off to use Algorithm 1 for
one-pass classification despite the fact that the algorithm is worst-case exponential. Evidence for this hypothesis is provided in
Section 8, where we compare empirically implementations of both algorithms on a corpus of Horn ontologies.

6. Discussion

In this section we compare our algorithms with other CB, tableau, and resolution procedures for DLs with nominals.

6.1. CB calculi for ELHO and Horn-SROIQ
The way in which our calculus handles nominals differs from the approach used in the ELHO and Horn-SROIQ calculi

from [36] and [51], respectively. These calculi address the problem of non-local clauses discussed in Section 3.2 by explicitly
deriving non-local consequences. For instance, the ELHO calculus can derive consequences of the form G : C v D to represent
the fact that a subsumption C v D holds in all models of the input ontology Owhere the interpretation of concept G is non-empty.

Deriving non-local consequences makes it easier to perform inferences involving arbitrarily distant contexts. For instance, the
nominal rule R{} in the ELHO calculus uses non-local premises G  C and G  D, where represents that the interpretation of
C (resp. D) is non-empty in every model where the interpretation of G is non-empty, together with two other non-local premises,
G : C v {o} and G : D v {o}, to derive G : C v D. An analogous inference rule in our calculus would come with significant
overhead, as it might require discovering paths from a context vG with core {G(x)} to contexts vC and vD with cores {C(x)} and
{D(x)}, respectively, and then resolving clauses of the form G(u)→ x ≈ o in vC and vD with a clause of the form > → G(u) in vG,
for some u ∈ ΣOu . The derivation of non-local consequences, however, leads to the loss of properties 1-3 discussed in Section 3.2.
The authors in [36] already point out the difficulties of reusing consequences across different queries and avoiding the derivation
of similar clauses. As a result, their ELHO calculus cannot achieve one-pass classification. In contrast, our calculus can reuse
derived consequences across multiple queries, and in particular Algorithm 1 can classify ontologies in a single pass. As already
discussed, however, this comes at the price of losing worst-case optimality for Horn ontologies with nominals. The variant of the
calculus for Horn ontologies presented in Section 4.3 is similar to the calculus in [36] in that it allows us to recover worst-case
optimality for ELHO at the cost of losing one-pass classification. We believe that the optimisation techniques in [36] targeted
towards reuse of clauses across queries may also be applicable in our setting.

The discussion above also applies to the Horn-SROIQ calculus in [51], which only ensures refutational completeness and
cannot achieve one-pass classification. In contrast, Algorithm 1 can classify a Horn-SROIQ ontology in a single run, albeit with
a triply exponential running time. As in the previous case, Algorithm 2 can be used to obtain a worst-case optimal subsumption
procedure for Horn-SROIQ ontologies, but at the price of losing one-pass classification.

The Horn-SROIQ calculus in [51] must also deal with the problem discussed in Section 3.3 concerning the interaction
between inverse roles, number restrictions, and nominals. For this, the calculus relies on an inference rule that is triggered
whenever an instance of a concept C is connected via an inverse-functional role to an instance of a concept subsumed by a
nominal. The rule derives a consequence same(C,C), which means that C must behave like a nominal in any model of the
ontology; this amounts to introducing a new nominal {aC} to represent the single instance of C in each model where C is non-
empty. This approach is closely related to ours: on Horn-SROIQ ontologies, an application of the Nom rule from our calculus
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also introduces a single nominal. The main difference lies in the label of the new nominal: the calculus in [51] uses the name of
the concept that collapsed, while we use the names of the linked constant and the role establishing the link.

6.2. Tableau and Resolution Calculi for SHOIQ

When equipped with the trivial strategy, our calculus bears a resemblance to the resolution calculus in [38]. This calculus
also ensures termination by strongly constraining the form of derivable inferences, and it also relies on paramodulation to reason
with nominals. In contrast to our calculus, however, it uses the non-deterministic splitting technique for guessing which ground
atoms hold. Although non-determinism can help reduce the number of derived clauses, it makes it harder to reuse derived clauses
across different queries. The calculus in [38] addresses the simultaneous interactions between inverse roles, number restrictions,
and nominals, by means of specialised inference rules which introduce new constants, similarly to our Nom rule; furthermore,
the calculus in [38] identifies “blocking” clauses of a certain form, the derivation of which prevents the introduction of new
nominals and ensures both termination and completeness. We use in Appendix D.3 a similar argument: by allowing for a large
enough nominal depth, we can ensure that blocking clauses of the same form as in [38] will have been derived.

Our calculus also presents similarities with the tableau procedure for SHOIQ introduced in [26]. The completeness proof
of our calculus is based on the ability to use context clauses to build a countermodel of every target query that is not entailed by
the ontology. Models built this way have a similar structure to the canonical models built by the tableau algorithm: they consist
of (i) a central “cloud” of arbitrarily interconnected nominals, which can be either present in the ontology or created during
execution, (ii) a number of (possibly infinitely deep) trees of unnamed domain elements rooted in a nominal, and (iii) role links
from elements in the tree-shaped parts to the nominals in the central cloud. The rule that introduces new nominals in the tableau
algorithm is similar to our Nom rule; in particular, our labelling convention for artificial nominals closely resembles that used in
the tableau algorithm. Our rule, however, is deterministic, as it introduces a (possibly larger than needed) set of new constants
which can later be made equal; furthermore, derived consequences involving these constants affect all models of the ontology. In
contrast, the tableau algorithm guesses a number of elements which satisfy the relevant number restriction, and introduces them
only in a single canonical model of the ontology.

7. Implementation

We have implemented Algorithm 1 in Section 5 as an extension of Sequoia2, a CB reasoner for SRIQ presented in [10]. Our
implementation has been released as version v.0.7. It supports the reasoning tasks in Section 5.1 for SROIQ ontologies, and is
available through the OWL API interface. We have also developed an alternative version that implements Algorithm 2.

In Section 7.1 we overview the architecture and main features of Sequoia v.0.6, the previous version for SRIQ. In Section 7.2
we describe the implementation of the new features which enable Sequoia to reason with nominals. Finally, in Section 7.3, we
present several novel optimisations that have been incorporated in the latest version of the reasoner.

7.1. Overview of Sequoia v.0.6

Figure 11 summarises the architecture of Sequoia v.0.6. The reasoner does not use the OWL API representations internally,
so it includes a set of OWL API Bindings which can translate OWL elements back and forth between the two representations.

The Sequoia Reasoning Engine is the core component of the system. Sequoia v.0.6 accepts as input OWL 2 DL ontologies
without nominals, ABoxes, datatypes and HasKey axioms. By default, Sequoia will throw an exception if it encounters any of
these constructs in the input, but the reasoner can be configured to work in best-effort mode and ignore unsupported axioms.

The Ontology Loader converts OWL axioms to normalised DL-clauses. For this, it first encodes away role inclusion axioms
(RIA Encoding phase) using a variant of the algorithm in [24], and then it applies the Clausification sub-routine for computing a
set of DL-clauses using a variant of the structural transformation [50]. Like many theorem provers, Sequoia relies on indices to
identify clauses that may participate in an inference or a simplification rule; however, Sequoia uses custom indexing techniques
adapted to the specifics of ontology and context clauses. The Ontology Indexing phase is applied to DL clauses immediately after
they are generated by the Clausification sub-routine.

Once an ontology O has been loaded, transformed, and indexed, the Context Structure Manager creates and saturates a
context structure to classify the ontology. Following Step A2 of Algorithm 1, the Context Structure Manager initialises a context
vB with core {B(x)} for each named concept B in O, and it defines the context order for each context so that all named concepts
(excluding auxiliary predicates) cannot be compared with each other. As discussed in Section 5.1, this condition is required for
completeness. Following [11], the context order requires also that all atoms with function terms are greater than atoms with
no function terms, and that fresh concepts introduced during normalisation are smaller than those in the input ontology; these
restrictions improve the performance of the reasoner.

2http://www.cs.ox.ac.uk/isg/tools/Sequoia/
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Figure 11: Architecture of Sequoia. Boxes represent key components, and arrows indicate flow of information.

Sequoia uses the safe central expansion strategy, defined as safeCentral( f ,K1,D) = 〈vK1 ,K1,�K1〉 if K1 has no named
concepts, i.e., concepts mentioned in the original ontology, where vK1 and �K1 are as in the eager strategy; and otherwise defined
as safeCentral( f ,K1,D) = 〈vβ(K1), β(K1),�β(K1)〉, where β takes the named concepts in K1. This strategy strikes a balance between
the eager and trivial strategies with respect to the number of contexts introduced.

Each context is implemented as a fibre. When a context v is created, an empty set Sv of context clauses is initialised, together
with an auxiliary (empty) set of unprocessed clauses Uv. A set Pv is also created to hold clauses received from successors of v
that may be relevant for Pred inferences in v. Sequoia then applies to v the steps in Algorithm 3. The Ineq rule is applied as a
simplification after each new clause C is derived. Set Sv uses a redundancy index to ensure that no clause C is added to Sv (and
Uv) if it is subsumed by a clause C′ ∈ Sv, and clauses in Sv subsumed by C are dropped when C is added to Sv; these features
implement the Elim rule. When the context structure has become saturated, Sequoia runs the Taxonomy sub-routine to read all
relevant concept inclusions from the saturated context structure and compute their transitive reduction.

Sequoia v.0.6 encodes each predicate, term, and literal using an integer, called the Unique Integer Identifier, or UID for short.
This yields a compact representation of clauses, and the natural ordering of numbers can be used as a term context order by
representing y as 0, x as 1, and using number i to represent function symbol fi in ΣOf starting at i = 2. This also allows Sequoia
to represent literals as 64-bit integers. The reasoner assumes that each sequence of 64 bits is partitioned at fixed positions into
three subsequences: the first one represents the form of the literal (e.g., unary atom, equality, etc.), while the second and third
correspond to the UIDs of all predicates or terms in the literal other than x. The first partition uses only 3 bits, and it is assumed
that at most 30 bits are used to represent each UID corresponding to a predicate or term in the literal. Equalities and inequalities
are represented as pairs, where the first element is strictly greater than the second. This compact representation is possible in
the absence of nominals since at most two UIDs are necessary to express each context literal. The correspondence between long
integers and literals is also very helpful during redundancy checks.

To implement forward and backward redundancy checking, Sequoia v.0.6 maintains a redundancy index in each context
inspired by feature vector indexing from the theorem prover E [55]. In every context, each clause is transformed into a distinct
sequence of integers and sorted in ascending order. The result is inserted into a trie data structure (see [11] for details). With
this encoding, forward redundancy for a clause C can be checked by transforming C into its corresponding integer sequence
~sC and traversing the tree downwards from the root while making sure that all node labels appear in ~sC and in the same order.
Similarly, for backward redundancy elimination, one can (recursively) traverse all downward paths from the root, which have ~sC

as a subsequence of their sequence of node labels. Bodies and heads of clauses are stored in a sorted form, which greatly speeds
up redundancy checks.

We conclude this section by discussing the indexing techniques in Sequoia, which exploit the special syntax of ontology and
context clauses. For instance, the Hyper rule can be applied only to atoms of the form B(x), S (x, x), S (x, ∗), and S (∗, x); where ∗
is distinct from x. These forms are called unification patterns, and Sequoia keeps indices of clauses in every context using these
patterns as keys. Body atoms in ontology clauses are also restricted to these unification patterns; thus, whenever a clause C with
maximal literal L is selected for application of the Hyper rule in a context v, Sequoia identifies the unification pattern of L and
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Algorithm 3 Sequence of actions performed on a context v.

P1. Apply the Core rule; add any resulting clauses toUv and Sv.

P2. Apply the Hyper rule with ontology clauses of the form > → ∆; add all derived clauses toUv and Sv.

P3. WhileUv is not empty:

(a) Pick a clause C fromUv; let L be the set of maximal literals in C.

(b) Apply all Hyper inferences involving a literal in L, ontology clauses, and clauses in Sv. Add inferences to setsUv and Sv.

(c) Apply all inferences with the Eq and Factor rules involving a literal in L and clauses in Sv; add inferences to setsUv and Sv.

(d) Erase C fromUv.

P4. For each new clause added to Sv, propagate any relevant inference(s) to successor contexts as determined by the safe central strategy,
using Succ. Clauses are propagated through communication channels between contexts. If a connection cannot be established with a
context, this means that the context has not been created yet, so an appropriate context is initialised by the Context Structure Manager.

P5. For every new clause added to Sv, if the clause may trigger an inference via Pred involving a predecessor context w, propagate this clause
to the look-up set Pw in w.

P6. Sleep until a clause C is received through an incoming communication channel. If this happens, then:

(a) If C has been propagated via Succ from a predecessor context w, perform the relevant substitution to obtain a clause C′. If C′ is
redundant, propagate to the set Pw all clauses in Sv which can trigger an inference by Pred involving w. If C′ is not redundant,
then add C toUv and Sv, and proceed to Step 3.

(b) If C has been propagated via Pred from a successor context w, perform the relevant substitution to obtain a clause C′. Then carry
out all hyperresolution inferences with C′ as a main premise and clauses of Sv as side premises. Add all conclusions toUv and Sv.
Then, add C′ to Pv and proceed to Step 3.

retrieves only ontology clauses that contain a body atom with the same unification pattern using the ontology index. Conversely,
once an ontology clause has been selected to participate in a Hyper inference, Sequoia identifies the unification pattern of each
atom in the body of the ontology clause and then uses a context index to identify context clauses in v with a maximal literal that
has the same unification pattern. Similar techniques are used for rules Pred and Eq; see [11] for details.

7.2. Implementing Support for Nominals

We next describe the modifications and extensions to the system described in Section 7.1 in order to implement support for
nominals. Additionally, Sequoia v.0.7 supports all tasks discussed in Section 5.1, as well as novel features such as interruption,
debugging mode, and extension of a loaded ontology with new axioms.

7.2.1. Representation and Ordering of Terms and Literals
Due to the presence of constants in context clauses, we now store 3 UIDs per literal (e.g., to represent atoms of the form

S (u1, u2)). As a result, representing literals as 64-bit integers becomes impractical, and Sequoia v.0.7 represents terms and
literals as standard objects. Redundancy indices are still represented as integer tries, but since literals are no longer associated
to integers, each redundancy index must define its own mapping from literals to integers. Pairs of terms occurring together in an
a-equality or inequality are no longer totally ordered; for instance, in y ≈ u, with u ∈ ΣOu , we have that y �v u and u �v y are both
forbidden by condition (4) of Definition 7. Thus, we can no longer use a canonical representation of (in)equalities where the first
term is guaranteed to be bigger than the second; instead, we require only that the first element is not smaller than the second.

As a consequence of these modifications, the handling of clauses has become significantly more involved in Sequoia v.0.7.
For instance, since each redundancy trie defines its own correspondence from literals to integers, the bodies and heads of clauses
must be sorted for each redundancy check. Similarly, clause subsumption becomes harder to check.

7.2.2. Fragmentation of the Root Context
Instead of using a single root context vr, our implementation introduces a nominal context vu with core {Bu(x)} for each

individual u ∈ ΣOu , with Bu a fresh unique predicate for u, and adds the clause > → x ≈ u to this context. Further contexts of this
form are introduced whenever auxiliary constants are generated within the context structure. This method has several advantages.

• It makes the implementation of the calculus considerably easier. First, we can replace constant u with variable x in vu

using the Eq rule. Second, Hyper inferences that originally involved atoms of the form B(u) in vr can now be performed in
the nominal context vu using the unification pattern B(x) and the indexing strategy defined in Section 7.1. Finally, Hyper
inferences unifying x in an ontology clause with u in a context clause become unnecessary.
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• It prevents the derivation of literals containing both constants and function symbols, which reduces the number of UIDs
required to represent literals in vu and thus allows for shorter representations of clauses in nominal contexts.

• It makes the algorithm more amenable to parallelisation—a feature that we expect to add in future versions of the system.
Notice that the thread corresponding to the root context would require much more memory than any other thread (especially
with large ABoxes), and it would need to communicate with most of the other threads. By splitting the root context, the
computational workload and memory requirements can be spread across multiple threads.

To guarantee completeness, our implementation proceeds as follows. First, it ensures that each clause derived by an appli-
cation of the r-Succ rule is added to the relevant nominal context. Second, if a clause having a constant in a maximal literal
is derived in a nominal context, then the clause is propagated also to the nominal context representing that constant. Finally, if
the maximal literal of a clause in a nominal context is a unary function-free ground atom, then this clause is propagated to all
other nominal contexts. All of this ensures that our implementation does not miss any clause that would have been derived by
the theoretical calculus in the single root context, or propagated to another context from the root context. This is so because,
whenever our calculus performs an inference in the root context involving multiple premises, these premises always have one
constant in common in their maximal literals, or involve maximal literals that are unary function-free ground atoms. Therefore,
there exists always a nominal context in the implementation where this inference is carried out.

7.2.3. Implementation of Inference Rules
Rule Nom has been implemented in Step P3 of Algorithm 3, just after P3.(c). To reduce the number of auxiliary constants

introduced in the context structure, each application of Nom in context v is preceded by a search for context clauses in Sv which
would already force x to be made equal to a constant. In particular, we search for a clause of the form Γ → ∆ ∨ ∆≈ ∈ Sv with
Γ ⊆ Γ1 ∪ Γ2, ∆ ⊆ ∆1 ∪ ∆2, and such that each literal L ∈ ∆≈ is of the form x ≈ y, or x ≈ u or y ≈ u for some u ∈ ΣOu .

Rule Join is implemented just after Step P3.(a) in Algorithm 3: after we have chosen C, we apply all inferences with Join
that involve a literal L ∈ L and a clause in Sv with L in the body. We have included an additional index in each context to find all
clauses that contain a particular ground atom in the body.

Rules r-Pred and r-Succ have been implemented analogously to rules Pred and Succ in Section 7.1. The propagation of
clauses generated by r-Succ to other contexts occurs just after the propagation of clauses generated by Succ, in Step P4. In the
case of nominal contexts, the propagation of clauses via r-Pred replaces the propagation of clauses via Pred.

Finally, the application of the Eq rule in our calculus may involve equalities of the form x ≈ u with u ∈ ΣOu , and result in the
replacement of x with u (or vice-versa) in other clauses. The completeness proof in Appendix D, however, shows that such equal-
ities are only required in contexts introduced upon initialisation based on the query, and are only necessary for paramodulation
inferences on query atoms. Therefore, many of the aforementioned inferences are irrelevant and our implementation incorporates
a mechanism for blocking them.

7.3. Optimisations
Next, we describe a suite of optimisation techniques that we have incorporated in Sequoia v.0.7.

7.3.1. Ordering of Query Atoms
As discussed in Section 5.1, classification requires that unary predicates in O (except auxiliary predicates introduced during

normalisation) are incomparable in context orders assigned to query contexts, namely contexts initialised based on a query. This
has a negative impact on performance: ontologies usually contain a large number of such predicates and many inferences occur
in query contexts. Furthermore, the resolution of context clauses with unary predicates in O within a query context can lead to
inefficient behaviour, as we illustrate next. Consider an ontology O5 which contains, among others, the following clauses:

A(x)→ A1(x) ∨ · · · ∨ An(x) (168) Ai(x)→ B( fi(x)) 1 ≤ i ≤ n (169)
B(x)→ ⊥ (170)

Let Ai ∈ ΣOA for each 1 ≤ i ≤ n, and suppose that no two atoms of in {Ai(x) | 1 ≤ i ≤ n} can be compared in any query context.
Consider a query context q containing clause > → A(x). We have O |= A(x) → ⊥, so we expect to derive > → ⊥ in q. Using
clause > → A(x), an inference by Hyper leads to:

> → A1(x) ∨ · · · ∨ An(x). (171)

Since all atoms in the head of this clause are incomparable in q, Sequoia can select each Ai(x) when the clause is processed, and
therefore Algorithm 3 will add n clauses toUq. It is possible that each of these n clauses can be resolved in the same round with
clauses of the form B( fi(x))→ ⊥ in Pq, derived via Pred from a successor context with a context clause B(x)→ ⊥. In that case,
for each 1 ≤ i ≤ n, Sequoia will derive the clause

> → A1(x) ∨ · · · ∨ Ai−1(x) ∨ Ai+1(x) ∨ · · · ∨ An(x) (172)
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Although clause (172) makes clause (171) redundant, all clauses of the form (172) stay inUq and may produce further clauses.
Each clause of this form will in turn lead to the derivation of n − 1 clauses, and by the time Sequoia derives > → ⊥, it will have
derived a clause for every subset of {A1(x), · · · , An(x)}, thus producing an exponential number of clauses.

To address this source of inefficiency, we take advantage of the fact that query clauses in classification tasks are Horn. If
there are at least two query atoms in the head of the same context clause, then the clause will be irrelevant unless one of those
atoms participates in an inference. Therefore, we can block application of inferences on any other query atoms occurring in the
head of the same clause. This is exploited in Sequoia to define an order on query atoms which can be used to reduce the number
of inferences during classification. In our previous example, Sequoia can derive > → ⊥ in linear time; this pattern appears in
several ontologies in our evaluation, which Sequoia v.0.7 can now classify.

7.3.2. Controlled Propagation of the ABox
The application of rule Hyper ensures that ground atoms A in ontology clauses of the form > → A (corresponding to ABox

assertions) are propagated to every context. This, however, has proved problematic in practice as it results in very high memory
usage. Furthermore, in contexts other than nominal contexts, these clauses are only relevant for redundancy elimination: they
can block the derivation of clauses of the form Γ → ∆ ∨ A, or remove such clauses via the Elim rule. Therefore, clauses of the
form > → A would ideally be derived only in those contexts where they are relevant for redundancy checks.

Our approach to this issue has been to block the application of Hyper or r-Pred to ontology clauses of the form > → A in
all contexts except nominal contexts. This ensures that these clauses are not propagated to arbitrary contexts, thereby reducing
memory usage and preventing the degradation of the performance of redundancy index checks. Later, if a clause of the form
Γ → ∆ ∨ A′ is derived in a context v, where A′ is a ground atom that mentions a constant u ∈ ΣOu , Sequoia immediately applies
Hyper to v for all clauses of the form > → A in O such that A mentions u, to prevent the derivation in v of redundant clauses
mentioning u. This optimisation has been critical for performance in ontologies with large ABoxes.

Ontologies, however, often contain complex combinations of axioms that generate clauses of the aforementioned form, and
which are not addressed by our optimisation. For instance, consider the following clauses, which entail > → D(o):

> → A(o) A(x)→ R(x, f (x)) A(x)→ B( f (x)) B(x)→ C(x) R(z1, x) ∧C(x)→ D(z1).

Often, by the time > → D(x) has been generated in the nominal context for o, redundant clauses containing D(o) have
already been derived in other contexts because of other ontology clauses. To address this issue, we have divided the saturation
phase in Algorithm 3 into two phases. In the first one (the Horn phase), inference rules are never applied to non-Horn context
clauses; in the second one, all inference rules are applied as usual. Non-Horn clauses derived during the Horn phase are stored
in the queue Uv defined in Algorithm 3, but they are blocked so that they will be skipped by Step P3. This allows Sequoia to
seamlessly initiate the second phase from the state reached upon completion of the Horn phase. Splitting the saturation phase
can also prevent the derivation of irrelevant clauses when no constants are involved. Indeed, the derivation of Horn clauses can
help reducing the number of non-Horn clauses through redundancy elimination in certain ontologies containing combinations of
axioms similar to the one described above, where o is replaced by x.

8. Evaluation

We have evaluated the performance of Sequoia on classification of real-world ontologies following the methodology by
Steigmiller et al. [62]. The corpus selected for our experiment is the Oxford Ontology Repository, which consists of 799 on-
tologies with sizes ranging from ∼1KB to ∼1GB and expressiveness ranging from lightweight languages such as DL-Lite and
EL to SROIQ(D).3 Ontologies are sourced from a diverse range of repositories, such as the Gardiner Corpus [18], the OBO
Foundry [61], and the Phenoscape project [9]. We processed each ontology by performing the following steps in the given order.
As a result of this process, we obtained a corpus of 779 ontologies, out of which 104 contain nominals.

• Syntax Sanitisation. We verified that each ontology could be successfully loaded by the OWL API v.3.5. If this was not
the case, we manually edited the ontology to fix syntax errors.4 We also eliminated all empty ontologies.

• OWL 2 DL Profile Check. We checked that each ontology satisfied the global restrictions of the OWL 2 DL language on
the use of non-simple object properties, which ensure decidability. A total of 7 ontologies required removal of axioms
violating these restrictions.

3http://www.cs.ox.ac.uk/isg/ontologies/
4Ontologies with ID 158, 160, 291, and 785 required editing due to syntax errors.
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Figure 12: Classification Times for All Ontologies

• Elimination of Datatypes. Sequoia does not currently support datatype reasoning; thus, we followed the common approach
where each datatype (or datatype restriction) is replaced with a fresh class, each data range intersection, union, complement,
or enumeration with a class intersection, union, complement, or enumeration (respectively), each data property with a fresh
object property, and each literal with a fresh named individual. Multiple occurrences of a datatype, data property, or literal
were matched to the same fresh class, object property, or individual, respectively. We also removed all HasKey axioms.

We used version v.0.7 of Sequoia, which has been described in Section 7. The other reasoners used in the evaluation were
HermiT 1.3.8, Konclude 0.6.2, FaCT++ 1.6.5, and Pellet 2.4.0. We ran all experiments on a Dell server with 512 GB of RAM and
two Intel CPU E5-2640 V3 2.60 GHz processors, with eight cores per processor and two threads per core. The system OS was
Fedora 26, kernel version 4.11.9-300.fc26.x86 64, and Java 1.8.0 update 151. To streamline the tests, we accessed all reasoners
through the OWL API interface. We used versions 3 and 4 of the OWL API interface, since not every reasoner supported the
same versions. Konclude does not offer direct access through the OWL API, so we accessed it via the OWLlink adapter. We
do not expect this to have had a significant impact on performance, since axioms were loaded to the OWLlink server before the
test started. The reasoner Konclude offers support for parallel reasoning; however, this feature is not yet available in the current
version of Sequoia, so we compared all reasoners in single-threaded mode.

For each ontology in the processed corpus, and for each reasoner, we created a fresh process that used the OWL API to:
(i) load the ontology, (ii) create a new instance of the reasoner, (iii) load the ontology to the reasoner, and (iv) ask the reasoner
to classify the ontology. Step (iv) was allowed to run for 5 minutes; if this threshold was reached, the process was terminated
and we recorded a timeout. Otherwise, we created another fresh process to repeat Steps (i)-(iv) up to three times. We measured
the wall-clock duration of the classification task (i.e. Step (iv)) in each repetition. If all repetitions finished before the timeout,
we recorded the average classification time for that ontology; otherwise, we recorded the result as a failure. Taxonomies were
hashed to check correctness. All systems and ontologies used in the experiment are available online.5

The (averaged) classification times for the full corpus are summarised in Figure 12. For each reasoner, we sorted the classifi-
cation times in ascending order; a value point (n,m) in the Figure represents that the n-th smallest average classification time for
that reasoner was m milliseconds. Points where m = 300s represent timeouts. Taxonomy hash values for Sequoia agreed with
the values for at least one other reasoner in almost all cases; when this did not happen (often in ontologies classified only by one
or two reasoners) we manually verified the equivalence of taxonomies. Please see the companion website for a full list of the test
results and ontology hashes.

Figure 12 shows that the performance of Sequoia is competitive with that of well-established DL reasoners. Most timeouts
(67 out of 82) occurred on non-Horn ontologies, where saturation produced many clauses with large numbers of disjuncts in
the head—a well-known source of performance problems in CB reasoning [11]. These problems are exacerbated for ontologies
where an “at-most” number restriction is applicable to a context with a large number of successors for the same role; this leads
to the generation of an exponential number of clauses with quadratically many equalities in the head; this was, for instance,
the case with the Pizza ontology (ID 799). It is interesting to observe, however, that Sequoia is the fastest amongst all the
reasoners supporting OWL 2 DL to classify an ELK-supported version of SNOMED outside of the OWL 2 EL profile (ID 798),

5http://krr-nas.cs.ox.ac.uk/2019/DL-sequoia/
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in approximately 160 seconds. In contrast, Konclude took almost twice as long, and the other reasoners timed out. For reference,
the ELK reasoner required approximately 3 seconds to classify this ontology.

Although the overall performance of Sequoia and HermiT over the corpus appears to be similar, a more fine-grained analysis
shows that a significant number of ontologies were easy for one reasoner, but very hard for the other. For instance, HermiT
was able to classify 35 ontologies where Sequoia timed out; conversely, Sequoia successfully classified 13 ontologies in which
HermiT timed out. This can be explained by the fact that the calculi underlying these reasoners are very different from each
other. We see this as evidence that each of these reasoners has its unique strengths, which manifest in different types of input
ontologies, and therefore they can be seen as complementary to each other.

