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ABSTRACT | Machine learning (ML), especially deep neural

networks, has achieved great success, but many of them

often rely on a number of labeled samples for supervision.

As sufficient labeled training data are not always ready due

to, e.g., continuously emerging prediction targets and costly

sample annotation in real-world applications, ML with sample

shortage is now being widely investigated. Among all these

studies, many prefer to utilize auxiliary information including

those in the form of knowledge graph (KG) to reduce the

reliance on labeled samples. In this survey, we have compre-

hensively reviewed over 90 articles about KG-aware research

for two major sample shortage settings—zero-shot learning

(ZSL) where some classes to be predicted have no labeled
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samples and few-shot learning (FSL) where some classes to

be predicted have only a small number of labeled samples

that are available. We first introduce KGs used in ZSL and FSL

as well as their construction methods and then systematically

categorize and summarize KG-aware ZSL and FSL methods,

dividing them into different paradigms, such as the mapping-

based, the data augmentation, the propagation-based, and

the optimization-based. We next present different applications,

including not only KG augmented prediction tasks such as

image classification, question answering, text classification,

and knowledge extraction but also KG completion tasks and

some typical evaluation resources for each task. We eventually

discuss some challenges and open problems from different

perspectives.

KEYWORDS | Few-shot learning (FSL); inductive knowledge

graph completion; knowledge graph (KG); sample shortage;

zero-shot learning (ZSL).

I. I N T R O D U C T I O N
Machine learning (ML), especially deep learning, is playing
an increasingly important role in artificial intelligence (AI)
and has achieved great success in many domains and
applications in the past decades. For example, convolu-
tional neural networks (CNNs) can often achieve even
higher accuracy than human beings in image classifica-
tion and visual object recognition, leading to the fast
development of applications such as self-driving vehicles,
face recognition, handwriting recognition, image retrieval,
and remote sensing image processing; Recurrent neu-
ral networks (RNNs) and transformer-based models are
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successful in sequence learning and natural language
understanding, which boost applications such as machine
translation, speech recognition, and chatbots; graph neural
networks (GNNs) have been widely applied to prediction
tasks involving graph-structured data in domains, such as
social networks, chemistry, and biology.

However, the high performance of most ML models
relies on a number of labeled samples for (semi)supervised
learning, while such labeled samples are often costly or
not efficient enough to collect in real-word applications.
Even when labeled samples can be collected, retraining a
complex model from scratch when new prediction targets
(e.g., classification labels) emerge is unacceptable in many
contexts where real time is required or enough computa-
tion resource is inaccessible. All these situations will lead
to sample shortage in ML. In this article, we review two
major sample shortage settings: zero-shot learning (ZSL)
and few-shot learning (FSL). ZSL is formally defined as
predicting new classes (labels) that have never appeared in
training, where the new classes are named unseen classes,
while the classes that have samples in training are named
seen classes [1], [2], [3]. FSL is to predict new classes
for which only a small number of labeled samples are
given [4] [5]. For convenience, we also call such new
classes with insufficient labeled samples as unseen classes
and the other classes that have a large number of samples
used in training as seen classes. In particular, when the
unseen class has only one labeled sample, FSL becomes
one-shot learning [5].

ZSL has attracted wide attention in the past decade
with quite a few solutions proposed [6], [7], [8]. One
common solution is transferring knowledge that could
be samples, features (data representations), and model
parameters from seen classes to unseen classes so as to
avoid only learning features from labeled samples and
training new models from the scratch [9]. For example,
in zero-shot image classification, image features that have
been already learned by CNNs such as ResNet from images
of seen classes are often directly reused to build classi-
fiers for unseen classes. The key challenge is selecting
the right knowledge to transfer and adaptively combining
this transferred knowledge for a new prediction task.
To this end, ZSL methods often utilize auxiliary informa-
tion that describes interclass relationships. When ZSL was
originally investigated for visual object recognition and
image classification, the methods mainly use attributes that
describe objects’ visual characteristics (also known as class
attributes) [2], [3]. Next, class textual information, such
as class name and sentence description, is widely studied
due to its high accessibility [10], [11]. In recent five years,
knowledge graph (KG), which is a widely used represen-
tation of structured knowledge, such as those in resource
description framework (RDF)1 triples in form of <Subject,
Predicate, Object>, has attracted wide attention, and
some KG-augmented ZSL methods have even achieved the

1https://www.w3.org/TR/rdf11-concepts/

state-of-the-art performance on many tasks [12], [13],
[14], [15].

FSL, which started to attract wide attention around
when one-shot learning was proposed [5], has a longer
history and even more studies than ZSL [16]. Since
the unseen classes have some labeled samples although
their sizes are quite small, techniques of meta learning
(also known as learn to learn) [17] have been widely
applied [18]. Meta learning is usually applied by either
reducing the parameter searching space in training using
meta parameters such as more optimized initial parameter
settings or transforming a classification problem to a met-
ric learning problem where a testing sample is matched
with the unseen classes based on their few-shot samples
and meta learned mappings. KGs have been utilized to
optimize such meta-learning-based methods; for example,
Sui et al. [19] retrieved relevant knowledge from the NELL
KG [20] to construct task-relevant relation networks as
mapping functions for addressing few-shot text classifica-
tion. Meanwhile, the aforementioned idea of knowledge
transfer can also be adopted for addressing FSL, where
KG as auxiliary information is becoming increasingly pop-
ular in recent years [21], [22], [23], [24]. For example,
Chen et al. [22] transferred the feature learned by a CNN
from flight delay forecasting tasks with a lot of historical
records to a new forecasting task with limited histori-
cal records, by exploiting a KG with different kinds of
flight-related knowledge about, e.g., airports and airlines;
Peng et al. [23] extracted a KG from WordNet for repre-
senting class hierarchies and then used this KG to augment
knowledge transfer for few-shot image classification.

A. Motivation and Contribution

Since KG has become a very popular form for repre-
senting knowledge and graph-structured data, acting as
the foundation of many successful AI and information
systems [25], it is thus reasonable to use KGs to augment
both ZSL and FSL as discussed above. A few papers have
been published on KG-aware ZSL and FSL, especially in
recent five years, and this research topic is becoming more
and more popular. It is worth mentioning that this topic
includes not only using KGs to augment ZSL and FSL but
also addressing prediction tasks of the KG itself where
ZSL and FSL methods are applied and extended for the
KG context. By the middle of December 2021, we have
collected 50 papers on KG-aware ZSL and 46 papers on
KG-aware FSL. To systematically categorize and compare
all the proposed methods and to present an overall picture
of this promising field, a comprehensive survey is now in
urgent need. In this article, we introduce KGs and their
construction methods for ZSL and FSL; categorize, analyze,
and compare different kinds of KG-aware ZSL and FSL
methods (see Fig. 1 for an overview of the paradigms
and categories); present ZSL and FSL tasks as well as
their evaluation resources in various domains, including
computer vision (CV), NLP, and KG completion; and discuss
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the existing challenges and potential future directions. This
survey is suitable for all AI researchers, especially those
who are to enter the domain of ML with sample shortage,
those who have already been working on this topic but are
interested in solutions utilizing knowledge representation
and reasoning, and those who are working on KG and
semantic techniques.

B. Related Literature Reviews

There have been several papers that have literature
reviews relevant to ZSL and FSL, but they are all quite
different from this survey.

1) The two survey papers [7] and [16] systematically
review the ZSL methods by 2019 and the FSL methods
by 2020, respectively, mainly from the perspective of
problem setting (e.g., whether the unlabeled testing
samples are used or not in training), ML theory (e.g.,
which prediction error to reduce), and methodology
(e.g., data focused, model focused, and learning algo-
rithm focused). However, they do not consider the
categorization and deep analysis from the perspective
of auxiliary information and failed to collect most
KG-aware methods.

2) The very recently released paper [26] reviews both
ZSL and FSL methods that use or aim at structured
data. Structured data, however, are more general than
KG with a much larger scope, and thus, Hu et al. [26]
collected only a small part of the papers on KG-aware
ZSL and FSL research. It includes 19 papers about
KG-aware ZSL and 21 papers about KG-aware FSL,
while this survey has 50 papers and 46 papers,
accordingly. This survey also has a more fine-grained
method categorization, and additional technical anal-
ysis on KGs and their construction for ZSL and FSL.
Meanwhile, Hu et al. [26] focused more on address-
ing problems in structured data by ZSL and FSL meth-
ods but less on augmenting ZSL and FSL methods.

3) The paper [8] is our previous survey and perspective
paper published in IJCAI 2021 Survey Track. It briefly
categorizes different external knowledge used in ZSL
with incomplete reviews on KG-aware ZSL papers,
and it does not cover FSL.

4) The benchmarking paper [27] was published in 2018.
It reviews around ten ZSL methods that mainly utilize
class attribute and text information as the auxiliary
information, focusing on their evaluation and result
comparison on image classification task. This article
covers neither state-of-the-art ZSL methods proposed
in recent three years nor KG-aware ZSL methods.
Similarly, the survey paper [6] reviews ZSL papers
published before 2018, mainly focusing on ZSL stud-
ies on CV tasks.

C. Article’s Organization

The remainder of this survey is organized as fol-
lows. Section II introduces the preliminary, including the

Table 1 List of the ZSL and FSL Annotations in This Article

definitions and annotations of ZSL and FSL, and an overall
view of the auxiliary information. Section III introduces the
definition and scope of KGs, as well as the KG construction
for ZSL and FSL. Section IV reviews KG-aware ZSL meth-
ods that are categorized into four paradigms: mapping-
based, data augmentation, knowledge propagation, and
feature fusions. For each paradigm, we further intro-
duce different categories and their corresponding methods.
Section V is similar to Section IV but reviews KG-ware
FSL methods and compares KG-aware FSL and ZSL in the
end. Section VI introduces the development and resources
of KG-aware ZSL and FSL in different tasks across CV,
NLP, and KG completion. Section VII discusses the existing
challenges and the future directions. Section VIII concludes
this article.

II. P R E L I M I N A R Y O N Z S L A N D F S L
Both ZSL and FSL have been applied in many different
tasks, varying from image classification and visual question
answering (VQA) to text classification, knowledge extrac-
tion, and KG completion. Although the exact ZSL and FSL
problems may be different between papers, they can be
expressed under one framework. In this section, we aim
to present this framework with formal problem definitions
and annotations and at the same time introduce some
background knowledge that is needed for understanding
KG-aware ZSL and FSL. We start from ZSL and then
introduce FSL based on ZSL.

A. Zero-Shot Learning

We first give a simple but generic definition toward
ML classification, then formally define ZSL and introduce
auxiliary information, and finally introduce the existing
categorization of ZSL works.

Definition 1 (Supervised ML Classification): Given a set
of labeled training samples Dtr = {(x, y)|x ∈ X , y ∈ Y},
a classifier is trained to approximate a target function from
the input x to the output label y, denoted as f : x → y,
such that f is able to correctly predict the labels of samples
in a testing set Dte = {(x, y)|x ∈ X ′, y ∈ Y}, where
X ∩ X ′ = ∅.
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Fig. 1. Paradigms and categories of KG-aware ZSL and FSL methods.

In image or text classification, x is an image or text,
while y is an image category or a text category. Sometimes,
one input can be annotated by multiple labels, which is
known as multilabel classification. In QA, we refer to giving
an answer or multiple answers to a natural language ques-
tion with respect to a given textual context, where the label
y corresponds to the answer. VQA is similar, but the context
is an image or a video. In knowledge extraction, the task is
usually to extract entities, relations, or events from natural
language text. It also includes entity or relation linking,
which matches an entity or relation mention in text with
a predefined entity or relation, and entity typing, which
assigns a predefined class or multiple predefined classes to
an entity mention in the text. Thus, x is often a sentence
or a document with an entity or relation mention, while y

is a label corresponding to an entity, a relation, an event,
or a class. In KG completion, which is to predict a missing
RDF triple, x is often the two components of a triple, while
y is a label indicating the third component. Note that in all
these tasks, a candidate set is usually given for the output
class y.

In supervised ML classification, given Dtr, the trained
classifier can only predict samples of classes that have
appeared in the training stage (i.e., Y), while ZSL aims to
predict samples beyond Y. The formal definition is given
here.

Definition 2 (Zero-Shot Learning): Given a training sam-
ple set Dtr = {(x, y)|x ∈ Xs, y ∈ Ys}, where Xs and Ys are
the training sample inputs and their classes, respectively,
standard ZSL aims to train f with Dtr for predicting on
a testing set Dte = {(x, y)|x ∈ Xu, y ∈ Yu}, where Xu

and Yu are the testing sample inputs and their classes,
respectively, with Yu ∩ Ys = ∅. Ys is called seen classes,
while Yu is called unseen classes. When it is required to
predict testing samples of both seen and unseen classes,
i.e., Dte = {(x, y)|x ∈ Xu∪X ′s, y ∈ Yu∪Ys} with Xs∩X ′s =

∅, the problem becomes generalized ZSL.
It is worth mentioning that in addressing some ZSL tasks

such as text classification and QA, the original function f

is sometimes transformed into a new scoring function by
moving y to the input, denoted as f ′ : (x, y) → s, where
the output s is a score indicating whether y is the label of x

or not. The label of a testing sample x in Xu (resp. Xu∪X ′s)
is predicted by finding out the class in Yu (resp. Yu ∪ Ys)
that maximizes the score s.

Definition 3 (Auxiliary Information): Auxiliary informa-
tion is some kind of symbolic data that describe or indicate
the relationship between seen and unseen classes, such as
class attribute, class text description, and class hierarchy.
With the auxiliary information, classes are usually encoded
into subsymbolic representations (i.e., vectors) with the
relationship between classes concerned in the vector space.
We denote the class encoding as the function h : y → y,
where the bolded y represents the vector of the class y,
y ∈ Yu ∪ Ys.2

Since unseen classes have no labeled samples, ZSL meth-
ods rely on auxiliary information. In early years when ZSL
was proposed in around 2009 for image classification, the
majority of the solutions utilize class attributes that are
often a set of key–value pairs for describing object visual
characteristics [2], [28]. There are also relative attributes
that enable comparing the degree of each attribute across
classes (e.g., “bears are furrier than giraffes”) [29] and
real-valued attributes for quantifying the degrees [27],
[28]. The advantages and disadvantages of the attribute
auxiliary information are quite obvious: it is easy to use
and quite accurate with little noise, but it cannot express
complex semantics for some tasks and is not easily acces-
sible, usually requiring annotation by human beings or
even domain experts. From around 2013, class textual
information, varying from words and phrases such as class
names to long text such as sentences and documents for
describing classes, started to attract wide attention in ZSL.
Typical works lie in not only image classification [10],
[30] but also other tasks such as KG completion [31].
Text information is easy to access for common ZSL tasks.
It can be extracted from not only the data of the ZSL tasks
themselves but also encyclopedias, web pages, and other
online resources. However, it is often noisy with irrelevant

2The raw input x could also be encoded by, e.g., some pretrained
models or handcraft rules before they are fed to f (or f ′). This step is
optional but is often adopted. We denote this initial encoding function
as g : x → x where the bolded x represents the encoding vector of x,
x ∈ Xs ∪ Xu.
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words and the words are often ambiguous, failing to accu-
rately express fine-grained, quantified, or more complex
interclass relationships.