Overall, Sequoia could classify fewer ontologies with nominals than the other reasoners; for instance, it classified 22 fewer
such ontologies than Pellet, and 40 fewer than Konclude. This shows that there is still plenty of room for optimisation when
reasoning with nominals in Sequoia, especially in the case of ontologies with large ABoxes. The main challenge lies in the
interactions between disjunction and nominals, which can lead to the derivation of a large number of clauses containing several
disjuncts in the head where at least one of them is a ground atom. Furthermore, the presence of ABox axioms aggravates the
known issues in CB reasoning related to number restrictions, since the generation of exponentially many clauses can occur in
every nominal context. It is interesting to notice, however, that none of the ontologies required the generation of fresh nominals
by the Nom rule during classification; this supports the widespread belief within the community that occurrences of interactions
between nominals, inverse roles, and “at-most” number restrictions are rare.

To measure the effect of the optimisations described in Section 7.3, we disabled them one by one and ran the resulting
modified versions of Sequoia on the entire corpus. The optimisation described in Section 7.3.1 improved the classification time
of many ontologies in the corpus. Moreover, it allowed Sequoia to classify 9 additional ontologies. This result emphasises
the importance of ordered resolution for restricting the number of inferences in our calculus. The optimisations described in
Section 7.3.2 allowed Sequoia to classify 68 additional ontologies; furthermore, classification times for ontologies that did not
require these optimisations were not significantly affected. The effect of these optimisations manifested almost entirely on
ontologies with nominals and ABoxes (27 out of 68), or ontologies with ABoxes but no without nominals in the TBox (39 out
of 68). Furthermore, in order to observe the effect of the implementation overhead described in Section 7.2.1, we ran Sequoia
v.0.6 and v.0.7 on the subset of ontologies in the corpus that do not contain nominals. We also removed the ABoxes from these
ontologies, since v.0.6 does not support them. Figure 13 summarises the average classification times of both reasoners on these
ontologies. We can observe that v.0.7 incurs in some overhead due to a less efficient representation of terms, literals, and clauses
(see the discussion in Section 7.2.1), as well as the increased difficulty of comparing clauses during redundancy checks. We also
observe, however, that the effect of this overhead is reduced for hard ontologies.

We also evaluated the performance of the version of Sequoia implementing Algorithm 2 from Section 5, which is worst-case
optimal for Horn ontologies but cannot achieve one-pass classification in ontologies with nominals. For this experiment, we ran
both reasoners on the 612 Horn ontologies in our original corpus. The results show that for most Horn ontologies, the standard
version of Sequoia performs better than the implementation of Algorithm 2, often improving the average classification time by a
factor between 1 and 10. Although the implementation of Algorithm 2 has faster average times in a small number of ontologies,
all ontologies that can be classified by it can also be classified by the standard version of Sequoia. We interpret the results of this
experiment as evidence that one-pass classification is more important in practice than optimal worst-case complexity.
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Figure 14: Classification Times for All OWL 2 EL ontologies supported by ELK and Snorocket.

To test empirically the pay-as-you-go behaviour of Sequoia, we compared its performance against specialised reasoners for
the OWL 2 EL profile [53], namely ELK 0.4.0, and Snorocket 2.8.1. For reference, we also included in this test the reasoners
HermiT and Konclude. The dataset for this experiment was obtained as follows: first, we removed from each ontology all axioms
violating a restriction of the OWL 2 EL profile; then, we discarded all empty ontologies, and finally, we eliminated all ontologies
not supported by either ELK or Snorocket, as neither of these reasoners fully supports the OWL 2 EL profile. The result is a
corpus of 67 ontologies, out of which 52 contain nominals. The experiment follows the same methodology as our evaluation on
the full corpus. Figure 14 summarises the (averaged) classification times for this corpus, sorted as in Figure 12. The performance
of Sequoia is comparable with Snorocket and ELK, and it performed better than Konclude on this corpus. Sequoia is the only
reasoner not designed specifically for OWL 2 EL which could classify all ontologies in the corpus. Both Konclude and HermiT
time out on ontologies that Sequoia, as well as Snorocket and ELK, can easily classify. One of these ontologies (ID 104) is
comparatively harder for Sequoia, but the classification time remains close to those of ELK and Snorocket. We interpret these
results as evidence that the theoretical pay-as-you-go behaviour of our calculus manifests itself in practice.

In summary, our implementation shows promising performance despite not being as mature as other well-established reason-
ers. Our approach has proved to complement nicely the performance of other reasoners due to underlying differences in their
respective calculi, and shown pay-as-you-go behaviour in practice. Reasoning with nominals, large ABoxes, or ontologies with
number restrictions can still be challenging for Sequoia, which suggests promising directions for further optimisation. Further-
more, there appears to be plenty of room for optimisation via the design of more efficient data structures, representations, and
indexing techniques.

9. Conclusion and Future Work

We have presented the first consequence-based reasoning algorithm for a DL featuring all Boolean operators, role hierarchies,
inverse roles, nominals, and number restrictions. Our calculus exhibits pay-as-you-go behaviour: it is worst-case optimal for
the proper fragments of ALCHOIQ+, and for the full logic except in those rare cases where disjunctions, nominals, number
restrictions, and inverse roles interact simultaneously. Our implementation in the reasoner Sequoia currently covers OWL 2 DL,
with the only exception of datatypes. Performance of our system is competitive with that of well-established DL reasoners,
thanks to a number of novel optimisations; furthermore, our experiments show that Sequoia exhibits pay-as-you-go behaviour,
and its strengths nicely complement those of (hyper-)tableau based reasoners.

We see many challenges for future work. First, in the aforementioned case where there is a simultaneous interaction between
nominals, inverse roles, and number restrictions, our algorithm is worst-case triple exponential in time, when it should be possible
to devise a double exponential time algorithm. We believe, however, that deriving such tighter upper bound would require a
significant modification of our approach. Second, our algorithm should be extended with datatypes in order to cover all of OWL
2 DL. Third, we would like to explore the application of our calculus to other DL reasoning problems, such as role subsumption
and classification. This, however, might require extending our framework so that we can represent arbitrary instances of particular
roles. This is not possible in our current approach because contexts can only represent single elements of a model, not pairs.
Finally, our evaluation shows that there is still plenty of room for optimisation; in particular, Sequoia still struggles with several
non-Horn ontologies with number restrictions. ABoxes and nominals can also be problematic due to the derivation of large
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numbers of ground clauses in many contexts. We will be working on further optimisation techniques to address the outstanding
practical limitations. Furthermore, we believe that it should be relatively straightforward to implement support for parallel and
incremental reasoning, which seem particularly compatible with the underlying theoretical calculus.
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[37] Y. Kazakov, M. Krötzsch, F. Simančı́k, The Incredible ELK — From Polynomial Procedures to Efficient Reasoning with EL Ontologies, J. Autom. Reason.
53 (2014) 1–61.

[38] Y. Kazakov, B. Motik, A Resolution-Based Decision Procedure for SHOIQ, in: Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR’06),
Springer, Heidelberg, 662–677, 2006.

[39] C. Lutz, An improved NExpTime-hardness result for description logic ALC extended with inverse roles, nominals, and counting, LTCS-Report 05-05,
Institute for Theoretical Computer Science, Dresden University of Technology, 2005.

[40] C. Lutz, C. Areces, I. Horrocks, U. Sattler, Keys, Nominals, and Concrete Domains, LTCS-Report 02-04, Institute for Theoretical Computer Science,
Dresden University of Technology, 2002.

[41] A. Metke-Jimenez, M. Lawley, Snorocket 2.0: Concrete Domains and Concurrent Classification, in: S. Bail, B. Glimm, R. S. Gonçalves, E. Jiménez-Ruiz,
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Appendix A. Admissible Context Orders

In this section, we prove that given an a-admissible total order m on Σ f ∪ Σu, the context order � defined in Section 4.2 is
admissible with respect to m.

Let �a be the order induced by � on context a-terms; it is straightforward to verify that �a is a strict order. Next, we prove
that � is a strict order. Clearly, � is irreflexive because there is no comparison of the form t � t in the definition of �. To see that
� is transitive, let s1, s2, s3 be arbitrary context terms satisfying s1 � s2 and s2 � s3; we show that s1 � s3. Observe that s1 � s2
implies one of two possibilities: either s1 �a s2, or s1 � s2 is a comparison in Items 4 to 7 in the definition of �. This also holds
for s2 � s3. Therefore, we proceed by examining all these cases one by one. Furthermore, we assume that s3 , true and s2 , y.
Indeed, if s3 = true, then we have s1 � s3 already by Item 4 of the definition, and s2 = y implies s3 = true.
• If s1 �a s2, then s2 is an a-term, and therefore s3 must also be an a-term. Hence, s2 �a s3, and thus we have s1 �a s3

because �a is transitive. But � includes �a, so we have s1 � s3.

• If s1 � s2 is a comparison in Item 4, then s2 = true, which leads to a contradiction since true is minimal in �.

• If s1 � s2 is a comparison in Item 5, then s1 is a context p-term A and s2 = x. This implies s3 = y, and A � y by Item 5.

• If s1 � s2 is a comparison in Item 6 then s1 is a context p-term A and there exists a position p such that A|p � s2. Note that
A|p and s2 are both context a-terms, so A|p �a s2. Thus, s3 is also an a-term, and s2 �a s3. Therefore, A|p �a s3 since �a

is transitive, and thus A � s3 by Item 6.

• If s1 � s2 is a comparison in Item 7 and s3 is a context p-term, then s2 � s3 must also be in Item 7. But then, s3 is obtained
by replacing context a-terms in s1 with smaller terms with respect to �a, and thus, s1 � s3 by Item 7. If s3 is an a-term,
then s2 � s3 must be in Item 5, or in Item 6. In the former case, s3 ∈ {x, y}, and since s1 is a context p-term, we have
s1 � s3 by Item 5. In the latter case, there exists a position p such that s2|p �a s3. Furthermore, s2 is obtained by replacing
terms of s1 by smaller terms in �a. Therefore, we have that s1|p �a s2|p. Hence, s1|p �a s3, which implies s1 � s3 by
Item 6.

We have shown that � is a strict order. Now we show that it is an admissible context order with respect to m.
• Conditions (1) and (2) are satisfied due to Item 4 and Item 5, and the fact that no comparison in � is of the form u � A for

u ∈ Σu and A a context p-term.

• Condition (3) is satisfied by the inclusion in � of the lexicographic path order induced by m, Items 1 to 3, and the fact that
no comparison in � is of the form s � u or u � s for s ∈ {x, y}.

• For condition (4), in order to see that � is monotonic on context terms, suppose that t is a context term, and consider
a-terms s1, s2 such that s1 � s2, and both t[s1]p and t[s2]p are context terms. Notice that we have s1 �a s2. If t is a
context p-term, then, since t[s2]p is obtained from t[s1]p by replacing terms with smaller terms with respect to �a, we have
t[s1]p � t[s2]p because of Item 7. If t is a context a-term, it is easy to check by cases that t has to be a ground term, and
then t[s1]p �a t[s2]p, since any lexicographic path order is monotonic. This implies t[s1]p � t[s2]p since �a is contained
in �. Finally, observe that the order � satisfies the subterm property due to Items 3, 5 and 6.

• To see that condition (5) is satisfied, suppose we have a comparison A � s violating this property i.e. A is a function-free
context p-term mentioning y or a constant in Σu, but s is not obtained by replacing a-terms in A with smaller a-terms with
respect to m, and s is not an element in {x, y, true} ∪ Σu. Since A is a p-term, this comparison can only be of the forms in
Items 4 to 7. However, A � s cannot be a comparison in Item 4 or Item 5 since s < {x, y, true}. If the comparison is of the
form in Item 6, the fact that A mentions only variables x and y or constants of Σu implies that for any proper position p of
A, if A|p � s, then s must be in {x, y} ∪Σu, which also leads to a contradiction. Finally, if A � s is of the form in Item 7, the
fact A is function-free and mentions either y or a constant in Σu, together with the fact that s is a context p-term, imply that
s must be obtained by replacing a term in A by a smaller term with respect to m, but this contradicts our main assumption.

Appendix B. Proof of Soundness

In this section we prove Theorem 1. For this section, we say that an interpretation I satisfies a set of clauses S if and only
if it satisfies every clause in the set. In particular, if S = ∅, then any I satisfies S. If S is a set of clauses and τ is a substitution
with range in the domain of I, then Sτ is the set obtained by applying the substitution τ to every clause of S. Given a clause C,
we use Body(C) to represent the body of C.

Theorem 1 (Soundness). Given a context structure D for O which is sound and an expansion strategy for O, the application of
a rule from Table 2 or Table 3 toD yields a context structure for O that is also sound.
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1 ALCHOIQ+ atoms
B(zi) B(x) B(u)

S (x, zi) S (x, x) S (x, f (x))
S (zi, x) S ( f (x), x)

2 ALCHOIQ+ head a-literals zi ≈ z j x ≈ u f (x) 0 g(x)

3 Context atoms (non-root)

B(y) B(x) B(u) B( f (x))
S (x, y) S (x, x) S (x, u) S (x, f (x))
S (y, x) S (u, x) S ( f (x), x)

S (u1, u2)

4 Context a-literals (non-root)

f (x) ./ y f (x) ./ x f (x) ./ u f (x) ./ g(x)
u ./ y u ./ x u1 ./ u2
x ./ y x ./ x
y ./ y

5 Context atoms (root)
B(y) B(u) B( f (u))

S (u, y) S (u1, u2) S (u, f (u))
S (y, u) S ( f (u), u)

6 Context a-literals (root)
f (u) ./ y f (u1) ./ u2 f (u) ./ g(u)
u ./ y u1 ./ u2
y ./ y

Table B.5: Reference tables for literals, where ./ ∈ {≈,0}.

Proof. Let O be an ontology, and letD be a context structure 〈V,E, core,S, θ〉 for O that is sound. Let CD be the set of clauses
defined in Definition 6. We next show that applying an inference rule from Table 2 or Table 3 toD using an arbitrary expansion
strategy produces a sound context structure for O. First, we show that each clause derived in an application of the inference rules
is a context clause according to Definition 2. It is then straightforward to verify that such clause is in the signature of O. Finally,
we show that any newly derived clause satisfies condition S1, and that any edge added to E satisfies condition S2. We discuss
each inference rule as a separate case, and in each case except Succ and r-Succ, we denote by C the (single) new clause added
to the context structure, and we refer to the nomenclature used in Tables 2 and 3. The proof also uses the soundness property of
hyperresolution [8]: let ω, φi, ψi, and γi for each i with 1 ≤ i ≤ n be arbitrary formulas with free variables in ~x. Then, we have:∀~x.

 n∧
i=1

φi → ω


 ∪ n⋃

i=1

{
∀~x.

[
γi → ψi ∨ φi

]}
|= ∀~x

 n∧
i=1

γi → ω ∨

n∨
i=1

ψi

 (B.1)

Rule Core. In this case, C is of the form > → A(x) for some A ∈ corev. This is clearly a context clause, and sentence corev → A
is a tautology so it is trivially entailed by O ∪ CD.
Rule Hyper. To see that C is a context clause, we need to prove that if v , vr then ∆σ is a disjunction of context terms in Block 3
or Block 4 of Table B.5, and if v = vr, then ∆σ is a disjunction of context terms of the forms in Block 5 or Block 6 of Table B.5.
Atoms from ∆i for each i with 1 ≤ i ≤ n are context literals by our assumption. Notice that literals in ∆ must be of the forms
in Block 1 or Block 2 of Table B.5. Furthermore, the possible forms of body DL-atoms are: B(x), S (zi, x), or S (x, zi). If v , vr,
then σ(x) = x; looking at Block 3 of Table B.5, we can see that ziσ must be of the form y, x, f (x), or u. Considering this, it is
easy to check that the images by any σ of literals in Block 1 or Block 2 of Table B.5 correspond to literals of the form in Block 3
or Block 4 of Table B.5. Similarly, if v = vr, we have σ(x) = u1 for some u1 ∈ ΣOu , and looking at Block 5 of Table B.5, we see
that zi can only be mapped to y, f (u1), or u2 for some u2 ∈ ΣOu (possibly equal to u1). Once again, we can check that images by
any such σ of literals in Block 1 or Block 2 of Table B.5 correspond to literals of the form in Block 3 or Block 4 of Table B.5.
Finally, condition S1 follows because, by assumption, we have: O ∧ CD |= corev ∧ Γi → ∆i ∨ Aiσ for each 1 ≤ i ≤ n, and since∧n

i=1 Ai → ∆ is an ontology clause of O, we have O ∧ CD |=
∧n

i=1 Aiσ → ∆σ. We obtain the desired result by soundness of
hyperresolution.
Rule Eq. Suppose that v , vr. To see that C is a context clause, first observe that the context literal s2 ./ t2 must be of one
of the forms in Block 3 or Block 4 of Table B.5. Next, we have that s1 ≈ t1 must be of one of the forms in Block 4 with ./
replaced by ≈, except x ≈ y and y ≈ u. In addition, if s1 ≈ t1 is of the form u ≈ x, then s2 ./ t2 does not contain f (x) or y.
With this, and bearing in mind that f (x) �v {u, x, y}, it is easy to check that s1[t1]p ./ t2 is another element of the form in Block 3
or Block 4 of Table B.5. An analogous argument proves the equivalent result in the case v = vr, using Block 5 and Block 6 of
Table B.5. In particular, when the rule is applied to literals of the form S (u1, f (u1)) (resp. S ( f (u1), u1)) with s1 ≈ t1 of the form
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u1 ≈ u2, the new literal is of the form S (u2, f (u2)) (resp. S (u2, f (u2))). Condition S1 follows because, by assumption, we have:
O ∧ CD |= corev ∧ Γ1 → ∆1 ∨ s1 ≈ t1, and O ∧ CD |= corev ∧ Γ2 → ∆2 ∨ s2 ≈ t2. But then, since we have

s1 ≈ t1 ∧ s2[s1]p ≈ t2 |= s2[t1]p ≈ t2 ∧ s2[s1/t1] ≈ t2

due to the fact that ≈ is a congruence, we have both O ∧ CD |= corev ∧ Γ1 ∧ Γ2 → ∆1 ∨ ∆2 ∨ s2[t1] ≈ t2 and O ∧ CD |=
corev ∧ Γ1 ∧ Γ2 → ∆1 ∨ ∆2 ∨ s2[s1/t1] ≈ t2.
Rule Ineq. Clause C is trivially a context clause. To see that condition S1 is satisfied, observe that since O∧CD |= Γ→ ∆∨ t 0 t
by induction hypothesis, and no model satisfies t 0 t for any context a-term t, we have O ∧ CD |= Γ→ ∆.
Rule Factor. Suppose that v , vr. To see that C is a context clause, one can simply check that given any two context literals
s ≈ t1 and s ≈ t2 from Block 4 of Table B.5, the literal t1 0 t2 is also in Block 4. The argument is analogous in the case v = vr.
To see that condition S1 is satisfied, observe that O ∧ CD |= corev ∧ Γ→ ∆ ∨ s ≈ t1 ∨ s ≈ t2 by induction hypothesis and

s ≈ t1 ∨ s ≈ t2 |= t1 0 t2 ∨ s ≈ t2,

so we have O ∧ CD |= corev ∧ Γ→ ∆ ∨ t1 0 t2 ∨ s ≈ t2.
Rule Elim. No clause is generated by this rule, so the theorem is trivially satisfied.
Rule Join. Clause C is trivially a context clause. To see that condition S1 is satisfied, observe that since O∧CD |= corev ∧ Γ1 →

∆1 ∨ A and O∧CD |= corev ∧ A∧ Γ2 → ∆2, by the soundness of hyperresolution, we have O∧CD |= corev ∧ Γ1 ∧ Γ2 → ∆1 ∨∆2.
Rule Nom. Clause C is trivially a context clause. To see that condition S1 is satisfied, first observe that

O ∧ CD |= B1(x) ∧
n+1∧
i=1

S B2 (x, zi)→
∨

1≤i< j≤n

zi ≈ z j,

because this an ontology clause. To prove O ∧ CD |= C, let I be an arbitrary model of O, and let τ be a substitution such that Cτ
is ground. If I 6|= Γiτ or I |= ∆iτ for some i ∈ {1, 2}, then I |= Cτ trivially. Otherwise, we have I 6|= Γiτ→ ∆iτ for i ∈ {1, 2}. By
assumption, we have O ∧ CD |= Γ1 → ∆1 ∨ B1(oρ) and O ∧ CD |= Γ2 → ∆2 ∨ S B2 (oρ, x), and hence we have I |= B1(oρ)τ and
I |= S B2 (oρ, x)τ. Furthermore, by definition of CD, we have:

O ∧ CD |= B(oρ) ∧ S B2 (oρ, z)→
n∨

i=1

z ≈ oρ·S i , (B.2)

Thus, we conclude

I |=

n∨
i=1

xτ ≈ oρ·S i
B2
,

and therefore I |= Cτ.
Rule Succ. The newly derived clauses are trivially context clauses. To see that condition S1 is satisfied, notice that each added
clause is of the form A′ → A′, so we have that O∧CD |= corew∧A′ → A′ trivially. Finally, to prove condition S2, assume v , vr,
and notice that for every A ∈ corew, we have > → Aσ ∈ Sv. By soundness of D, we have corev |= Aσ; therefore, we conclude
corev |= corewσ, with σ = {y 7→ x, x 7→ f (x)} since v , vr by our assumption.
Rule Pred. To see that C is a context clause, let A be an arbitrary element in Pr(O) and observe that A{y 7→ x, x 7→ f (x)} is a
literal of the forms in Block 3 or Block 4 of Table B.5; similarly, A{y 7→ u, x 7→ f (u)} is a context term of the forms in Block 5
or Block 6 of Table B.5. To see that condition S1 is satisfied, consider first the case v = vr. By assumption we have:

O ∧ CD |= corev ∧

m∧
i=1

Ai ∧

n∧
i=1

Ci →

k∨
i=1

Li,

O ∧ CD |= corew ∧ Γi → ∆i ∨Ciσ for 1 ≤ i ≤ n,

Due to the first of these claims we have:

O ∧ CD |= corevσ ∧

m∧
i=1

Ai ∧

n∧
i=1

Ciσ→

k∨
i=1

Liσ, (B.3)

and, by soundness of hyperresolution,

O ∧ CD |= corew ∧ corevσ ∧

m∧
i=1

Ai ∧

n∧
i=1

Γi →

n∨
i=1

∆i ∨

k∨
i=1

Liσ.
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Furthermore, by induction hypothesis we have O ∧ CD |= corew → corevσ, so we conclude:

O ∧ CD |= corew ∧

n∧
i=1

Γi ∧

m∧
i=1

Ai →

n∨
i=1

∆i ∨

k∨
i=1

Liσ. (B.4)

The argument for w = vr is analogous, albeit with a small difference: condition S2 of Definition 6 does not guarantee
O ∧ CD |= corew → corevσ. However, we can use the clauses of the form Γi → ∆i ∨ Ciσ in Svr with n + 1 ≤ i ≤ n′, which are
such that

∧n′
i=n+1 Ci = corev, to resolve the atoms corevσ in the body of (B.3) and therefore obtain a clause analogous to (B.4),

where n is replaced by n′.
Rule r-Succ. The newly derived clauses are trivially context clauses that are allowed in the root contexts. To see that condition S1
is satisfied, notice that every added clause is of the form A → A, so we have O ∧ CD |= corew ∧ A → A trivially. Furthermore,
edges added in an inference by this rule are not labelled with elements of ΣOf , so S2 is already satisfied by assumption.

Rule r-Pred. To see that C is a context clause, let A be an arbitrary element in Prr(O) and observe that A{y 7→ x} is a context
term. The argument to show that condition S1 is satisfied is analogous to that used in the proof for the Pred, except that we
cannot use condition S2 of Definition 6, but this is not an issue since corev = ∅.

Appendix C. Rewrite systems

This section introduces basic notions of rewrite systems. We borrow the notation from [6] and represent an ordered pair
(s1, s2) in a binary relation ◦ as s1 ◦ s2. All definitions and theorems are formulated with respect to HU.

Appendix C.1. Basic definitions

A rewrite system is a binary relation R on HU. Each ordered pair s1 ⇒ s2 in R is called a rewrite rule. Given a rewrite system
R, we define the rewrite relation for R, represented as→R, as the smallest binary relation on HU which contains all pairs of the
form t[s1]p →R t[s2]p, where s1 ⇒ s2 ∈ R, t ∈ HU, and p is a position of t. We let ∗→R be the reflexive–transitive closure of→R,
and ∗
↔R be the symmetric and transitive closure of ∗→R.
We say that a term s ∈ HU is irreducible by a rewrite system R if and only if there is no term t ∈ HU such that s →R t. We

extend the definition of irreducibility to literals and say that a literal s1 ./ s2 is irreducible by R if and only both s1 and s2 are
irreducible by R. Finally, we say that a term t is a normal form of a term s with respect to R if and only if t is irreducible by R
and s ∗

↔R t.
Given a rewrite system R, the Herbrand equality interpretation induced by R is the Herbrand equality interpretation R∗ such

that for every pair of terms s, t ∈ HU, we have

s ≈ t ∈ R∗ if and only if s ∗
↔R t.

Appendix C.2. Church-Rosser rewrite systems

Let R be a rewrite system. We say that R is terminating if and only if there is no infinite sequence of terms s1, s2, . . . such
that si →R si+1 for every i ∈ N. Next, we say that R is left-reduced if and only if for each s ⇒ t ∈ R, the term s is irreducible by
R\{s ⇒ t}. Finally, we say that R is Church-Rosser if and only if for every pair s1

∗
↔R s2, there exists a term t such that s1

∗
→R t

and s2
∗
→R t. With these definitions, we have the following three results:6

Lemma 3. Given a rewrite system R, if there exists a simplification order � on HU such that for each s ⇒ t ∈ R we have s � t,
then R is terminating and s→R t implies s � t.

Lemma 4. If R is terminating and left-reduced, then it is Church-Rosser.

Lemma 5. If R is Church-Rosser, then each term s ∈ HU has a unique normal form s′ with respect to R such that s ∗
→R s′.

If � satisfies the conditions of Lemma 3 with respect to a rewrite system R, we say that � embeds the rules of R. To conclude
the section, we state and prove the following lemma, which we use in the completeness proof:

Lemma 6. Let R be an arbitrary Church-Rosser rewrite system R, and let � be a simplification order embedding the rules of
R. Let t1, t2 be a pair of terms with R∗ |= t1 0 t2. For any pair of terms s1 � s2 such that s1 � {t1, t2}, if the rewrite system
R̂ = R ∪ {s1 ⇒ s2} is Church-Rosser, then R̂ |= t1 0 t2.

6We refer the reader to [6] for proofs of these results.
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Proof. Since R is Church-Rosser, let t′1 and t′2 be the unique normal forms of t1 and t2 with respect to R; observe that we have
R∗ |= t′1 0 t′2 since R∗ is a congruence. Since � is a simplification order, we have t1 � t′1 and t2 � t′2; hence, s1 � t′1 and s1 � t′2.
Furthermore, since � is a simplification order, s1 is neither a subterm of t′1 nor t′2. Thus, there is no position p such that rewrite
rule s1 ⇒ s2 can be applied to either t′1|p or t′2|p. This, together with the fact that t′1 and t′2 are irreducible by R, implies that t′1 and
t′2 are irreducible by R̂. Since R̂ is Church-Rosser, every term has a unique normal form, so t′1 and t′2 are still the normal forms of
t1 and t2, respectively. Furthermore, R̂∗ 6|= t′1 ≈ t′2, and thus R̂ |= t1 0 t2 since R̂ is a congruence.

Appendix D. Proof of Completeness

This section offers a proof of Theorem 2, which states that the calculus is complete for (multiple) concept subsumption. Our
strategy consists in showing that there is a countermodel for each target subsumption that is not present in a saturated context
structure. The section is structured as follows: in Appendix D.1 we offer a high-level overview of the proof; in Appendix D.2 we
show how to build a fragment of the countermodel covering the “neighbourhood” of a single element t; then, in Appendix D.3
we prove a key property of these fragments: if a term in a fragment is connected to a constant via an inverse role that appears in
an “at-most” restriction in the ontology, then such term is equal to a constant; finally in Appendix D.4 we show how to combine
the model fragments of Appendix D.2 into a unified countermodel.

Appendix D.1. Proof Overview

Let O be a fixed ontology, D = 〈V,E,S, core, θ〉 a context structure for O derivable from a sound context structure for O,
and m an a-admissible order on Σ f ∪ Σu such that every context v ∈ V is assigned a context order �v that is admissible with
respect to m. Suppose also that no rule in Table 2 or Table 3 can be applied to D. Finally, suppose that the parameter Λ in the
Nom rule satisfies Λ ≥ 2τSu · 2τPr · ω, with τSu and τPr defined as in Theorem 2.