In recent years, structured knowledge in the scope of
KG, such as class hierarchies and commonsense knowl-
edge, have become increasingly popular in ZSL research
with very promising performance achieved. Such knowl-
edge can often express richer semantics than attributes and
text, even including logical relationships, and at the same
time, they become more available with the development
of KG construction techniques and the availability of many
public KGs, such as WordNet [32], ConceptNet [33], and
Wikidata [34]. In this survey, we mainly review KG-aware
ZSL studies, using Section III to independently introduce
the involved KGs and Section IV to review the involved
methods.

The survey paper [7] has categorized ZSL methods into
the following two categories.

1) Classifier-based: The classifier-based methods are to
directly learn a classifier for each unseen class. They
could be further divided into corresponding methods
that exploit the correspondence between the binary
one-vs-rest classifier for each class and its correspond-
ing encoding of the auxiliary information, relation-
ship methods that calculate and utilize the relation-
ships among classes, and combination methods that
combine classifiers for basic elements that are used to
constitute the classes.

2) Instance-based: The instance-based methods are to
obtain labeled samples belonging to the unseen
classes and use them for learning and prediction.
They are further divided into projection methods that
learns a function to project the input and the class
encoding into the same space (i.e., the class encodings
after projection are regarded as labeled samples),
instance-borrowing methods that transfer samples
from seen classes to unseen classes, and synthesizing
methods that obtain labeled samples for the unseen
classes by synthesizing some pseudo samples.

This categorization is mainly from the perspective of
ML theory and method. It aims at general ZSL methods,
no matter what kind of auxiliary information is utilized.
In contrast, our categorization, which is to be introduced
in Section IV, is from the perspective of auxiliary infor-
mation and focuses on more fine-grained comparison and
analysis toward those KG-aware ZSL methods. Meanwhile,
since the survey [7] was published in 2019, while many
KG-aware ZSL methods were proposed in recent two years,
the KG-aware methods covered are not complete.

B. Few-Shot Learning

We first formally define FSL, following the annotations
in defining ZSL, then introduce the auxiliary information,
and finally present the current method categorization.

Definition 4 (Few-Shot Learning): Given a set of training
samples Dtr = {(x, y)|x ∈ Xs, y ∈ Ys} and a set of

Fig. 2. Expected risk with (a) sufficient samples and (b) limited

samples for training [16].

few-shot samples Dfew = {(x, y)|x ∈ Xfew, y ∈ Yu}, where
Yu ∩ Ys = ∅, each class in Ys has a large number of
samples in Dtr and each class in Yu has only a small
number of samples in Dfew; FSL is to train a classifier f

with Dtr and Dfew for predicting samples in a testing set
Dte = {(x, y)|x ∈ Xu, y ∈ Yu} with Xu ∩ Xfew = ∅ or
Dte = {(x, y)|x ∈ Xu ∪ X ′s, y ∈ Yu ∪ Ys} with Xs ∩ X ′s = ∅.

To be consistent with ZSL, we keep calling the classes
with a large number of training samples, i.e., Ys, as seen
classes, those classes with few-shot labeled samples in
Dfew, i.e., Yu, as unseen classes. As in ZSL, the original
target of learning f can also be transformed into learning
a scoring function for ranking the candidate classes, i.e.,
f ′ : (x, y) → s.

The few-shot samples in Dfew can be just one labeled
sample per class, which is known as one-shot learning.
It can also have multiple labeled samples, but the size is
relatively small and they alone are far from enough to train
a robust model for an unseen class. To be more specific,
we introduce the concept of expected risk as in [16]. For
an optimal hypothesis ĥ (i.e., the target function f), its
expected risk is composed of two parts: 1) approximation
error Eapp, which measures how close the best hypothesis
h∗ in a given hypothesis set H can approximate ĥ, and
2) estimation error Eest, which measures the effect of
minimizing the empirical risk of the learned hypothesis h̄

with respect to the best hypothesis h∗ [35]. As shown in
Fig. 2, model training for unseen classes with Dfew has a
much higher estimation error than model training for seen
classes with Dtr.

The key difference of FSL in comparison with ZSL lies in
the few-shot samples Dfew. Most FSL methods now focus
on fully utilizing Dfew. They prefer some ML algorithms
such as multitask learning, which allows parameter sharing
between tasks, meta learning that directly predicts some
parameters and hyperparameters that are to learn or to
adjust, and metric learning that compares a testing sample
with the few-shot samples of each unseen class in some
space after projection.
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The common aspect of FSL and ZSL lies in the utilization
of auxiliary information. All the auxiliary information used
in ZSL can also be used in FSL, and the utilization method
can be transferred to FSL easily. Even the few-shot samples
can be regarded as an additional kind of auxiliary infor-
mation. KG has also been investigated in FSL as effective
auxiliary information. In FSL, we also denote the encoding
of the class with the auxiliary information as h : y → y.

The survey [16] divides FSL methods into three general
categories according to the aspects that are augmented.

1) Data augmentation methods: They increase the size of
the few-shot samples (Dfew) via data augmentation by,
e.g., transforming samples from the training set Dtr

or other similar labeled data and generating samples
from weekly labeled or unlabeled data.

2) Model augmentation methods: They reduce the orig-
inal hypothesis set H to a small one for reducing
the searching space. They are further divided into
multitask learning methods that share parameters
between tasks or to regularize the parameters of the
target task, embedding methods that project samples
to an embedding space where similar and dissimilar
samples can be easily discriminated, generative mod-
eling methods that restrict the model distribution, and
so on.

3) Algorithm augmentation methods: They guide and
accelerate the searching of the parameters of the best
hypothesis h∗ by, e.g., learning the optimizer and
aggregating existing parameters.

Although this is a systematic categorization, it has a limited
coverage on KG-aware FSL methods and ignores the role
of the auxiliary information, especially KGs. In this survey,
we categorize and compare KG-aware FSL methods from
the perspective of how KG is exploited.

III. K N O W L E D G E G R A P H
In this section, we will first introduce the definition and
different forms of KG and then present the existing KGs
that have been adopted in ZSL and FSL studies, as well as
KG construction methods for specific ZSL or FSL tasks (see
Fig. 3 for an overview).

A. Definition and Scope

KG has been widely used for representing graph-
structured knowledge and has achieved great success in
many applications, such as search engine, recommenda-
tion system, clinic AI, and personal assistant [25], [36].
In this section, we first introduce a basic but widely rec-
ognized KG definition and some basic KG access opera-
tions, then introduce the ontology-equipped KGs from the
semantic web perspective, and finally introduce the scopes
of KG in domains beyond the semantic web.

Definition 5 (Knowledge Graph): A KG, denoted as G =

{E, P, L, T}, is composed of an entity set E, a property set
P , a literal set L, and a statement set T in the form of RDF
triple. Each RDF triple in T is denoted as (s, p, o), where s

represents the subject which is an entity in E, p represents
a predicate, which is a property in P , and o represents the
object, which can be either an entity in E or a literal in L.

Some statements represent relational facts. In this case,
o is also an entity and p is a relation between two enti-
ties (c object property). s and o are also known as the
head entity and tail entity, respectively. A set of relational
facts is composed of a multirelational graph whose nodes
correspond to entities and edges are labeled by relations.
Some other statements represent literals as, e.g., entity
attributes. In this case, the predicate p uses a data property
and o is a literal with some data type such as string,
date, integer, and decimal. The literals also include KG
meta information such as entity’s label, textual definition,
and comment, which are also represented via built-in or
bespoke annotation properties.

The content of a KG can usually be efficiently accessed
via two operations: lookup and querying. KG lookup (also
known as KG retrieval) is a service that returns the most
relevant entities and/or properties in a KG that match
the meaning of an input string (usually a phrase). For
fast retrieval, some lexical index is usually built based on
the labels and other name information of the entities and
relations. KG querying is a service that returns the answers
of an input query of the RDF query language SPARQL.3 The
input of such a query is actually a subgraph pattern with
variables, while the output could be not only the matched
entities, properties, and/or literals, but also the whole
subgraphs (i.e., triples). Some modern graph databases,
such as RDFox [37], can already support efficient SPARQL
query.

In the semantic web, a KG is often accompanied by
an ontology as the schema, using languages from the
semantic web community such as RDFS4 and Web Ontol-
ogy Language (OWL)5 for richer semantics and higher
quality [38]. They often define hierarchical classes (also
known as concepts),6 properties (i.e., stating the terms
used as relations), concept and relation hierarchies, con-
straints (e.g., relation domain and range, and class dis-
jointness), and logical expressions such as relation com-
position. The languages, such as RDF, RDFS, and OWL,
have defined a number of built-in vocabularies for repre-
senting this knowledge, such as rdf:type, rdfs:subClassOf,
owl:disjointWith, and owl:someValuesFrom. Note that RDFS
also includes some built-in annotation properties such
as rdfs:label and rdfs:comment for defining the above-
mentioned meta information. With these vocabularies,
an ontology can be represented as RDF triples; for exam-
ple, the subsumption between two concepts can be repre-
sented by the predicate rdfs:subClassOf, while the member-
ship between an instance and a concept can be represented
by the predicate rdf:type. The ontology alone, which is

3https://www.w3.org/TR/rdf-sparql-query/
4RDF Schema, https://www.w3.org/TR/rdf-schema/
5https://www.w3.org/TR/owl2-overview/
6To distinguish class in ML and class in KG, we use concept for the

latter.
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Fig. 3. Overall picture of the KGs in ZSL and FSL.

widely used to define domain knowledge, conceptualiza-
tion, and vocabularies such as terms and taxonomies,
is also widely recognized as a KG. One typical example
is SNOMED CT, which systematically organizes medical
terms as entities with names, definitions, existential restric-
tions, tree-like categorizations, and so on [39]. It is worth
mentioning that KGs, especially those OWL ontologies and
those equipped with ontologies, can support symbolic rea-
soning, such as consistency checking that can find logical
violations and entailment reasoning that infers hidden
knowledge according to description logics.

Besides the relational facts, literals, and ontologies
defined following the semantic web standards, we also
regard graph-structured knowledge in some other forms as
KGs, according to the terminologies and definitions used in
other domains, including ML, database, CV, and NLP. One
popular KG form is semantic network, which can be under-
stood as a graph that connects different concepts (enti-
ties) often with labeled edges for representing different
relationships. Two such KGs that are widely used in many
domains are WordNet that is a lexical database with differ-
ent relationships between words [32] and ConceptNet that
stores commonsense knowledge and relationships between
different terms [33]. We further relax the scope of KGs to
single-relation graphs such as simple taxonomy (i.e., a set
of hierarchical classes) and graphs with weighted edges,
which may represent some quantitative relationships such
as similarity and distance between entities.

We also regard logical rules of different forms, such
as Horn clause, Datalog rules, and Semantic Web Rule
Language (SWRL)7 rules, as well as their soft or fuzzy
extensions (i.e., weighted rules) [40], within the scope of
KG. This is because many of these rules can be transformed
into equivalent relational facts and ontological knowledge,
and vice versa [41]. They can often be understood as logic
models over KGs, through which hidden knowledge can be
inferred.

7https://www.w3.org/Submission/SWRL/

B. General-Purpose KGs

There have been several general-purpose large-scale
KGs that are open and can be directly utilized for different
kinds of tasks. In this section, we introduce these KGs and
briefly present how their knowledge is extracted for ZSL
and FSL.

1) WordNet is a large lexical database with several
different relationships between words, such as syn-
onym, hyponym, hypernym, and meronym [32]. Its
3.0 version contains 155 287 words, organized in
117 659 synsets for a total of 206 941 word–sense
pairs. WordNet can be directly accessed via online
search and browse8 and some python libraries such
as NLTK. It is often used to build task-specific class
hierarchies, especially for image classification, and
has been the most widely used KG for augmenting
both ZSL [12], [13], [14], [42], [43], [44], [45],
[46], [47], [48], [49], [50] and FSL [21], [23], [45],
[51], [52], [53].

2) ConceptNet is a freely available semantic network
with commonsense knowledge9 [33]. It stores a large
number of entities that are either words or phrases.
The latest version ConceptNet 5 has around 34 mil-
lion facts (relationships between entities) of 34 rela-
tions, including Synonym, IsA, RelatedTo, HasContext,
and HasA, and well supports ten core languages.
The IsA relation represents hyponyms and hypernyms,
from which class hierarchies are often used for aug-
menting ZSL [54], [55], [56], [57], [58], [59], [60]
and FSL [55], [59], [61] It is mostly applied in CV
tasks but has also been exploited in open information
extraction (e.g., [58]).

3) Freebase is a large-scale KG with relational facts,
contributed by multiple sources such as Wikipedia,
MusicBrainz (a music database), Notable Names
Database (an online database of biographical details

8http://wordnetweb.princeton.edu/perl/webwn
9https://conceptnet.io/
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of famous people), and volunteers [62]. Its official
API has been shut down 2016, but it can still be
accessed as a dump or via Google’s KG API. The dump
on Google10 has around 1.9 billion triples with tens of
millions of entities, while 63 million additional triples
that have been deleted can also be downloaded.
Freebase has been widely used for investigating KG
techniques, including KG-augmented ZSL [48], [63],
[64] and FSL [63], [65]. Different from WordNet
and ConceptNet, Freebase is mainly applied in open
information extraction.

4) Wikidata is a collaboratively edited KG that is increas-
ing at a high speed. By November 2022, it has over
100 million data items (entities). Wikidata can be
directly downloaded as a dump or accessed via its
official online SPARQL query service11 and APIs. It is
increasingly used in different applications, but its
usage for augmenting ZSL and FSL had not attracted
any attention until when two studies [65], [66] were
proposed for augmenting few-shot relation extraction
and another two studies [14], [67] were proposed for
augmenting ZSL.

5) DBpedia is also a large-scale general-purpose KG
whose knowledge is mainly from Wikipedia, equipped
with an ontological schema in OWL [68]. For the
2016-04 release, the English version has 6.0 mil-
lion things (entities) and 9.5 billion RDF triples.
DBpedia also has localized versions in 125 languages
with much more entities. DBpedia can be directly
downloaded as a dump or accessed via its online
SPARQL query service12 and lookup service/API,13

which can efficiently return a ranked list of entities
for an input phrase. It has also been used to augment
ZSL, often acting as a complement of relational facts
and literals such as entity descriptions [14], [47],
[57]. DBpedia’s schema (ontology) can also provide
hierarchical concepts and other schema knowledge
for, e.g., augmenting zero-shot KG completion with
unseen entities [48].

6) NELL is a popular KG continuously extracted from the
web [20]. According to its official statistics accessed
in November 2022, it has accumulated 2.8 million
high confident beliefs (triples). NELL can be browsed
online14 or downloaded. We find two ZSL works and
one FSL work that utilize NELL: Wang et al. [12]
used NELL for zero-shot classification for images from
NEIL—an image repository whose classes are aligned
with NELL entities [69]; Geng et al. [14] used its
RDFS schema (ontology) for augmenting zero-shot
KG completion with unseen relations; Sui et al. [19]
used its entity concepts for augmenting few-shot text
classification.

10https://developers.google.com/freebase
11https://query.wikidata.org/
12https://dbpedia.org/sparql
13https://lookup.dbpedia.org
14http://rtw.ml.cmu.edu/rtw/kbbrowser

7) WebChild a large collection of commonsense knowl-
edge extracted from the web as NELL [70]. It contains
triples that connect nouns with adjectives via fine-
grained relations, such as hasShape, hasTaste, and
evokesEmotion. Its 2.0 version has over 2 million
disambiguated concepts and activities (entities), con-
nected by over 18 million assertions (facts). WebChild
has now been rarely used in ZSL and FSL. For
augmenting (zero-shot) VQA, Chen et al. [57] and
Wang et al. [71] used an auxiliary KG, whose facts are
extracted from WebChild as well as ConceptNet and
DBpedia.

C. KG Construction for ZSL and FSL

In this section, we will introduce how task-specific
KGs are often constructed for ZSL or FSL. Before that,
we will first very briefly introduce how task-irrelevant
general-purpose and domain KGs are constructed. Most
high-quality domain-specific ontologies, such as the med-
ical ontology SNOMED [39], are often directly con-
structed by domain experts via collaboration, while many
aforementioned general-purpose KGs are constructed via
crowdsourcing—they are either extracted from existing
crowdsourced resources such as Wikipedia or directly
contributed by volunteers. To be more comprehensive,
many KGs integrate different knowledge resources and
databases; for example, ConceptNet [33], which was orig-
inally developed by crowdsourcing, further fused knowl-
edge from DBpedia, Wiktionary, OpenCyc, and so on.
In fact, solutions and technologies of linked open data,
ontology network, and ontology alignment can all be
used for constructing KGs via integration. With the devel-
opment of data mining, ML, and other data analysis
techniques, knowledge extraction from unstructured and
semistructured data, such as web pages, tables, and text,
has recently been widely investigated and used for KG
construction; for example, NELL is continuously extracted
from the web [20], while Google’s KG is extended with
knowledge extracted from tables in web pages [72].

For ZSL or FSL tasks, sometimes, there are exactly
suitable KGs that can be directly applied. For example,
Huang et al. [73] directly used the event ontology named
FrameNet [74] for supporting their zero-shot event extrac-
tion method. However, for the majority of the ZSL and
FSL tasks, existing KGs usually cannot be directly applied
due to their large sizes and irrelevant knowledge, and an
(ad hoc) KG should be extracted or constructed. In this
section, we mainly review techniques of constructing KGs
for augmenting ZSL and FSL. We divide these techniques
into three categories: sub-KG extraction from existing KGs,
KG construction with task-specific data, and knowledge
integration.

1) Sub-KG Extraction: Given a ZSL (or FSL) task with
Yu, Ys, and Dtr (and Dfew), a straightforward solution
is finding out a suitable KG and reusing it by extracting
relevant knowledge. In Section III-B, we have already
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introduced those popular and general-purpose KGs, and
the ZSL and FSL studies where each KG is applied. A ZSL or
FSL method often extracts a part of the KG by first match-
ing the ML classes with KG entities and then extracting the
matched entities as well as some other related knowledge,
including neighboring entities of the matched entities
within k-hops, entities associated with the matched entities
according to some specific relations, entities close to the
matched entities in some embedding space, (hierarchical)
concepts and other schema information of the entities, and
literals such as entity synonyms, descriptions, and data
properties. Besides entities, some other KG elements, such
as relations and concepts, can also be directly matched
with related knowledge extracted.

For some ZSL and FSL benchmarks, classes have already
been matched with KG entities; for example, in the
work [12], a WordNet subgraph with 30k nodes is
extracted as a KG for an ImageNet subset that has 1k
training classes, where all ImageNet classes are originally
aligned with WordNet nodes. For most other benchmarks,
the matchings are built by simple name comparison or
some knowledge retrieval services, sometimes with even
human intervention. For example, Kampffmeyer et al. [13]
and Geng et al. [14] manually matched all the 50 classes
in an animal image classification benchmark named AwA2
with WordNet nodes; Nguyen et al. [58], who work on
zero-shot entity extraction from text, first extracted nouns
and pronouns with a part-of-speech algorithm from all
sentences in the dataset and then searched for their corre-
sponding entities in ConceptNet and extracted the matched
entities and their adjacent ones.

Besides, some other domain-specific KGs have also been
exploited for augmenting ZSL and FSL with a part of their
knowledge. Zhang et al. [65] extracted concept-level rela-
tion knowledge from UMLS—an ontology of medical con-
cepts [75], for few-shot relation extraction in the medical
domain. Rios and Kavuluru [76] extracted class hierarchies
and class descriptions from ICD-9 diagnosis and procedure
labels for zero- and few-shot medical text classification.
Luo et al. [77] extracted a sub-KG for object relationships
from Visual Genome—a knowledge base that stores con-
nections between image visual concepts and language con-
cepts [78], for augmenting zero-shot object recognition.
Zhou et al. [79] trained their zero-shot QA model with
facts extracted from WorldTree (V2.0) [80]—a knowledge
base that contains explanations for multiple-choice science
questions in the form of graph, covering both common-
sense and scientific knowledge.

Sub-KG extraction enables us to reuse existing KGs and
allows fast and easy construction of a task-oriented KG
often with limited knowledge of engineering. However,
it is often hard to find a suitable KG for some domain-
specific task, and the sub-KG extracted may have incom-
plete knowledge.

2) Task-Oriented KG Construction: Instead of utilizing
existing KGs, some ZSL and FSL studies build task-specific

KGs. The classes’ textual information such as class label
is the most frequently utilized information for mining
interclass relationships and further for constructing the
edges of a KG. Palatucci et al. [1] connected a word (which
corresponds to a class in that task) to another according
to their co-occurrence in a text corpus. Lee et al. [43]
calculated WUP similarity of class labels and used this
similarity to build KG edges for representing positive
and negative interclass relationships. Wei et al. [44], Wang
and Jiang [49], and Ghosh et al. [81] all considered cal-
culating and adding edges to entities that are close to
each other according to their labels’ word embeddings.
Class attributes have also been exploited for mining inter-
class relationships. Zhang et al. [55] built a KG for
the CUB benchmark, which includes images of birds of
fine-grained classes, by computing the Hadamard prod-
uct over the part-level class attributes. Chen et al. [50]
and Hu et al. [82] both directly utilized the co-occurrence
of class attributes to build edges between KG entities.
In particular, Changpinyo et al. [83] considered both class
attributes and word embeddings to calculate weighted
edges between entities. Different from the above methods
that use some auxiliary information for building KG edges,
Zhao et al. [84] and Geng et al. [14], [47] modeled the
class attributes as additional KG entities and connected
them to the entities corresponding to the classes, while
Li et al. [85], [86] generated new superclasses of the seen
and unseen classes by clustering of the class names, so as
to constructing class hierarchies for augmenting both ZSL
and FSL.

Domain knowledge, which is often in the form of heuris-
tics and logic rules, has also been used to construct task-
specific KGs. Banerjee and Baral [87] used heuristics to
create a synthetic KG with science facts from the QASC text
corpus and commonsense facts from the open mind com-
monsense knowledge (text) corpus, for addressing both
zero- and few-shot QA. Chen et al. [88] added existential
restrictions (a kind of description logic that quantifies a
class by associated properties) to some classes of an animal
taxonomy extracted from WordNet, so as to build an OWL
ontology for the animal image classification benchmark
AwA2.

There are also some ZSL and FSL studies that extract
structured knowledge from the task data (samples) for
constructing KGs that are further fed back to learning
for augmentation. When Ghosh et al. [81] constructed a
KG for evaluating methods for few-shot action classifi-
cation where some videos (samples) are given for each
unseen class, they first extracted sample features for
each class, then took the mean of these features as
a KG entity, and finally calculated the cosine similar-
ity between feature means for edges between entities.
Bosselut et al. [89] generated a temporary KG on demand
for each prediction request of zero-shot QA, using its
text context and a transformer-based neural knowledge
model named COMET [90]. Chen et al. [50] added a
co-occurrence relation between two classes (food ingredi-
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ents) by calculating their co-occurrence frequency in the
training samples, besides the common class attributes and
class hierarchies.

Task-oriented KG construction requires more knowledge
engineering work than sub-KG extraction, such as tabular
data to KG transformation, but the constructed KG is more
task-specific often with fine-grained domain knowledge.
It will also suffer from knowledge incompleteness, espe-
cially when the task does not have much data available or it
is very hard to extract semantics from its raw, unstructured
data.

3) Knowledge Integration: Although some general-
purpose KGs contain a large quantity of knowledge and
are being continuously extended, it is still common that
the knowledge extracted from such a KG is incom-
plete or not fine-grained enough for a specific ZSL or
FSL task. Therefore, some studies proposed to integrate
knowledge extracted from different KGs or/and other
resources for building a high quality task-specific KG.
For example, Chen et al. [57] extracted RDF facts from
three KGs—ConceptNet, WebChild, and DBpedia to gen-
erate a unified commonsense KG for augmenting zero-
shot VQA; Geng et al. [14], [47] integrated class hierar-
chies from WordNet, relational facts and literals from
DBpedia, and knowledge transformed from class attributes
for constructing KGs for zero-shot image classification.
Chen et al. [50] considered and integrated class hierar-
chies from WordNet and class co-occurrence relations
extracted from class attributes and samples for a KG for
zero-shot ingredient recognition from food images. Very
recently, Geng et al. [91] conducted a benchmarking study,
where six KG-equipped ZSL benchmarks are created for
three different tasks and used for evaluating different
methods under different auxiliary information settings.
The KG of each benchmark is based on the integration of
multiple knowledge resources: those for zero-shot image
classification integrate knowledge from WordNet, Con-
ceptNet, class attributes, class names, and so on, while
those for zero-shot KG completion and relation extract
integrate relation textual information, schema information
from Wikidata or NELL, logic rules by human beings, and
so on.

As matching classes to KG entities for sub-KG extrac-
tion, the alignment of entities and relations in integrating
different knowledge parts now is still mostly based on
simple name matching or manual matching. There is little
attention to investigating automatic knowledge integration
methods for ZSL or FSL, and the impact of the knowledge
quality, such as the matching accuracy and the ratio of
relevant or redundant knowledge, is often ignored.

Knowledge integration alone often cannot construct
a KG for a task. It acts as a complement of sub-KG
extraction and task-oriented KG construction for higher
knowledge completeness. Although knowledge integration
requires some knowledge engineering, some existing and
open systems, such as BERTMap [92], have already been
developed.

Fig. 4. Example KG construction.

4) Case of KG Construction: Fig. 4 shows an example of
constructing a KG with different semantics for augmenting
a zero-shot (or few-shot) image classification task, which is
from our previous benchmarking work [91]. First, the hier-
archical relationship between classes and commonsense
knowledge about classes are extracted from WordNet and
ConceptNet, respectively, where classes are matched with
KG entities. For example, for an animal class horse, its
ancestors such as equine are obtained from WordNet, and
relational facts, such as (horse, usedFor, and riding), are
extracted from ConceptNet. Next, some domain-specific
knowledge, such as attribute annotations of classes, is rep-
resented as triples, where classes and attributes are rep-
resented as entities and connected via ad hoc properties.
For example, the attribute of tail is related to horse via
property hasBodyPart. The literal names of classes are
also represented using data properties. More complex
semantics, such as the disjointness between classes, are
also represented using OWL. For example, although horse
and tiger have many shared attributes such as tail and
muscle, they are still categorized as different species, and a
disjointness constraint between them is added. Finally, all
kinds of class knowledge mentioned above are integrated
into one KG to serve the ZSL (or FSL) task.

IV. K G - A W A R E Z S L
According to the solutions for exploiting KGs, we divide
the KG-aware ZSL methods into four paradigms: mapping-
based, data augmentation, propagation-based, and class
feature, as shown in Fig. 1. Table 2 summarizes the
paradigms and lists the papers of each category. We will
next introduce the details of each paradigm.

A. Mapping-Based Paradigm

The mapping-based paradigm aims to build mapping
functions toward the input (x or x) and/or the classes (y or
y) so that their vector representations after mapping are
in the same space and are comparable (i.e., an input is
of a class if their vectors are close with respect to some
metric such as cosine similarity and Euclidean distance).
We denote the mapping function for the input as M and
the mapping function for the class as M′.
M and M′ can be both linear and nonlinear trans-

formation networks, often learned from the training data
Dtr. Note that M and M′ are different from the initial
encoding functions g and h. g and h are just to represent
the symbolic input and class as vectors or to learn features
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Table 2 Summary of KG-Aware ZSL Paradigms

and semantic embeddings, whileM andM′ mainly aim to
map the input and the class into the same space, although
sometimes they may also play the role of g and h at the
same time. According to the target(s) to map, we divide the
ZSL methods of the mapping-based paradigm into three
finer-grained categories: input mapping, class mapping,
and joint mapping. Fig. 5 shows their insights. We will
next introduce methods of each category, mainly from
four dimensions—input encoding, class encoding, map-
ping function(s), and comparison metric.

1) Input Mapping: As shown in Fig. 5(a), methods in
this category only learn M to map the input into the space
of the class initial encoding. A simple but typical method
is proposed by Palatucci et al. [1] for neural activity clas-
sification. In this task, the class is annotated by multiple
attributes that are either calculated from classes’ word
similarity or manually created via crowdsourcing. Each
class is encoded by a multihot vector of its attributes.15

Given an input (neural activity signals) x, the mapping

15A multihot vector is to represent a set of discrete variables. Briefly,
one slot corresponds to one variable; a slot is set to 1 if its corresponding
variable exists and to 0 otherwise.

function M, which is a multiple output linear regression
model, predicts a multihot attribute encoding (vector) y′.
M is further attached by a one-nearest neighbor classifier
L, which outputs the class as the one whose encoding is
closest to y′. The whole model (M and L) is jointly learned
by minimizing some vector error-based loss on Dtr.

Input mapping is widely used in the zero-shot image
classification, often with more complicated class encoding
and mapping function than the method in [1]. Li et al. [46]
mapped image features to the space of the class encoding,
which is based on the word embeddings of the class itself
and its super classes, and used the cosine similarity for
comparison. Chen et al. [88] adopted a typical ZSL method
named semantic autoencoder (SAE) [108], which uses
a linear encoder as M, and used pretrained ontology
embedding for the initial class encoding y. M is learned
on Dtr by minimizing a distance loss between x′ and y

and a reconstruction loss when x′ is mapped back to x.
Li et al. [85] proposed to use a long-short-term-memory
(LSTM) network to model the class hierarchy for class
encoding and map the image features learned by a CNN.
Liu et al. [42] used reinforcement learning and an ontology

Fig. 5. Method categories and insights of the mapping-based paradigm. The dotted red circle denotes the vector space that the input and/or

the class are mapped to. (a) Input mapping. (b) Class mapping. (c) Joint mapping.
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to associate rules with each class as visual characteristics
and train one support vector machine (SVM) for each rule
as the mapping function M. M predicts the associated
rules of each input, and these predicted rules are compared
with each candidate class.

Input mapping has also been explored in ZSL for knowl-
edge extraction. Ma et al. [63] worked on entity men-
tion typing. They pretrain the initial class (entity type)
encoding using different KG embedding methods such as
prototype-driven label embedding and hierarchical label
embedding and then proposed two mapping settings. One
setting is to directly map the input (entity mention fea-
tures) to the class encoding by a linear transformation,
which is implemented by multiplying the input by a matrix
of weights. Imrattanatrai et al. [64] learned initial text
representation of the input (relation mention) by word
embedding and a bidirectional LSTM network and then
used a linear transformation function to map the text
representation into the space of relation encoding that
is based on KG TransE embedding and ad hoc relation
feature extraction. Li et al. [67] mapped the input text
representation into the class embedding by a simple linear
transformation for zero-shot relation classification, where
the class encoding combines word embedding, normal KG
embedding, and rule-guided KG embedding.