Let ΓQ → ∆Q be a query clause and q a context in V which together satisfy conditions C1 and C2 of Theorem 2. We show
the contrapositive of the theorem’s statement: we assume that ΓQ → ∆Q 6∈̂ Sq, and we show O 6|= ΓQ → ∆Q by constructing a
Herbrand equality model R∗ of O containing an element a ∈ Σu which satisfies ΓQ{x 7→ a} but not ∆Q{x 7→ a}. The element a
will either be a constant in ΣOu or a fresh constant c < ΣOu . We assume cm u for all u ∈ Σu. This is without loss of generality since
c cannot appear in the context structure.

Our proof technique is similar to that used in [11] to prove completeness of theALCHIQ+ CB calculus. The completeness
proof of the ALCHIQ+ calculus constructs the model R∗ piecewise and inductively. The base case considers fresh constant
c and constructs a model fragment R∗c that covers the “neighbourhood” of c. This construction uses the context clauses in q to
ensure that R∗c satisfies O and R∗c 6|= ΓQ → ∆Q. Then, each induction step selects a term t appearing in some previous fragment,
and such that t is not equal to any other term in a fragment already constructed. Next, it chooses a context v in D representing
t, and then uses context clauses in Sv to build a model fragment R∗t that satisfies O. The fragment is then added to the general
model. The construction of each model fragment R∗t uses a pair of parameters (Γt,∆t). The parameter Γt is the set of atoms
that already appear in previous fragments and unify with the body of some clause in O via a substitution mapping x to t. The
parameter ∆t consists of equality t ≈ t′, where t′ is the predecessor of t, and all the atoms that unify with the body of some clause
in O via a substitution mapping x to the predecessor t′ of t and have not appeared in R∗t′ . The construction ensures that R∗t satisfies
all atoms in Γt, and none of the literals in ∆t. This will have a twofold effect on the global model R∗: on the one hand, it will
ensure that key inequalities like t 0 t′ remain true when the union of fragments is taken; on the other hand, it will ensure that
each R∗t will include the set Ht of all atoms in R∗ that unify with the body of some clause in O via a substitution mapping x to t.
These properties suffice to ensure that the union of all fragments is a model of O.

Unfortunately, when O contains constants, ensuring that the union of fragments is still a model is much harder. There are two
reasons for this:

• Non-local constraints. In the ALCHIQ+ calculus, a fragment R∗t mentions only ground terms t, t′, and terms of the
form f (t), for t′ the predecessor of t. Because of this, the pair (Γt,∆t) can be easily generated from R∗t′ , which is always
constructed before R∗t . In our calculus, however, R∗t can mention arbitrary constants in ΣOu . This makes the compatibility
conditions between fragments significantly more complex.

• Forest-like models. TheALCHIQ+ calculus does not support constants. The model generated in the proof by Bate et al.
consists of a single (possibly infinite) tree rooted in the fresh constant c. By contrast, our model has a cluster of “root”
elements in Σc which can be arbitrarily interconnected amongst themselves. Furthermore, each of these root elements can
spawn a (possibly infinite) tree. Finally, anonymous elements in the tree can be directly linked to arbitrary root elements
by a binary predicate. Because of this, if we wish to prove that the union of fragments is still a model by ensuring (as in
theALCHIQ+ calculus) that for each term t all atoms in Ht appear in the fragment R∗t , then all (possibly infinitely many)
atoms of the form S (u, s) or S (s, u) in Hu in a model, for s an arbitrary term, would have to appear in R∗u. This would make
the construction of fragment R∗u very hard.
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To address these issues, we modify the proof of theALCHIQ+ calculus in the following ways, which correspond to the two
items listed above, respectively:

• After constructing the first fragment of our model, we use it to determine the set R∗Rt of function-free ground atoms and
equalities between constants in ΣOu that will hold in the global model R∗. Then, for each model fragment R∗t we build
afterwards, we define the sets Γt and ∆t in a way that ensures that R∗t will be compatible with R∗Rt. This will ensure that all
fragments agree on “non-local” literals.

• We construct the fragments in the order dictated by m, albeit with one exception: c is chosen before the constants in ΣOu
because this allows us to define R∗Rt simultaneously with the construction of fragment R∗c. Then, if c is found to be equal to
some constant u ∈ ΣOu , we discard the fragment R∗c.

Furthermore, we modify the construction of model fragments so that the following condition is satisfied by the global
model: each atom in Ht appears in R∗t or is of the form S (s, t) or S (t, s) for some term s and appears in R∗s together with
other body atoms in the grounding of ontology clauses mapping x to t that mention S in the body. This condition suffices
to guarantee that the union of model fragments is itself a model. Moreover, ensuring that model fragments satisfy this
condition instead of the similar condition in the proof of the ALCHIQ+ calculus (i.e., each atom in Ht must appear in
R∗t ) is much easier. Indeed, when t = u, we do not need to have each atom of the form S (u, s) or S (s, u) in R∗u; instead, we
can have them in R∗s. Then, for all DL-clauses other than those of the form DL4, additional body atoms in the grounding
of an ontology clause mentioning S in the body and where x has been mapped to u will be of the form B(u). Such atoms
can appear in context clauses in any context, so it is easy to take them into account when constructing R∗s.

The body atoms in groundings of ontology clauses of the form DL4 that map x to u may mention arbitrary ground terms
s1, . . . , sn+1. In these cases, the solution described in the previous paragraph no longer works, because for each i ∈
{1, . . . , n + 1}, we would have atom S B2 (u, si) in a different model fragment R∗si

. This would make it very difficult to ensure
that the union of fragments is still a model of O. Instead, we use the property of saturation with respect to the Nom role to
prove that each si is equal to a constant ui, for i ∈ {1, . . . , n + 1}. This makes it much easier to construct the fragment R∗u,
since all atoms of the form S (u, ui) can appear in context clauses in the same context.

To construct a fragment R∗t we choose a context v satisfying the property that A→ A ∈̂ Sv for each A ∈ Γt; this ensures that all
context clauses that are necessary to construct R∗t appear in v. The fragment R∗t is then constructed using a variant of the standard
deterministic procedure for proving correctness of resolution-based calculi [8], which uses a total order >t on the ground terms
which is compatible with the context order �v assigned to the context v. The procedure grounds the context clauses of v by
{x 7→ t, y 7→ t′} and selects those with a body in Γt. The procedure then iterates through clause heads, from smaller to bigger with
respect to >t, starting with an empty model fragment, and adding to the fragment only those literals needed to satisfy a clause,
avoiding picking literals from ∆t. After this, the fragment is completed in a way that ensures that the properties of equality are
satisfied. We illustrate this process in the following example.

Example 3. Let O3 be the ontology in Figure 6. We show how to construct a model showing O3 6|= A(x) → ⊥, for D the
saturation of the context structure in Figure 7 using the rules of our calculus with the cautious expansion strategy. The saturated
context vA contains clause (93) and clauses (97) through (99), while clauses (94) through (96) are removed by Elim because of
clause (99). It contains also clause > → C(o), which is propagated from vB via Pred, and clause > → D(o) ∨ F(o), propagated
from vr via r-Pred using > → C(o) as side premise, after C(o) → C(o) in vr has been resolved with ontology clause (87). We
also assume that all contexts use the context order defined in Appendix A. One can easily check that vA satisfies the conditions of
the completeness theorem with respect to our query A(x)→ ⊥.

We first consider constant c. Since we would like to disprove A(c)→ ⊥, we need R∗c to satisfy A(c), so we define Γc = {A(c)}.
Since the head of the clause we wish to disprove is empty, we do not need to forbid any atom from appearing in R∗c, so we let
∆c = {}. To define a total order >c on ground terms, we use the lexicographic order on ground terms induced by: f > R > F >
D > C > B > A > c > o > true, which is compatible with the context order for vA. We then ground the clauses of vA via {x 7→ c},
which results in the following clauses, ordered from the smallest head to biggest:

> → A(c), > → C(o), > → D(o) ∨ F(o), > → F(c), > → B( f (c)), > → R(c, f (c)).

The fragment R∗c consists of the atoms in {A(c),C(o), F(o), F(c), B( f (c)),R(c, f (c))} plus all necessary atoms to satisfy the prop-
erties of equality, such as true ≈ true, A(c) ≈ C(o), etc. Fragment R∗c determines the set R∗Rt of function-free ground atoms and
equalities with constants in ΣOu that will hold in R∗. In our case, this is {C(o), F(o)} union all trivial equalities.

Next, we construct the fragment R∗o. We define Γo = {C(o), F(o)}, because we already know that these atoms must hold in R∗.
Then, ∆o contains all other function-free ground atoms and equalities with constants of ΣOu that do not hold in R∗Rt, including,
for instance, D(o) and E(o). We then repeat the procedure above with the clauses of vr. It is not hard to verify that, in the
saturation of vr, the only clauses with bodies in Γo are C(o)→ C(o), C(o)→ D(o)∨F(o) (obtained from the previous via Hyper)
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and F(o) → F(o) (obtained from clause > → D(o) ∨ F(o) in vA via r-Succ). The constructed fragment R∗o contains the atoms
{C(o), F(o)} plus all required atoms to satisfy the properties of equality.

After this, we consider the next ground term mentioned in the fragments defined thus far, namely f (c). We define Γ f (c) =

{B( f (c)),R(c, f (c)),C(o), F(o)}, while ∆ f (c) is equal to the union of {A( f (c)),C( f (c)),D( f (c)), E( f (c)), F( f (c)), S (c, f (c))} with
∆o and { f (c) ≈ c, c ≈ o, f (c) ≈ o}, where the literals in the latter set would lead to a contradiction since we are treating
f (c) as different from c and o, and c as distinct from o. We construct the fragment R∗f (c) by selecting context vB. Indeed,
the grounding via {x 7→ f (c), y 7→ c} of the saturated set of context clauses of vB contains up to redundancy the clauses
B( f (c)) → B( f (c)), R(c, f (c)) → R(c, f (c)), C(o) → C(o), and F(o) → F(o) (the latter is derived from vr via r-Pred),
as required for Γ f (c). We then follow a procedure analogous to that for vA and we generate a model fragment that contains
{C(o), F(o), B( f (c)),R(c, f (c)),C(g( f (c)), S ( f (c), g( f (c)), g( f (c)) ≈ o, S ( f (c), o)}. Note that the new ground term appearing in
the fragment, g( f (c)), is equal to o, so no further fragments need to be constructed.

The complete model R∗ includes all fragments defined thus far plus any additional literals required to satisfy the properties
of equality. It can be summarised as:

{A(c),C(o), F(o), F(c), B( f (c)),R(c, f (c)),C(g( f (c)), F(g( f (c))), S ( f (c), g( f (c)), S ( f (c), o), g( f (c)) ≈ o}.

Appendix D.2. The Model Fragment R∗t
This section defines, for each a-term t in the countermodel, the model fragment R∗t which covers the “neighbourhood” of t and

disproves Γt → ∆t, which is either a grounding of target query, or expresses a compatibility condition with the fragments defined
previously. The section is organised as follows: in Appendix D.2.1 we describe the input parameters required for the construction
of the model fragment R∗t and the conditions that they satisfy; in Appendix D.2.2 we define formally the neighbourhood of t and
establish a total order on the terms in the neighbourhood, which is necessary for the fragment-building method; in Appendix
D.2.3 we prove several preliminary lemmas on the set of clauses Nt that we will use to build the model fragment for t, using the
set of context clauses in the context selected for t; in Appendix D.2.4 we construct the fragment; in Appendix D.2.5 we show
that the fragment satisfies the clauses in Nt; finally, in Appendix D.2.6 we show that the model fragment refutes Γt → ∆t.

Appendix D.2.1. Input Parameters
In order to build the model fragment, we assume that the following parameters are given:
• A term t.

• A context v inD, which is q if t = c and vr if t ∈ ΣOu .

• A conjunction of equalities Γt.

• A disjunction of literals ∆t which is disjoint with Γt.
Furthermore, if t , c, we also assume that we are also given a Church-Rosser rewrite system RRt embedded in m which

contains only rules of the form B(u) ⇒ true, S (u1, u2) ⇒ true, or u1 ⇒ u2, for u, u1, u2 ∈ ΣOu . We define ΓRt as the set of
equalities s ≈ l for each s ⇒ l ∈ RRt, and we let R∗Rt be the Herbrand equality interpretation induced by this system. Similarly,
we assume that we are given a set of literals ∆Rt of the form B(u), S (u1, u2), or u1 ./ u2, with ./ ∈ {≈,0}. Intuitively, R∗Rt and
∆Rt represent a partition on the set of function-free ground equalities built using only constants in ΣOu where R∗Rt contains those
satisfied by the model, and ∆Rt the rest; ∆Rt also contains all inequalities corresponding to a-equalities not in R∗Rt. To enforce
this, we assume that the following properties are satisfied:

L1. For any u1, u2 in ΣOu , we have u1 ≈ u2 ∈ ∆Rt and u1 ≈ u2 < R∗Rt if and only if it is not the case that u1 0 u2 ∈ ∆Rt and
u1 ≈ u2 ∈ R∗Rt.

L2. For any atom A of the form B(u) or S (u1, u2), A ∈ ∆Rt if and only if A < R∗Rt.

Notice that condition L1 implies u 0 u ∈ ∆Rt for every u ∈ ΣOu since u ≈ u ∈ R∗Rt always. The following preliminary
definitions will help us state the additional conditions on the parameters.

Definition 10. We define the grounding substitution σt of a term t ∈ HU as the substitution {x 7→ t, y 7→ t′} if t′ exists, and {x 7→ t}
otherwise. Furthermore, Sut is the set {Aσt | A ∈ Su(O) and Aσt is ground }, Prt is the set {Aσt | A ∈ Pr(O) and Aσt is ground },
Reft is the set {S (t, t) | S is a binary predicate }, Nomt is the set

{
Aσt | A ∈ {S (x, u), S (u, x)} for some u ∈ ΣOu and S ∈ ΣOS

}
, Zt is

the set {Aσt ≈ true | A is a function-free context p-term with one occurrence of y or a constant from ΣOu }, and Rt is the set of all
literals built using only true, a-terms in ΣOu , and function-free ground p-terms mentioning only constants in ΣOu

For Γt and ∆t, the following conditions are assumed:
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L3. If t = c, then ∆c = ∆Qσt; if t ∈ ΣOu , then Γt = ΓRt and ∆t = ∆Rt; otherwise, Γt ⊆ Sut and ∆t ⊆ Prt ∪ ∆Rt.

L4. If t , c, we have ΓRt ⊆ Γt and ∆Rt ⊆ ∆t; also, ∆t ∩ Rt ⊆ ∆Rt.

L5. If t ∈ ΣOu , then we have t ≈ u ∈ ∆t for every u ∈ ΣOu with t m u. If t = f (t′) we have t ≈ u ∈ ∆t for each u ∈ ΣOu , t′ ≈ u ∈ ∆t

for each u ∈ ΣOu with t′ m u, and t ≈ t′ ∈ ∆t.

Let πt be a function which removes all elements in ∆t from a disjunction. Define Nt as the set:

{Γσt → π(∆σt) | Γ→ ∆ ∈ Sv, both Γσt and ∆σt are ground, and Γσt ⊆ Γt.}

Finally, we assume that the following conditions are satisfied:

L6. Γt → ⊥ 6∈̂Nt;

L7. For each A ∈ Γt, we have Γt → A ∈̂Nt; in particular, for t , c, if A ∈ ΓRt, then A→ A ∈̂ Sv.

Appendix D.2.2. Simplification Order on the Neighbourhood of t
In this section, we first define the neighbourhood of a term t, and then we define a total simplification order on it.

Definition 11. We define the a-neighbourhood of each term t ∈ HU as the set which contains term t, the term f (t) for each
f ∈ ΣOf , the predecessor t′ of t if it exists, and every constant in ΣOu .

Elements in the a-neighbourhood of t will be treated as constants for the remainder of this section. Thus, we assume that
terms like t, f (t), or t′ do not have subterms at proper positions.

Definition 12. We define the p-neighbourhood of each term t ∈ HU as the smallest set containing the p-terms B(t), S (t, t),
S (t, f (t)), S ( f (t), t), S (t, u1), S (u1, t), B( f (t)), B(u1), S (u1, u2), for each f ∈ ΣOf , B ∈ ΣOA , S ∈ ΣOS , {u1, u2} ⊆ ΣOu ; and also, if t′

exists, the p-terms S (t, t′), S (t′, t), B(t′) for each B ∈ ΣOA , S ∈ ΣOS .

The neighbourhood of a term t ∈ HU is the union of its a-neighbourhood and its p-neighbourhood.
For convenience, we will say that if a term s2 is obtained from a term s1 by replacing context a-terms in s1 with smaller

a-terms relative to m, then s2 is an a-reduction of s1 with respect to m. For the construction of the model fragment, we define a
total simplification order >t on the set of ground terms in the neighbourhood of t in a way which satisfies the following conditions
for any pair of context terms s1, s2:

O1. If s1 �v s2, then s1σt >t s2σt;

O2. If t = c, having s1σc ≈ true ∈ ∆c and s1σc >c s2σc implies s2σc ∈ {c, true}∪ΣOu , s2σc ≈ true ∈ ∆c, or s2σc is an a-reduction
of a term s3 w.r.t. m such that s3 ≈ true ∈ ∆c; and

O3. If t , c, having s1σt ≈ true ∈ ∆t and s1σt >t s2σt implies that s2σt ∈ {t, t′, true} ∪ ΣOu , or s2σ ≈ true ∈ ∆t, or s2σt is an
a-reduction of a term s3 w.r.t. m such that s3 ≈ true ∈ ∆t.

To define >t, we use the following strategy: first, we define the partial order �t as the order consisting of comparison
s1σt �t s2σt for each pair of context terms s1, s2 such that s1 �v s2. Then, we totalise �t to obtain a total order >t. Using this
strategy ensures that >t satisfies condition O1. We have that �t is a strict order because σt is surjective except for t′ (an a-term
which, if t′ ∈ ΣOu , can be obtained via yσt or t′σt), but conditions (3) and (5) of Definition 7 ensure that no two comparisons of
terms in the neighbourhood mentioning t′ conflict with each other.

To show that >t will be monotonic, observe that due to condition (3), �v already defines a total order on the a-neighbourhood
of t. Hence, for any totalisation of �t and any a-terms in the neighbourhood s1, s2 with s1 >t s2, we have s1 �v s2. Thus, for
any term r in the p-neighbourhood of t and any position p, we have r[s1]p �v r[s2]p due to condition (4); by definition of >t,
this implies t[s1]p >t t[s2]p. To show that >t has the subterm property, notice that condition (4) ensures that we have s �v s|p
for any term s in the p-neighbourhood, and hence by definition of >t, s >t s|p. This shows that any totalisation >t of �t will be
a simplification order. To complete the proof, we only need to show how to extend �t to a total order >t in a way that satisfies
conditions O2 and O3. Thus, consider the possible forms of t:

• (Case t = c) In this case, for any term s in the neighbourhood of c there is a unique context term s′ such that s′σc = s. We
refer to such s′ as the lifted form of s. Notice that lifted forms of elements in the neighbourhood of c never contain variable
y. To extend �c to a total order >c, we start by noticing that the smallest element of >c must be true by condition (1).
We then place the elements of ΣOu in order, and then c, due to condition (2). Let Q be the set of terms of the form Aσc

in the neighbourhood of t such that {A ≈ true ∈ ∆Q}. Next in >c we add the terms of Q, ensuring that before each term
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is added, all its a-reductions by m are added to the total order too. With this, ordering >c clearly satisfies condition O2.
Adding the terms of Q to >c is possible because, according to condition C2, the only order restrictions for terms in Q that
can be imposed by �v, other than those already accounted for, are with other atoms of Q (no lifted form of a term in the
neighbourhood of t mentions variable y); furthermore, according to condition (5), function-free ground p-terms mentioning
only constants in ΣOu can only be greater than their respective a-reductions w.r.t.m. Thus, as long as >c respects the ordering
between terms in Q imposed by �v, as well as the orderings between p-terms and their a-reductions w.r.t. m, the terms in
Q and function-free ground p-terms mentioning only constants in ΣOu can be ordered in any way. Finally, the remaining
terms are totalised arbitrarily.

• (Case t = u for u ∈ ΣOu ) To define >u, we totalise �u as follows. It is easy to see that the first element in >u is true, followed
by all elements of ΣOu in the order defined by m. Now let Q be the set containing each term A such that A ≈ true ∈ ∆Rt. We
next add to the ordering >u all elements of Q, as well as the a-reductions w.r.t. m of terms in ∆Rt, respecting the ordering
between terms in Q imposed by �u, as well as the orderings between p-terms and their a-reductions w.r.t. m. This is
possible because by condition (5), function-free ground p-terms mentioning only constants in ΣOu can only be greater than
their respective a-reductions w.r.t. m. Thus, we ensure condition O3. To conclude, totalise the remainder of �t arbitrarily.

• (Case t = f (t′)) We add true as the smallest element in >t, followed by all elements of ΣOu , followed by t′ (unless t′ already
in ΣOu ), and then t. Now, let Q be the set consisting of every term s in the neighbourhood such that s ≈ true ∈ ∆t. We
next add to >t all elements from ∆t, ensuring that for each such term added to the order, we have already added all its
a-reductions by m. This is possible because, by condition L3, for each term s such that sσt is in Q we have that s is a
function-free context p-term mentioning variable y or a constant in ΣOu , and condition (5) requires that such terms can only
be greater than their corresponding a-reductions. With this, we ensure condition O3. To conclude, totalise the remaining
elements arbitrarily.

For the remainder of this section, we use the multiset extension of >t to define an order on ground literals and ground
disjunctions as discussed in Section 2.2; to keep our notation simple, we use the same symbol >t for these orders.

Appendix D.2.3. Grounding of clauses
Let us write the clauses in Nt as {C1, . . . ,Cn}. Observe that none of these clauses can have the empty disjunction as their

head, according to condition L6. We represent each clause Ci as Γi → ∆i ∨ Li, where Li >t ∆i; notice that this is possible because
clause heads have no duplicate literals due to the fact that they are defined as sets. We also assume that the sequence is ordered
in such a way that if j > i then L j ∨ ∆ j >t Li ∨ ∆i. For these clauses, we have the following result:

Lemma 7 (Lifting of clauses in Nt). Let Ci = Γi → ∆i∨Li be a clause of Nt such that Li is not in Rt or an a-(in)equality between
terms in {t, t′} ∪ ΣOu . Then, there exits a clause Γ→ ∆1 ∨ ∆2 in Sv such that

Γσt = Γi, ∆1σt ⊆ ∆i ∨ ∆t, ∆2σt = Li and ∆1 �v ∆2.

Proof. By definition of Nt, there is a clause Γ→ ∆1 ∨ ∆2 ∈ Sv such that Γσt = Γi, ∆1σt ⊆ ∆i ∨ ∆t, and ∆2σt = Li. Furthermore,
if L ∈ ∆1 is such that Lσt ∈ ∆i, then L �v ∆2, for otherwise condition O1 implies ∆i >t Li, which contradicts the definition of
Li. Thus, suppose L ∈ ∆1 with Lσt ∈ ∆t, and suppose L �v L′ for some L′ ∈ ∆2. Due to the form of ∆t, we only have these
possibilities:

• L is of the form S (u1, u2) or B(u). But then, condition (5) of Definition 7 requires L′ must be a reduction of L, or an
a-equality or inequality between terms in {x, y} ∪ ΣOu . But this contradicts our assumption on the form of Li.

• L is an a-equality or inequality between terms in {x, y} ∪ ΣOu . But then condition (5) of Definition 7 requires L′ must also
be an a-equality or inequality between terms in {x, y} ∪ ΣOu , which again contradicts the assumptions on Li.

• L is of the form S (y, x), S (x, y), or B(y), in which case condition (5) of Definition 7 requires L′ can only be an a-equality
or inequality between terms in {x, y} ∪ ΣOu , which yields the same contradiction.

Thus, we conclude L �v ∆2, and this completes the proof.

We are interested in clarifying under which circumstances ∆2 contains more than one literal. The following lemma shows
that this can only happen if t = f (u) for some f ∈ ΣOf and u ∈ ΣOu ; furthermore, literals in ∆2 can only differ in replacements of
term y by u and vice versa.

Lemma 8. Consider two distinct a-terms s1, s2 appearing in v such that s1 , s2 and s1σt = s2σt, where s1σt is ground. Then
t = f (u) for some u ∈ ΣOu and f ∈ ΣOf ; furthermore, {s1, s2} = {y, u}.

Proof. We prove this by considering all possible forms of s1 and s2:

43



• If s1 = x, then xσt = t; but then s2 cannot be y or f (x), since their ground forms by σt are t′ and f (t). If s2 = u for u ∈ ΣOu ,
by hypothesis we have that u = t. However, since x is a context term, v , vr, so t < ΣOu , and we reach a contradiction. The
fact that v , vr also implies that s2 cannot be of the form f (u) for some u ∈ ΣOu , f ∈ ΣOu . There are no options left for s2,
so this case is not possible.

• If s1 = f (x), then f (x)σt = f (t), so clearly s2 cannot be y, x or in ΣOu . Furthermore, since x is a context term, v , vr, so s2
cannot be of the form f (u), and hence this case is not possible.

• If s1 = y, then yσt = t′, so s2 cannot be x or f (x). It also cannot be of the form f (u), for this would imply v = vr, but vr is
only selected if t ∈ ΣOu , and here t < ΣOu because it is of the form f (t′) for some f ∈ ΣOf . Thus, it can only be the case that
s2 ∈ ΣOu ; however, the fact that s1σt = s2σt ensures t′ ∈ ΣOu and s2 = t′.

• If s1 = u, then uσt = u; using an argument analogous to the previous case, we conclude that s2 cannot be x, f (x), f (u), or
in ΣOu , so it can only be the case that s2 = y and t′ = u.

In the remainder of the proof, we often argue as follows: given a clause Ci ∈ Nt, identify a clause C ∈ Sv such that
πt(Cσt) = Ci. Then, use that Sv is closed by application of inference rules to conclude that there is some clause C′ ∈̂ Sv such
that C′′ = πt(C′σt) is a “reduction” (in the standard sense of resolution-based theorem proving) of Ci and is also satisfied by
R∗t . Variants of this reductive argument are commonly used in resolution-based reasoning [8]. Typically, one first proves that R∗t
satisfies clauses in Nt and then extends the result to clauses contained up to redundancy in Nt using some version of Lemma 10.
This suffices for our purposes since, as Lemma 9 proves, if C′ ∈̂ Sv, then C′′ ∈̂Nt.

Lemma 9. For any clause Γ→ ∆ ∈̂ Sv such that Γσt ⊆ Γt and Γσt → ∆σt is ground, we have that Γσt → ∆σt ∈̂Nt.

Proof. If clause Γ→ ∆ ∈̂ Sv then we have exactly three possibilities:

• There is an equality l ≈ l ∈ ∆, and hence there is a literal lσt ≈ lσt in ∆σt, which implies Γσt → ∆σt ∈̂Nt.

• The literals l ≈ r and l 0 r are in ∆, so we have literals lσt ≈ rσt and lσt 0 rσt in ∆σt, and therefore Γσt → ∆σt ∈̂Nt.

• There exist Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′ → ∆′ ∈ Sv. Since Γ′σt → ∆′σt is ground and Γ′σt ⊆ Γt, by definition of Nt we
have that Γ′σt → πt(∆′σt) ∈ Nt, which implies Γσt → ∆σt ∈̂Nt.

Lemma 10. Let I be an arbitrary interpretation of O. Let C = Γ → ∆ be a clause contained up to redundancy in Nt. Suppose
that either: (i) I |= ∆ j ∨ L j for each j with 1 ≤ j ≤ n, or (ii) there is some i with 1 ≤ i < n such that I |= ∆ j ∨ L j for each
1 ≤ j ≤ i, and Li+1 ∨ ∆i+1 >t ∆. Then, I |= ∆.

Proof. Suppose I 6|= ∆ for the sake of contradiction. Since I 6|= ∆, we have that ∆ cannot contain a tautology, so C ∈̂Nt implies
that there is some k with 1 ≤ k ≤ n such that Γk ⊆ Γ and ∆k ∨ Lk ⊆ ∆. If I |= ∆ j ∨ L j for each 1 ≤ j ≤ n, we immediately
obtain I |= ∆, which contradicts our assumption. Thus, let i with 1 ≤ i < n be such that I |= ∆ j ∨ L j for each 1 ≤ j ≤ i, and
Li+1 ∨ ∆i+1 >t ∆. If k ≤ i, we obtain the same contradiction as above, so assume k > i. The fact that ∆k ∨ Lk ⊆ ∆ implies
∆ ≥t Lk ∨ ∆k; however, since k ≥ i + 1 we have Lk ∨ ∆k ≥t Li+1 ∨ ∆i+1 >t ∆, which contradicts the previous claim.