2) Class Mapping: The methods learn the mapping
function M′ to directly map the class into the space of
the initial input encoding, as shown in Fig. 5(b). It is
not as widely investigated as input mapping. In total,
we gather three methods for zero-shot image classifica-
tion [45], [83], [93] and one method for zero-shot KG
completion with unseen entities [54]. Akata et al. [45],
[93] learned an embedding model as the mapping func-
tion, which maps the class initial encoding into the space
of the image features. They use class hierarchies as the
auxiliary information for initial class encoding, where each
class is represented as a multihot vector of its ancestors.
Changpinyo et al. [83] first generated a weighted graph
where the relatedness between classes are represented,
then introduced phantom classes through which seen and
unseen classes can be synthesized by convex combination,
and finally mapped the vectors of phantom classes into
the input. Nayak and Bach [54] proposed a novel trans-
former graph convolutional network (GCN) as M′, which
nonlinearly aggregates a class’s neighbors in the KG, and
used a compatibility score as the metric for comparing
the image CNN feature (input) and the class embedding.
Shah et al. [94] predicted KG triples with unseen entities
using their text descriptions. The method first encodes the
entity from the graph perspective by TransE or DistMult
KG embedding (as initial class encoding h), encodes the
entity from the text perspective by word embedding and
LSTM (as initial input encoding g), and then maps the
class encoding to the space of the input encoding, where
both linear and nonlinear transformation functions, such
as multilayer perceptron (MLP), are explored.

3) Joint Mapping: As shown in Fig. 5(c), joint map-
ping learns both input mapping M and class mapping
M′ such that the input and the class are compared in
one intermediate space. It is often adopted for zero-shot
entity/relation extraction where features of both the input
(entity mention text) and the class (entity/relation in a
KG) are jointly mapped. Ma et al. [63] multiplied the
initial input encoding and the initial class encoding by
matrices (asM andM′), which are learned by minimizing
a weighted approximate-rank pairwise loss, for zero-shot
entity extraction. Huang et al. [73] mapped the features of
event mentions and their structural contexts parsed from
the text and the event-type encoding that is based on event
ontology embedding, jointly into one vector space using
one shared CNN.

Zero-shot text classification is very similar to zero-shot
entity/relation extraction—M and M′ are applied to text
input encoding and KG-based class encoding, respectively.
Rios and Kavuluru [76] mapped the text features learned
by a CNN and the class encoding that is by initial word
embedding and GCN-based class hierarchy embedding.
Chen et al. [60] linearly mapped the text encoding by
BERT and the class encoding that is based on a word
embedding model tailored by ConceptNet.

In zero-shot KG completion, the KG embedding (input)
and the initial encoding of the unseen entity or relation
(class) are jointly mapped. Hao et al. [95] investigated
zero-shot KG completion with unseen entities. The input
mapping M is a linear encoder over one-hot encoding of
the KG entities, while the class mappingM′ is an MLP over
the encoding of the entity’s attributes.

There are also some joint mapping methods in CV.
Roy et al. [56] worked on zero-shot image classification.
They map both the initial class encoding learned by a
GCN on commonsense knowledge and the image features
learned by a CNN named ResNet101, using a nonlinear
transformation named relation network. This network first
attaches a fully connected layer to the class encoding, then
concatenates its output with the image features, and finally
attaches two different fully connected layers. It is learned
by minimizing an mse loss. Chen et al. [15] proposed an
end-to-end transformer-based ZSL method named DUET,
utilizing the pretrained language models to enhance the
discrimination capability on fine-grained visual character-
istics where the structured KGs are serialized as the input.
Chen et al. [57] worked on zero-shot VQA. They map the
input (i.e., initial encoding of a pair of image and question)
and the encoding of a KG entity (class) to a common space,
where the matched KG entity is regarded as the answer.

B. Data Augmentation Paradigm

A straightforward solution for addressing sample short-
age is generating new data with the guidance of some
auxiliary knowledge. In ZSL, some methods generate sam-
ples or sample features for unseen classes and transform
the problem into a standard supervised learning problem.
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Fig. 6. Overview of the GAN-based generation paradigm.

We regard these methods as data augmentation paradigm.
According to the generation method, we divide these
methods into two categories: rule-based and generation
model-based.

1) Rule-Based: Background knowledge of a task could
be explicitly represented by different kinds of rules (or
some equivalent logic forms such as schema constraints
and templates). They enable deductive reasoning for hid-
den knowledge as new samples. However, this solution has
been rarely investigated for ZSL. In image classification
and some other tasks where the sample input and their
features are uninterpretable real value vectors, generating
data by rules becomes unfeasible. The only work we know
is for zero-shot KG completion. Rocktäschel et al. [96] pre-
dicted an unseen relation for two entity mentions extracted
from the text. They propose three methods to inject first-
order rules, which act as commonsense knowledge, into
a matrix factorization-based KG completion model. One of
the methods is logically inferring additional relational facts
in advance before training the matrix factorization model.

2) Generation Model-Based: With the wide investigation
of conditional generation, generation models, such as gen-
erative adversarial networks (GANs) [109] and variational
autoencoder (VAE) [110], have become popular tools for
generating data for addressing ZSL, especially for image
classification [7], [8], [14], [55], [111], [112], [113].
We regard these methods as generation model-based. In
Fig. 6, we present a typical GAN-based scheme, including
a training stage and a testing stage. During training, given
a seen class ys, its encoding ys, which can be based on
multihot attribute encoding, word embedding, and KG
embedding, is fed into the generator of the GAN, together
with a random noise vector z sampled from the normal
distribution N (0, 1), to generate a set of sample features
x̂s for ys. Note that the number of generated samples is a
hyperparameter that can be tuned. Correspondingly, a set
of real features (encoding) xs are extracted from the input
samples xs of ys to supervise the training of the generator

via an adversarial discriminator, which distinguishes xs

and x̂s. Both the generator and the discriminator are
conditioned on the class embeddings. Neural networks
composed of several fully connected layers are often used
as their model. Some additional loss terms, such as clas-
sification (Lcls) and regularization (LR), are usually also
applied to encourage the model to generate more plausible
samples. During testing, the trained GAN can synthesize
samples for an arbitrary unseen class yu with random
noises and its encoding yu. With the synthesized data x̂u,
we can learn classifiers for the unseen classes and use them
to predict testing samples, as normal supervised learning.
We can also directly compare the features of each input
testing sample with the synthesized sample features of
each unseen class to determine the output class label.

Conditional generation models were not widely applied
in ZSL until around 2018. We find three KG-aware meth-
ods. Work [14] is the first work that proposed to gen-
erate the image features using a KG, which models the
semantic relationships between seen classes and unseen
classes for zero-shot image classification. The class encod-
ing based on this KG’s text-aware embeddings leads to
higher quality image features than previous class encod-
ings based on attributes and word embeddings. GAN is
used as the generation model. The follow-up work by
Geng et al. [114] further considers a new disentangled
KG embedding method for encoding class semantics from
multiple aspects, leading to better zero-shot image classifi-
cation performance. Qin et al. [31] worked on a zero-shot
KG completion problem, where the testing triples involve
new relations that have never appeared in training. They
propose to first use GAN to generate sample features (i.e.,
KG embeddings) of the unseen relations conditioned on
their textual description embeddings (i.e., class encod-
ings) and then calculate scores of the testing triples by
comparing the generated relation embeddings with the
existing embeddings of the entities. Note the two works
raised by Geng et al. [14], [114] also deal with the unseen
relations in zero-shot KG completion besides the zero-shot
image classification. They propose to synthesize the rela-
tion embeddings conditioned on the embeddings of an
ontological schema, which represents the semantics of the
KG relations, such as relation hierarchy, and relations’
domain and range constraints. Zhang et al. [55] worked
on zero-shot image classification by generating few-shot
samples. They use a generation module to generate an
instance-level graph, where dummy features (instances)
are synthesized for those unseen classes by GAN. They
finally address the problem over the instance-level graph
by a propagation module and a meta-learning strategy.
Across the literature, we find that there is no current work
that combines the VAE-based generation models with KG,
leaving a great research space to explore.

C. Propagation-Based Paradigm

Graph-based information propagation is a straightfor-
ward solution to utilize KG auxiliary information for ZSL.
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We regard these KG-aware ZSL methods as propagation-
based paradigm. These methods first align seen and unseen
classes with KG entities and build a graph with node
features from the auxiliary KG. Then, they use a graph
propagation model to either approximate model parame-
ters or predict class beliefs (scores) of the unseen classes,
where this propagation model is usually trained from seen
classes whose outputs are given based on models built
from Dtr. Accordingly, we divide the methods into model
parameter propagation and class belief propagation. We
will next introduce the general idea of each category
and its contributions mainly from two dimensions—the
propagation graph and the propagation model.

1) Model Parameter Propagation: For each seen class ys

in Ys, a one-vs-rest binary classifier is trained with Dtr.
Such a classifier is usually composed of a pretrained input
encoding g (e.g., a CNN for image feature learning) and
linear or nonlinear classification layer(s). Parameters of the
classification layer(s) are denoted as p(ys). Considering a
simple but general case in Fig. 7(a), the seen classes y1

s ,
y2

s , and y3
s are aligned with three graph entities e1, e2, and

e3, respectively. The parameters p(y1
s), p(y2

s), and p(y3
s) are

assigned to e1, e2, and e3 as their outputs, and the output
parameters of e0, which are aligned with an unseen class
y1

u (y1
u ∈ Yu), i.e., p(y1

u), are approximated according to a
graph propagation model. With p(y1

u) and the pretrained
input encoding g, samples of y1

u can be predicted. The
graph propagation model is usually trained by minimizing
errors when approximating parameters of classifiers of Ys.

In image classification, usually one classifier, which is
composed of a linear layer and pretrained CNN image
features, is trained for each seen class via Dtr, and the
linear layer parameters of the seen classes are propagated.
Wang et al. [12] adopted a CNN named ResNet-50 for
image feature learning. The method aligns image classes
with WordNet [32] entities and used a GCN to propagate
feature combination weights on a subgraph of WordNet.
Wei et al. [44] aimed at the same problem as [12] but
used a residual GCN (ResGCN), which builds residual
connections between hidden layers, for propagation so as
to alleviate oversmoothing and overfitting when stacking
multiple GCN layers. Ghosh et al. [81] used a six-layer
GCN for propagation on a KG for zero-shot action recog-
nition (video classification). Wang and Jiang [49] con-
structed two single-relation KGs—one by the class hier-
archy from WordNet and the other by the class correla-
tion mined from word embeddings for zero-shot image
classification. They use two weight-shared GCNs to prop-
agate on the two KGs to predict classifier parameters for
the unseen classes. When propagating on a subgraph of
WordNet for zero-shot image classificaton, Geng et al. [47]
attached an attention layer after GCN layers to calculate
the importance weights of different seen classes to an
unseen class, which also provides a way for explanation
on feature transferability. Chen et al. [50] developed a
propagation-based method for estimating the parameters

of multilabel classifiers for zero-shot ingredient recognition
from food images. Since the KG, which is composed of
knowledge of ingredient hierarchy, ingredient attributes,
and ingredient co-occurrence, has multiple different rela-
tions, an attentive multirelational GCN is adopted, where
different relations have different contributions in parame-
ter propagation.

When propagating knowledge to distant nodes, all the
above methods prefer to stack multiple GCN layers. In con-
trast, Kampffmeyer et al. [13] proposed to only use two
GCN layers and extend to directly connect an entity to its
ancestors and descendants, where an attention mechanism
is used to weight the contributions of different neighboring
entities according to their distances to the target entity.
Under the same task and evaluation setting as in [12], the
two-layer network and these weighted additional connec-
tions often achieve better performance.

2) Class Belief Propagation: These methods are often for
multilabel classification where one sample is annotated
by multiple related classes. Without loss of generality,
we assume that a sample should be annotated by three
seen classes (y1

s , y2
s , and y3

s) and one unseen class (y1
u),

and these classes are matched to graph nodes, as shown
in Fig. 7(a). The beliefs (scores) of y1

s , y2
s , and y3

s are
predicted by their corresponding binary classifiers trained
with Dtr, while the score of y1

u is predicted by a graph
propagation model trained with outputs of nodes of the
seen classes.

One typical work is the zero-shot multilabel image
classification method by Lee et al. [43], where multiple
objects are to be recognized from an input image. It uses
a gated recurrent update mechanism for iterative belief
propagation on the auxiliary KG, where the propagation
is directional from seen classes to unseen classes and a
standard fully connected neural network to output a final
belief for the entity of each unseen class. Note that the
initial status of an entity is determined by the features of
the corresponding class’s samples and word embedding.
Luo et al. [77] worked on recognizing multiple interactive
objects in an image where some objects are unseen in
training. They use conditional random field to infer the
unseen objects using the recognized seen objects in the
image and a KG with prior knowledge about the rela-
tionships between objects. Bosselut et al. [89] focused on
zero-shot QA. They propose to construct a context-relevant
commonsense KG from deep pretrained language models,
where the question acts as a root entity and the answers
act as leaf entities, and then, they infer over the graph
by aggregating paths to find the right answer. Although
this method predicts only one answer (class) for each
question (sample), it associates one question with multiple
candidate answers for graph information propagation.

D. Class Feature Paradigm

As shown in Fig. 8, class feature paradigm uses a trans-
formed scoring function f ′:(g(x), h(y)) → s to calculate a
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Fig. 7. (a) Graph information propagation from entities of seen classes (e.g., e1, e2, and e3) to entities of unseen classes (e.g., e0) for

approximating model parameters (or predicting class beliefs). (b) Aggregating embeddings of 1-hop neighboring seen entities (in blue) to get

the embedding of an unseen entity (in red) for few-shot KG completion.

matching score s between an input x and a class y. The
KG auxiliary information is usually utilized by the class
encoding h. f ′ is usually composed of a fusion model,
which combines g(x) and h(y), and a prediction model.
f ′ can be trained with Dtr. h and g can be separately
pretrained or trained jointly with f ′.

This paradigm actually transforms the ZSL problem into
a classic domain adaption problem: considering the new
input of f ′, the training data (y ∈ Ys) have a different
distribution as the testing data (y ∈ Yu or y ∈ Yu ∪ Ys).
According to the types of g(x) and h(y), we further classify
these KG-aware ZSL methods into two categories: text
feature fusion and multimodal feature fusion. Next, we will
introduce the works of each category mainly from three
dimensions—the class encoding, the input encoding, and
the fusion model.

1) Text Feature Fusion: These methods usually aim at
ZSL tasks within a KG context where the auxiliary infor-
mation is some kind of text. One typical setting is KG com-
pletion with unseen entities where entities are described by
name phrases and/or textual descriptions. In this case, the

Fig. 8. Overview of the class feature paradigm.

class, i.e., an entity (or a relation) in a triple to predict, and
the input, i.e., the remaining two elements of the triple, are
both represented as in a textual form and encoded by text
embedding.