We conclude this section by proving an auxiliary lemma for the next section. The proof is an example of the type of reductive
argument discussed above.

Lemma 11. If there is a clause Γ→ ∆ ∨ l 0 l ∈ Nt, then Γ→ ∆ ∈̂Nt.

Proof. Suppose there is a clause Γ → ∆ ∨ l 0 l ∈ Nt. By definition of Nt, there is a clause Γ′ → ∆′1 ∨ ∆′2 ∈ Sv with Γ′σt = Γ,
∆′1σt ⊆ ∆ ∪ ∆t and ∆′2σt = l 0 l. If t , u for every u ∈ ΣOu , Lemma 8 ensures that ∆′2 is of the form l′ 0 l′ with l′σt = l. If t = u
for some u ∈ ΣOu , then l , u, for u 0 u ∈ ∆Rt by condition L1 and ∆Rt ⊆ ∆t by condition L4, but Lemma 8 then ensures that ∆′2 is
of the form l′ 0 l′ with l′σt = l. Since rule Ineq is not applicable to Γ′ → ∆′1 ∨ l′ 0 l′, we have that Γ′ → ∆′1 ∈̂ Sv; by Lemma 9,
this implies Γ→ ∆ ∈̂Nt.
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Appendix D.2.4. Construction of the rewrite system Rt

Let n be the number of clauses in Nt. Consider the following sequence of monotonically growing rewrite systems {R0
t , . . . ,R

n
t }

defined inductively as follows:

• R0
t := ∅

• Ri
t = Ri−1

t ∪ {li ⇒ ri} if Li is of the form li ≈ ri such that:

R1. (Ri−1
t )∗ 6|= ∆i ∨ Li,

R2. li >t ri,

R3. li is irreducible by Ri−1, and

R4. (Ri−1)∗ 6|= s ≈ ri for each li ≈ s ∈ ∆i.

• Ri = Ri−1
t in all other cases.

Let Rt = Rn
t . If a clause verifies conditions R1 through R4, we call it a generative clause, and {li ⇒ ri} is the generated rewrite

rule in Rt. The model induced by Rt will be represented as R∗t . Before showing that R∗t satisfies all clauses in Nt, all atoms in Γt,
and no literal in ∆t, we prove some properties of the series of the rewrite systems Ri

t. Lemmas 12 to 14 follow simply from the
definition of R∗t :

Lemma 12 (Church-Rosser property). Each rewrite system Ri
t for 1 ≤ i ≤ n is Church-Rosser. In particular, Rt is Church-Rosser.

Proof. Let i be an arbitrary number in 1 ≤ i ≤ n. To show that the rewrite system Ri
t is terminating, notice that each rule of Ri

t is
of the form l ⇒ r with l >t r by condition R2. Hence, all rules are embedded in >t, and since >t is a simplification order, Ri

t is
terminating by Lemma 3. To show that the rewrite system is left-reduced, let l⇒ r be an arbitrary rewrite rule in the system, and
let us show that no rewrite rule applies to l. Let Ci be the clause that generates l ⇒ r, and suppose that there is some 1 ≤ j < i
such that C j is generative and l is reduced by l j ⇒ r j at position p. However, since l j ⇒ r j ∈ Ri−1

t , this contradicts condition R3.
Now suppose that there is some k > i such that l is reduced by the rule lk ⇒ rk generated by Ck. However, since k > i, we have
lk ≈ rk ≥t l ≈ r, which implies lk ≥t l. But if lk = l, then the fact that Ck is generative violates condition R3, and if lk >t l, then
lk cannot reduce l, since we have shown that rewrite rules are embedded in >t, and due to the subterm property of >t, no subterm
l|p of l can be such that l|p >t lk.

Lemma 13 (Inequality Monotonicity). For each 1 ≤ i ≤ n and every l 0 r ∈ ∆i ∨ Li we have that (Ri
t)
∗ |= l 0 r if and only if

R∗t |= l 0 r.

Proof. If (Ri
t)
∗ 6|= l 0 r, then l ≈ r ∈ (Ri

t)
∗, and since (Ri

t)
∗ ⊆ R∗t , then l ≈ r ∈ R∗t , so R∗t 6|= l 0 r.

Suppose (Ri
t)
∗ |= l 0 r, which is equivalent to (Ri

t)
∗ 6|= l ≈ r. Let j be the smallest element i < j ≤ n such that (R j−1

t )∗ |= l ≈ r.
We assume that C j is generative, since otherwise (R j−1

t )∗ also satisfies l ≈ r, and thus we contradict the assumption that j is
minimal. Let L j = l j ≈ r j and Li = li ./ ri, where L j and Li are the maximum literals of C j and Ci, respectively. Since j > i, we
have l j ≈ r j ≥t li ./ ri ≥t l 0 r. If ./ is an inequality, then l j >t li and hence l j >t l; if ./ is an equality, then li >t l, and thus l j >t l.
A symmetric argument applies to r. Since both R j−1

t and R j
t are Church-Rosser by Lemma 12, Lemma 6 implies (R j

t )
∗ 6|= l ≈ r,

which contradicts our supposition that (R j−1
t )∗ |= l ≈ r since (R j−1

t )∗ ⊆ (R j
t )
∗. Therefore, no such j exists, so (Rn

t )∗ 6|= l ≈ r.

Lemma 14 (Canonicity). For any 1 ≤ i ≤ n, if Ci is generative, we have R∗t 6|= ∆i.

Proof. Let L be a literal in ∆i. If L is an inequality, then (Ri−1
t )∗ 6|= L implies R∗t by Lemma 13. If L is an equality, let L

be written as l ≈ r with l >t r (if l = r, then Ci is trivially satisfied by (Ri−1
t )∗, so it cannot be generative). Let j be the

smallest integer i ≤ j ≤ n such that (R j
t )
∗ |= l ≈ r, which implies (R j−1

t )∗ 6|= l ≈ r and also that C j is generative. Notice that
l j ≈ r j ≥t li ≈ ri >t l ≈ r. Thus, l j ≥t l and l j >t r. If l j > l, then since R j−1

t and R j
t are Church-Rosser by Lemma 12, Lemma 6

implies (R j
t )
∗ |= l ≈ r, which contradicts our assumption. If l j = l, then li = l, and ri , r, for otherwise R∗t satisfies l ≈ r trivially

since (Ri
t)
∗ |= l ≈ r by construction. Since Ci is generative, by condition R4 we have (R j−1

t )∗ 6|= r ≈ ri. Since l >t ri and l >t r,
Lemma 6 entails (R j

t )
∗ 6|= r ≈ ri, which contradicts the assumption (R j

t )
∗ |= l ≈ r and the fact that (Ri

t)
∗ ⊆ (R j

t )
∗ |= l ≈ ri, because

≈ is a congruence. Hence, no such j exists, so R∗t 6|= l ≈ r.

Appendix D.2.5. Fragment Adequacy
The next part of the proof consists in showing that R∗t is a model of the clauses Nt. We start by proving preliminary results in

Lemmas 15 to 17.

Lemma 15. For any generative clause Ci, if L ∈ ∆i then L is neither of the form s ≈ s nor of the form s 0 s.
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Proof. If L is of the form s ≈ s, then the literal is trivially satisfied and the clause cannot be generative because condition R1 is
not satisfied. Thus, let i be the minimal integer such that Ci contains a literal of the form s 0 s. Let us write Ci as Γi → ∆i∨ s 0 s.
By an argument analogous to the proof of Lemma 11, there exists a clause of the form Γ′ → ∆′ ∨ l′ 0 l′ in Sv. Since Ineq is
not applicable, we have Γ′ → ∆′ ∈̂ Sv. Furthermore, the fact that Elim is not applicable to Γ′ → ∆′ ∨ l′ 0 l′ ∈ Sv implies that
∆′ contains no tautology of the form {s1 ≈ s1} or {s1 ≈ s2 ∨ s1 0 s2}, and therefore there exist Γ′′ ⊆ Γ′ and ∆′′ ⊆ ∆′ such that
Γ′′ → ∆′′ ∈ Sv. But this contradicts the fact that Elim is not applicable to Γ′ → ∆′ ∨ l′ 0 l′.

Lemma 16 (Rt-Equality Invariance). If t , c and u1, u2 are elements of ΣOu such that u1 ≈ u2 ∈ (Ri
t)
∗ for some 1 ≤ i ≤ n, then

u1 ≈ u2 ∈ R∗Rt.

Proof. We use proof by contradiction. Let i be the smallest integer for which the lemma is false, so there exist u1 and u2 with
u1, u2 ∈ ΣOu such that (Ri

t)
∗ |= u1 ≈ u2, but u1 ≈ u2 < R∗Rt. Notice that if u1 = u2, we immediately obtain a contradiction, so we

assume u1 >t u2. Since i is the smallest integer that makes the lemma false, we have that i cannot be 0 since (R0
t )∗ 6|= u1 ≈ u2.

We also have that (Ri−1
t )∗ 6|= u1 ≈ u2 and Ci is generative. Let li ≈ ri be Li. If li ≈ ri ∈ R∗Rt then by induction hypothesis and the

fact that by definition of >t, (Ri
t)
∗ can only contain equalities between elements of ΣOu , then (Ri

t)
∗ ⊆ R∗Rt; but then (Ri

t)
∗ |= u1 ≈ u2

implies R∗Rt |= u1 ≈ u2, which contradicts our hypothesis. Therefore, li ≈ ri < R∗Rt; by condition L1, we have li ≈ ri ∈ ∆Rt, and
since t , c, by condition L4, we have li ≈ ri ∈ ∆t, which contradicts the fact that li ≈ ri appears in ∆i ∨ Li.

Lemma 17 (Irreducibility of t and t′). If t , c, terms t and t′ (if it exists) are irreducible by Rt.

Proof. By definition of >t, we have that if t′ is reducible, there exists a generative clause Ci of the form Γi → ∆i∨ t′ ≈ u for some
u ∈ ΣOu and t′ >t u. If t′ ∈ ΣOu , then t′ >t u implies t′ m u, and by condition L5 we have t′ ≈ u ∈ ∆t, so we reach a contradiction.
If t′ < ΣOu , then condition L5 implies t′ ≈ u ∈ ∆t and we again obtain a contradiction. Thus, t′ is irreducible.

Suppose t can be reduced. Then, there exists a generative clause Ci of the form Γi → ∆i ∨ t ≈ u or Γi → ∆i ∨ t ≈ t′. However,
condition L5 ensures t ≈ u ∈ ∆t and t ≈ t′ ∈ ∆t, so we again reach a contradiction.

We now show that the interpretation defined above satisfies all clauses of Nt. We do this by showing that R∗t satisfies the
head of each clause in Nt. For the remainder of this sub-section, we assume that, unless otherwise noted, if t = c, then c is
irreducible w.r.t. Rc. This is due to the fact that during construction of the model, if c is not irreducible w.r.t. Rc, we will not use
this fragment.

Lemma 18 (Fragment Adequacy). For each 1 ≤ i ≤ n, we have R∗t |= ∆i ∨ Li.

Proof. We proceed using proof by contradiction. Let i be the smallest number between 1 and n such that R∗t 6|= ∆i ∨ Li. We
assume that Ci is not generative, because all generative clauses are trivially satisfied by R∗t . To complete the proof, we consider
all possible forms of Li:

• Case Li = li ≈ li. But then we have that R∗t |= li ≈ li, which contradicts the main hypothesis.

• Case Li = li ≈ ri, with li >t ri. We reach a contradiction by showing that conditions R1 through R4 are verified, and
therefore Ci should be generative.

– Condition R1. Suppose this condition is not verified. Then, there is some literal L ∈ ∆i∨Li such that (Ri−1
t )∗ |= L. But

if L is an equality, then R∗t |= L trivially, and if L is an inequality, then since Ci is not generative we have (Ri
t)
∗ |= L,

and then by Lemma 13 we have R∗t |= L, which contradicts the main hypothesis.

– Condition R2 is trivially satisfied in this case.

– Condition R3. Suppose li can be reduced by Ri−1
t . Let l j ⇒ r j be the rule in Ri−1

t which reduces li at (one of) the
deepest position(s), which we name p. Let C j be the generative clause for rule l j ⇒ r j.
Lifting C j. If t , c, notice that l j is neither t nor t′, since these terms are irreducible If l j ∈ ΣOu , then by Lemma 16,

R∗Rt |= l j ≈ r j. Hence, there exists some r j ∈ ΣOu such that l j ≈ r j ∈ ΓRt. Hence, by condition L7, we have
> → l j ≈ r j ∈ Sv (without loss of generality; the body could be l j ≈ r j and the treatment would be identical), which
follows from the fact that any clause subsuming it will be in Nt because ΓRt ⊆ Γt due to condition L4, and hence the
head of this clause is not empty due to condition L6. In this case, we define Γ′ = l j ≈ r j and ∆′ = ⊥; notice that this
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is a clause of the form (D.1) below, with the same properties. Otherwise, since l j and r j are a-terms, l j must be of the
form f (t) for some f ∈ ΣOf . If r j , t′ ∈ ΣOu , then Lemmas 7 and 8 ensure that there exists a clause

Γ′ → ∆′ ∨ l′ ≈ r′ ∈ Sv, (D.1)

with Γ′σt = Γ j, ∆′σt ⊆ ∆ j ∪ ∆t, l′σt = l j and r′σt = r j with ∆′ �v l′ ≈ r′. We now prove that such a clause can
also be found when r j = t′ ∈ ΣOu . Indeed, suppose there is no clause of the form (D.1). Then, Lemmas 7 and 8 imply
that there is a clause Γ′ → ∆′ ∨ f (x) ≈ y ∨ f (x) ≈ u ∈ Sv with Γ′σt = Γ j, ∆′σt ⊆ ∆ j ∪ ∆t, f (x)σt = l j; furthermore,
∆′ �v f (x) ≈ y∨ f (x) ≈ u. But since Factor is not applicable, then there exists a clause Γ′ → ∆′∨y 0 u∨ f (x) ≈ u ∈̂ Sv

(without loss of generality; we could replace u by y in the last literal). Notice that this clause cannot contain a
tautology, since if y ≈ u ∈ ∆′, then u ≈ u ∈ ∆ j, so C j is trivially satisfied by (R j−1

t )∗ and hence is not generative.
Hence, there is a clause C′ in Sv that subsumes Γ′ → ∆′∨y 0 u∨ f (x) ≈ u; but such clause must contain f (x) ≈ u, for
otherwise the grounding by σt of C′ is in Nt and subsumes C j, and hence it is a smaller clause in Nt, so by induction
this clause is satisfied by (R j−1

t )∗, and hence C j is not generative. But then, the existence of C′ contradicts the
assumption that there is no clause of the form (D.1). Hence, the existence of a clause of the form (D.1) is guaranteed.
If t = c and c is irreducible, then l j cannot be t′ since this is not defined. If l j = u, then r j = u′ for some u′ ∈ ΣOu with
um u′, and there exists a clause Γ′ → ∆′ ∨ u ≈ u′ in Sv with Γ′σc = Γ j, ∆′σc ⊆ ∆ j ∨∆c. Notice that if L ∈ ∆′ is such
that Lσc ∈ ∆ j then L �q u ≈ u′ due to u ≈ u′ >t ∆t; otherwise L ∈ ∆Q, and then by condition C2 we have L �q u
and hence L �q u ≈ u′. This is our clause of the form (D.1). Finally, if l j is of the form f (t), we proceed as in the
previous paragraph.
Lifting Ci. If t , c, then li cannot be t or t′ either, due to Lemma 17. If li ∈ ΣOu , then by definition of >t, we have

ri ∈ ΣOu too. But then, since li ≈ ri appears in Ci, we have li ≈ ri < ∆Rt, and hence by condition L1 we have
li ≈ ri ∈ R∗Rt. As a result, there exist equalities li ≈ r1, . . . , lK ≈ rK in ΓRt which imply li ≈ ri. By an argument
analogous to the case above, we have that for each k with 1 ≤ k ≤ K, we have (without loss of generality) a clause
Ck = > → lk ≈ rk in Nt. Furthermore, due to the fact that li is in ΣOu , we have l j = li and since i > j then ri >t r j,
ri >t r1, r1 ≥t lk, and r j ≥t lk, so all clauses Ck are smaller than Ci. Thus, by induction hypothesis, (Ri−1

t )∗ satisfies
such equalities, and hence it satisfies li ≈ ri. If li is a function-free ground context p-term that mentions only constants
of ΣOu , the argument is analogous. If li is of the form f (t), we proceed as in the previous case and obtain a clause

Γ→ ∆ ∨ l ≈ r ∈ Sv (D.2)

with Γσt = Γi, ∆′σt ⊆ ∆i ∪ ∆t, lσt = li and rσt = ri. If li is a p-term that mentions a function or c, notice that due to
the form of l j, li cannot contain t′, so Lemma 8 guarantees the existence of a clause of the form (D.2). In both cases,
we are in the conditions of Lemma 7, so ∆ �v l ≈ r.
If t = c and c is irreducible, then if li ∈ ΣOu , then ri ∈ ΣOu and we argue as in the case of C j to the same conclusion.
Finally, if li is of a different form, the argument is identical to that for the case t , c.
Saturation by Eq. Observe that due to the form and properties of (D.1) and (D.2), we are in the conditions of the Eq

rule, which ensures that there is a clause Γ∧ Γ′ → ∆∨∆′ ∨ l[r′]p ≈ r ∈̂ Sv; Lemma 9 then ensures that Γσt ∧ Γ′σt →

∆i ∨ ∆ j ∨ li[r j]p ≈ ri ∈̂Nt; notice that the head of this clause is smaller than ∆i ∨ li ≈ ri due to the monotonicity
property of the ground order. Thus, by Lemma 10, we conclude R∗t |= ∆i ∨ ∆ j ∨ li[r j]p ≈ ri. However, the fact that
C j is generative, together with Lemma 14 implies R∗t 6|= ∆ j; similarly, by hypothesis we have R∗t 6|= ∆i. Finally, since
R∗t |= l j ≈ r j but R∗t 6|= li ≈ ri, and R∗t is a congruence, we have that R∗t 6|= li[r j]p ≈ ri. We have thus obtained a
contradiction, and hence condition R3 must be satisfied.

– Condition R4. Suppose that there exists li ≈ si ∈ ∆i, with ri >t si and (Ri−1
t )∗ |= ri ≈ si. Notice that in this case, li, ri,

and si are a-terms, since if they were p-terms, we would have ri = si = true.
Lifting Ci. If t , c, notice that li cannot be t or t′ by Lemma 17, and it cannot be in ΣOu for otherwise we could argue

as in the previous case to show R∗t |= li ≈ ri. Thus, li is of the form f (t), and we argue as above to show that there is a
clause of the form:

Γ→ ∆ ∨ ∆′ ∨ l ≈ r ∈ Sv (D.3)

with Γσt = Γi, ∆σt ⊆ (∆i\{li ≈ si}) ∪ ∆t, ∆′σt = li ≈ si, lσt = li and rσt = ri, and since we are in the conditions of
Lemma 7, ∆∨∆′ �v l ≈ r. Furthermore, ∆′ can contain at most two literals l ≈ s1, l ≈ s2 such that lσt = li, s1σt = si,
and s2σt = si, since due to the form of li, either t′ < ΣOu or si , t′ ∈ ΣOu ; in both cases Lemma 8 ensures that there is
only one such literal, name it l ≈ s1, or t′ = u ∈ ΣOu and (w.l.o.g.) s1 = y and s2 = u.
If t = c and c is irreducible, then we already argued that li cannot be t′; hence li = u ∈ ΣOu and ri = u′ ∈ ΣOu or li is of
the form f (t). In all these cases, we have shown that there exists a clause of the form (D.3) with ∆ ∨ ∆′ �v l ≈ r.
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Saturation by Factor. Since the Factor rule is not applicable, we have Γ → ∆′′ ∨ s1 0 r ∨ l ≈ r ∈̂ Sv, where ∆′′ =

∆∨{l ≈ s1} if l ≈ s2 ∈ ∆′, and otherwise ∆′′ = ∆. Notice that this clause does not contain a tautology, since that would
imply si ≈ ri ∈ ∆i and hence Ci would be satisfied, contrarily to our main assumption. Thus, there exists a clause C′

in Sv which subsumes this one. Notice that the head of this clause must contain l ≈ r, for otherwise the grounding
of C′ by σt is a smaller clause in Nt, which must be satisfied by R∗t by induction hypothesis. But then, since we have
R∗t |= si ≈ ri and R∗t 6|= li ≈ ri, we cannot have R∗t |= li ≈ si, so it must be the case that R∗t satisfies some literal of
πt(∆σt), and this contradicts R∗t 6|= Ci. If the head of C′ does not contain l ≈ s2, then we have that the grounding of C′

is in Nt and since li ≈ si >t ri 0 si, the head of such clause is smaller than the head of Ci, so by induction hypothesis
we have R∗t |= πt(∆σt); however, πt(∆σt) ⊆ ∆i ∨ si 0 ri, and we have that R∗t 6|= ∆i (by hypothesis) and R∗t 6|= si 0 ri

since R∗t |= si ≈ ri by hypothesis; thus, this leads to a contradiction. Finally, if the head of C′ contains l ≈ s2, we have
that C′ is a clause of the form (D.3) where ∆′ contains only one literal. We apply the same argument via saturation
of the Factor rule to this clause, and we obtain a contradiction as in the case above.

• Case Li = li 0 li. In this case, we have that since u 0 u ∈ ∆Rt for every u ∈ ΣOu , we have li < ΣOu . We are in the conditions
of Lemma 8, and hence there exists a clause Γ → ∆ ∨ l 0 l where Γσt = Γi, ∆σt ⊆ ∆i ∨ ∆t, and lσt = li. Furthermore, we
are in the conditions of Lemma 7, so ∆ �v l 0 l. By Lemma 11, we have Γ→ ∆ ∈̂ Sv, and since Li ∨∆i >t ∆i, by Lemma 9
and Lemma 10, we have R∗t |= ∆i, which contradicts our hypothesis.

• Case Li = li 0 ri with li >t ri. By Lemma 13, we have that (Ri−1
t )∗ 6|= li 0 ri, which means that (Ri−1

t )∗ |= li ≈ ri, and hence
li is reducible by Ri−1

t . The contradiction is then obtained as in the proof for condition R3 in the previous case; we merely
replace li ≈ ri by li 0 ri. Furthermore, we disprove the case where li ∈ ΣOu since by definition of >t, we have ri ∈ ΣOu too,
and then since li 0 ri appears in Ci, we have li ≈ ri ∈ ∆Rt, and hence li ≈ ri < R∗Rt by condition L1. But then the fact that
R∗t |= li ≈ ri contradicts Lemma 16.

Corollary 19. For any clause Γ→ ∆ ∈̂Nt, we have R∗t |= ∆.

Proof. The result follows trivially from Lemma 10 given that choosing i = n satisfies the conditions of the theorem due to
Lemma 18.

Appendix D.2.6. Compatibility Conditions
We now know R∗t is a model of Nt (and all clauses subsumed by Nt). To conclude the proof, we only need to show that R∗t

satisfies the required compatibility conditions, that is, it satisfies all atoms in Γt and none of the literals in ∆t. We start by proving
this for the relevant atoms in Rt.

Lemma 20. R∗t |= R∗Rt and R∗t 6|= ∆Rt.

Proof. The lemma is trivially true in the case t = c, so we assume t , c and then, by condition L4, we have ΓRt ⊆ Γt; hence
R∗t |= R∗Rt by condition L7 and Corollary 19. Consider u1 ≈ u2 ∈ ∆Rt, and suppose R∗t |= u1 ≈ u2. By Lemma 16, R∗t |= u1 ≈ u2
implies R∗Rt |= u1 ≈ u2. However, by condition L1, u1 ≈ u2 ∈ ∆Rt implies R∗Rt 6|= u1 ≈ u2; hence we obtain a contradiction. Now,
consider u1 0 u2 ∈ ∆Rt such that R∗t |= u1 0 u2, that is, R∗t 6|= u1 ≈ u2. By condition L1, u1 0 u2 ∈ ∆Rt implies R∗Rt |= u1 ≈ u2, and
hence Γt |= u1 ≈ u2, which contradicts our previous claim. Consider a function-free, ground atom A ∈ ∆Rt and suppose R∗t |= A.
By condition L2, we have R∗Rt 6|= ∆Rt, which implies R∗t 6|= A, as seen above. This contradiction concludes the proof, as we have
exhausted all cases for elements of ∆Rt.

For t , c or t = c with c irreducible w.r.t. Rc, we can use the final results in the previous section to prove that R∗t |= Γt and
R∗t 6|= ∆t (see Lemma 23). However, we also need to prove this for the case when t = c and c is not irreducible w.r.t. Rc, which
implies refutation of the query ΓQ → ∆Q. To that effect, we prove first Lemmas 21 and 22.

Lemma 21. In case that t = c and c is not irreducible w.r.t. Rc, we have R∗t |= Γt.

Proof. Suppose there is A ∈ Γc such that R∗c 6|= A. By definition of Γc, A is of the form A(x) for A ∈ ΣOA , and since c is not
irreducible w.r.t. Rc, there exists a generative clause Γi → ∆i ∨ c ≈ u for some u ∈ ΣOu . Since Ci is generative, we have that x
is irreducible by R∗i−1t, so we can apply an argument analogous to the proof of Lemma 18 in the case t = c with c irreducible to
show that (Ri−1

c )∗ |= Ck for each 1 ≤ k ≤ i − 1.
Now, if we consider Ci, we are in the conditions of Lemma 8, so there is a clause Γ → ∆ ∨ x ≈ u with Γσc = Γi and

∆σc ⊆ ∆i ∪ ∆c; observe now that if some B ∈ ∆ is such that A �q x ≈ u, we have that Aσc < ∆i since c ≈ u >c ∆i, but then B is
of the form B(x) ∈ ∆Q, by definition of ∆c, and this contradicts condition (2) of Definition 7. Thus, ∆ �q x ≈ u.
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Furthermore, by condition C1 of Theorem 2, we have a clause Γ′ → A(x) ∈ Sq, with Γ′ ⊆ ΓQ, and hence its a-terms only x,
so the preconditions of the Eq rule are satisfied, and since this clause is not applicable, we have Γ ∧ Γ′ → ∆ ∨ A(u) ∈̂ Sv. If ∆

contains a tautology, then we contradict the fact that Ci is generative due to condition R1, so there is a clause Γ j → ∆ j ∨ L j ∈ Nc

with Γ j ⊆ Γσc ∧ Γ′c, ∆ j ⊆ ∆σc ∨ A(u), and in particular we have A(u) ∈ ∆ j, for otherwise the fact that this clause is smaller than
Ci implies, by Lemma 10, (Ri−1

c )∗ |= ∆ j, contradicting the fact that Ci is generative.
However, the fact that this clause is smaller than Ci, together with R∗c 6|= ∆i by Lemma 14 implies (Ri−1

c )∗ |= A(u) and hence
R∗c |= A(u). This, together with the fact that R∗c |= u ≈ c, implies R∗c |= A(c).

Lemma 22. In case that t = c and c is not irreducible w.r.t. Rc, we have R∗t 6|= ∆t.

Proof. Since c is not irreducible w.r.t. Rc, there is a generative clause Ci = Γi → ∆i ∨ c ≈ u in Nc for some u ∈ ΣOu . Therefore, by
Lemma 8, there is a clause of the form Γ→ ∆1 ∨ x ≈ u ∨ ∆2 ∈ Sq with Γ ⊆ ΓQ, ∆1 �q x ≈ u, and ∆2 ⊆ ∆Q. Every literal in ∆′2 is
in ∆Q, so it is of the form B(x) for some B ∈ ΣOA , and by Condition C2, it cannot be the case that B(x) �q u, and hence we have
∆2 �q x ≈ u.

Suppose that u is not the normal form of c w.r.t. Rc. Then, there exists a generative clause C j = Γ j → ∆ j ∨ u ≈ u′ for some u′

with um u′. Notice that since c >c u, we have j < i. Thus, by Lemma 8, there exists a clause Γ′ → ∆′1 ∨ ∆′2 ∨ u ≈ u′ ∈ Sq with
Γ′σc = Γi, ∆′1σc = ∆i, and ∆′2 ⊆ ∆Q. Notice that we have ∆′1 �q u ≈ u′ due to u ≈ u′ >c ∆i; furthermore, every literal in ∆′2 is in
∆Q, so it is of the form B(x) for some B ∈ ΣOA , and by C2, it cannot be the case that B(x) �q u or B(x) �q u′. Thus, literal u ≈ u′

is maximal in this clause. We are therefore in the conditions of the Eq rule, and since this rule is not applicable, there is a clause
Γ ∧ Γ′ → ∆ ∨ ∆1 ∨ ∆2 ∨ ∆′1 ∨ ∆′2 ∨ x ≈ u′ ∈̂ Sq. Notice that (Γ ∧ Γ′)σc ⊆ Γc, and the mapping by σc of the head of this clause is
ground. Thus, by Lemma 9 we have Γi ∧ Γ j → ∆i ∨∆ j ∨ c ≈ u′ ∈̂Nc. Furthermore, we have that either x ≈ u >c ∆i ∨∆ j ∨ c ≈ u′,
so by Lemma 10, we have (Ri−1

c )∗ |= ∆i ∨ ∆ j ∨ c ≈ u′; however, since Ci is generative, condition R1 ensures (Ri−1
c )∗ 6|= ∆i. In

addition, Lemma 13 and Lemma 14 ensure (Ri−1
c )∗ 6|= ∆ j. Thus, we conclude (Ri−1

c )∗ |= c ≈ u′, but this contradicts condition R3
for Ci. Hence, we reach a contradiction and conclude that u must be the normal form of c w.r.t. Rc.

Now, by definition of ∆c, we have that L is of the form B(c) for some B ∈ ΣOA . Since Rc is Church-Rosser, there must
be a generative clause Ck of the form Γk → ∆k ∨ B(u) (recall that p-terms in rewrite rules are irreducible w.r.t. Rc due to
condition R3). Thus, by Lemma 8 there exists a clause Γ′′ → ∆′′1 ∨ ∆′′2 ∨ B(u) with Γ′′ ⊆ ΓQ, ∆′′1 �q B(u) and ∆′′2 ⊆ ∆Q.
Notice that due to condition C2 we have ∆Q �q B(u). Thus, we are in the conditions of the Eq rule, and hence there is a clause
Γ ∧ Γ′′ → ∆ ∨ ∆′′ ∨ B(x) ∈̂ Sq. Clearly, the image of the body by σc is in Γc, and the image of the head by σc is ground, so
by Lemma 9, we have Γi ∧ Γk → ∆i ∨ ∆k ∈̂Nc; observe that since B(c) ∈ ∆c, it is not present in the head of the ground clause.
Observe that k > i due to the choice of ordering >c, and since B(u) >c ∆i ∨ ∆k, by Lemma 10, we have (Rk−1

c )∗ |= ∆i ∨ ∆k.
However, condition R1 ensures (Rk−1

c )∗ 6|= ∆k. In addition, Lemma 13 and Lemma 14 ensure (Rk−1
c )∗ 6|= ∆i. Thus, we reach the

desired contradiction.

Lemma 23. The model fragment R∗t is such that R∗t |= Γt and R∗t 6|= ∆t.

Proof. In order to prove that R∗t |= Γt, observe that condition L7 implies that for each A ∈ Γt we have Γt → A ∈̂Nt, so if t , c or
c is irreducible w.r.t. Rt, the result follows from Corollary 19. Otherwise, the result follows from Lemma 21.

Now, we prove R∗t 6|= ∆t, using proof by contradiction. Let L be the smallest literal L ∈ ∆t such that R∗t |= L. If L is an
inequality s1 0 s2, by condition L3 it must be the case that t , c and s1 0 s2 ∈ ∆Rt, which contradicts Lemma 20. Hence, let L
be an equality, written as s1 ≈ s2, with s1 >t s2.

In the case where t = c and c can be reduced w.r.t. Rc, the results follows from Lemma 22. Thus, we assume that if t = c, then
c is irreducible w.r.t. Rc. Since R∗t |= L, there exists a position p such that s1|p = li for some rule li ⇒ ri ∈ Rt. Since L ≥t li ≈ ri,
we have that L ≥t ∆i ∨ li ≈ ri. Let l ./ r be an arbitrary literal of ∆i ∨ li ≈ ri, where l ≥t r. We consider the possible forms of
l ./ r; please note that we exclude all forms that cannot appear in ∆t by its definition.

• l and r are a-terms. In that case, condition L3 and the definition of >t ensure that t ≥t l and t ≥t r. Notice that by
condition L5, if t , c, we cannot have that l ./ r is t ≈ u, or t ≈ t′, or t′ ≈ u for t′ >t u. If t = c and c is irreducible w.r.t.
Rc, we can also discard the case t ≈ u, plus all cases with t′, since t′ does not exist in this case. It can also not be of the
form l ≈ l or l 0 l, since then we contradict Lemma 15. If it is of the form t 0 t′, by Lemma 17 we have R∗t |= t 0 t′, and
hence by Lemma 13 (Ri−1

t )∗ |= t 0 t′, which makes Ci no longer generative. For t 0 u (resp. t′ 0 u) with t < ΣOu (resp.
t′ < ΣOu ), the argument is analogous. For the remaining case, l ∈ ΣOu , r ∈ ΣOu , and since l ./ r < ∆t, we have l ./ r < ∆Rt, due
to condition L4, and hence R∗Rt |= l ./ r, so R∗t |= l ./ r by Lemma 20. Since Ci is generative, Lemma 14 ensures l ./ r must
be li ≈ ri. But this implies that L must be a function-free ground atom (since t is irreducible, and so is t′, if it exists), and
hence in Rt. But then, by condition L4, L ∈ ∆Rt. However, Lemma 16 implies we have R∗Rt |= L; but due to condition L2,
we have L < ∆Rt; hence, we obtain a contradiction.

• l and r are p-terms with r = true. Since L ≥t l ≈ true and L ∈ ∆t, we have that either l ≈ true ∈ ∆t, in which case we
have a contradiction, or l is an a-reduction of an atom in ∆t, and hence l ≈ true is an atom in Rt. By condition L2, either
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l ≈ true is in ∆Rt, which results in a contradiction due to condition L4 or R∗Rt |= l ≈ true. In the latter case, we have that
by Lemma 20, R∗t |= l ≈ true; hence by Lemma 14 and the fact that Ci is generative, l ≈ true = li ≈ ri. However, since li

reduces s1, and li is a p-term, we have L = l ≈ true, and hence l ≈ true ∈ ∆t; since l ≈ true ∈ Rt, we obtain by condition L4
that L ∈ ∆Rt, which is a contradiction with R∗Rt |= l ≈ true according to Lemma 16.

Appendix D.3. Collapse of named individual-like elements into constants

In this section we prove that if an element t is connected to a constant via a role S , and the inverse of S is affected by an
“at-most” restriction, then R∗t |= t ≈ u for some u ∈ ΣOu . This follows from the lemma:

Lemma 24. Suppose t is irreducible w.r.t. Rt. For any DL-clause of the form DL4 and u ∈ ΣOu irreducible w.r.t. Rt, if t = c or
t = f (t′) for some t′ , u with f ∈ ΣOf , then R∗t 6|= B1(u) ∧ S B2 (u, t).

Since the proof is technically involved, we provide a brief overview of it in Appendix D.3.1. Next, in Appendix D.3.2, we
give preliminary definitions which we will use in the remainder of the section. In Appendix D.3.3 we prove several preliminary
results that are necessary for the proof of the lemma. Finally, in Appendix D.3.4, we give the proof of Lemma 24.

Appendix D.3.1. Proof overview
Lemma 24 will be easy to prove when the depth of u (i.e. the length of its nominal label) is smaller than Λ. Indeed, if we

assume R∗t |= S B2 (u, t), it is not hard to show that there exists a clause Γ′ → ∆′ ∨ S (u, x) ∈ Sv with ∆′ �v S (u, x) such that the
grounding of this clause is satisfied by R∗t , with R∗t 6|= ∆′σt. If the depth of u is smaller than Λ, we will see that saturation by
the Nom rule ensures that t collapses into auxiliary constants. The crux of the proof consists therefore in showing that in cases
where the Nom rule is not applicable because u has the maximum depth, there are clauses in Sv which ensure that t collapses
into a constant.

Let oi be the auxiliary constant oρi , where ρi is the prefix of ρ length i. We show that there exists a “chain” S 1(o0, o1),
S 2(o1, o2), · · · , S n(on−1, on) with on = u, with S i ∈ ΣOS for 1 ≤ i ≤ n, such that for every i with 1 ≤ i ≤ n, oi is irreducible w.r.t.
R∗t . We then prove, in Lemma 27, that for each oi, some context inD will contain up to redundancy a clause of the form:

ΓRt ∧ Γ→ ∆Rt ∨ ∆ ∨ ∆Eq, (D.4)

where:

• ΓRt ⊆ Rt, ∆Rt ⊆ Rt,

• Γ contains only atoms in Su(O) of the form B(x), S (y, x), or S (x, y), and ∆ contains only atoms in Pr(O) of the form B(y),
S (y, x), or S (x, y),

• ∆Eq is of the form
x ≈ u1 ∨ · · · ∨ x ≈ un ∨ y ≈ u′1 ∨ · · · ∨ y ≈ u′m,

with ui, u′j ∈ ΣOu for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Furthermore, we show that R∗t |= ΓRt and R∗t 6|= ∆Rt. Then, we show in Lemma 29 that if the clauses of the form in (D.4) for
two different constants oi, o j with 1 ≤ i < j ≤ n appear in the same context, they cannot have the same Γ and ∆. Observe that
Λ is greater or equal than the number of possible pairs 〈Γ,∆〉 multiplied by the total number of contexts. Using this observation
and the pigeonhole principle, we conclude that there exists a clause of this form contained up to redundancy in Sv with Γ ⊆ Γ′

and ∆ ⊆ ∆′. Finally, we show in Lemma 31 that this clause is satisfied by R∗t in a way that ensures that ∆Eqσt is satisfied, and
therefore t collapses into a constant.

Appendix D.3.2. Basic Definitions
For this section, we use the following notation convention: if a context structure is represented asDi, with i ∈ N, we represent

its components as Vi,Ei, corei,Si, θi; furthermore, we represent Si(v) as Si
v for any v ∈ Vi. Similarly, if a context structure is

represented asD, we represent its components asV,E, core,S, θ. We assume that all context structures mentioned in this section
are for O. Throughout this proof, it will be useful to refer to literals in a particular context structure of a derivation. To this effect,
we introduce the following notion.

Definition 13. An occurrence of a literal L in a derivation is a 4-tuple 〈D, v,C, L〉, whereD is a context structure in the derivation,
C ∈ Sv, and L appears in C.
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If C is a clause that occurs in Di but not in Di−1, we say that C has been generated in the i-th step of the derivation. Also,
if Γ1 ∧ Γ2 → ∆1 ∨ ∆2 is a clause with Γ1 ⊆ Suτ, Γ2 ∩ Suτ = ∅, ∆1 ⊆ Prτ, ∆2 ∩ Prτ = ∅, we say that the type of this clause is
〈Γ1,∆1〉. We also introduce the notion of selected literal to identify the literals in context clauses that play an active role within
an inference, and the notion of generated literal to identify the new literals introduced in conclusions of inference rules.

Definition 14. Let C be a premise in an inference by a rule from Tables 2 and 3. The selected literals of C are defined as: Aiσ in
Hyper, s1 ≈ t1 or s2 ./ t2 (correspondingly) in Eq, t 0 t in Ineq, s ≈ t1 in Factor, A in Join; B1(oρ) or S (oρ, x) (correspondingly)
in Nom, A in Succ, and Aσ in r-Succ, Ci in the main premise or Ciσ in the side premises of Pred and r-Pred.

Let C be a conclusion in an inference by a rule from Tables 2 and 3, the generated literals of C are defined as follows: A in
Core, ∆σ in Hyper, s2[s1/t1] or s2[t1]p ./ t2 (correspondingly) in Eq, t1 0 t2 in Factor, the set of all x ≈ oρ·S i

B2
in Nom, A′ in

Succ, each Liσ in Pred, A in r-Succ, and Liσ in r-Pred.

The notion of descendance helps us keep track of occurrences of literals in context clauses that play an active role in deriving
other literals in the context structure during the saturation procedure.

Definition 15. Let (D0, · · · ) be a derivation. Consider an occurrence of a literal 〈Dn, v,C, L〉 with n ∈ N and Dn occurring in
the derivation. We define the set of descendants of this occurrence inductively:

• Occurrence 〈Dn, v,C, L〉 descends from itself.

• For every m with m ≥ n and every occurrence of a literal 〈Dm, v′,C′, L′〉 which descends from 〈Dn, v,C, L〉, we have that:

– If C′ ∈ Sm+1
v′ , then 〈Dm+1, v′,C′, L′〉 descends from 〈Dn, v,C, L〉.

– If the m-th inference step is an application of Elim to C′ on Sm
v′ , and there exists a clause C′′ ∈ Sv′ subsuming C′

which contains L′, then 〈Dm+1, v′,C′′, L′〉 descends from 〈Dn, vn,Cn, L〉.

– If C′ participates in the inference fromDm toDm+1 for any rule other than Elim, then for every inference conclusion
C′′ to be added to a context w, and for each generated literal L′′, we have that 〈Dm+1,w,C′′, L′′〉 descends from
〈Dn, vn,Cn, L〉.

Finally, our proof uses a special property of the calculus: inferences involving ground atoms can generally be “postponed.”
For instance, if there is an inference that selects ground atoms in clauses C1 and C2 to produce conclusion C, we can simply skip
this step and then, for each inference that takes C as a premise, apply the inference directly to either C1 or C2, appropriately. This
occurs because the properties of Definition 7 and the preconditions of inference rules in Tables 2 and 3 together ensure that ground
atoms in the head of a clause C cannot “block” inferences on other literals in the head of C, with the exception of other ground
literals; furthermore, the existence of ground clauses of the form A → A ensure that we can perform any relevant inferences
on ground literals. Afterwards, the resulting collection of clauses can be recombined using the Join rule to recover (u.t.r.) the
conclusion of the original inference on C. We next describe formally the collections of clauses obtained when “postponing”
inferences selecting ground atoms, and give a precise meaning to the notion of postponing such inferences.

Definition 16 (Ground decomposition). Let Γ→ ∆ be a clause. We define a ground decomposition of Γ→ ∆ as a triple 〈T, λ, µ〉
where T is a non-empty tree, λ maps nodes of T to clauses, and µ maps nodes of T to literals, which satisfies the following
properties:

• For each node v ∈ T, λ(v) is of the form ΓRt
v ∧ Γv → ∆v ∨ ∆Rt

v , where Γv ⊆ Γ, ∆v ⊆ ∆, ΓRt
v ⊆ Rt and ∆Rt

v ⊆ Rt, and µ(v) is a
literal appearing in λ(v).

• For each node v ∈ T and A ∈ ∆Rt
v such that A is a ground equality, there exists a successor w of v such that µ(w) = A and

A ∈ ΓRt
w .

• For each node v ∈ T and A ∈ ∆Rt
v such that A is a ground inequality u 0 a, there exists successors w1, · · · ,wk of v such

that ∆Rt
wi

contains µ(wi), which is of the form ui+1 ≈ ui, with ui ∈ ΣOu for 1 ≤ i ≤ k + 1, uk+1 = u and u1 = a.

• For each node v ∈ T and A ∈ ΓRt
v such that A is a ground equality, there exists a successor w of v such that µ(w) = A and

A ∈ ∆Rt
w .

• For each leaf v ∈ T, we have that either ΓRt
v = > and ∆Rt

v = µ(v), or ∆Rt
v = ⊥ and ΓRt

v = µ(v).

Consider a pair (C, 〈T, λ, µ〉), where C = Γ → ∆ is a clause, and 〈T, λ, µ〉 is a ground decomposition of C. Let ξ be an
inference distinct from Elim which uses C as a premise.

Definition 17. The natural successor of (C, 〈T, λ, µ〉) by ξ is the pair (C′, 〈T ′, λ′, µ′〉) defined as follows:
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• if ξ uses Succ or r-Succ, then C′ = C and 〈T ′, λ′, µ′〉 = 〈T, λ, µ〉.

• if the selected literal in C is in ∆ but not in ∆w for any w ∈ T, we define C′ as the conclusion of inference ξ, and 〈T ′, λ′, µ′〉
as 〈T, λ, µ〉. Observe that if C′ = Γ′ → ∆′, then Γ ⊆ Γ′ and ∆ ⊆ ∆′, so 〈T, λ, µ〉 is a ground decomposition of C′.

• if the selected literal in C is in ∆ and appears in ∆w for some w ∈ T, and L is non-ground, observe that by definition of
�v it cannot be the case that A �v L for some ground equality A, and since L is maximal among the literals of ∆, then is
maximal among the literals of ∆w. In this case, we define C′ as the conclusion of ξ, and we define 〈T ′, λ′, µ′〉 identically to
〈T, λ, µ〉, except that we replace Cw by the conclusion of the inference ξ′ obtained by replacing C by Cw in ξ and removing
unnecessary premises. It is easy to check that 〈T ′, λ′, µ′〉 is a ground decomposition of C′.

• if the selected literal(s) in C are in Γ, then we define C′ as the conclusion of ξ, and for each w ∈ T we replace each Cw by
the conclusion of an inference ξ′ obtained by replacing C is by Cw in ξ and removing unnecessary premises. It is easy to
check that 〈T ′, λ′, µ′〉 is a ground decomposition of C′.

In other cases, the natural successor is undefined. The natural successor of a clause and its ground decomposition by an
inference correspond to the conclusion of the inference and the result of an analogous inference on the ground decomposition.

Definition 18. The alternative successor of (C, 〈T, λ, µ〉) by ξ is defined as the following pair (C′, 〈T ′, λ′, µ′〉):

• if the selected literal in C is in ∆ and is of the form u 0 a and there exists some w in T where ∆Rt
w contains u′ 0 a, with

u′ = u, or there are successors w′1, · · · ,w
′
l such that ∆Rt

w′i
contains a literal ui+1 ≈ ui in the head, with ul′+1 = u′, and u1 = u,

we define C′ as the conclusion of ξ, and define 〈T ′, λ′, µ′〉 as the following extension of 〈T, λ, µ〉: since in this case C
participates in ξ together with a premise C′′ where the selected literal is an equality of the form u ≈ o, we add a successor
w′ (or w′l+1) of w and define λ(w′) = C′′ and µ(w′) = u ≈ o.

• if the selected literal L in C is in ∆, appears in ∆Rt
w for some w ∈ T, and is a ground equality, we define C′ as the conclusion

of ξ and define 〈T ′, λ′, µ′〉 as the extension of 〈T, λ, µ〉 which adds a successor w′ to w and where λ(w′) is the conclusion
of an inference ξ′ identical to ξ except that C is replaced by L→ L; also, µ(w′) = L.

• if the selected literal L in C is in Γ, and appears in ΓRt
w for some w ∈ T, and is a ground equality, we have that one of

the other premises in C must be of the form Γ′′ → ∆′′ ∨ L, so we define C′ as the conclusion of C and 〈T ′, λ′, µ′〉 as the
extension of 〈T, λ, µ〉 which adds a successor w′ to w with λ(w′) = Γ′′ → ∆′′ ∨ L and µ(w′) = L.

In other cases, the alternative successor is undefined. The alternative successor represents the result of “postponing” an
inference which selects ground atoms. Notice that for any clause C, ground decomposition of C, and inference ξ, if the natural
successor is undefined, then the alternative successor is well defined.

Appendix D.3.3. Preliminary Results
We start this section by introducing two preliminary lemmas related to clauses contained up to redundancy in context struc-

tures.

Lemma 25. Let (D0, · · · ) be a derivation. For every i ≥ 0, if C ∈̂ Si
v, then C ∈̂ S j

v for each j ≥ i. Furthermore, if C = Γ→ ∆ and
∆ does not contain a tautology, then for each j ≥ i there exist Γ′ and ∆′ such that Γ′ ⊆ Γ and ∆′ ⊆ ∆, with Γ′ → ∆′ ∈ S

j
v.

Proof. We prove the lemma by induction. The base case is trivially true by hypothesis. Now, suppose C ∈̂ S j
v for some j ≥ i. If

the head of C contains a tautology, then C ∈̂ S j+1
v is trivially true, by definition of our redundancy notion. Otherwise, let us write

C as Γ → ∆; we then have that there exists a clause Γ′ → ∆′ ∈ S
j
v, with Γ′ ⊆ Γ and ∆′ ⊆ ∆. If the inference from D j to D j+1

is anything other than an application of Elim on Γ′ → ∆′ in S j
v, then we have Γ′ → ∆′ in S j+1

v , which implies the desired result.
Otherwise, we have that Γ′ → ∆′ ∈̂ S

j
v\{Γ

′ → ∆′}. Notice that ∆′ cannot contain a tautology, for otherwise ∆ contains a tautology,
contrarily to our assumption. Thus, there exists Γ′′ → ∆′′ ∈ S

j
v with Γ′′ ⊆ Γ′, and ∆′′ ⊆ ∆′, and since Elim is not applied on this

clause, we have Γ′′ → ∆′′ ∈ S
j+1
v , which implies the result of the lemma since Γ′′ ⊆ Γ, and ∆′′ ⊆ ∆.

For the second part of the lemma, suppose C = Γ → ∆ and ∆ does not contain a tautology. Since C ∈̂ Si
v, there exist Γ′ and

∆′ with Γ′ ⊆ Γ, ∆′ ⊆ ∆, and Γ′ → ∆′ ∈ Si
v. By the first part of the lemma, we have Γ′ → ∆′ ∈ S

j
v for every j ≥ i, and since ∆′

does not contain a tautology, we have Γ′′ → ∆′′ ∈ S
j
v with Γ′′ ⊆ Γ′ ⊆ Γ, and ∆′′ ⊆ ∆′ ⊆ ∆.

If S is a set of clauses and Γ → ∆ ∨ L is a clause, we write Γ → ∆ ∨ [L] ∈̂ S to represent the claim that there exists a clause
Γ′ → ∆′ ∨ L ∈ S with Γ′ ⊆ Γ, ∆′ ⊆ ∆. Notice that Γ→ ∆ ∨ [L] ∈̂ S implies Γ→ ∆ ∨ L ∈̂ S.

Lemma 26. For all inference rules in Tables 2 and 3, if the premises are contained u.t.r. in Sv for a context v in a saturated
context structure D for O, then the conclusion is contained u.t.r. in Sw for every relevant context w in D, except in the case of
Eq, when the selected literal is of the form s2 0 t2 with s2 ≈ t2 ∈ ∆2, and no clause in Sv subsumes Γ2 → ∆2 ∨ s2 ≈ t2.
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Proof. We consider each inference rule separately.

• For the Hyper rule, suppose Γi → ∆i ∨ Aiσ ∈̂ Sv for some 1 ≤ i ≤ n. Due to the form of Aiσ, it cannot be part of any
tautology. If ∆i contains a tautology, then the result is satisfied trivially. Otherwise, there exists a clause Γ′i → ∆′i ∈ Sv

with Γ′i ⊆ Γi, ∆′i ⊆ ∆i ∨ Aiσ. If Aiσ < ∆′i , then the result follows trivially. Otherwise, we have that for each 1 ≤ i ≤ n,
there exists a clause Γ′i → ∆′′i ∨ Aiσ ∈ Sv with ∆′′i ⊆ ∆i. Since D is closed by application of Hyper, we have that∧n

i=1 Γ′i →
∨n

i=1 ∆′′i ∨ ∆σ ∈̂ Sv, which entails the desired claim.

• For the Eq rule, suppose Γ1 → ∆1 ∨ s1 ≈ t1 ∈̂ Sv. If ∆1 contains a tautology, we reason as in the previous case. If s1 ≈ t1 is
part of a tautology, it can only be the case that t1 = s1, for s1 0 t1 �v s1 ≈ t1. But then, the conclusion of the inference is
subsumed by the second premise, since s2[t1]p = s2. Similarly, if ∆2 contains a tautology, the conclusion trivially follows,
and if s2 ./ t2 is part of a tautology, we have two possibilities: the literal is of the form s2 0 t2, which is covered by the
exception in the lemma, or the literal is of the form s2 ≈ s2, in which case s2 is an a-term, so s1 = s2 and hence the result
for the first premise implies the result for the conclusion. Finally, if none of the premises contain a tautology, there exist
clauses Γ′1 → ∆′1 and Γ′2 → ∆′2 with Γ′1 ⊆ Γ1 and Γ′2 ⊆ Γ2. If s1 ≈ t1 < ∆′1, this clause subsumes the conclusion; we reason
analogously for s2 ./ t2. In the remaining case, we have clauses Γ′1 → ∆′′1 ∨ s1 ≈ t1 ∈ Sv, and Γ′2 → ∆′′2 ∨ s2 ./ t2 ∈ Sv, and
since Eq is not applicable, the result follows.

• For the Ineq rule, if ∆ contains a tautology we use the same argument as in the previous cases. It t 0 t is part of a tautology,
the other part is t ≈ t ∈ ∆, and hence the result follows directly. Finally, if there exists a clause Γ′ → ∆′ ∈ Sv with Γ′ ⊆ Γ,
∆′ ⊆ ∆, and t 0 t < ∆′, the conclusion is already true. Otherwise, there is a clause Γ′ → ∆′′ ∨ t 0 t ∈ Sv, with ∆′′ ⊆ ∆, and
since Ineq is not applicable, we conclude Γ′ → ∆′′ ∈̂ Sv, which implies the desired result.

• For Factor, if ∆ contains a tautology we reason as in the previous cases. If either s ≈ t1 or s ≈ t2 is part of a tautology, the
only possibility is s = t1 or s = t2, as in the case of the proof for the Eq rule. If s = t1, the conclusion contains literals of
the form s 0 t2 and s ≈ t2, which form a tautology, so the result follows. If s = t2, the conclusion contains a literal of the
form s ≈ s, which also forms a tautology, and the result follows.

• The Elim rule does not have a conclusion, so the result does not apply.

• For the Join rule, if ∆1 or ∆2 contain a tautology, the result follows trivially. Otherwise, the form of A implies that it cannot
be part of a tautology, so there exist clauses Γ′1 → ∆′1 with Γ′1 ⊆ Γ1, and ∆′1 ⊆ ∆1 ∨ A; if A < ∆′1, then the results follows
trivially. We reason analogously for the second premise, and conclude that there exist clauses Γ′1 → ∆′′1 ∨ A ∈ Sv, with
∆′′1 ⊆ ∆1, and A∧ Γ′2 → ∆′2 ∈ Sv, with Γ′2 ⊆ Γ2, ∆′2 ⊆ ∆2, and since Join is not applicable to the saturated context structure,
we have Γ′1 ∧ Γ′2 → ∆′′1 ∨ ∆′2 ∈̂ Sv, which implies the result.

• For the Nom rule the argument is entirely analogous to the case for the Hyper rule.

• For the Succ and r-Succ rules, there is no conclusion, so the lemma follows trivially.

• For the Pred rule, for each 1 ≤ i ≤ n, if ∆i contains some tautology, the result follows trivially. Furthermore, due to its
form, it cannot be the case that Li is part of a tautology, so there exists a clause Γ′i → ∆′i ∈ Sw with Γ′i ⊆ Γi, ∆′i ⊆ ∆i∨Ciσ. If
Ciσ < ∆i, we have that the result follows trivially; otherwise, we assume that there exists a clause Γ′i → ∆′′i ∨Ciσ ∈ Sw with
∆′′i ⊆ ∆i. Similarly, we have that if

∨k
i=1 Li contains a tautology, the result follows trivially, so we assume that this is not the

case, and therefore there exists a clause
∧m′

i=1 A′i ∧
∧n′

i=1 C′i →
∨k′

i=1 L′i ∈ Sv with
∧m′

i=1 A′i ⊆
∧m

i=1 Ai,
∧n′

i=1 C′i ⊆
∧n

i=1 Ci, and∨k′
i=1 L′i ⊆

∨k
i=1 Li. With all these clauses, we are in the conditions of the Pred rule, since selected atoms in the premises

are still maximal. Therefore, since the Pred is not applicable, there exists a clause contained u.t.r. in Sv which subsumes
the original conclusion, and therefore the result follows.

• For the r-Pred rule, the argument is analogous to that for the Pred rule.

Next, we present a lemma which shows that at least n clauses of the form in (D.4) always exist in a derived context structure
whenever an auxiliary constant of depth n is mentioned in said context structure.

Lemma 27. Let oρ be an auxiliary constant with |ρ| = n. For every i with 0 ≤ i ≤ n, define oi inductively as follows: if i = n
then on = oρ, and if 0 ≤ i < n, let oi+1 = oρ′·S for some S ∈ ΣS , and define oi as oρ′ . Furthermore, assume that ρ is of the form
S i1

1 · · · · · S
in
n .