Zhao et al. [97] adopted the TF-IDF algorithm to com-
bine the embeddings of words to encode each entity with
its text description. For a triple, the scoring function f ′

uses the encodings of its two entities to calculate a triple
score, where the interactions between any two elements
of the triple are modeled. Shi and Weninger [98] pro-
posed a zero-shot KG completion method named ConMask
for dealing with unseen entities using their names and
text descriptions. They feed the text encodings of the
entities and the relation of a triple into a CNN-based
fusion model. Niu et al. [101] followed the general direc-
tion of [97] and [98] but worked out a new multiple
attention-based method with a bidirectional LSTM net-
work and an attention layer for modeling and utilizing
the interaction between the head entity description, head
entity name, the relation name, and the tail entity descrip-
tion. Amador-Domínguez et al. [48] worked on triple
classification with unseen entities. The ontological infor-
mation, such as the entity’s hierarchical classes, is utilized
with their word embeddings. For each entity, its hierarchi-
cal classes’ word embeddings are combined with its own
word embedding by concatenation, averaging, or weighted
averaging. Wang et al. [103] proposed a KG completion
method InductiveE, which can deal with unseen entities
using entity textual descriptions. It encodes an entity by
concatenating its text embeddings by the fastText word
embedding model [115] and the pretrained BERT [116].
For each triple, it feeds the entities’ encodings into a model
composed of an encoder—a gated-relational GCN and a
decoder—a simplified version of ConvE [117] to predict a
score.

Recently, due to the wide investigation of pretrained lan-
guage models, some methods that fine-tune these models

Vol. 111, No. 6, June 2023 | PROCEEDINGS OF THE IEEE 667
Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on October 04,2023 at 12:48:23 UTC from IEEE Xplore.  Restrictions apply. 



Chen et al.: Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey

for utilizing textual information for addressing zero-shot
KG completion have been proposed. Different from [103]
where BERT is used for initial but fixed entity encoding,
the entity and relation encoding in the following methods
are trained jointly with f ′ as the pretrained language
model BERT is fine-tuned. Yao et al. [100] proposed a
KG triple prediction method called KG-BERT. It transforms
each triple into a text sentence with the name infor-
mation of its head entity, predicate, and tail entity, and
then makes triple prediction as a downstream text clas-
sification task, where BERT is fine-tuned with triples for
training. Zha et al. [104] also proposed to predict triples
as a downstream text classification task of BERT. They
fine-tune BERT using not only single triples but also pos-
sible paths that connect two entities (reasoning is con-
ducted explicitly to discover such paths). Wang et al. [105]
attempted to address two cons of KG-BERT: the combina-
torial explosion in triple inference and the failure to utilize
structured knowledge. They proposed a structure-aware
encoder to represent a triple’s text with different combi-
nations and interactions between its entities and relations.
Wang et al. [102] proposed a joint text and entity embed-
ding method named KEPLER, which is also able to predict
KG triples with unseen entities and relations. It utilizes the
text of the entities and the relations to fine-tune the BERT
model via a masked language modeling loss.

Besides KG completion, we also find two KG-aware zero-
shot QA methods and one KG-aware zero-shot knowl-
edge extraction method that belong to text feature fusion.
Banerjee and Baral [87] performed QA via triple learning
where the context, question, and answer are modeled as a
triple and one of them is predicted given the other two. In
implementation, a transformer-based model that generates
the answer given the text features of the context and
question is learned by span-masked language modeling,
using triples extracted from text. Zhou et al. [79] also
modeled QA as triple prediction with all the text features
fused and learned the prediction model by alternatively
masking the subjects and the objects of the training triples,
which are from a corpus named WorldTree. Gong and
Eldardiry [106] fine-tuned a BERT model for zero-shot
relation extraction, where prompts are constructed as the
input using the relation’s corresponding knowledge in
ConceptNet.

2) Multimodal Feature Fusion: In these methods, the
input encoding and the class encoding are of different
types. Due to the heterogeneity of the inputs, the mech-
anism of f ′, especially the fusion model, will differ from
that of the text feature fusion category. Nguyen et al. [58]
worked on cross-domain entity recognition from the text,
where the testing entities are from a different domain and
unseen, The input is a sequence encoded as token features
by a pretrained BERT, while the class is an entity encoded
as graph features learned by a recurrent GNN over an
ontology. These two different kinds of features are fed
into an integration network for fusion. Ristoski et al. [107]

worked on zero-shot entity extraction. They fuse the fea-
tures of the entity mention and entity description (input),
with the entity’s graph vector (output) which encodes the
entity’s KG semantics such as types. Zhang et al. [59]
worked on zero-shot text classification. They fuse the input
text encoding and the ConceptNet-based class encoding
and feed them into a CNN classifier. The class encoding
encodes the associated entity of the class, its ancestors, and
its description entities, using multihot encoding.

V. K G - A W A R E F S L
Many KG-aware FSL methods also follow the four
paradigms of KG-aware ZSL: mapping-based, data aug-
mentation, propagation-based, and class feature. However,
some other KG-aware FSL methods belong to none of the
above. Instead, we regard those that focus on utilizing the
few-shot samples by accelerating the adaption in training
with meta-learning algorithms, as a new paradigm named
optimization-based, and regard those that directly transfer
models (such as rules) built according to data of seen
classes as another new paradigm named transfer-based.
Fig. 1 presents these paradigms and their method cate-
gories, while Table 3 summarizes the paradigms and lists
the papers of each category. We will next introduce the
details of each paradigm.

A. Mapping-Based Paradigm

The general idea of the mapping-based paradigm of FSL
is very close to that of ZSL, which is to train an input
mapping model M, a class mapping model M′, or both
M and M′, as shown in Fig. 5. In contrast to ZSL, FSL has
a small number of labeled samples associated with each
unseen class (Dfew). They usually can play an important
role and are fully utilized. For example, they are sometimes
used as another kind of auxiliary information for the
classes. As ZSL, we further categorize the mapping-based
KG-aware FSL methods into input mapping, class mapping,
and joint mapping. Next, we will introduce the methods
of each category, from the dimensions of input encoding,
class encoding, mapping function(s), comparison metric,
and few-shot sample utilization.

1) Input Mapping: ZSL methods of input mapping can
often be directly extended to FSL by augmenting the learn-
ing of the mapping model M with the few-shot samples.
Ma et al. [63] supported zero- and few-shot entity mention
typing at the same time. They get the initial class (entity
type) encoding via KG embedding and then directly map
the input encoding (entity mention features) to the space
of the class encoding. In the few-shot setting, they train the
mapping mode M, i.e., a linear transformation function
with both training samples Dtr and few-shot samples Dfew.
Jayathilaka et al. [52] also learned a mapping model M
using both Dtr and Dfew. They represent logical relation-
ships such as class disjointness and class subsumption by
an OWL ontology and embed it by a logic embedding
algorithm named EL embedding [143] for initial class
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Table 3 Summary of KG-Aware FSL Paradigms

encoding. Monka et al. [53] investigated KG-augmented
few-shot image classification. They use a KG curated by
experts for modeling the relationship between classes,
embed the KG by a variant of GCN for class encoding, and
adopt a contrastive loss to train an MLP as M for mapping
the image features.

2) Class Mapping: The learning of the class mapping
model M′ can also be directly extended using both Dtr

and Dfew. However, such extension has been rarely inves-
tigated. The only KG-aware FSL method that belongs to
class mapping is by Li et al. [85]. It maps the embeddings
of hierarchical classes (class encoding) into the space
of image CNN features (input encoding) for both zero-
and few-shot image classifications. The mapping function
learning does not use Dfew, but in prediction, the average
of the CNN features of the few-shot samples as well as the
mapped class vector are both used and compared with the
input of a testing sample.

3) Joint Mapping: Some KG-aware FSL methods of
joint mapping are also simple extensions of their ZSL
counterparts. Akata et al. [45], [93] jointly mapped the
WordNet-based class encoding and the image encoding
into one common space for few-shot image classification,
where the mapping models M and M′ are trained with
an additional loss on few-shot samples Dfew. Similarly,
Ma et al. [63] utilized Dfew to augment the training of the
mapping models for few-shot entity typing. Note that they
consider not only input mapping but also joint mapping.
Rios and Kavuluru [76] also augmented the joint training
of M and M′ with Dfew, for KG-aware few-shot text
classification, where the input text encoding is based on
CNN, while the class encoding uses GCN.

Some other KG-aware FSL methods of joint mapping are
specifically developed for utilizing the few-shot samples
Dfew. They regard Dfew as a kind of auxiliary information
and map them and the testing samples into one common
vector space. Li et al. [86] jointly learned a mapping of
the image CNN features (input encoding) and a mapping
of the class encoding, using the training samples Dtr. In
prediction, they calculate the center of the mapped vectors
of few-shot images of each class and compare a testing
image to this center. Note that learning the mapping of
the class encoding impacts the learning of the mapping of
the image features. Xiong et al. [118] worked on one-shot
KG completion with unseen relations. They develop a
matching network to compare a testing entity pair with
the one-shot entity pair of each unseen relation, where the
features of an entity pair (i.e., input encoding) are learned
by a neighborhood encoder, and a matching score is pre-
dicted by an LSTM network. Zhang et al. [119] worked
on few-shot KG completion with unseen relations, with
a similar idea as the above work [118]. Zhao et al. [84]
jointly mapped the image features (input encoding) and
the class encoding (which is based on the fusion of KG
embeddings and text embeddings) into one common space
by MLPs. In prediction, a testing sample is compared with
the few-shot samples of each unseen class via calculating
the cosine similarity. As the method in [86], the map-
ping learning of the class encoding impacts the mapping
learning of the input encoding. Sui et al. [19] proposed a
KG-aware few-shot text classification method. It maps and
compares a testing sample with the few-shot samples of
each unseen class using a task-agnostic relation network
and a task-relevant relation network armed with exter-
nal knowledge from NELL. Zhang et al. [65] worked on
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few-shot relation extraction from text, utilizing concept-
level knowledge from Wikidata [34] or UMLS [75]. They
match the mapped testing sample (i.e., an entity mention
pair) to the mapped few-shot samples and to the mapped
relation (class) encoding and combine the two matching
scores. Note that the sample input mapping model is a
network that considers the sentence features, the entity
description features, and the KG concept features, while
the relation encoding is based on the relation representa-
tions extracted from the KG embeddings.

B. Data Augmentation Paradigm

There have been some FSL studies that attempt to
generate additional samples or sample features for the
unseen classes by using KGs. We divide these methods into
two categories: rule-based and generation-based. Although
rules (heuristics) can be directly applied to FSL by, e.g.,
annotating labels to samples as in distant supervision,
we only find one KG-aware FSL work of this category.
Instead, we find some KG-aware FSL studies of generation-
based, which usually utilizes statistical generation models
such as GANs [109] and VAEs [110]. Next, we will intro-
duce the works of each category.

1) Rule-Based: Tsai and Salakhutdinov [21] used a sim-
ple heuristic rule for sample generation for one-shot image
classification. They take an attention mechanism over the
class encodings, which are based on the embeddings of a
KG extracted from WordNet, to select the most relevant
unseen classes for a seen class such that samples of the
seen class are transformed into a set of quasi-samples of
these unseen classes as additional training samples.

2) Generation-Based: Some works leverage GANs and
VAEs to generate extra labeled data for the unseen
classes conditioned on their auxiliary information, as the
generation-based category in KG-aware ZSL. For exam-
ple, Wang et al. [120] worked on few-shot KG completion
involving both unseen entities and unseen relations and
proposed a triple generator with conditional VAE [144]
to supplement the real triple set. Following the basic idea
of VAE, the encoder is implemented with a recognition
network and a prior network to learn the variational
posterior distribution qθ(z|O) and the conditional prior dis-
tribution pϕ(z|or) by taking as input the embedded textual
descriptions of the triples O and that of the relations or,
respectively. Next, the decoder by a generative network is
proceeded to reconstruct the triple embeddings (gh, gr, gt)
by sampling them from the latent semantics z conditioned
on or, i.e., pφ(gh, gr, gt|z, or). During testing, more triple
embeddings of unseen entities and unseen relations can be
generated conditioned on their latent semantics z.

Besides obtaining additional training data using gener-
ative models, there are also some other works that are
motivated by the application of GANs in domain adap-
tion. They attempt to generate features that are more
transferable from the “lots-of-samples” domains to the

different but related “few-samples” domains. For example,
Zhang et al. [24] worked out a general feature generation
framework for addressing few-shot unseen relations in
two tasks—few-shot KG completion with unseen relations
and few-shot relation extraction from text. The framework
is adversarially trained to generate the features that are
invariant to the seen and unseen relations and transfer
such features to unseen relations with weighted combi-
nation. The feature generation module is implemented by
a CNN to iteratively extract features from the entity pair
(or from the text sentence for relation extraction) until
the discriminator cannot distinguish features of the seen
relations and the unseen relations.

C. Propagation-Based Paradigm

We find two KG-aware FSL studies that adopt the idea
of model parameter propagation as in KG-aware ZSL but
no studies adopting class belief propagation. This may be
because the current methods usually focus on utilizing
the few-shot samples. For few-shot KG completion tasks,
graph propagation is widely utilized for addressing unseen
entities or unseen relations that have few-shot associated
triples. They often aggregate the embeddings of the neigh-
boring entities and relations, which are usually seen, to get
the embedding of an unseen relation or entity. Fig. 7(b)
shows this idea with an example. The entity e0, which is
unseen without a trained embedding, is connected to seen
entities e1, e2, and e3 through some few-shot triples with
relations of r1, r2, and r3. With a propagation model, the
embedding of e0 can be predicted via the trained embed-
dings of e1, e2, and e3. We classify these methods into a
new category named embedding propagation. We will next
introduce the works of model parameter propagation and
embedding propagation, mainly from two dimensions—
the propagation graph and the propagation model.

1) Model Parameter Propagation: Peng et al. [23]
worked on WordNet augmented few-shot image classifi-
cation. They first do model parameter propagation as in
KG-aware ZSL, which uses a GCN and a graph to pre-
dict classifier parameters of the unseen classes, and then
ensemble these predicted classifiers with the classifiers
learned from the few-shot samples. Chen et al. [51] used a
graph whose nodes are seen and unseen classes and edges
are assigned by correlation weights between classes for
few-shot image classification. They initialized the classifier
parameters of each graph node (class) and then used a
gated GNN (GGNN) to update the classifier parameters
of each graph node with multiple iterations. The GGNN
is trained with a cross-entropy loss on Dtr and Dfew a
regularization term on the classifier parameters.

2) Embedding Propagation: The embedding propagation
methods mainly aim at few-shot KG completion tasks
that predict triples involving unseen entities or unseen
relations, without retraining the embedding of the orig-
inal KG. Thus, the graph for propagation is the KG to
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complete itself. These unseen entities (resp. relations) are
also named out-of-KG entities (resp. relations) in some
papers since they are usually not observed in the KG whose
embeddings have been trained.