Let D be a derivation from a context structure for O with no occurrences of auxiliary constants. Suppose that there exists
an occurrence of a literal 〈D, v,C, L〉 for some context v , vr such that L mentions on. Then, there exists a sequence of m
occurrences of literals, from 〈D1, v1,C1, L1〉 to 〈Dm, vm,Cm, Lm〉 with the following properties:
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P1. Cm = C.

P2. for 1 ≤ i < m, the occurrence of Li+1 inDi+1 descends from the occurrence of Li inDi;

P3. for each 1 ≤ i ≤ m, we have that if Ci = Γi → ∆i ∨ Li, then Γi → ∆i ∨ [Li] ∈̂D;

P4. for every 1 ≤ i ≤ n, there exists 1 ≤ ai < m, with ai < ai′ if 1 ≤ i < i′ ≤ m, such that Cai is a clause of the form
Γi → ∆i ∨ S i(oi, x), with Lai = S i(oi, x), and the inference from Dai to Dai+1 uses Cai in vai as a premise in for the Nom
rule, with S i(oi, x) as the selected literal.

P5. for each i with 1 ≤ i ≤ m, if a j ≤ i < a j+1 for some 1 ≤ j ≤ n or a j ≤ i with j = n, then Li mentions o j.

P6. for 1 ≤ i ≤ n, there exists 1 ≤ bi ≤ m, with ai < bi < ai+1, such that Cbi is a clause of the form Γi → ∆i ∨ ∆Rt
i ∨ x ≈ oi, with

Lbi = x ≈ oi, ∆Rt
i is of the form:

k∨
j=1

x ≈ u j ∨

k′∨
j=k+1

y ≈ u j u j ∈ ΣOu for 1 ≤ j ≤ k′ (D.5)

∆i ⊆ Prτ ∪ Rt, and the inference fromDbi toDbi+1 uses Cbi in vbi as the main premise for the Pred rule.

Proof. We define the sequence and show that the properties hold using reverse induction. The following will be our induction
conditions, for 1 ≤ i ≤ m:

1. Property P2 holds for i.

2. Either Li mentions on, or there exist an > an−1 > · · · > an′ > i satisfying the conditions of property P4, and Li mentions
on′−1.

3. Property P3 holds for i.

For the base case, let m be the smallest element in N such that C ∈ Sm
v , and define Lm as the literal containing on, Cm = C,

and vm = v. This ensures the sequence satisfies property P1. Furthermore, notice that all the induction conditions are satisfied in
the base case; in particular, property P2 holds vacuously since it does not affect the case i = m; also, Lm mentions on.

Now, suppose that 〈Di+1, vi+1,Ci+1, Li+1〉 have been defined for some 1 ≤ i < m. We assume that the induction conditions hold
for i+1. Since on′−1 is an auxiliary constant, we have that no clause of Omentions on′−1, and hence we have two options: (i) there
exists at least one occurrence of a literal 〈Di, vi,Ci, Li〉 such that 〈Di+1, vi+1,Ci+1, Li+1〉 descends from it and Li mentions on′−1, in
which case we choose one of such occurrences as the next element in the sequence, preferring whichever satisfies property P3 if
one does; (ii) if there is no such clause, but the inference step fromDi toDi+1 introduces on′−1 via Nom, in which case there exists
an occurrence of a literal 〈Di, vi,Ci, Li〉 with Li = S n′−2(on′−2, x), with Ci a premise used for the Nom inference, and vi+1 = vi. In
the latter case, we choose 〈Di, vi,Ci, Li〉 as the new occurrence in the sequence and define an′−1 = i.

We now show that the induction conditions hold for i. Property P2 holds for i due to the way we have defined 〈Di, vi,Ci, Li〉.
Furthermore, we have that either Li mentions on, or there exist an > an−1 > · · · > an′′ > i satisfying the conditions of property P4,
and Li mentions on′′−1, where n′′ = n′ if we did not define an′−1 as i, or n′′ = n′ − 1 otherwise.

Finally, to prove property P3, we start from the fact that by induction hypothesis, Γi+1 → ∆i+1∨[Li+1] ∈̂D for some 1 ≤ i < m,
and we consider the clause Γ′i+1 → ∆′i+1 ∨ Li+1 ∈ D with Γ′i+1 ⊆ Γi+1, ∆′i+1 ⊆ ∆i+1. Consider clause Γi → ∆i ∨ Li, which we
know is in Di. By Lemma 25, we know Ci ∈̂D. We assume that an inference rule is applied to this clause on derivation step i,
for otherwise Ci+1 = Ci and the result follows trivially.

If ∆i ∨ Li contains a tautology, and Li is part of this tautology, since Elim is applied, we have that Ci+1 does not contain
Li+1, which contradicts our assumption. If Li is not part of the tautology, then Li+1 = Li, and since Elim is applied and an
inference rule is applied to the occurrence of Ci in Di, we have ∆i+1 ⊆ ∆i, Γi+1 = Γi, and then Γi+1 → ∆i+1 ∨ [Li+1] ∈̂D implies
Γi → ∆i ∨ [Li] ∈̂D.

Now, if ∆i ∨ Li does not contain a tautology, suppose there is Γ′i → ∆′i in D with Γ′i ⊆ Γi and ∆′i ⊆ ∆i ∨ Li. Suppose, in
addition, that Li is the literal selected in the i-th inference step, so we have Γi ⊆ Γi+1 and ∆i ⊆ ∆i+1. If ∆′i does not contain Li,
the fact that Γi ⊆ Γi+1 and ∆i ⊆ ∆i+1 leads to a violation of the induction hypothesis. Hence, ∆′i contains Li and the desired result
holds.

If Li is not the selected literal, we have Li+1 = Li, and suppose that ∆′i does not contain Li. We then consider the other
premises of the inference rule at step i. By Lemma 25, all of them are contained up to redundancy in D; by the application of
Elim, we know that none of them contains a tautology in the head and hence all of them have subsuming clauses in D. If the
selected literal in one of them is not in the corresponding subsuming clause inD, then such subsuming clause already subsumes
the conclusion; furthermore, it does not contain Li, due to the fact that ∆′i does not contain it either, and the way we define our
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sequence of occurrences of literals. However, this contradicts property P3 for i + 1. Therefore, all selected literals are present in
the corresponding subsuming clauses in D, and since D is saturated, we can apply the same inference rule with those premises
and Γ′i → ∆′i instead of Ci in order to obtain that a clause subsuming Ci+1 not containing Li+1 is in contained u.t.r. in D, which
again contradicts the hypothesis.

To conclude the proof, we prove the remaining properties. Property P4 holds due to the fact that the second induction
condition holds for i = 1; indeed, since D0 has no occurrences of auxiliary constants, it must be the case that a1 > 0. Similarly,
property P5 holds because of the second induction condition holds for all 1 ≤ i ≤ m.

Finally, to prove property P6, we simply observe that for any 1 ≤ i ≤ n, Lai+1 will be of the form x ≈ oi, and such literal can
only have a descendant of the form S (oi, x) if it is propagated at some step via Pred, for otherwise the only other inference rule
that can select this literal is Eq, but the generated literal by this inference is a unary ground atom, which can only be selected by
inference rules to produce other unary ground atoms, or produce a clause without oi, thus contradicting property P5. We then
take bi as the inference step where such Pred inference is carried out, and the claims on the form of Cbi follow from the form of
the main premise in Pred.

The following lemma is a preliminary result for ground decompositions of a clause C; in particular, it shows which literals of
ground decompositions are satisfied by R∗t , when we know which literals of C are satisfied by R∗t .

Lemma 28. Let C be a clause with C ∈̂ Sv for v inD, and let 〈T, λ, µ〉 be a ground decomposition of C such that every clause in
the ground decomposition is contained u.t.r. in Sv. Let w0 be the root of T . Suppose that for every w ∈ T we have R∗t |= Γwσt,
and R∗t 6|= ∆wσt. Then, R∗t |= ΓRt

w0
and R∗t 6|= ∆Rt

w0
.

Proof. To prove this lemma, we prove by structural induction the following property: for every node w in T , if L ∈ ΓRt
w , then

R∗t |= L if and only if L , µ(v); and if L ∈ ∆Rt
w , then R∗t |= L if and only if L = µ(v). We do this using the fact that all clauses

are contained u.t.r. in Sv, and because of the form of their bodies, and the hypothesis R∗t |= Γwσt, by Corollary 19 they must be
satisfied by R∗t .

For the base case, we have two options: first, if λ(w) = µ(w) ∧ Γw → ∆w, then we have that if R∗t |= µ(w), since R∗t |= Γwσt,
we have R∗t |= ∆wσt, which contradicts hypothesis R∗t 6|= ∆wσt. Hence, R∗t 6|= µ(w). The second option is λ(w) = Γw → ∆w ∨ µ(w).
Since R∗t |= Γwσt, we have R∗t |= ∆wσt ∨ µ(w), and since R∗t 6|= ∆wσt, we obtain the desired result.

For the induction case, consider a node w and the corresponding clause ΓRt
w ∧ Γw → ∆w ∨ ∆Rt

w . Let A ∈ ΓRt
w and suppose

A , µ(w). By definition of ground decomposition, there is a successor w′ of w such that µ(w′) = A and A is in the head. By
induction hypothesis, we have R∗t |= A, which proves the desired result. Now, let A ∈ ∆Rt

w with µ(w) , A, and suppose A is
an equality. By definition of ground decomposition, there is a successor w′ of w such that µ(w′) = A and A is in the body. By
induction hypothesis, we have that R∗t 6|= A, which is the desired result. Finally, let A ∈ ∆Rt

w with µ(w) , A, and suppose A is
an inequality u 0 a. By definition of ground decomposition, there are successors w′1, · · · ,w

′
l of w such that µ(w′i) = ui+1 ≈ ui.

Furthermore, ul+1 = u and u1 = a. By induction hypothesis on each w′i , we have R∗t |= ui+1 ≈ ui, so we conclude R∗t |= u ≈ a and
hence R∗t 6|= u 0 a.

To conclude the induction case, consider µ(w), and observe that we have two possibilities: first, µ(w) ∈ ΓRt
w . In this case,

suppose R∗t |= µ(w); we have already shown that R∗t |= ΓRt
v \µ(w), and we have by hypothesis that R∗t |= Γwσt, so we conclude

R∗t |= ∆wσt ∨ ∆Rt
w ; however, by hypothesis we have R∗t 6|= ∆wσt, and we have already shown R∗t 6|= ∆Rt

w , and hence we reach a
contradiction, so R∗t 6|= µ(w). In the second case, µ(w) ∈ ∆Rt

w . We have already shown that R∗t |= ΓRt
v , and we have by hypothesis

that R∗t |= Γwσt, so we conclude R∗t |= ∆wσt ∨ ∆Rt
w ; however, by hypothesis we have R∗t 6|= ∆wσt, and we have already shown

R∗t 6|= ∆Rt
w \µ(w), which then implies R∗t |= µ(w).

If we apply our result to the root node w0, since µ(w0) < ΓRt
w0

and µ(w0) < ∆Rt
w0

, we have that R∗t |= ΓRt
v and R∗t 6|= ∆Rt

v .

The following lemma illustrates a sufficient condition to ensure that all elements in a “chain” of auxiliary constants are
irreducible with respect to the model fragment R∗t .

Lemma 29. Given oρ, let n = |ρ|, and define oi with 1 ≤ i ≤ n as in Lemma 27, and o0 = o. If oρ appears in R∗t , but is irreducible
w.r.t. R∗t , then for every 0 ≤ i < n, oi is irreducible w.r.t. R∗t .

Proof. We proceed by reverse induction on i for 1 ≤ i ≤ n. The base case i = n is true by hypothesis. Now, consider some
0 ≤ i < n, and assume that o j is irreducible w.r.t. R∗t for each j with i + 1 ≤ j ≤ n. We now prove that oi is also irreducible w.r.t.
R∗t .

Suppose, for the sake of a contradiction, that oi is reducible w.r.t. R∗t . Since R∗t mentions on, there must be a generative clause
of the form Γ→ ∆∨L where L mentions on, and therefore there must be a corresponding non-ground clause Γ′ → ∆′ ∈ Sv where
∆′ mentions on. We are in the conditions of Lemma 27, so we consider all sets of clauses as defined in that lemma.

Consider clause Cai and its corresponding context vai . Now, since oi is not irreducible w.r.t. R∗t , due to the definition of >t,
by Lemma 16, we have that oi ≈ a ∈ ΓRt for some a ∈ ΣOu . Arguing as in the proof of condition L7 in Appendix D.4.1 we can
conclude that there is a clause oi ≈ a → oi ≈ a ∈̂ Svai

, and by Condition L6, we can assume w.l.o.g. that oi ≈ a → oi ≈ a ∈ Svai
.

SinceD is saturated and hence Eq is not applicable to that clause and Cai , we have Γ ∧ oi ≈ a→ ∆ ∨ S (a, x) ∈̂ Svai
.
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We now consider the inferences from Cai+1 to Cbi . By Lemma 26, and the fact that none of the atoms in the head of Cbi can be
bigger than S (a, x) due to Definition 7, we have that there exists a clause Γ′ ∧ oi ≈ a→ ∆′ ∨ S (a, x) ∈̂ Svai

, with ∆′ �vai
S i(a, x),

where Γ′ and ∆′ are contained, respectively, in the body and head of a clause C j between Cai+1 and Cbi . Since D is saturated,
rule Nom is not applicable, so there is a clause Γ′ ∧ oi ≈ a→ ∆′ ∨ x ≈ a1 ∨ · · · ∨ x ≈ al ∈̂ Svai

, where if a is of the form eρ′ , then
a1, a2, · · · are of the forms eρ′·S 1

i
, eρ′·S 2

i
, · · · , respectively.

Now observe that Cbi+1 will have Lbi+1 equal to f (x) ≈ oi+1, where f is the label of the edge used for the Pred inference in
step bi. Since Lai+1 is of the form S (oi+1, x), we have that there exists k with ai+1 > k > bi + 1 where Lk = f (x) ≈ oi+1 and the
inference step k selects this literal for application of Eq. We now consider the inferences from C j to Cbi+1 , and by Lemma 26, and
the fact that none of the literals in the head of Cbi+1 can be bigger than a literal of the form f (x) ≈ a′, with a′ ∈ {a1, · · · , al}, we
conclude that

oi ≈ a ∧ Γ′k′ → ∆′k′ ∨ oi+1 ≈ a1 ∨ · · · ∨ oi+1 ≈ al ∈̂ Svai+1
,

where Γ′k′ ⊆ Γk′ , and ∆′k′ ⊆ ∆k′ for some clause Ck′ with k ≤ k′ ≤ bi+1.
Consider now a ground decomposition of this clause, 〈〈{w}, ∅〉, λ, µ〉, where λ(w) is equal to this clause with ΓRt

w = >, ∆Rt
w = ⊥,

and µ(w) is chosen arbitrarily. Consider all inferences from Ck′ to Γ′ → ∆′ in context Cm. Since for any ground atom selected
for an inference rule we have L → L contained u.t.r. in the corresponding context, we can use the same inferences sequentially
on 〈〈{w}, ∅〉, λ, µ〉, considering always the natural successor whenever possible, and the alternative successor otherwise. By
Lemma 26, we obtain that all clauses in the resulting ground decomposition of Cm are contained u.t.r. in Sv.

Now, we have that R∗t 6|= ∆ by Lemma 14 and by Lemma 23 we have R∗t 6|= ∆′σt\∆; furthermore, we have R∗t |= Γ′σt by
Lemma 23, and R∗t |= oi ≈ a by hypothesis, so we can apply Lemma 28 and conclude that R∗t |= oi+1 ≈ a′1 ∨ · · · oi+1 ≈ a′l , which
contradicts our induction hypothesis that oi+1 is irreducible, and concludes the proof of the lemma.

Finally, the last lemma in this section complements the previous lemma and shows that if two clauses of the form in (D.4)
corresponding to different elements in a “chain” of auxiliary constants appear in the same context and have the same type, then
the chain must collapse.

Lemma 30. Suppose there is a clause Γ → ∆ ∈ Sv mentioning a constant oρ such that Γσt → πt(∆tσt) ∈ Nt. Let n = |ρ|, and
consider all clauses defined in this case by Lemma 27. Let i and j with 1 ≤ i < j ≤ n be such that clauses Cbi and Cb j appear in
the same context ofDbi andDb j , respectively, and they have the same type. Then, we have that oρ is not irreducible w.r.t. R∗t .

Proof. To prove the lemma, consider the biggest constant o j in ΣOu for which this occurs. By property P3, we have that there exist
Γbi → ∆bi ∨ x ≈ oi and Γb j → ∆b j ∨ x ≈ o j in context Sv of D which subsume Cb j and Cbi , respectively. Let w be the context
where clause Cb j is propagated in induction step b j, and let Γb j+1 → ∆b j+1 ∨ f (x) ≈ o j∨∆Rt

j+1, where ∆Rt
j+1 = ∆b j {x 7→ f (x), y 7→ x},

be the conclusion of the inference by Pred at step b j of the derivation, where f is the label corresponding to the edge used in the
inference. Notice that by hypothesis Γb j+1 → ∆b j+1 ∨ [ f (x) ≈ o j] ∨ ∆Rt

j+1 ∈̂D.
Since D is saturated, and since Γbi → ∆bi ∨ x ≈ oi and Cb j have the same type, we are in the preconditions of the Pred rule

with Cbi as the main premise, so by Lemma 26, there exists a clause Γb j+1 → ∆b j+1 ∨ ∆Rt
i ∈̂ Sw, with ∆Rt

i = ∆bi\Prτ ∨ x ≈ oi{x 7→
f (x), y 7→ x}. The head of this clause cannot contain a tautology and must contain at least one literal of ∆Rt

i , due to its form and
the fact that Γb j+1 → ∆b j+1 ∨ [ f (x) ≈ o j]∨∆Rt

j+1 ∈̂D. Notice that ∆Rt
i must be of the form f (x) ≈ u1 ∨ · · · ∨ f (x) ≈ ul, with uk ∈ ΣOu

for 1 ≤ k ≤ l.
Consider the inference steps from b j+1 to d j, among which there is an inference step where literal f (x) ≈ o j is selected.

Indeed, we know that such inference step must exist since a descendant literal of f (x) ≈ o j is of the form S j(o j, x). The premise
in this step is a clause Γd j → ∆d j ∨ f (x) ≈ o j, with Γd j → ∆d j ∨ [ f (x) ≈ o j] ∈̂ Sw. Consider the premises used in these inference
steps and Γb j+1 → ∆b j+1∨∆Rt

i ; by Lemma 26, there exists a clause Γ′d j
→ ∆′d j

∨o j ≈ u1∨· · ·∨o j ≈ ul ∈̂ Sw, with no tautologies in the
head and at least one literal of o j ≈ u1 ∨ · · · ∨ o j ≈ ul in the corresponding subsuming clause, since Γd j → ∆d j ∨ [ f (x) ≈ o j] ∈̂ Sw.

Now, we can proceed as in the proof of Lemma 29, creating a decomposition for Γ′d j
→ ∆′d j

∨ o j ≈ u1 ∨ · · · ∨ o j ≈ ul and
performing on this decomposition the inferences from Cd j until the clause Γ → ∆; using an analogous argument, we conclude
R∗t |= o j ≈ u1 ∨ · · · ∨ o j ≈ ul. Without loss of generality, suppose R∗t |= o j ≈ u1. If u1 m o j, we contradict the initial hypothesis
that o j is the biggest constant for which the conditions of the lemma hold, and if o j m u1, then by Lemma 29, we have that oρ is
not irreducible.

Appendix D.3.4. Main proof
In this section we use the auxiliary lemmas from Appendix D.3.3 to show that Lemma 24 holds in the case |ρ| = Λ, and then

we use this result to prove Lemma 24 in general.

Lemma 31. For any DL-clause of the form DL4 and any oρ ∈ ΣOu irreducible w.r.t. Rt, where |ρ| = Λ, and t is irreducible w.r.t.
Rt with t , f (oρ) for some f ∈ ΣOf , we have that R∗t 6|= S B2 (oρ, t).
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Proof. We use proof by contradiction. Consider the greatest constant oρ for which this occurs. Since both t and oρ are irreducible,
there exists a generative clause Γi → ∆i ∨ S (oρ, t). This implies the existence of a clause C ∈ Sv of the form Γ′ → ∆′1 ∨ ∆′2
with Γ′σt = Γi, ∆′1σt ⊆ ∆i ∪ ∆t and ∆′2σt = S B2 (oρ, t). Now, notice that we are in the conditions of Lemma 7 so ∆′1 �v ∆′2.
Furthermore, since t′ , oρ, Lemma 8 ensures that ∆′2 = S B2 (oρ, x).

Let Γ′τ = Γ′∩Suτ, and ∆′τ = ∆′1∩Prτ. Notice that we are in the conditions of Lemma 27, so there exist Λ clauses Cb1 , · · · ,CbΛ

satisfying the properties of that lemma contained u.t.r. inD. Furthermore, since oρ is not irreducible, we are in the conditions of
Lemma 27; this, in turn, allows us to apply Lemma 30, so we have that no more than 2τSu · 2τPr clauses can be contained u.t.r. in
each context, so by the pigeonhole principle, there exist 2τSu · 2τPr such clauses contained u.t.r. in Sv, and each of these clauses
has a different type. Thus, there exists some 1 ≤ j ≤ Λ where C j has the same type and is contained u.t.r. in Sv. Let us re-name
this clause to Cb, and write it as Γb → ∆b ∨ x ≈ u1 ∨ · · · ∨ x ≈ un ∨ y ≈ u′1 ∨ · · · ∨ y ≈ u′n′ , with ul ∈ ΣOu for 1 ≤ l ≤ n, and u′l ∈ ΣOu
for 1 ≤ l ≤ n′.

Consider a ground decomposition of this clause 〈〈{w}, ∅〉, λ, µ〉, where λ(w) is equal to this clause, ΓRt
w contains all ground

atoms not in the body of Γ′, ∆Rt
w contains all ground atoms not in the head of ∆′, and µ(w) is chosen arbitrarily from ∆w. Consider

all inferences from Cb to Γ′ → ∆′1 ∨ S B2 (oρ, x) in the derivation of D. Since for any ground atom selected for an inference
rule we have L → L contained u.t.r. in the corresponding context, we can use the inferences from Cb to Γ′ → ∆′1 ∨ S B2 (oρ, x)
to sequentially compute successor ground decompositions from Cb and 〈〈{w}, ∅〉, λ, µ〉, choosing always the natural successor
except when not possible or when a literal from ΓRt

w or ∆Rt
w is selected, in which case we consider the alternative successor. By

Lemma 26, we obtain that all clauses in the resulting ground decomposition for Γ′ → ∆′1 ∨ S B2 (oρ, x) are contained u.t.r. in Sv.
By Lemma 28 we conclude that every ground literal in Γb not in Γ′ is satisfied by R∗t , and every ground literal in ∆b not in

∆′1 is satisfied by R∗t . Furthermore, if L is a non-ground literal in Γb, it is in Suτ, and hence we have L ∈ Γ′, because we chose
Cb to have the same type as Γ′ → ∆′1 ∨ S B2 (oρ, x), and since R∗t |= Γ′σt by Lemma 23, we have R∗t |= Lσt. Similarly, if L is a
non-ground literal in ∆b, and since Cb is a premise for a Pred rule, we have L ∈ Prτ, so we have L ∈ ∆′1 since Cb has the same
type as Γ′ → ∆′1 ∨ S B2 (oρ, x). Thus, the fact that R∗t 6|= ∆i by Lemma 14 and R∗t 6|= ∆′1σt\∆

i by Lemma 23 imply R∗t 6|= Lσt.
Thus, we have that R∗t |= Γbσt, which implies R∗t |= ∆bσt ∨ t ≈ u1 ∨ · · · ∨ t ≈ un ∨ t′ ≈ u′1 ∨ · · · ∨ t′ ≈ u′n′ , or the corresponding

clause without literals t′ ≈ u′l if t′ does not exist. However, we also showed R∗t 6|= ∆bσt, so we conclude

R∗t |= t ≈ u1 ∨ · · · ∨ t ≈ un ∨ t′ ≈ u′1 ∨ · · · ∨ t′ ≈ u′n′ ,

or the corresponding clause without equalities for t′ if t has no predecessor. This contradicts the fact that t is irreducible, which
concludes the proof.

We are now ready to prove Lemma 24 in the general case.

Lemma 24. Suppose t is irreducible w.r.t. Rt. For any DL-clause of the form DL4 and u ∈ ΣOu irreducible w.r.t. Rt, if t = c or
t = f (t′) for some t′ , u with f ∈ ΣOf , then R∗t 6|= B1(u) ∧ S B2 (u, t).

Proof. We prove this by contradiction. Suppose R∗t |= B1(u). If t = c, since u is irreducible w.r.t. Rt, there must be a generative
clause C j of the form Γ j → ∆ j ∨ B1(u), with B1(u) >t ∆ j, Γ j ⊆ Γt, and Rt 6|= ∆ j due to Lemma 14. Notice that since t = c, we
are in the conditions of Lemma 8 and there is a clause Γ′′ → ∆′′ ∨ B1(u), with Γ′′σt = Γ j, ∆′′σt ⊆ ∆ j ∪ ∆t, and we have that if
A ∈ ∆′′ �v B1(u), then A ∈ ∆Q because B1(u) >t ∆ j, but by condition C2 of Theorem 2, we have that no element of A can be
greater than B1(u), and hence we conclude ∆′1 �w B1(u), with w the context used to construct the fragment for t′. If t , c, then
since u is irreducible w.r.t. Rt, Lemma 16 ensures B1(u) is also irreducible w.r.t. Rc, and hence B1(u) ∈ ΓRt, so by Condition L7
we have B1(u) → B1(u) ∈̂ Sv. Notice once again that by condition L6, B1(u) → B1(u) ∈̂ Sv implies B1(u) → B1(u) ∈ Sv or
> → B1(u) ∈ Sv. In this case, let us define Γ′′ = B1(u) or >, accordingly, and ∆′′ = ⊥;

Suppose also that R∗t |= S B2 (u, t). Then, there exists a generative clause Ci such that Li is of the form S B2 (u, t) with u ∈ ΣOu
irreducible, t , f (u). Then, there exists a clause C ∈ Sv of the form Γ′ → ∆′1 ∨ ∆′2 with Γ′σt = Γi, ∆′1σt ⊆ ∆i ∪ ∆t and
∆′2σt = S B2 (u, t). Now, notice that we are in the conditions of Lemma 7 so ∆′1 �v ∆′2. Furthermore, since t′ , u, Lemma 8
ensures that ∆′2 = S B2 (u, x).

Suppose the depth of u is smaller than Λ. Since the context structure is saturated and the preconditions of the rule Nom are
satisfied, we have that Γ′ ∧ Γ′′ → ∆′ ∨ ∆′′

∨N
j=1 x ≈ u j ∈̂ Sv. Then, by Lemma 9, we have Γi ∧ Γ j → ∆i ∨ ∆ j ∈̂Nt if t , c, since

atoms of the form t ≈ u j are in ∆t; and Γi∧Γ j → ∆i∨∆ j∨
∨N

j=1 t ≈ u j ∈̂Nt otherwise. Since C j and Ci are generative, Lemma 14
ensures R∗t 6|= ∆ j and R∗t 6|= ∆i; furthermore, in case t = c we have R∗t 6|= t ≈ u for any u ∈ ΣOu since t , u and t is irreducible w.r.t.
R∗t by hypothesis. But then we contradict Lemma 10, and hence we conclude the proof.

Finally, if the depth of u is equal to Λ, then the result follows by Lemma 31.

Appendix D.4. The Composite Model

In this section, we show how to combine the fragments into a single interpretation R∗ and then prove that R∗ is a model
of O that does not satisfy the target query ΓQ → ∆Q. In Appendix D.4.1, we describe the order in which we construct the
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model fragments; furthermore, for each fragment, we give the parameters required to construct it and show that they satisfy the
prerequisites from Appendix D.2.1. In Appendix D.4.2, we prove all relevant properties of the model, including the claims that
it satisfies O and that it disproves the target query.

Appendix D.4.1. Order of Construction of Model Fragments
The first fragment we build is R∗c. We then build the rest of the fragments using structural induction on the order dictated by

m. Thus, for every u ∈ ΣOu , we construct the fragment R∗u assuming that R∗c and all fragments R∗u′ for u′ ∈ ΣOu with um u′ already
exist and satisfy all lemmas from the previous sections. Similarly, for every term t and f ∈ ΣOf , we define the fragment R∗f (t)
assuming that the fragment R∗t has already been defined and satisfies all lemmas from the previous sections.

Given a term t, if t , c, let RRt be the rewrite system consisting of the rewrite rules l ⇒ s for each l ⇒ s ∈ Rc such that l, s
are both in ΣOu , or l is a function-free ground p-term that mentions only constants in ΣOu and s = true. We then define ΓRt as the
set of equalities corresponding to rules in Rc, and ∆Rt as the subset of Rt which is satisfied by R∗Rt. Next, we define inductively
the context v ∈ V, the set of equalities Γt, and the set of literals ∆t used as parameters in the construction of R∗t :

• For c, we define v = q, Γc = ΓQσc and ∆c = ∆Qσc.

• For each t ∈ ΣOu , if R∗c 6|= t ≈ u for some u ∈ ΣOu such that t m u, then define v = vr, Γt = ΓRt, and ∆t = ∆Rt. Otherwise, Rt is
undefined.

• For any other t, the term is of the form f (t′) for some f ∈ ΣOf . We then distinguish several cases:

– If t does not occur in Rt′ , then define Rt as {t ⇒ c}.
– If t occurs in Rt′ but is not irreducible w.r.t. Rt′ , then Rt is undefined.
– If t occurs in Rt′ and is irreducible w.r.t. Rt′ , then by construction of Rt′ we have that t appears in literal li ≈ ri in

some generative clause Γi → ∆i ∨ li ≈ ri; the fact that t is irreducible implies that if t′ = g(t′′) for some g ∈ ΣOf , then
Li does not contain t′′. Let w be the context selected for t′; since Li contains f (t′) for some f ∈ ΣOf , we are in the
conditions of Lemma 7 as well as Lemma 8, and hence there exists a clause Γ → ∆1 ∨ l ≈ r in Sw, with Γσt′ = Γt′ ,
∆σt′ ⊆ ∆i ∪ ∆t′ and lσt = li and rσt = ri, and ∆ �w l ≈ r. Furthermore, either f (x) or f (u) to appear in l ≈ r because
t appears in li ≈ ri. Since the Succ rule is not applicable to Γ→ ∆1 ∨ l ≈ r, there must be a context v such that 〈w, v〉
is labelled by f , we have A → A ∈̂ Sv for each A ∈ K2 (hence l ≈ r → l ≈ r ∈̂ Sv), and corev ⊆ K1, for K1 and K2

defined as in the Succ rule. We then define Γt = R∗t ∩ Sut, and ∆t = ∆Rt ∪
(
Prt\R∗t′

)
.

Next we define the global rewrite system R. Let Ru
t be the set of rules in Rt of the form u1 ⇒ u2 for u1, u2 ∈ ΣOu . If c is

irreducible w.r.t. Rc, then R = Rc ∪
⋃

t,c
(
Rt\Ru

t
)
, where the union ranges over all fragments that have been defined. If c is not

irreducible w.r.t. Rc, we define R = Ru
c ∪

⋃
t,c

(
Rt\Ru

t
)
. We highlight two aspects of this definition: first, notice that we remove

the rules in Ru
t from the general system; this is to ensure that R is left-reduced, and therefore Church-Rosser (see Lemma 34).

Furthermore, this leaves R∗ unaffected, since R∗c |= (Ru
t )∗. The second observation is that we exclude Rc (other than rules in Ru

c)
from R when c is not irreducible w.r.t. Rc; this is because we will use u to disprove the main query ΓQ → ∆Q, where u is the
normal form of c w.r.t. Rc. Removing Rc will not be a problem since the definition of ΓRt and ∆Rt will ensure that R∗u disproves
ΓQ → ∆Q (see Lemma 40).

We show next that during the construction of the composite model as described in the previous section, for every t, v, Γt, and
∆t, the assumptions listed in Appendix D.2.1 are satisfied. Thus, we assume that one of the following is the case:

(i) t = c

(ii) t ∈ ΣOu with R∗c 6|= t ≈ u for every u ∈ ΣOu with t m u

(iii) t = f (t′) for some f ∈ ΣOf , and t occurs in Rt′ but is irreducible by it; furthermore, w and v are connected via an edge
labelled f , A → A ∈̂ Sv for each A ∈ K2, and corev ⊆ K1, with K1 and K2 defined as in the Succ rule for w, and such that
if w = vr, then u = t′.

First, for t , c, we notice that since Rc is Church-Rosser, then RRt is also Church-Rosser, because it is a subset of Rc.
Furthermore, the rewrite rules in Rc are of the form B(u) ⇒ true, S (u1, u2) ⇒ true, or u1 ⇒ u2, as expected. Finally, ΓRt

contains s ≈ l for each s ⇒ l ∈ RRt, and it is verified that ∆Rt contains literals exclusively in Rt. Notice that the definition of ∆Rt

straightforwardly implies that conditions L1 and L2 are satisfied.
Condition L3 is trivially true by definition of Γt and ∆t. For condition L4, if t , c, we have that ∆Rt ⊆ ∆t is true by definition

if t , c. Similarly, ΓRt ⊆ Γt is true by definition if t ∈ ΣOu . Otherwise, given any L ∈ ΓRt we have L ∈ Su(O), so L ∈ Sut. Then,
if t′ = c, we have R∗t′ |= ΓRt by definition of ΓRt, and otherwise by induction hypothesis we have R∗t′ |= ΓRt by Lemma 20. Thus,
ΓRt ⊆ R∗t′ ∩ Sut = Γt. Finally, consider some L ∈ ∆t ∩ Rt such that L < ∆Rt. Since L < ∆Rt, by condition L2, R∗Rt |= L, and by
Lemma 20 we have R∗t′ |= L. However, by definition of ∆t, if L < ∆Rt then R∗t′ 6|= L, which contradicts our previous claim.

To see why condition L5 is satisfied, we consider the two cases covered by this condition:
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• Case 1: suppose t ∈ ΣOu but there exists u ∈ ΣOu with tmu such that t ≈ u < ∆t. Since t, u ∈ ΣOu , we must have that t ≈ u ∈ R∗Rt,
for otherwise we have t ≈ u ∈ ∆Rt by condition L1, and ∆Rt ⊆ ∆t by condition L4, so we obtain a contradiction. But then,
by definition of RRt, R∗c |= t ≈ u, and since t m u, we reach a contradiction with (ii).

• Case 2: suppose t = f (t′) but the condition is not satisfied, so there are three possible sub-cases:

– Case 2.a : there exists u ∈ ΣOu with tm u such that t ≈ u < ∆t. Since t < ΣOu , we have t ≈ u < Rt and hence t ≈ u < ∆Rt;
we also have x ≈ u ∈ Pr(O) and hence t ≈ u ∈ Prt. Thus, by definition of ∆t, we conclude R∗t′ |= t ≈ u. But this
contradicts (iii), since t is then not irreducible w.r.t. R∗t′ .

– Case 2.b : there exists u ∈ ΣOu with t′ m u such that t′ ≈ u < ∆t. To reach a contradiction, if t′ ∈ ΣOu , we proceed
exactly as in Case 1, and otherwise (i.e. t′ < ΣOu ), we proceed as in Case 2.a, since y ≈ u ∈ Pr(O).

– Case 2.c : t ≈ t′ < ∆t. Here, we only need to note that x ≈ y ∈ Pr(O) and proceed as in Case 2.a.

To show that condition L6 holds, we consider the different forms of t and reach a contradiction for each of them.

• If t = c, then the condition is satisfied by our assumption that condition C1 holds. To see this, suppose Γc → ⊥ ∈̂Nc. Thus,
it must be the case that Γ′c → ⊥ ∈ Nc for some conjunction Γ′c with Γ′c ⊆ Γc. Hence, there is a clause Γ′ → ∆′ ∈ Sq with
Γ′σc = Γ′c and ∆′σc ⊆ ∆c. By definition of Γc and σc, any A ∈ Γ′ must be of the form B(x) for some B(x) ∈ ΓQ, so Γ′ ⊆ ΓQ.
An analogous argument applies to ∆′ with respect to ∆Q. Therefore, we conclude ΓQ → ∆Q ∈̂ Sq, a claim that violates the
main hypothesis of this completeness proof.

• If t ∈ ΣOu , notice we have Γt = ΓRt, and we must have Γ′ → ⊥ ∈ Nt for some Γ′ ⊆ Γt. Thus, there exists a clause
Γ′ → ∆′ ∈ vr with ∆′ ⊆ ∆Rt. By definition of ∆Rt, for each Ai ∈ ∆Rt there must be a generative clause Γi → ∆i ∨ Ai in
Nc with Ai >c ∆i. Thus, by Lemma 8 there must exist a clause Γ′i → ∆′i ∨ A′i in Sq with Γ′iσc = Γ′, ∆′iσc ⊆ ∆i ∪ ∆c, and
A′iσc = Ai. Observe that if L is a literal of ∆′i and ∆Q, by condition C2 we have that if L �q A′i , then A′i ∈ ∆Q, which is
impossible since A′i is ground. If L ∈ ∆′i\∆Q then Lσt ∈ ∆i, so if L �q A′i we have ∆i >c Ai, and we reach a contradiction.
We therefore conclude that ∆′i �q A′i . Since A′i is ground and r-Succ is not applicable, for every u ∈ ΣOu mentioned in A′i ,
there exists an edge 〈q, vr, u〉 between q and v. But since ∆Rt ⊆ Prr(O), with these edges we are in the conditions of the
r-Pred rule for Γ′ → ⊥ in Svr . Hence, we obtain:

n∧
i=1

Γ′i →

n∨
i=1

∆′i ∨ ∆′ ∈̂ Sq

Since Γi → ∆i ∨ Ai is generative for each i with 1 ≤ i ≤ n, by Lemma 14, we have Γi ⊆ Γc for each i with 1 ≤ i ≤ n, and
since ∆′i and ∆′ are either ground or in ∆Q, by Lemma 9 we have:

n∧
i=1

Γi →

n∨
i=1

∆i ∨ ∆′ ∈̂Nc

Furthermore, by Lemma 10, R∗c |=
∨n

i=1 ∆i ∨∆′. However, due to the fact that Γi → ∆i ∨ Ai is generative for each 1 ≤ i ≤ n,
by Lemma 14, we have R∗c 6|= ∆i for each i with 1 ≤ i ≤ n. Finally, the fact that ∆′ ⊆ ∆Rt implies, by conditions L1 and L2,
R∗c 6|= ∆′. Thus, we reach a contradiction.

• If t = f (t′) and Γt → ⊥ ∈̂Nt, the set Nt contains a clause of the form:

m∧
i=1

Ai ∧

n∧
i=1

Ci → ⊥
with Ci ∈ Γt ⊆ (Rt′ )∗ ∩ Sut for each 1 ≤ i ≤ n,
and Ai ∈ ΓRt ⊆ (Rt′ )∗ ∩ Sut, for each 1 ≤ i ≤ m. (D.6)

Hence, Sv contains a clause of the form:

m∧
i=1

Ai ∧

n∧
i=1

C′i →
k∨

i=1

L′i
with Ci = C′iσt for each 1 ≤ i ≤ m,
and L′iσt ∈ ∆t for each 1 ≤ i ≤ k. (D.7)

By definition of ∆t, we have that every L′i is in Pr(O) or in ∆Rt, or of the form S (x, u) or S (u, x) if t′ = u for some u ∈ ΣOu .
Hence, this clause satisfies the preconditions for acting as main premise of a Pred rule inference. Next, we have that for
each i with 1 ≤ i ≤ n, Ci ∈ Γt, and hence Ci ∈ Sut, so Ci is either in ΓRt, or is of the form B(t), S (t, t′), or S (t′, t), with
B ∈ ΣOA , S ∈ ΣOS . If Ci ∈ ΓRt, then we have two possibilities: either t′ = c or t′ , c.
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– In the first case (t′ = c), by definition of ΓRt for each Ci ∈ ∆Rt there must be a generative clause Γi → ∆i ∨ Ci in
Nc with Ci >c ∆i. By Lemma 8 there must exist a clause Γ′i → ∆′i ∨ Ci in Sq with Γ′iσc = Γ′, ∆′iσc ⊆ ∆i ∪ ∆c. If
L is a literal of ∆′i and ∆Q, by condition C2 we have that if L �q Ci, then Ci ∈ ∆Q, which is impossible since Ci is
ground. If L ∈ ∆′i\∆Q then Lσt ∈ ∆i, so if L �q Ci we have ∆i >c Ci, and we reach a contradiction. To uniformise the
nomenclature, for this i we define C′i = Ci.

– In the second case (t′ , c), by condition L7, for each Ci ∈ ∆Rt, there exists a clause Ci → Ci ∈̂ Sw, and by condition L6
we can assume, without loss of generality, that Ci → Ci ∈ Sw. To uniformise the nomenclature, for this i we define
Γ′i = Γi and C′i = Ci.

If Ci is of the form B(t), S (t, t′), or S (t′, t), we have that t′ is irreducible by Rt′ due to Lemma 17, and t is also irreducible
by Rt′ due to (iii). Therefore, there exists a generative clause:

Γi → ∆i ∨Ci ∈ Nt′ (D.8)

with Ci >t ∆i and Γi ⊆ Γt′ . By definition of Nt′ , for each such clause, there must be a clause in Sw of the form:

Γ′i → ∆′i ∨C′i (D.9)

with Γi = Γ′iσt′ , ∆′iσt ⊆ ∆i ∪ ∆t′ and Ci = C′iσt′ . Since Ci contains t and does not contain t′′ (if it exists), we are in the
conditions of Lemmas 7 and 8 and hence we have ∆′i �w C′i .

We have therefore shown that for each i with 1 ≤ i ≤ n, there exists a clause of the form (D.9) with Γ′iσt′ ⊆ Γt′ ,
∆′iσt′ ⊆ ∆i ∪ ∆t′ for some ∆i such that R∗t′ 6|= ∆i (possibly ⊥), and C′iσt′ = Ci. Such clauses satisfy the preconditions for
acting as side clauses of the Pred rule for i with 1 ≤ i ≤ n. Furthermore, if w = vr because t′ ∈ ΣOu , we define n′ and Ci

for each i with n + 1 ≤ i ≤ n′ as in the Pred rule, that is,
∧n′

i=n+1 Ci = corev. Since we are in case (iii), we have a clause
> → Ciσt ∈ Svr , as corev ⊆ K1 for K1 defined as in the Succ rule with respect to w. For each i with n + 1 ≤ i ≤ n′, we
then define define Γ′i = Γi = >, ∆′i = ∆i = ⊥, and C′i = Ciσt. Clauses Γ′i → ∆′i ∨ C′i satisfy the preconditions for acting
as side clauses of the Pred rule for i with n + 1 ≤ i ≤ n′. If v , vr, recall that n′ = n. Also, if t′ = c, we have that by
definition of ΓRt, for each Ai with 1 ≤ i ≤ m, there exist generative clauses Γn′+i → ∆n′+1 ∨ Cn′+1 in Nc with Cn′+i = Ai,
and by arguments analogous to those used above for Ci ∈ ΓRt, there must exist a clause Γ′n′+i → ∆′n′+i ∨ Cn′+i in Sq with
Γ′n′+iσc = Γn′+i ⊆ Γc, ∆′n′+iσc ⊆ ∆n′+i ∪∆c, and ∆n′+i �q Cn′+i. To uniformise nomenclature, if t′ , c, for n′ + 1 ≤ i ≤ m we
define Γ′i = Γi = Ai, and ∆′i = ∆i = ⊥; observe that by condition L4 we have that Ai ∈ ΓRt implies Ai ∈ Γt′ . Finally, since
we are in case (iii), there is an edge labelled f connecting w to v.

We have shown that all preconditions of the Pred rule are satisfied, so since this rule is not applicable by hypothesis, we
have:

n′∧
i=1

Γ′i ∧

n′+m∧
i=n′+1

→

n′∨
i=1

∆′i ∨

m∨
i=n′+1

∆′i ∨

k∨
i=1

L′iσ ∈̂ Sw, (D.10)

where σ = {x 7→ f (x), y 7→ x} if w , vr and σ = {x 7→ f (u), y 7→ u} otherwise, with u = t′. We have seen that for
1 ≤ i ≤ n′ + m, Γ′iσt′ ⊆ Γt, and the head of clause (D.10) is clearly ground, so by Lemma 9, we have:

n′∧
i=1

Γi ∧

n′+k∧
i=n′+1

Γi →

n′∨
i=1

∆i ∨

n′+m∨
i=n′+1

∆i ∨ πt′

 k∨
i=1

L′iσσt′

 ∈̂Nt′ (D.11)

For 1 ≤ i ≤ n, since the clause Γi → ∆i ∨ Ci is generative, we have by Lemma 14 that R∗t′ 6|= ∆i. If n′ , n, for i with
n + 1 ≤ i ≤ n′, we have that Γ′iσt′ = > ⊆ Γt′ , ∆′i ∨C′i is ground, so Γi → ∆i ∨C′i ∈ Nt′ , and since ∆i = ⊥, we have R∗t′ 6|= ∆′i .
If t′ = c, then for i with n′1 ≤ i ≤ n′ + k, we have that since Γi → ∆i ∨ Ci is generative, by Lemma 14, R∗t′ 6|= ∆i. If t′ , c,
then Γ′i ∈ ΓRt and by condition L4 we have ∆i = ⊥, so R∗t′ 6|= ∆i trivially. Finally, since L′iσσt′ = L′iσt ∈ ∆t, we have that by
definition of ∆t, and the fact that R∗t′ 6|= ∆Rt, either by definition of ∆Rt (if t′ = c) or by Lemma 20 (if t′ , c), R∗t′ 6|= L′iσσt′ .
We have therefore proved that R∗t′ does not satisfy the head of clause (D.11); but this contradicts Lemma 10. Thus, we
obtain a contradiction, and hence we complete the proof for this case.

Finally, for condition L7, we have that for t = c, the condition is guaranteed by our assumption of condition C2 and the
definition of Γc. For t , c, we consider first A ∈ ΓRt. By definition of ΓRt, there is a generating clause Γ → ∆ ∨ A in Nc. By
Lemma 8 there must exist a clause Γ′ → ∆′∨A in Sq with Γ′σc = Γ, ∆′σc ⊆ ∆∪∆c. If L is a literal of ∆′ and ∆Q, by condition C2
we have that if L �q A, then A ∈ ∆Q, which is impossible since A is ground. If L ∈ ∆′\∆Q then Lσt ∈ ∆, so if L �q A we have
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∆ >c A, and we reach a contradiction. If t = u, since r-Succ is not applicable, we have A → A ∈̂ Svr . Otherwise, we are in case
(iii); if t′ = c we consider clause Γ′ → ∆′ ∨ A with ∆′ �q A in w; otherwise by condition L7, we have A → A ∈̂ Sw, and since
A ∈ ΓRt, using condition L6 it is easy to see that, without loss of generality, we can assume A → A ∈ Sw (the alternative being
> → A, but never > → ⊥ or A → ⊥ so as to not violate condition L6). Furthermore, since we are in case (iii), there must be
a clause in w with a maximal literal mentioning f . Since Succ is not applicable, and A ∈ Su(O), and either A → A ∈ Sw or
Γ′ → ∆′ ∨ A ∈ Sw, we conclude A → A ∈̂ Sv. Finally, for A ∈ Γt\ΓRt, we must be in case (iii), and we can argue as in the proof
in the previous bullet point that A is irreducible w.r.t. Rt′ , and there is a generative clause Γ → ∆ ∨ A for A in Rt′ , and a clause
Γ′ → ∆′ ∨ A′ in Sw where Γ′σt′ = Γ, ∆′σt′ ⊆ ∆ ∪ ∆t, A′σt = A and ∆ �w A. Furthermore, since A ∈ Γt, by definition of Γt we
have A ∈ Sut, and hence A′ ∈ Su(O), so A′ ∈ K2, where K2 is as specified in the Succ rule for w. Since Succ is not applicable,
and there is an edge f connecting w and v, we have A′ → A′ ∈̂ Sv, which implies A→ A ∈̂Nt by Lemma 9.

Appendix D.4.2. Properties of the Model
We first show that R is Church-Rosser, and therefore we can find a single normal form w.r.t R for each term in the model.

Lemma 32. The rewrite system R is terminating.

Proof. By Lemma 3, if we define a simplification order on ground terms and show that this order embeds the rules of R,
termination of R is guaranteed. Consider an extension of the ordering m to all p-function symbols in a way that makes true the
smallest element of the order. Let . be the lexicographic path order induced by this extension of m. Since m is a-admissible, it is
well-founded; hence, as we mentioned in Section 2.2, this implies that . is a simplification ordering. To complete the proof, we
show that all rules in R are embedded in ..

Consider an arbitrary rule l⇒ r of R. By definition of R, there is t such that l⇒ r ∈ Rt. However, if l⇒ r ∈ Rt, by definition
of Rt and condition R2, we have that l >t r. If l and r are a-terms, then the equality l ≈ r must be of one of these forms:

• f (t) ≈ g(t) with f (t) >t g(t). Such equality can only have been generated in Rt. Furthermore, f (t) >t g(t) implies f m g, so
we have f (t) . g(t).

• f (t) ≈ t with f (t) >t t, or f (t) ≈ t′ with f (t) >t t′. But we have f (t) . t and f (t) . t′ trivially.

• f (t) ≈ u with f (t) >t u. Since f m u for any f ∈ ΣOf and u ∈ ΣOu , we have f (t) . u trivially.

• u ≈ s with u >t s. By definition of >t, s can only be of the form u′ for some u′ ∈ ΣOu with u m u′, in which case we have
u . u′.

Other forms are not possible; this follows from the fact that >t is a simplification order, the fact that t and t′ are irreducible
w.r.t. R∗t for any t , c according to Lemma 17, and the fact that the definition of >t ensures that constants in ΣOu are the smallest
a-terms. To conclude this proof, observe that if l and r are p-terms, then l , true and r = true. Since true is the smallest element
in . by definition, we trivially have l . r.

Lemma 33. The rewrite system R is left-reduced.

Proof. Assume that there is a rule l⇒ r in R such that l is reducible by R′ = R\{l⇒ r}. Let s be a term such that l⇒ r ∈ Rs. Let
p be (one of) the deepest position(s) in l at which R′ reduces l, so that any proper subterm of l|p is irreducible by R′. Let l|p ⇒ r′

be a rule in R′ which reduces l at p. Let s′ be a term such that l|p ⇒ r′ ∈ Rs′ . We have that s′ , s, for otherwise we contradict
Lemma 12, which guarantees that Rs is Church-Rosser, and therefore left-reduced.

If l|p is a p-term, then l|p = l and due to the form of the rewrite systems Rt, we have r′ = true and r = true. But since
lp ⇒ r′ ∈ R′, we have l ⇒ r ∈ R′, which contradicts our definition of R′. If l|p is an a-term, l|p ⇒ r′ can be only of the form
f (t) ⇒ g(t), f (t) ⇒ t, f (t) ⇒ t′, f (t) ⇒ u, or u1 ≈ u2 with u1 m u2, for the same reasons as in the proof of Lemma 32. In case
u1 ⇒ u2, by definition of R and ΓRt, we have u1 ⇒ u2 ∈ Rc. Since Rs is Church-Rosser, l is irreducible w.r.t. Rs. In particular, u1
is irreducible w.r.t. Rs. However, by Lemma 16 we have R∗s |= u1 ≈ u2, and since u1 m u2, and hence u1 >s u2, and the rules of Rs

are embedded in >s, we have that u1 cannot be the normal form of u1 w.r.t. Rs, and this contradicts the fact that u1 is irreducible
w.r.t. Rs. Thus, consider the case where l|p is of the form f (t). The only fragment that can contain lp ⇒ r′, then, is Rt, since it
is the first fragment where elements of the form f (t) can appear, according to the order of construction of fragments, and since
f (t) is not irreducible w.r.t. Rt, no fragments are defined for f (t) or its successors. Thus, s′ = t. Now, observe that Rs cannot
have been defined before Rs′ , for Rs′ is the first fragment where elements of the form f (t) can appear. Since we also have shown
that s′ , s, we conclude that Rs′ has been defined before Rs. However, since f (t) is not irreducible w.r.t. Rt, no further fragments
containing l|p are defined after Rt, so Rs is not defined. Hence, we obtain a contradiction.

Lemmas 32 and 33 together imply the result we are looking for:

Lemma 34. The rewrite system R is Church-Rosser.
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Notice that the proof above also shows that for each t , c, the system Ru
c ∪ Rt\Ru

t is also Church-Rosser.

Before we prove that the interpretation induced by rewrite system R is a model of the ontology, we show two crucial properties
of the model R∗. The first property shows that R∗ is “locally complete”, that is, for any term t , ΣOu , we can find in R∗t the set Ht

of all hyperresolution triggers, i.e. the irreducible atoms in R∗ which unify with the body of a clause in O and a substitution σ
such that xσ = t. For t ∈ ΣOu , a weaker condition holds: for any term t ∈ ΣOu , R∗t contains Ht\Vt, where Vt contains all atoms in
Ht of the form S (t, s) or S (s, t), with s an a-term of the form s = f (s′) for some f ∈ ΣOf . We will later see that each atom of the
forms S (t, s) or S (s, t) in Vt is in R∗s. Notice that due to the form of atoms in R∗, if t < ΣOu , Ht = Sut ∪ Pr f (t) ∪ Reft ∪ Nomt, and
if t ∈ ΣOu , Ht\Vt = Sut ∪ Pr f (t) ∪ Reft ∪ Nomt.

Lemma 35 (Local Completeness). Assume that c is irreducible w.r.t. Rc. For each ground term t, each f ∈ ΣOf , and each atom
A ∈ Sut ∪ Pr f (t) ∪ Reft ∪ Nomt such that R∗ |= A and every a-term in A is irreducible by R, then R∗t |= A.

Proof. Let t be a ground term, f an arbitrary element of ΣOf , and A an atom as described in the lemma. First, notice that if A ∈ Rt,
then by Lemma 20, R∗t |= A. For the remainder of this proof, we assume that A < Rt. Since the a-terms of A are irreducible, we
have A⇒ true ∈ R.

• Suppose A ∈ Sut. Atom A can be of the form B(t), S (t, t′), S (t′, t). By definition of R and the fact that A < Rt, A ⇒ true
can occur only in Rt′ or Rt. However, if A⇒ true ∈ Rt′ , then A ∈ Rt′ and hence A ∈ Γt, so by Lemma 23, we have A ∈ R∗t .

• Suppose A ∈ Pr f (t). Atom A can be of the form B(t), S (t, f (t)), S ( f (t), t). By definition of R and the fact that A < Rt,
A⇒ true can only occur in Rt or R f (t). Hence, we have that either A ∈ R∗t or A ∈ R∗f (t). But if A < R∗t , then A ∈ ∆ f (t), so by
Lemma 23, we have A < R∗f (t), which contradicts our previous claim.

• Suppose A ∈ Reft. Since A < Rt, A⇒ true can only occur in Rt, so A ∈ R∗t .

• Suppose A ∈ Nomt. Since A < Rt, A⇒ true can only occur in Rt, so A ∈ R∗t .

The second property illustrates a “structural monotonicity” property of the interpretation: if an equality or inequality is
satisfied in R∗t , then it is also satisfied by R∗. To prove such property, first we introduce a preliminary lemma.

Lemma 36. For any term t with t , c, and any arbitrary term s, the normal form of s w.r.t. Rt is the same as the normal form of
s w.r.t. Ru

c ∪ Rt\Ru
t .

Proof. Let u′1 be the normal form of u w.r.t. Ru
c ∪ Rt\Ru

t . Since the elements of ΣOu are the smallest a-terms in the orders >t and
>c, we have that u′1 is the normal form of u w.r.t. Ru

c . Hence, R∗c |= u ≈ u′, and by Lemma 20, R∗t |= u ≈ u′. Furthermore, it cannot
be the case that R∗t |= u′ ≈ u′′ for some u′′ with u′ m u′′, since this violates Lemma 16. Thus, u′ is irreducible w.r.t. Rt and hence
u′ is the normal form of u w.r.t. Rt. With this, we have (Ru

c)∗ = (Ru
t )∗ due to Lemma 36 and the fact that both Ru

c and Ru
t mention

only elements in ΣOu . Let s′ be the normal form of s w.r.t. R∗t . There exists a sequence of n terms s1, s2, · · · , sn such that s1 = s,
sn = s′, and si ⇒ si+1 ∈ Rt. Given any i with 1 ≤ i < n, we have that if si ⇒ si+1 ∈ Rt\Ru

t , then
(
Ru

c ∪ Rt\Ru
t
)∗
|= si ≈ si+1

trivially. Otherwise, we have si ⇒ si+1 ∈ Ru
t , and thus (Ru

t )∗ |= si ≈ si+1. We have shown that this implies (Ru
c)∗ |= si ≈ si+1,

and since (Ru
c)∗ ⊆

(
Ru

c ∪ Rt\Ru
t
)∗, we have

(
Ru

c ∪ Rt\Ru
t
)∗
|= si ≈ si+1. Since

(
Ru

c ∪ Rt\Ru
t
)∗ is a congruence, we conclude that it

satisfies s ≈ s′. Suppose s′ is not irreducible w.r.t. Ru
c ∪ Rt\Ru

t , and let sn ⇒ sn+1 be a rule of Ru
c ∪ Rt\Ru

t which reduces it. Since
s′ is irreducible w.r.t. Rt, we have that sn ⇒ sn+1 ∈ Ru

c . But then, R∗c |= sn ≈ sn+1, and by Lemma 20 we have R∗t |= sn ≈ sn+1.
Since sn m sn+1, for both sn and sn+1 are in ΣOu , and sn m sn+1, then sn >t sn+1, which contradicts the fact that sn is irreducible
w.r.t. R∗t . This completes the proof.