As far as we know, Hamaguchi et al. [121] proposed
the earliest embedding propagation method for KG com-
pletion with unseen entities. They use a GNN but revise
its propagation mechanism for the KG and adopted a
translation-based objective function for scoring a triple and
for a loss for training. Wang et al. [122] proposed a logic
attention network (LAN) to get the embeddings of unseen
entities from their neighboring entities and relations. In
LAN, logic rules are exploited to measure neighboring
relations’ usefulness, and neighbors connected by different
relations have different weights with respect to an unseen
entity. Bhowmik and de Melo [124] used a variant of graph
transformer encoder to embed an unseen entity by aggre-
gating its neighbors based on their relevance to a given
relation. It predicts the object of a triple and can explain
the prediction by finding out paths from the subject to
the object. Ali et al. [127] predicted the relations between
seen entities and unseen entities, and between unseen
entities. For predicting relations between unseen entities,
they initialize the entity embeddings by the entities’ textual
information using sentence BERT and then propagate to
update the entities’ embeddings by a graph encoder named
StarE [145].

Some simpler propagation models have also been
explored for KG completion with unseen entities. Besides
GNN, Ali et al. [127] also explored a linear projection
of entity features to relation features without consid-
ering the graph structure. This could also be classified
as a mapping-based method by considering the entity
features as input encoding and the relation features as
class encoding. Dai et al. [126] used two modules: an
estimator that calculates a candidate set of embeddings
for an unseen entity according to its all associated triples
using the translation operation of TransE (or RotatE) and
a reducer that calculates the unseen entity’s embedding
according to all its candidate embeddings. Albooyeh et
al. [123] used some simple aggregation operations such
as averaging to get the embedding of an unseen entity
from its neighbors. This method can be applied to any
KG embedding models, but it requires that the original
KG embedding training is adjusted for the aggregation
operation.

All the abovementioned few-shot KG completion meth-
ods deal with unseen entities. We also find one embedding
propagation method [125] that can deal with both unseen
entities and unseen relations. It mainly uses specific transi-
tion functions, aggregation functions, and graph attention
mechanisms to transform information from the associated
triples to an unseen entity or relation, where a triple is
scored by a translation-based function and the model is
trained with a margin loss. Note that this method does
not deal with the situation with both unseen entities and
unseen relations.

D. Class Feature Paradigm

The class feature paradigm of FSL is close to that of
ZSL, as shown in Fig. 8. As the mapping-based paradigm,
many KG-aware ZSL methods of the class feature paradigm
can be directly extended to support FSL by training f ′

with both the training samples Dtr and the few-shot
samples Dfew. In this section, we focus on those class
feature paradigm works that are originally proposed for
FSL. Some such works are found but not many since class
feature fusion under the FSL setting does not significantly
differ from class feature fusion under normal supervised
learning settings. We classify them into two categories: text
feature fusion, where the input encoding g(x) and the class
encoding h(y) are both of text features, and multimodal
feature fusion, where g(x) and h(y) are of different kinds
of features. Next, we will introduce the works of each
category from the dimensions of input encoding, class
encoding, and the fusion model.

1) Text Feature Fusion: We find one KG-aware FSL work
that belongs to text feature fusion. Banerjee and Baral [87]
proposed a KG-aware method for few-shot QA. The input
(the text context and the question) and the class (answer)
are fed into a transformer-based model as f ′. This model
is learned by span-masked language modeling from KG
triples, each of which simulates a combination of context,
question, and answer. Note that the method can also
support ZSL, as introduced in Section IV-D.

2) Multimodal Feature Fusion: Fusing input encoding
and class encoding of different kinds is harder and often
requires a more complicated fusion model. We find two
KG-aware FSL studies of this category. Zhang et al. [128]
investigated text relation extraction for long-tailed rela-
tions that have few-shot samples (sentences). The pro-
posed method uses a GCN to learn the embedding of
each relation as class encoding, over a KG derived from
Freebase where the hierarchical relationship between rela-
tions are modeled, and then feeds the class encoding and
the sentence features (input encoding) into an attention-
based model. Yang et al. [61] investigated few-shot VQA.
A baseline that they adopt, named KRISP [129], uses KGs
such as ConceptNet for augmentation and is applied to this
task. In KRISP, the features of the image and the question
are first fused by a transformer-based model for input
encoding, and then, the input encoding is further fused
with the class encoding (features of knowledge retrieved
from the KG) to predict the answer.

E. Optimization-Based Paradigm

To optimize the training with the few-shot samples Dfew,
some meta-learning algorithms have been applied for fast
adaption and for avoiding overfitting by obtaining better
initial parameter settings, more optimized searching steps,
or more suitable optimizers. We regard these FSL methods
as optimization-based paradigm and present their general
workflow in Fig. 9. To mimic the learning with the few-shot
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Fig. 9. Overview of the optimization-based paradigm of FSL.

samples that are assumed to be available in testing, they
all adopt an episode-based training strategy and generate a
set of learning tasks. Each task consists of a support set and
a query set to simulate the few-shot sample set Dfew and
the testing samples Dte, respectively, and aims at learning
a meta learner parameterized by θ, which is expected to
be able to learn efficiently from only a small number of
samples. After multiple training iterations on these training
tasks, the method can obtain an optimal meta learner.
More formally, in a training task t, we have the support set
Dsupport

t and the query set Dquery
t , and the meta learner Fθ

can either automatically produce a model f fromDsupport
t to

predict the samples in Dquery
t or learn optimized gradients

∇f from Dsupport
t to better update the model parameters

on Dquery
t . The optimization at each step t is generated

by computing the loss on the query set Dquery
t . When at

test time, a set of tasks disjoint with the training tasks is
designed for evaluation, where the support set is from Dfew

and the query set is Dte we need to predict.
We collect quite a few KG-aware FSL methods of this

paradigm: some of them are for KG completion tasks
with unseen entities or relations that are associated with
a small number of triples [119], [130], [131], [132],
[133], [134], while the others are for KG-augmented few-
shot image classification and few-shot text relation extrac-
tion [55], [65], [66]. We find some studies develop new
meta-learning algorithms or revise the existing ones with
respect to the KG, while some other studies just apply meta
learning independently without specifically considering
the KG context. We thus classify these FSL methods into
KG-specific optimization and KG-agnostic optimization.

1) KG-Specific Optimization: Chen et al. [131] proposed
a new method named MetaR to predict triples involving
unseen relations that have only a small number of asso-
ciated triples. A learning task is defined for a specific
relation, and each sample is its one associated entity pair
and the number of support samples is set to be no more
than 5. First, a relation meta learner is designed to extract
higher order relation representations from the embeddings
of the support entity pair as relation meta, and then, the
gradient meta, which will guide how the relation meta
should be efficiently updated, is generated by feeding the
relation meta and each entity pair into an embedding

learner to compute the triple score. Finally, the updated
relation meta is transferred to the triples in the query set
to compute their scores via the same embedding learner.
The loss of query set is used to update the whole model
so as to quickly learn better relation meta for testing when
only a small number of support samples are given.

Meanwhile, the typical meta-learning algorithm model-
agnostic meta learning (MAML), which is to learn a
good parameter initialization for a new meta-learning
task [146], is often adopted and augmented with KG.
Wang et al. [130] worked on a few-shot KG reasoning task,
which is to predict the tail entity given a head entity and
an unseen relation and infer paths from the head entity
to the tail entity. They augment MAML with additional
task (relation) specific information encoded by a neighbor
encoder based on embedding concatenation and linear
transformation operations, and a path encoder based on
LSTM. Baek et al. [132] worked on a realistic few-shot
KG completion task, where relations between seen entities
and unseen entities and between unseen entities are both
predicted using GNNs. They propose a graph extrapolation
network for quickly learning the embeddings of unseen
entities with only a few associated triples, where a set of
tasks are formulated with simulated unseen entities so as
to generalize to the real unseen entities raised at test time.

2) KG-Agnostic Optimization: In some other
optimization-based FSL studies, the application of
meta-learning algorithms is independent of the KG. Note
that some of these studies are still reviewed as they aim at
KG-related prediction tasks. Lv et al. [133] worked on the
same task as in [130], i.e., few-show KG completion with
unseen relations. They adopted reinforcement learning
to search tail entities and paths that could infer these
tail entities and directly applied MAML with one relation
modeled as one task. Zhang et al. [134] proposed another
method for few-shot KG completion with unseen relations,
where MAML is directly applied for well initializing an
on-policy reinforcement learning model for fast adaption.
Qu et al. [66] worked on few-shot relation extraction by
modeling the posterior distribution of prototype vectors
for different relations. To this end, they first initialize
the relation prototype vectors by a BERT model over
the samples (i.e., sentences) and a GNN over a global
relation graph extracted from different ways and then
effectively learn their posterior distribution by a Bayesian
meta-learning method that is related to MAML but can
handle the uncertainty of the prototype vectors.

It is worth mentioning that meta-learning-based opti-
mization can simply act as a complement for model train-
ing in methods of other paradigms. Zhang et al. [119]
predicted KG triples with unseen relations. Their few-
shot relational learning method FSRL, which is of the
mapping-based paradigm as it compares a testing entity
pair with few-shot samples of each unseen relation after
mapping, uses MAML for fast adaption in training the
mapping models. Zhang et al. [55] attempted to address
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Fig. 10. Overview of the transfer-based paradigm of FSL when

applied to KG completion.

both zero- and few-shot image classifications, with an
approach named transfer graph generation (TGG) that has
a graph generation module for generating instance-level
graph and a propagation module for utilizing this graph for
prediction. They trained the whole model with an episodic
training strategy of meta learning. Zhang et al. [65] used a
joint mapping method to predict relations for entity men-
tions in a sentence. In this method, a knowledge-enhanced
prototypical network and a relation meta-learning model,
which implement the matching between instances and the
matching between instance and relation meta, respectively,
are trained with gradient meta.

F. Transfer-Based Paradigm

Some KG-aware FSL methods directly apply models
that are built from samples of seen classes (Dtr) to pre-
dicting samples of unseen classes (Dte) with the help of
the few-shot samples (Dfew). These methods are regarded
as the transfer-based paradigm. It is worth noting that
some methods of the other paradigms such as the model
parameter propagation methods also have an idea of
implicitly transferring data or parameters from seen classes
to unseen classes. The difference is that methods of the
transfer-based paradigm directly apply the whole predic-
tion models learned from Dtr to Dte. They are often for
few-show KG completion, where one KG is given for model
learning, while another KG composed of triples of unseen
entities is for inference (prediction), as shown in Fig. 10.
For convenience, we name the first KG as the seen KG and
the second KG as the unseen KG. Such a task is common
in real world: given an existing KG (seen), the unseen KG
could be either an emerging sub-KG that is to be added or
a KG of another domain with shared relations but different
entities. We further classify these FSL methods into two
categories: neural network transfer and rule transfer. We
will next introduce the works of each category mainly from
the dimension of the specific model to transfer.

1) Neural Network Transfer: As GNNs can represent
statistical regularities and structure patterns in a graph,
some methods transfer a GNN learned from the seen
KG to the unseen KG for inference. Teru et al. [135]
proposed a method named GraIL. It learns a GNN by
extracting subgraphs from the seen KG and labeling their
entities with their structural roles (e.g., the shortest dis-
tance between two entities) and applies this GNN to
predict the relation between two unseen entities in the

unseen KG. Chen et al. [137] extended GraIL by using
R-GCN [147] for supporting multiple relations in the KG.
Besides, they proposed to transfer another model named
relational correlation network learned from the seen KG
to the unseen KG and combined its triple score with that
by the extended GraIL. Note that the relational correlation
network is learned from a relation correlation graph whose
nodes represent the relations and edges indicate the topo-
logical correlation patterns between any two relations in
the original KG. Liu et al. [136] proposed to reformulate
the original KG as a graph as follows: two connected KG
entities or an entity and its own are represented as one
graph node, and each node is initialized with features
indicating the triples in which the two entities are involved.
They learn a GCN from the graph of the seen KG, which is
shown to be able to capture graph patterns represented in
Datalog rules, and apply this GCN to predict graph node
features (i.e., triples) of the unseen KG.

2) Rule Transfer: Different rules, such as Horn rules,
first-order rules, and their weighted versions, can be
learned from a KG for representing graph patterns and
regularities [148], [149]. They may not be as expres-
sive as GNNs for representing very complicated statis-
tical regularities but are more interpretable. Sadeghian
et al. [138] proposed a method named DRUM for few-shot
KG completion, where first-order logical rules (such as
brother(X, Z) ∧ fatherOf(Z, Y ) → uncleOf(X, Y )) asso-
ciated with weights are learned from the seen KG by a
differentiable way using the rule mining method named
neural LP, and these rules are applied in the unseen KG for
deductive reasoning for new triples. This method uses the
KG relations as the rule predicates and assumes that the
relations of the seen and the unseen KGs are the same such
that the rules can be directly transferred. For the situation
where predicates (relations) of the unseen KG are different
from those of the seen KG, we find the following two
solutions for rule transfer: 1) matching predicates between
rules, proposed by Mihalkova et al. [139] and Mihalkova
and Mooney [140], for transferring rules mined by Markov
logic networks (MLNs) and 2) extracting and transferring
more general higher order rules that are summarized from
the original rules [141], [142].

G. ZSL and FSL Comparison

Some KG-aware FSL methods are specifically developed
to utilize the few-shot samples. Typical kinds of such meth-
ods are the optimization-based paradigm, the transfer-
based paradigm, and the embedding propagation category
of the propagation-based paradigm. The meta-learning
algorithms used in the optimization-based paradigm and
the models directly transferred both rely on the few-shot
samples and thus cannot be applied to ZSL. For example,
when a set of rules or a GNN are transferred to predict
triples involving unseen entities, these unseen entities
must be associated with some triples for evidence (graph
patterns) for inference. Many of these FSL methods aim
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Fig. 11. Overview of the benchmarks of different tasks and their KGs. The green box denotes the KG auxiliary information. Some KG

completion benchmarks without additional KG (ontology) auxiliary information are also collected, as the zero- or few-shot task itself is within

a KG context.

at KG completion tasks. They often ignore or do not well
utilize the auxiliary information.

Meanwhile, some other KG-aware FSL methods are sim-
ple extensions of corresponding KG-aware ZSL methods.
They train the original ZSL models with the additional
few-shot samples or ensemble the ZSL models with the
models trained from the few-shot samples. This is common
in methods of the mapping-based paradigm and the class
feature paradigm. The mapping models and the fusion
models can be trained with both the training samples and
the few-shot samples (e.g., [45], [63], and [76]). In fact,
the majority of the ZSL methods, which usually well utilize
the auxiliary KG, can be extended to support FSL with
the above extension ideas, although for the class belief
propagation category, there are currently only ZSL works,
no FSL works. However, well combining the KG (or some
other auxiliary information) with the few-shot samples is
still an open problem.

VI. A P P L I C AT I O N S A N D R E S O U R C E S
In this section, we first very briefly revisit KG-aware ZSL
and FSL in different domains and tasks and then introduce
some public resources (see Table 4 for a summary of
methods of each task and Fig. 11 for an overview of
benchmarks of each task).

A. Computer Vision
1) Image Classification: Regarding zero-shot image

classification,16 the early works mainly utilize class
attributes [2], [3], [28], [29] and class text infor-
mation [10], [11], [30], [153], [154], [155], with

16Note that object recognition is often transformed into two steps:
discovering object bounding boxes and classifying these bounding boxes.
Zero-shot object recognition in many works (e.g., [150]) usually aims
at the second step and is equivalent to zero-shot image classifica-
tion. There are also some works using KGs for supporting object
recognition [151], [152].

the mapping-based paradigm and the data augmenta-
tion paradigm often adapted. However, the state-of-the-
art performance on many benchmarks now is achieved
by those methods utilizing KGs constructed by vari-
ous sources, including existing KGs, task-specific data,
and domain knowledge [12], [13], [14], [54], [55],
[56]. To utilize the KGs, the propagation-based paradigm
starts to be widely adopted in some recent studies such
as [12], [13], and [47].

To support method development and evaluation, some
open benchmarks on KG-aware zero-shot image classifica-
tion have been proposed.

1) ImageNet is a large-scale image database containing
a total of 14 million images from 21K classes [156].
Each image is labeled with one class, each class is
matched to a WordNet [32] entity, and the class
hierarchies from WordNet can be used as the auxiliary
information. In the works [12] and [13], 1k classes
with balanced images are used as seen classes for
training, while classes that are two hops or three
hops away or all the other classes are used as unseen
classes for testing. The weakness of ImageNet mainly
lies in that the KG has only class hierarchies and class
name) without any other knowledge such as class
attributes and commonsense knowledge.

2) ImNet-A and ImNet-O are extracted from Ima-
geNet by Geng et al. [14], [91]. ImNet-A includes
80 classes from 11 animal species, while ImNet-O
includes 35 classes of general objects. In the exper-
iment in [14], ImNet-A is partitioned into 28 seen
classes (37 800 images) and 52 unseen classes
(39 523 images), while ImNet-O is partitioned into
ten seen classes (13 407 images) and 25 unseen
classes (25 954 images). In their latest version
released in [91], each benchmark is equipped with
a KG, which is semiautomatically constructed with
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Table 4 Summary of KG-aware ZSL and FSL Works of Different Tasks

several kinds of auxiliary knowledge, including class
attribute, class textual information, commonsense
knowledge from ConceptNet, class hierarchy (taxon-
omy) from WordNet, and logical relationships such as
disjointness.

3) AwA2, originally proposed in [27], has 50 animal
classes and 37 322 images collected from public web
sources such as Flickr and Wikipedia, and 85 real-
valued attributes annotated by experts for describing
animal visual characteristics. It can also be used to
evaluate KG-aware ZSL methods since the classes
are aligned with WordNet entities and the animal
taxonomy from WordNet can be used as a simple
KG. In the extended version by Geng et al. [91], a KG
is constructed for AwA2 with the same types of
knowledge as ImNet-A and ImNet-O. Note that AwA
in [91] actually refers to AwA2, while the original
AwA1 released in [28] does not have public copyright
license for all of its images.

4) NUS-WIDE [157] is a multilabel image classification
dataset, including nearly 270 K images. Each image
contains multiple objects, and thus, NUS-WIDE is
widely used for evaluating multilabel zero-shot image
classification [43], [158], [159]. To be more specific,
the images have two versions of label sets: NUS-
1000 and NUS-81. The former comprises 1000 noisy
labels collected from Flickr user tags and the latter
is a dedicated one with 81 human-annotated labels.
To perform multilabel ZSL, the label in NUS-81 is

taken as the unseen label set, while the seen label
set is derived from NUS-1000 with 75 duplicated
ones removed and thus results in 925 seen label
classes. In works on KG-aware ZSL such as [43], NUS-
WIDE is accompanied by a KG with three types of
label relations, including a super-subordinate corre-
lation from WordNet, positive, and negative corre-
lations computed by label similarities such as WUP
similarity [160].

For few-shot image classification, the majority of the
existing methods aim at utilizing the few-shot samples by,
e.g., meta learning, while the KG-aware studies often try
to combine benefits from the KG external knowledge and
the few-shot samples. Some of them simply extend their
mapping-based models that are originally developed for
zero-shot image classification by training with additional
samples of the unseen classes (e.g., [45], [52], and [86]),
while some others further generate more data for unseen
classes conditioned on KGs (e.g., [21]) or utilize KGs
to transfer images features from seen classes to unseen
classes (e.g., [51] and [23]).

There are also some open benchmarks that can be used
for KG-aware few-shot image classification. The following
are some widely used ones.

1) ImageNet-FS [161] and mini-ImageNet [162] are
two derivatives of ImageNet. ImageNet-FS covers
1000 ImageNet classes with balanced images and
these classes are divided into 389 seen classes and
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611 unseen classes. During the evaluation, images of
193 seen classes and 300 unseen classes are used
for cross validation, while images of the remaining
196 seen classes and 311 unseen classes are used for
testing. In contrast, mini-ImageNet is relatively small.
It has 100 classes, each of which has 600 images.
These classes are partitioned into 80 seen classes and
20 unseen classes. Since all the classes are aligned
with WordNet entities, WordNet can be used as exter-
nal knowledge.

2) AwA1 [28], AwA2 [27], and CUB [163] are three
typical zero-shot image classification benchmarks
that can be easily extended for a few-shot setting.
AwA1 and AwA2 both have 50 coarse-grained animal
classes, with 40 of them being seen classes and the
remaining being unseen classes. CUB has 200 fine-
grained bird classes, with 150 of them being seen
classes and the remaining being unseen classes.
A small number of labeled images (usually ten) are
added for each unseen class so as to support a few-
shot setting.
Meanwhile, several KGs have been added to these
benchmarks for evaluating KG-aware methods: Tsai
and Salakhutdinov [21] and Akata et al. [45], [93]
added WordNet classes hierarchies to AwA1 and CUB;
Zhao et al. [84] constructed a domain-specific KG for
CUB based on the attribute annotations of samples.
Zhang et al. [55] exploited ConceptNet to construct
a KG for AwA2 and utilized part-level attributes to
construct a KG for CUB.

2) Visual Question Answering: VQA is to answer a nat-
ural language question according to a given image. Teney
and van den Hengel [164] first proposed zero-shot VQA
as the setting where there are unseen concepts in the
text. Namely, a testing sample is regarded as unseen if
there is at least one novel word in its question or answer.
Ramakrishnan et al. [165] considered novel objects in the
image. Namely, an image object that has never appeared in
the training images is regarded as unseen. KGs have been
exploited for addressing zero-shot VQA, but not widely.
The work [57] proposes a mapping-based method, where
answers that have never appeared in training are predicted
via comparing the KG-based embeddings of the ques-
tion and answer embeddings. The work [88] also adopts
the mapping-based paradigm but builds and embeds an
OWL ontology for establishing connections between seen
answers and unseen answers.

A few VQA datasets have been published, but only a
small number of them have been used for KG-aware zero-
shot VQA.

1) ZS-F-VQA [57], constructed by resplitting a fact-based
VQA benchmark named F-VQA [71], has no overlap
between answers of the training samples and answers
of the testing samples. In average, the training set has
2384 questions, 1297 images, and 250 answers, while
the testing set has 2380 questions, 1,312 images,

and another 250 answers. Chen et al. [57] extracted
facts from three public KGs (DBpedia [68], Concept-
Net [33], and WebChild [70]) and constructed an
auxiliary KG for evaluating KG-aware methods.

2) OK-VQA [166] is a recent benchmark where the visual
content of an image is not sufficient to answer the
question. It has 14 031 images and 14 055 questions,
and the correct answers are annotated by volunteers.
Chen et al. [88] used it for evaluating KG-aware
zero-shot VQA, by extracting 768 seen answers and
339 unseen answers, using auxiliary information from
ConceptNet.

Regarding few-shot VQA, the existing methods
(e.g., [61]) often rely on pretrained language models
such as GPT-3, which have already learned a large
quantity of knowledge from text corpora. To incorporate
images, visual language models can be pretrained with
images and text or images can also be transformed
into text by, e.g., image captions so as to be utilized in
language models [167]. Meta learning is also applied
for fully utilizing the few-shot samples and fast model
training [168].

KGs have complementary knowledge besides the pre-
trained (visual) language models and the few-shot sam-
ples. We find some KG-aware few-shot VQA studies but no
open benchmarks. Yang et al. [61] proposed a supervised
learning method, which uses knowledge retrieved from
KGs for augmenting the question–answer samples, and this
method is used as a baseline in comparison with the GTP-
3-based method. Marino et al. [129] first fused features
of the question and the image by a transformer-based
model and then fuse these features with knowledge from
ConceptNet. On the other hand, the aforementioned men-
tioned zero-shot VQA benchmarks ZS-F-VQA and OK-VQA
can be easily adjusted by adding few-shot samples for
supporting the few-shot VQA setting.

B. Natural Language Processing

1) Knowledge Extraction: By knowledge extraction,
we refer to those NLP tasks that are to extract structured
knowledge including entities, relations, events, and so on
from natural language text. Relational facts, which are
sometimes simply called triples in this domain, can also be
extracted, after entities and relations are recognized. Since
the entities, relations, and events can often be aligned with
elements in a KG (such as a general-purpose KG and an
event ontology), their relationships represented in the KG
can be exploited to address both zero- and few-shot knowl-
edge extraction. For these tasks, most KG-aware zero-shot
methods follow the mapping-based paradigm utilizing the
entities’, relations’, or events’ embeddings in the KG [63],
[64], [67], [73], while KG-aware few-shot methods often
follow the optimization-based paradigm, which utilizes
meta-learning algorithms for fast training [65], [66]. Some
methods also consider the class feature paradigm by fusing
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features from a KG with the input features for both ZSL and
FSL [58], [128].

There are quite a few knowledge extraction benchmarks
that can be used for evaluating both KG-aware ZSL and
KG-aware FSL. Several representative ones are given here.

1) BBN, OntoNotes, and Wikipedia are three bench-
marks for fine-grained named entity typing, where
the entity types are (partially) matched with types in
Freebase. They are all adopted by Ma et al. [63] for
evaluating zero-shot entity typing, where the training
set has only coarse-grained types, while the testing set
has the second-level (fine-grained) types. They use a
set of manually annotated documents (sentences) for
validation and testing with a partitioning ratio of 1:9.
Specifically, BBN has 2311 manually annotated Wall
Street Journal articles with around 48k sentences and
93 two-level hierarchical types [169]; 47 out of 93
types are mapped to Freebase types and 459 docu-
ments (6.4 K sentences) are used for validation and
testing.
OntoNotes is an incrementally updated corpus that
covers three languages (English, Chinese, and Arabic)
and four genres (NewsWire, Broadcast News, Broad-
cast Conversation, and Web text) [170].
It has 13 109 news documents that are manually
annotated using 89 three-level hierarchical types; 76
manually annotated documents (1300 sentences) are
used for validation and testing. Wikipedia has around
780.5k Wikipedia articles (1.15M sentences), 112
fine-grained Freebase type annotations, and 434 vali-
dation and testing sentences.

2) NYT10 and WEB19 are two benchmarks used in [64]
for zero-shot relation (property) extraction. NYT10 is
constructed by Freebase triples and New York Times
(NYT) corpus [171]. WEB19 is formed by first select-
ing predicate paths in the FB15k benchmark [172] as
properties and then generating samples (a text cor-
pus) associated with these properties using Microsoft
Bing search engine API with the aid of human eval-
uation [64]. Under the ZSL setting in [64], 217 and
54 properties of WEB19 are set to seen (for training)
and unseen (for validation and testing), respectively,
while all of the 54 properties of NYT10 are used as
unseen (for testing).

3) ACE05 is a corpus for event extraction, annotated by
33 fine-grained types that are subtypes of 8 coarse-
grained main types such as Life and Justice from
the Automatic Content Extraction (ACE) ontology.
Huang et al. [73] made two zero-shot event extrac-
tion settings: 1) predicting 23 unseen fine-grained
subtypes by training on one, three, five, or ten seen
subtypes and 2) predicting unseen subtypes that
belong to other main types by training on seen sub-
types of Justice.

2) Text Classification: Few-shot text classification is sim-
ilar to zero-shot text classification: the majority of the

solutions mainly utilize different kinds of word embed-
dings and the research on KG-aware method is rare. Rios
and Kavuluru [76] proposed an ontology-augmented CNN
classifier for both few- and zero-shot text classifications,
while Sui et al. [19] utilized knowledge retrieved from the
NELL KG for augmenting a network, which calculates the
matching of the input and the class. The benchmarks used
in these two works are given here.

1) MIMIC II [173] and MIMIC III [174] are multilabel
text classification benchmarks used in [76]. Their
labels are concepts in the ICD-917 ontology, which
is an international standard diagnostic classification
for all general epidemiological, many health manage-
ment purposes, and clinical use. MIMIC II has 18 822
labels for training and 1711 labels for testing, while
MIMIC III has 37 016 labels for training and 1356
labels for testing.

2) ARSC is a popular benchmark for binary text classi-
fication of sentiment [175], generated from Amazon
reviews for 23 products (classes). In [19], 12 prod-
ucts, including books, DVDs, electronics, and kitchen
appliances are selected as the unseen classes, for each
of which 5 labeled reviews are given, and NELL is
used as the auxiliary KG.

3) Question Answering: Zero- and few-shot QA18 started
to attract wide attention in recent years, mainly due to the
fast development of pretrained language models such as
BERT and GPT-3 that are inherently capable of addressing
ZSL and FSL problems in NLP since a large quantity of
knowledge is learned from large-scale corpora as param-
eters [61], [176]. Similar to the text classification, the
output answer (class) is often regarded as an additional
input and fed to a prediction model together with the
question input. It is worth mentioning that the definition
of zero-shot QA varies from paper to paper. Some are
consistent with our general ZSL definition, which mainly
requests that the classes (answer labels) for prediction
have no associated training data, while the others are
not. For example, Ma et al. [176] simply regarded testing
the model on a QA dataset that is different from the
training QA datasets as zero-shot QA; Wei et al. [177]
fine-tuned language models on a collection of datasets
of some specific tasks (e.g., sentiment classification and
summarization), tested the models on datasets of different
tasks (e.g., commonsense QA), and regarded this as its
zero-shot QA setting.

Although pretrained language models have contained
much knowledge via large-scale parameters, symbolic
knowledge (including commonsense and domain knowl-
edge with logics) from KGs are often complementary and
beneficial for addressing zero-shot QA. Therefore, there

17https://www.cdc.gov/nchs/icd/icd9.htm
18The scope of QA is actually quite wide. It often includes or has

a high overlap with quite a few problems such as VQA, knowledge
base QA, table QA, and machine reading comprehension (MRC). In this
section, we just refer to the problem of giving an answer or answers to
a natural language question with respect to a context described by text.
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have been some KG-aware zero-shot QA studies [87], [89].
For example, Banerjee and Baral [87] modeled the QA
problem via knowledge triple learning where the con-
text, question, and answer are modeled as a triple, and
the answer is predicted given the context and question.
Their knowledge triple learning model is learned from KG
triples. Similar to [87], Zhou et al. [79] also framed the
multiple-choice QA task as a knowledge completion (triple
prediction) problem, where the model is trained by alter-
natively masking the subjects and the objects in triples.
Bosselut et al. [89] used COMET—a transformer-based
model trained on commonsense KGs such as ConceptNet
to generate context-relevant commonsense triples for each
QA sample and then infer the answer from these triples.