Corollary 37. For any t, R∗t =
(
Ru

c ∪ Rt\Ru
t
)∗

Proof. The corollary follows immediately from Lemma 36.

Lemma 38 (Structural monotonicity). Let s1 and s2 be both DL-a-terms or DL-p-terms such that s1 ./ s2 is a DL-literal, with
./ ∈ {≈,0}, and let τ be a substitution where the terms in the range of τ are irreducible by R, and such that xτ, s1τ, and s2τ are
ground. Suppose that for each zi such that ziτ is ground, ziτ is in the a-neighbourhood of xτ. Let R∗xτ be such that if c is not
irreducible w.r.t. Rc, then xτ , c. Then, if R∗xτ |= s1τ ./ s2τ, we have R∗ |= s1τ ./ s2τ.

Proof. Consider first the case where ./ is an equality. If t = c, this is trivial since Rxτ ⊆ R (c is irreducible w.r.t. Rc), and hence
R∗xτ ⊆ R∗. Otherwise, the result follows from Corollary 37 and the fact that Ru

c ∪ Rxτ\Ru
t ⊆ R. Next, we consider the case where

./ is an inequality. Let t = xτ. Since t is irreducible by R, according to the order of construction of fragments outlined at the
beginning of Appendix D.4.1, system Rt has been defined. Let s′1 and s′2 be the normal forms of s1τ and s2τ w.r.t. Rt, respectively.
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If t , c, by Lemma 36, they are also the normal forms of s1τ and s2τ w.r.t. Ru
c ∪ Rxτ\Ru

t . If t , c, Ru
c ∪ Rt\Ru

t ⊆ R∗, and otherwise
by hypothesis we have that c is irreducible w.r.t. Rc so Rc ⊆ R∗. Thus, to show R∗ 6|= s1τ ≈ s2τ, it suffices to show that both s′1
and s′2 are irreducible w.r.t. R, since in that case they will still be the normal forms of s1τ and s2τ (respectively) w.r.t. R.

Due to the form of DL-literals, we have that s1 and s2 must be of the forms f (x), x, or zi. Furthermore, since s1τ and s2τ are
in the a-neighbourhood of t, they are of the form t, t′, f (t) for some f ∈ ΣOf , or u. Furthermore, since Rt does not contain a-terms
outside of the a-neighbourhood of t, terms s′1 and s′2 are also of one of the forms appearing in that list. We finish the proof by
showing that if any term of such form is irreducible in Rt, then it is also irreducible in R.

We already have that t is irreducible by R, and this implies that t′ is also irreducible w.r.t. R by the order of construction for
fragments outlined at the beginning of Appendix D.4.1 and Lemma 17. For the case u ∈ ΣOu , if t = c, the fact that u is irreducible
w.r.t. Rt implies that u is irreducible w.r.t. Rc, and since elements of ΣOu are smallest in >c, this implies that u is irreducible w.r.t.
Ru

c . If t , c, the fact that u is irreducible w.r.t. Rt implies that it is irreducible w.r.t. Ru
c ∪ Rt\Ru

t due to Lemma 36, and since
elements of ΣOu are smallest in >t and >c, this implies that u is irreducible w.r.t. Ru

c . Thus, by construction of R, the fact that u is
irreducible w.r.t. Ru

c implies that u is irreducible w.r.t. R. Finally, for the case f (t), if f (t) is irreducible by Rt, then by the order of
construction of fragments, the only other fragments where f (t) can appear are R f (t) or Rg( f (t)) for some g. But in such fragments,
Lemma 17 implies that f (t) is irreducible by R f (t) and Rg( f (t)). Hence, f (t) must be irreducible by R.

We are finally ready to show that R∗ is a model of the ontology.

Lemma 39. For each DL-clause Γ→ ∆ ∈ O, we have R∗ |= Γ→ ∆.

Proof. Let τ′ be an arbitrary substitution such that Γτ′ → ∆τ′ is ground. Let τ be the substitution obtained by replacing each
ground term in the range of τ′ by its unique normal form w.r.t. R; such unique normal form exists since we know that R is
Church-Rosser by Lemma 34. Since R∗ is a congruence, R∗ |= Γτ′ → ∆τ′ if and only if R∗ |= Γτ → ∆τ. Thus, we only need to
assume R∗ |= Γτ and show R∗ |= ∆τ. To prove R∗ |= ∆τ, we proceed in three steps: first, we find a model fragment that contains
all atoms in Γτ; second, we show that this fragment satisfies some literal in ∆τ; finally, we show that R∗ also satisfies this literal.
Notice that if c appears, then it is irreducible w.r.t. Rc and we can use all the results proved above for this case.

Consider an arbitrary atom A ∈ Γ. By definition of DL-clauses, A is of the form B(x), S (x, x), S (x, zi), or S (zi, x). Since terms
in the range of τ are irreducible by R, Aτ cannot be reduced by R in proper positions. This, together with the fact that A ∈ Γ,
implies Aτ ⇒ true ∈ R. If we denote xτ by t, by construction of R, we have that Aτ must be of the form B(t), S (t, t), S (t, f (t)),
S ( f (t), t), S (t, t′), S (t′, t), S (t, u), S (u, t), S (s, t), or S (t, s), where s is an arbitrary term not in ΣOu ; the last two cases occur only if
t ∈ ΣOu .

If t ∈ ΣOu and Aτ is of the form S (s, t) or S (t, s), with s < ΣOu , and also s , f (t), we have that S (s, t) ⇒ true appears in the
fragment Rs due to Lemma 35, since Aτ ∈ Noms. Due to the form of ALCHOIQ+ DL-clauses, it is easy to see that if Aτ is
of the form S (t, s), then S is a numerically restricted predicate, but this contradicts Lemma 24. In case Aτ is of the form S (s, t),
then due to the form of ALCHOIQ+ DL-clauses, for every other atom A′ ∈ Γ, we have that A′τ is of the form B(t) (with t
irreducible, by hypothesis), and so by Lemma 35, B(t) ∈ Rs since B(t) ∈ Sus. Hence, all atoms in Γτ are contained in fragment
R∗s.

If t is either not in ΣOu , or we have t ∈ ΣOu but Aτ is not of the form S (s, t) or S (t, s) with s < ΣOu or of the form f (t), we have
the following possibilities:

• A = B(x), so Aτ = B(t). But if A = B(x), then B(x) ∈ Su(O). Hence, B(t) ∈ Sut.

• A = S (x, x), so Aτ = S (t, t). But if A = S (x, x), then Aτ = S (t, t) ∈ Reft.

• A = S (zi, x), so Aτ = S (t′, t), or S ( f (t), t), or S (u, t). Notice that since A appears in the body of an ontology clause, we
know S (y, x) ∈ Su(O). Therefore, we have S (t′, t) ∈ Sut and S ( f (t), t) ∈ Pr f (t). Finally, we have S (u, t) ∈ Nomt.

• A = S (x, zi), which is symmetric to the case above.

Consider the case where Aiτ ∈ Sut ∪ Pr f (t) ∪ Reft ∪ Nomt for every Ai. We have that by Lemma 35, Aiτ ∈ Rt, so Nt contains
a generative clause of the form

Γi → ∆i ∨ Ai with Ai >t ∆i and Γi ⊆ Γt.

Let v be the context selected for t. If Ai ∈ Rt, by Lemma 16 we have R∗c |= Ai, so due to conditions L6 and L7 we can assume,
without loss of generality, that Ai → Ai ∈ Sv. If Ai < Rt, we are in the conditions of Lemma 7. Furthermore, if t′ ∈ ΣOu and
t′ appears in Ai, we have that Ai ∈ Sut, and by definition, Ai ∈ Γt, so by conditions L6 and L7 we can assume, without loss of
generality, that Ai → Ai ∈ Sv. If t′ < ΣOu or t′ does not appear in Ai, we are in the conditions of Lemma 8. Therefore, for every
1 ≤ i ≤ n, there exists a clause in Sv of the form Γ′i → ∆′i ∨ A′i with Γ′iσt = Γi, ∆′iσt ⊆ ∆′i ∪ ∆t, and A′iσt = Ai, with ∆′i �v A′i .
Since the Hyper rule is not applicable to the ontology DL-clause and these clauses (this includes the case where n = 0), we have:

n∧
i=1

Γ′i → ∆σ ∨

n∨
i=1

∆′i ∈̂ Sv,
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with σ the substitution where we replace t by x, and if n = 0 then
∧n

i=1 Γ′i and
∨n

i=1 ∆′i are replaced by the empty conjunction and
disjunction, respectively. Since Γi ⊆ Γt and ∆i ∨ Ai is ground, by Lemma 9, we have

n∧
i=1

Γi → ∆τ ∨

n∨
i=1

∆i ∈̂Nt

and by Corollary 19, we have R∗t |= ∆τ ∨
∨n

i=1 ∆i. However, by Lemma 14 or the fact that ∆i = ⊥, we have that R∗t 6|= ∆i, which
implies R∗t |= ∆τ. Then, by Lemma 38, we conclude that R |= ∆τ.

To complete the proof, we consider the case where we have Aiτ ∈ Sus ∪ Pr f (s) ∪ Refs ∪ Noms for every Ai. In this case, due
to the form of ALCHOIQ+ DL-clauses, the ontology clause is of the form DL3, DL4a, DL7, DL8, or DL9. We have already
seen that in this case, Ai is of the form B(t) or S (s, t), with t ∈ ΣOu . Consider the generative clauses, their lifted forms, and atoms
A′i , defined as in the previous paragraph. Since D is saturated and hence r-Succ is not applicable, we have that for each Ai,
A′′i → A′′i ∈̂ Svr , with A′′i = A′i{x 7→ y}. By Lemma 26 and Hyper, we have that A′′1 ∧ · · · ∧ A′′n → ∆′{x 7→ y} ∈̂ Svr , and since
r-Pred is not applicable, by Lemma 26 we have

n∧
i=1

Γ′i → ∆σ ∨

n∨
i=1

∆′i ∈̂ Sv,

and we complete the proof for this case as in the previous paragraph, concluding R∗s |= ∆τ. Since for ontology clauses of the form
DL3, DL4a, DL7, DL8, or DL9, disjunction ∆ consists exclusively of equalities, by Corollary 37 we trivially have R |= ∆τ.

The only remaining task is to show that the model is a counterexample of the input query.

Lemma 40. R∗ 6|= ΓQ → ∆Q.

Proof. Observe that Lemma 23 implies R∗c |= Γc and R∗c 6|= ∆c. If c is irreducible w.r.t. Rc, we have Rc ⊆ R, which guarantees
R∗ |= Γc. However, observe also that for each B(x) ∈ ∆Q, by definition of Pr(O) we have B(y) ∈ Pr(O), so B(c) ∈ Pr( f (c)), and
hence by Lemma 35, we have that R∗c 6|= ∆c implies R∗ 6|= ∆c. Thus, element c disproves ΓQ → ∆Q.

If c is not irreducible w.r.t. Rc, then let u be the normal form of c w.r.t. Rc. Let B be an arbitrary predicate such that B(c) ∈ Γc

and let B′ be an arbitrary predicate such that B′(c) ∈ ∆c. Since we have R∗c |= Γc and R∗c 6|= ∆c, as well as R∗c |= c ≈ u, we
have R∗c |= B(u) and R∗c 6|= B′(u). Thus, we have B(u) ∈ ΓRt, and B′(u) ∈ ∆Rt. By Lemma 20, R∗u |= B(u) and R∗u 6|= B′(u), so
by Corollary 37 we conclude R∗ |= B(u). Finally, as argued above, B′(u) ∈ Pr( f (u)), and hence by Lemma 35, the fact that
R∗u 6|= B′(u) implies R∗ 6|= B′(u). Thus, we have R∗ |= ΓQσu and R∗ 6|= ∆Qσu; therefore ΓQ → ∆Q is disproved.

Appendix E. Soundness and Completeness for the Variant of the Calculus for Horn Ontologies

Theorem 3 (Soundness). Assume that O is Horn and K is a conjunction of atoms of the form B(x) for B ∈ ΣOA . Given a context
structure D for O which is sound for K, the application to D of a rule from Table 4, a rule from Table 2 other than Hyper, or a
rule from Table 3 other than r-Succ, with the eager context strategy, yields a context structure for O which is sound for K.

The proof of Theorem 3 relies on the following auxiliary lemma, which shows that ifD is a context structure for O which is
sound for K, then every model of O where the interpretation of K is not empty verifies that the interpretation of corev for each
v ∈ V is also not empty.

Lemma 41. Let K be a conjunction of atoms of the form B1(x) ∧ · · · ∧ Bn(x), with Bi ∈ ΣOA for 1 ≤ i ≤ n; let D be a context
structure 〈V,E, core,S, θ〉 for O which is sound for K, and let v ∈ V be an arbitrary context. For every model of I of O such
that I 6|= B1(x) ∧ · · · ∧ Bn(x)→ ⊥, we have I 6|= corev → ⊥.

Proof. Consider an arbitrary K and D as described in the lemma. By condition Z1, there exists a context w with corew = K
and such that for every v ∈ V with v , vr, context v is reachable from w or vr. We can therefore use structural induction on the
context structure to prove the lemma.

For the base case v = w, we have that for every model I of O such that I 6|= B1(x) ∧ · · · ∧ Bn(x) → ⊥, then I 6|= corew → ⊥

trivially since corew = K. For the base case v = vr, corevr = >, and we have that for every model I of O such that I 6|=
B1(x) ∧ · · · ∧ Bn(x)→ ⊥, I 6|= > → ⊥ trivially.

Now, suppose that v ∈ V is an arbitrary context such that for every model of I of O with I 6|= B1(x) ∧ · · · ∧ Bn(x) → ⊥,
we have I 6|= corev → ⊥. Let v′ be a successor of v such that we have 〈v, v′, f 〉 ∈ E for some f ∈ ΣOf . Since D is sound for
K, if v , vr we have that I |= corev → corev′ {x 7→ f (x), y 7→ x}. Therefore, if I |= corev′ → ⊥, then I |= corev → ⊥, which
contradicts the induction hypothesis; hence, I 6|= corev′ → ⊥. If v = vr, condition Z3 ensures I 6|= corev′ → ⊥.

With this lemma, we can now prove Theorem 3.
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Proof. The proof is similar to the proof of Theorem 1 in Appendix B. For all inference rules other than Succ and r-Succ from
Table 4, condition Z3 is proved exactly in the same way as conditions S1 and S2 from Theorem 1: we consider an arbitrary
model I of O ∪ CD such that I 6|= B1(x) ∧ · · · ∧ Bn(x) → ⊥, and we use soundness of the hyperresolution, or the fact that
≈ is a congruence, in order to obtain that I satisfies every clause added to the context structure by the rule, or the clause
corev → corew{x 7→ f (x), y 7→ x} for every edge with label f ∈ ΣOf added to the context structure. In the case of Succ, the same
argument applies to prove the first two properties of condition Z3. To prove the third property, suppose Succ is applied to vr

and it creates an edge 〈vr, v, f 〉. Since D is sound for K, by condition Z2 we have that for each literal L ∈ K1, clause > → L is
contained in Svr . Furthermore, by condition Z3 we have that I |= > → L for each L ∈ K1. Since we use the eager expansion
strategy, K1 = corev, so we conclude I 6|= corev → ⊥.

To prove condition Z3 when the applied rule is r-Succ from Table 4, let > → A, with A a ground atom, be a context clause
added to Svr by this rule; since corevr is empty, we have to prove that I |= > → A. Let v the context where this clause is
triggered. By condition Z2, the r-Succ rule is applied on a context clause of the form > → A ∈ Sv. By Lemma 41, we have that
I 6|= corev → ⊥, and by condition Z3, we have I |= corev → A, which together ensure I |= > → A.

To prove condition Z1, observe that if no new context is added to D, then condition Z1 holds trivially in the new context
structure because it already holds forD. Thus, suppose that the rule applied toD is Succ, and that it introduces a new context v′.
Let v be the context where Succ is triggered. Since condition Z1 holds forD, we have that v is reachable from w or vr, where w
is the context defined in condition Z1 such that corew = K. Since the application of Succ introduces an edge 〈v, v′, f 〉 for some
f ∈ ΣOf , we have that v′ is reachable from w or vr, and hence condition Z1 holds in the new context structure.

Finally, to show that condition Z2 holds in the new context structure, we consider each inference rule and show that any
conclusion is a context clause, except in the case where Hyper applies to a non-root context with σ(x) = u ∈ ΣOu and a literal
of the form S (x, u) or S (u, x). However, looking at the form of ontology clauses in Table 1, it is easy to see that for any zi, we
have σ(zi) = x or σ(zi) ∈ ΣOu , and therefore every new literal introduced in the inference can only be of the form B2(x), S B2 (x, u),
S B2 (u, x), u ≈ o or x ≈ o for some o ∈ ΣOu , all of which are context literals. Therefore, we only have to show that for any new
clause Γ→ ∆ added toD, Γ = > and ∆ contains at most one literal. Clauses added by the Core and r-Succ rules already have the
required form. For rules Hyper, Eq, Ineq, and Nom, it is easy to see that if the bodies of the premises are empty, and the heads
of the premises have one literal–which is guaranteed by the fact that O is Horn and that condition Z2 holds forD–then the body
of the conclusion is empty, and the head has a single literal. The Factor rule is never triggered. For the Succ rule, condition Z2
forD ensures that K2 = K1, and since we use the eager strategy, we have that corew = K1, where w is the context selected by the
expansion strategy. Therefore, no clauses are added to w. For the Pred rule, by condition Z2 the main premise in context v must
be of the form > → L1 for a literal L1 ∈ Pr(O). Furthermore, in this application of the rule there are either no side premises,
if the predecessor context w is distinct from vr, or a side premise > → Ciσ, where σ is the corresponding substitution, for each
atom Ci in the core of v. Therefore, the conclusion is of the form > → L1σ, with σ being the corresponding substitution. An
analogous argument applies to r-Pred.

We conclude with a proof of Theorem 4:

Proof. Notice that if no rule from Table 4, or Table 2 except Hyper, or Table 3 except r-Succ, can be applied toD, then no rule
from Table 2 or Table 3 is applicable toD, except r-Succ on a context clause in any context v where all preconditions of the rule
except A → A ∈̂ Sv are satisfied, and the clause contains a maximal atom of the form S (x, u) or S (u, x) for u ∈ ΣOu and S ∈ ΣOS .
Indeed, if all preconditions of the r-Succ rule from Table 2 except A → A ∈̂ Sv are satisfied, and the premise does not contain a
maximal atom of the form S (x, u) or S (u, x) for u ∈ ΣOu and S ∈ ΣOS , and we have that r-Succ from Table 4 is not applicable, then
it must be the case that > → A ∈̂ Svr for premise Γ→ ∆ ∨ Aσ, but this implies A→ A ∈̂ Svr and hence rule r-Succ from 3 is also
not applicable.

We can therefore prove Theorem 4 using an argument analogous the proof of Theorem 2 in Appendix D, in the special case
ΓQ = K. The proof of Theorem 2 only uses the fact that D is saturated via r-Succ from Table 2 with respect to a context clause
in a context v where all preconditions of the rule except A → A ∈̂ Sv are satisfied, and the premise contains a maximal atom
of the form S (x, u) or S (u, x) for u ∈ ΣOu and S ∈ ΣOS , in the final paragraph of Lemma 39, whenever A′i is of the form S (x, t)
or S (t, x) for some 1 ≤ i ≤ n. But then, instead of using the argument that D is closed by r-Succ in Table 3, we can use the
fact that Hyper from Table 4 is now applicable on clauses Γ′i → ∆′i ∨ A′i for 1 ≤ i ≤ n to treat this case exactly as the case
Aiτ ∈ Sut ∪ Pr f (t) ∪ Reft ∪ Nomt in the previous paragraph of the proof, and therefore prove R∗s |= ∆τ also in this case.

To account for the reduction in the depth limit Λ, we observe that due to the form of context clauses inD, which is sound for
K, the type of “blocking” clauses Cbi introduced in the proof of Lemma 24 is always 〈>,⊥〉, so we can use Lemma 30 to show
that there can only be at most one such clause per context. Furthermore, suppose for the sake of contradiction that the length
n = |ρ| of the “chain” defined for oρ in the proof of Lemma 24 is greater than τ2

Su. Since no two contexts share the same core,
there is at most one context for each subset K1 of Su(O). Hence, there must be at least two contexts vbi , vb j with 1 ≤ bi < b j ≤ n
such that corevbi

⊆ corevb j
; thus, an argument analogous to the proof of Lemma 30 shows that o j is equal to oi, and hence by

Lemma 29, the topmost constant oρ in the chain is no longer irreducible, which leads to a contradiction.
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Appendix F. Proofs of Termination & Pay-as-you-go Behaviour

This section presents our proof of Theorems 5 to 7, stating the termination and complexity results for the algorithms of
Section 5.

Theorem 5 (Termination). Algorithm 1 is terminating. Furthermore, Algorithm 1 runs in triple exponential time in the size of O
if the strategy strat selected in Step A3 introduces at most exponentially many contexts on the size of O.

Proof. Define k as the total number of DL-clauses in O; let m1 be the maximum number of body atoms in a DL-clause in O, and
m2 the maximum number of literals in a context clause during execution. Observe that the former is linear in O since the number
of variables is fixed. Furthermore, only a finite number of constants can be introduced by the algorithm, since the initial context
structure does not contain auxiliary constants, and the depth of auxiliary constants introduced by Nom is bounded by Λ.

To prove the first claim of the theorem, simply notice that since the number of possible context clauses per context is bounded,
and the number of contexts that are introduced is finite because the selected expansion strategy is admissible, the total number of
context clauses in the context structure is bounded. Furthermore, after an inference rule has been applied, the preconditions of
such inference never satisfied again, for eliminating a clause ofD is only possible if another clause that subsumes it is derived in
the same context. This ensures that there are only finitely many possible inferences, and hence the algorithm terminates.

To prove the second claim, we assume that the context strategy introduces at most exponentially many contexts, and we
bound the number of inferences for each rule within each context or pair of contexts. First, observe that 2τSu · 2τPr is exponential
in the size of O, and therefore by definition of Λ, the maximum length of an auxiliary constant appearing in D is exponential in
the size of O. Hence, there are at most double exponentially many of constants in ΣOu introduced in O. This ensures that m2 is
at most double exponential, since we can have cubically many atoms on the number of predicates and constants. Let m be the
maximum between m1 and m2. Let P be the number of context clauses that can be constructed using the symbols in ΣOu in D.
Notice that this is at most exponential on the size of ΣOS and the number of constants in ΣOu introduced in D; hence, it is triple
exponential on the size of O.

For rules Core, Eq, Ineq, Factor, Elim, Join, and Nom, the number of context clauses participating in each inference is fixed,
and it is not greater than 2, so the total number of inferences per context is bounded by P2 · m2, and hence the total number of
possible inferences using these rules is triple exponential on the size of O. In the case of the rule Hyper, the number of inferences
that can be carried out in each context is bounded by k · Pm1 · mm1

2 , so the total number of inferences remains triple exponential
on the size of O. For the Pred and r-Pred rules, given a pair of contexts, the number of possible inferences by each of these rules
between each pair of contexts is bounded by P · Pm2 · m2

m2 , which is still triple exponential, and hence the total number of such
inferences is triple exponential in the size of O. Finally, for the Succ and r-Succ rules, we have that in each context, the rule can
be triggered each time a clause with a new function symbol is derived in the context, or when a clause that modifies the set K2 is
added to the context. Thus, the rule can be applied at most P2 · m2m1

2 times, which is still triple exponential on the size of O.

Theorem 6 (Pay-as-you-go Behaviour). Let strat be an expansion strategy for O introducing at most exponentially many con-
texts. If Step A3 selects strat, then Algorithm 1 runs in exponential time in the size of O if this ontology is either ALCHIQ+,
ALCHOQ, or ALCHOI; furthermore, if O is ELH , the algorithm runs in polynomial time in the size of O with either the
cautious or the eager strategy.

Proof. Suppose O is an ALCHIQ+ ontology. We then have that if D has no occurrences of elements of ΣOu , then no inference
rule will introduce a clause with elements of ΣOu . Hence, if we initialise the calculus according to Algorithm 1, the rule Nom
will never be triggered, and therefore no constants of ΣOu will appear other than original constants. This prevents the double
exponential increase in the size of m2 in the proof of Theorem 5, instead making m2 linear. Therefore, following the same
argument than the one given in this proof, we obtain that the number of total inferences in the context structure per rule is, at
most, exponential in the size of O. Furthermore, we see that since no elements of ΣOu can appear in D, then rules Join, r-Pred,
r-Succ, and Nom will not be applied to the algorithm, and the remaining rules will never be applied to vr, or the Eq rule to an
equality x ≈ u, so the inferences will correspond exactly to those performed by the calculus in [11]. This also implies that if O
is ELH , then the algorithm runs in at most polynomial size in the size of O, since this result was proved for the ALCHIQ+

calculus in [11].
Next, consider the case where O is an ALCHOI ontology. Once again, it is easy to see that the Nom rule will not be

triggered, since there are no clauses of the form DL4 in the ontology. This prevents the double exponential increase bound for
m2, reducing it instead to a polynomial-size bound. Applying an argument analogous to that in the proof of Theorem 5 proves
that the algorithm terminates in at most time exponential with the size of O.

Now, suppose O is inALCHOQ ontology. As in the previous cases, the Nom rule will not be triggered because no atom of
the form S (u, x) can be derived, hence the Nom rule will not be triggered. As in the previous case, this reduces m2 from being at
most double exponential on the size of O, to being polynomial in the size of O, and we have already seen that this proves that the
algorithm terminates in at most exponential time in the size of O.
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Finally, if O is an ELHO ontology, the Nom is clearly never triggered, so m2 has a polynomial upper bound, and since we
use the eager strategy, the argument from the proof of Theorem 5 shows that the algorithm terminates in time at most exponential
with the size of O.

Theorem 7 (Termination & Pay-as-you-go Behaviour). Algorithm 2 is terminating and runs in exponential time in the size of O.
Furthermore, if O is ELHO and the Hyper rule is applied eagerly, then Algorithm 2 runs in polynomial time in the size of O.

Proof. The proof of termination is identical to that for Theorem 5, so we focus on proving the claims of pay-as-you-go behaviour.
If O is in Horn-ALCHOIQ+, and the eager strategy is used, at most an exponential number of contexts will be derived. Fur-

thermore, in this case Λ is polynomial, rather than exponential; therefore, the upper bound on the size of m2 will be exponential,
rather than double exponential. Furthermore, consider the argument used for the proof of Theorem 5, and observe that sinceD is
sound for some K, where K is the conjunction in the body of all query clauses, context clauses have empty bodies. This ensures
that only a linear number of clauses participate in each inference by the Pred and r-Pred rules, so following the same argument
we conclude that the algorithm terminates in time at most exponential on the size of O.

Finally, if O is ELHO, the bound on m2 is polynomial since the Nom rule is not fired. Next, observe that due to the form of
the clauses in O, we have that in each context, the first time that the Succ rule is applied with some S (y, x) ∈ K1, for S ∈ ΣOS ,
we have that K1 is either of the form {S (y, x)} or {S (y, x), B(x)} for some B ∈ ΣOA . Then, the fact that the Hyper rule is applied
eagerly implies that if Succ is applied again to the same context, then K1 will be of the form {S ′(y, x) | S (y, x)→ S ′(y, x) ∈ O} or
{B(x)}∪{S ′(y, x) | S (y, x)→ S ′(y, x) ∈ O}. This, together with the fact that the initial context structure only contains two contexts,
results in the fact that only a polynomial number of contexts can be introduced, at most, by the algorithm. With these bounds on
m2 and the total number of contexts, and the bound on the number of clauses participating in inferences by the Pred and r-Pred
rules from the previous paragraph, we can use the argument from Theorem 5 to conclude that the algorithm terminates in time at
most polynomial.
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