Similarly, KGs can also benefit few-shot QA. For exam-
ple, Banerjee and Baral [87] directly extended their knowl-
edge triple learning model from zero-shot QA to few-
shot QA where 8% of the training data are given as
the few-shot samples. Bosselut et al. [89] also extended
their zero-shot QA method, which infers the answer to a
question according to their context-relevant commonsense
triples, to few-shot QA by using four, ten, or 20 validation
samples in evaluation. However, due to challenges such as
retrieving exactly relevant knowledge from a large KG and
injecting KG knowledge into pretrained language models,
the investigation of KG-aware zero- and few-shot QA is still
quite preliminary.

There have been a few widely used QA benchmarks such
as PhysicalIQA for commonsense physical reasoning [178].
They can be used for benchmarking zero- and few-shot
QA after suitable dataset partitioning. We suggest bench-
marks that are constructed with KGs or have been partially
aligned with KG entities. The tasks of these benchmarks
often rely on external knowledge, and their corresponding
external KGs can be directly used for evaluating KG-aware
methods. Some such benchmarks are given here.

1) SocialIQa [179] is a large-scale QA resource to eval-
uate a model’s capability to understand the social
dynamics underlying situations described in short text
snippets. It has 38k question–answer pairs. Each sam-
ple consists of a context, a question about that con-
text, and three multiple-choice answers from crowd-
sourcing. Commonsense knowledge (i.e., seeds for
creating the contexts and answers) are extracted from
an event KG named ATOMIC [180]. This dataset
is used by Bosselut et al. [89] and Banerjee and
Baral [87] for evaluating their KG-aware zero- and
few-shot QA methods.

2) CommonsenseQA [181] is a challenging dataset for
evaluating commonsense QA methods. In total, it has
12 247 questions, each of which has 5 answer can-
didates. The ground-truth answers are annotated by
crowdsourcing based on question-relevant subgraphs
of ConceptNet [33]. CommonsenseQA is also adopted
by Banerjee and Baral [87] for evaluation.

3) STORYCS [182] consists of five-sentence stories with
annotated motivations and emotional responses. It is

originally for emotion classification, where the labels
are drawn from classical theories of psychology.
Bosselut et al. [89] transformed the classification task
into a QA task by posing an individual question
for each emotion label and used it for evaluating
their KG-aware method for both zero- and few-shot
settings.

4) aNLI [183], QASC [184], OpenBookQA [185], and
ARC [186] are adopted by Banerjee and Baral [87]
for evaluating their KG-augmented triple learning
model for zero- and few-shot QA, besides SocialIQa
and CommonsenseQA. Specifically, aNLI, which has
171k question–answer pairs, is a dataset with com-
monsense knowledge, while QASC, OpenBookQA,
and ARC, whose sample sizes range from 6k to
10k, are three QA datasets with scientific knowl-
edge. OpenBookQA and ARC are also adopted by
Zhou et al. [79] for zero-shot QA.

C. KG Completion

It is to infer missing knowledge in a KG. Most existing
studies aim at predicting relational facts (triples), which is
sometimes called link prediction. In this article, we mainly
refer to these link prediction studies. In a zero-shot or
few-shot setting, we are required to handle entities and/or
relations that emerge after the KG embeddings have been
learned. Since the solutions to addressing unseen entities
and unseen relations are quite different, we introduce the
studies for unseen entities and unseen relations separately.

1) KG Completion With Unseen Entities: There have been
quite a few methods on KG completion with unseen enti-
ties. They often utilize entities’ auxiliary information, such
as name information, textual descriptions, and attributes,
following the mapping-based paradigm [94], [95] and the
class feature paradigm [48], [97], [98], [100], [101],
[102], [103], [104], [105]. Various benchmarks have
been proposed. They are usually constructed based on
some existing normal KG completion benchmarks such
as FB15k [172], FB15k-237 [187], WordNet11 [188],
WN18RR [117], and NELL-995 [189], and some sub-KGs
extracted from original KGs such as DBpedia [68] and
Wikidata [34]. Their entity auxiliary information is often
collected from the benchmarks’ original KGs or some asso-
ciated public resources. For example, the textual descrip-
tions of entities in DBpedia50k, FB20k, and Wikidata5M
can be collected from DBpedia, Freebase, and Wikipedia,
respectively, while the textual descriptions of entities of
FB15k-237 in [190] are extracted from the introduction
section of their corresponding Wikipedia pages.

These benchmarks are often constructed following a
common way. Given an original KG completion bench-
mark, a set of entities are first selected as unseen enti-
ties. Then, their associated triples in the training set are
removed. Next, the relations that appear in both the train-
ing set and the testing set are adopted, and the triples of
the not adopted relations are removed in both the training
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set and the testing set. For a testing triple to predict, there
could be two cases: 1) its head (or tail) is an unseen
entity, while the other is a seen entity and 2) both its head
and tail are unseen entities. Accordingly, we regard the
benchmark with the first case testing triples semi-ZS, the
benchmark with the second case testing triples fully-ZS,
and the benchmark with both testing triples as mixture-ZS.
Some typical benchmarks are given here.

1) FB15k-237-OWE [94] is a typical semi-ZS benchmark
built on FB15k-237. First, testing triples whose tail
entities are to be predicted are collected. Specifically,
a set of tail entities are selected, and some asso-
ciated head entities are randomly picked from the
FB15k-237 triples (by uniform sampling over all the
associated head entities). Each picked head entity
is removed from the training graph by moving all
the triples whose heads are this entity to the testing
set and removing all the training triples whose tails
are this entity. Testing triples whose head entities
are to be predicted are processed in the same way.
Then, a testing set is generated by merging the above
two kinds of testing triples and removing the testing
triples whose relations are not in the training set. This
testing set is further splitted into a validation set and
a final testing set. The dataset contains 2081 unseen
entities, 12 324 seen entities, and 235 relations. The
numbers of triples for training, validation, and testing
are 242 489, 10 963, and 36 250, respectively.

2) DBpedia50k and DBpedia500k [98] are also typical
semi-ZS benchmarks, constructed in a similar way
as FB15k-237-OWE. DBpedia50k has 49 900 entities
and 654 relations, with 32 388, 399, and 10 969
training, validation, and testing triples, respectively.
DBpedia500k has 517 475 entities and 654 relations,
with 3 102 677, 10 000, and 1 155 937 training, vali-
dation, and testing triples, respectively.

3) Wikidata5M [102], originally developed for evaluat-
ing text-aware KG embedding methods, is an impor-
tant fully-ZS benchmark. It is constructed based on
the Wikidata dump and the English Wikipedia dump.
Each entity in Wikidata is aligned to a Wikipedia page
and this page’s first section is extracted as the entity’s
textual description. Entities with no Wikipedia pages
or with descriptions being shorter than five words
are discarded. Next, all the relational facts (triples)
are extracted from the Wikidata dump. One triple
is kept if both of its entities are not discarded, and
its relation has a corresponding nonempty page in
Wikipedia; otherwise, this triple is discarded. The
benchmark contains 4 594 485 entities, 822 relations,
and 20 624 575 triplets. To support the zero-shot set-
ting, Wang et al. [102] randomly extracted two sub-
KGs as the validation set and the testing set and used
the remaining as the training set. The three sets have
4 579 609, 7374, and 7475 entities, 822, 199, and 201
relations, and 20 496 514, 6699, and 6894 triples.

4) FB20k [191] is a benchmark whose testing triples
may involve unseen entities. It has the same training
set and validation set as the normal KG completion
benchmark FB15k but extends FB15k’s testing set by
adding triples involving unseen entities. Specifically,
a candidate set of unseen entities are first selected
from Freebase. They should be associated with some
entities in FB15k entities within one hop. Then, some
new triples whose relations are ensured to be already
in FB15k are extracted from Freebase and added to
the testing set.
These new testing triples have four kinds:
those whose head and tail are both seen entities, those
whose heads are unseen and tails are seen, those
whose tails are unseen and heads are seen, and
those whose heads and tails are both unseen.
The first kind of testing triples is for normal KG
completion, while the other three kinds are for
zero-shot KG completion. Thus, the task of FB20k
can be understood as generalized zero-shot KG
completion. The numbers of the test triples of the
above four types are 57 803, 18 753, 11 586, and
151, and all these triples involve 19 923 entities.
The subsets of FB15k-237 and WN18RR proposed
in [190] are similar.

In few-shot KG completion, unseen entities usually have
a small number of associated triples given. The current
methods often aim to fully utilize these triples, mainly
following the propagation-based paradigm [121], [122],
[123], [124], [125], [126], [127], the transfer-based
paradigm [135], [136], [137], [138], and the
optimization-based paradigm [132]. Several few-shot
KG completion benchmarks with unseen entities have
also been constructed based on normal KG completion
benchmarks.

According to the type of entity that an unseen entity
is linked to, we categorize these benchmarks into three
categories. For the first category, the entity linked to is seen
in training. Thus, the few-shot triples can be utilized to
propagate embeddings from seen entities to unseen enti-
ties by, e.g., GNNs [121], [122], [124]. Typical benchmarks
of this category include subsets extracted from WordNet11
in [121], subsets extracted from FB15k in [122], and
subsets extracted from WN18RR, FB15k-237, and NELL-
995 in [124]. For the second category, the entity linked to
is also an unseen entity. These benchmarks are to evaluate
the generalization ability of a model trained on one KG to
another KG or an emerging sub-KG with different entities.
Methods of the transfer-based paradigm are often adopted.
Typical benchmarks of this category include subsets of
WN18RR, FB15k-237, and NELL-995 extracted in [135].
In the third category, the entity linked can be either unseen
or seen. Typical benchmarks include subsets of WN18RR,
FB15k-237, and NELL-995 contributed in [132] where a
meta-learning method is often applied to learn embed-
dings of the unseen entities from their few-shot triples.
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Next, we will introduce more details of some representa-
tive benchmarks of each category:

1) Subsets of WordNet11 by Hamaguchi et al. [121]
are of the first category. They are constructed from
the normal KG completion benchmark WordNet11
in the following way. First, entities in the original
testing set are extracted as unseen entities, while all
the other entities are regarded as seen. Among the
unseen entities, those that are associated with only
seen entities in the original training triples are kept
and the others are discarded. Second, the original
training triples that do not contain any unseen entities
are selected for a new training set, those that contain
exactly one unseen entity are selected as few-shot
samples, and those that contain two unseen entities
are discarded. Next, a new testing set is constructed
from the original testing triples by removing those
containing no unseen entities. Nine subsets of dif-
ferent scales are extracted for the few-shot setting,
by setting the size of testing triples for extracting
unseen entities to 1000, 3000, and 5000, and by
setting the position for extracting unseen entities to
head, tail, and both.

2) Subsets of WN18RR, FB15k-237, and NELL-995 by
Teru et al. [135] are of the second category. They
are constructed in the following way. Given one orig-
inal benchmark, two disjoint graphs are sampled:
train-graph for training and ind-test-graph for test-
ing. It is ensured that their entity sets are disjoint,
while the relations of ind-test-graph are all involved
in train-graph. In particular, 10% of the triples of
the ind-test-graph are randomly selected for testing.
These benchmarks are also adopted for evaluation
in [137].

3) Subsets of WN18RR, FB15k-237 and NELL-995 by
Baek et al. [132] are of the third category. These sub-
sets are extracted from each original benchmark as
follows. First, a set of entities, which have a relatively
small amount of associated triples, are randomly
sampled as the unseen entities, and they are further
partitioned and used for constructing three meta sets
of triples: a meta-training set, a meta-validation set,
and a meta-testing sets. The other entities in the orig-
inal benchmark are regarded as seen entities. Second,
triples composed of seen entities alone are extracted
to construct a graph named In-Graph. Finally, the
meta sets are cleaned such that each of their triples
has at least one unseen entity and all the triples are
out of In-Graph.

2) KG Completion With Unseen Relations: Zero-shot
KG completion with unseen relations usually utilizes
the relations’ auxiliary information such as their names
and descriptions, mainly following the data augmen-
tation paradigm [14], [31], [91] and the class fea-
ture paradigm [100], [104], [105], while few-shot KG
completion with unseen relations usually relies on the

few-shot triples using methods of the optimization-based
paradigm [130], [131], [133], [134], the mapping-based
paradigm [118], [119], and the propagation-based
paradigm [125]. In comparison with KG completion with
unseen entities, there are fewer benchmarks for KG com-
pletion with unseen relations. We find NELL-ZS and Wiki-
ZS for the zero-shot setting and NELL-One and Wiki-One
for the few-shot setting. NELL-ZS and NELL-One are sub-
KGs extracted from NELL, while Wiki-ZS and Wiki-One
are sub-KGs extracted from Wikidata. Their details are
introduced as follows.

1) NELL-ZS and Wiki-ZS [31] both have a training set
with triples of seen relations, a validation set, and
a testing set with triples of unseen relations. The
entities in the testing triples and the validation triples
have all been involved in some training triples. NELL-
ZS has 139, ten, and 32 training, validation, and test-
ing relations, respectively, and 65 567 entities, while
Wiki-ZS has 469, 20, and 48 training, validation,
and testing relations, respectively, and 605 812 enti-
ties. For both NELL-ZS and Wiki-ZS, Qin et al. [31]
used relation textual descriptions as the auxiliary
information, while Geng et al. [14], [91] constructed
ontological schemas, which contain not only textual
information but also relation hierarchies, relation
domains and ranges, relation characteristics, and
so on.

2) NELL-One and Wiki-One are originally developed by
Xiong et al. [118] for evaluating one-shot KG comple-
tion with unseen relations. In construction, relations
that are associated with less than 500 triples but more
than 50 are extracted from the original KGs as task
relations (i.e., one relation corresponds to one task).
In NELL-One, 67 such relations are extracted and they
are partitioned into 51, five, and 11 for constructing
triples of the training, validation, and testing set,
respectively, while in Wiki-One, 183 such relations
are extracted and partitioned into 133, 16, and 34
for constructing triples of the training, validation,
and testing sets, respectively. The 68 545 entities are
extracted for NELL-One and 4 838 244 entities are
extracted for Wiki-One. In addition, another 291 and
639 relations are extracted as background relations
constructing more triples for the entities. Note that
these two benchmarks can also be simply revised for
more general few-shot KG completion by adding more
than one triple.

VII. O P E N P R O B L E M S
A. KG Quality

For a ZSL or FSL task, one critical challenge is con-
structing a customized KG with exactly necessary and high-
quality knowledge. Although we now can reuse existing
KGs, extract knowledge from some task data, and curate
knowledge with domain experts, some open problems still
remain.

680 PROCEEDINGS OF THE IEEE | Vol. 111, No. 6, June 2023
Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on October 04,2023 at 12:48:23 UTC from IEEE Xplore.  Restrictions apply. 



Chen et al.: Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey

First, knowledge and data integration is rarely investi-
gated, and the impact of low-quality knowledge, which
could be biased or even erroneous, has not been studied
in the current KG-aware ZSL and FSL works. Second,
the coverage of necessary knowledge and the ratio of
irrelevant knowledge are often ignored in investigating a
KG’s usefulness toward a ZSL or FSL task, and there is a
shortage of methods that are able to (semi)automatically
retrieve relevant knowledge from a large-scale KG for a
given task. Third, several popular knowledge sources, such
as natural language text, web tables and databases, and
their corresponding knowledge extraction methods like
open information extraction, have been rarely explored
for constructing the auxiliary KG for ZSL or FSL. This
could be a promising direction to improve the coverage
and quality of the auxiliary KG. Fourth, crowdsourcing and
human-on-the-loop techniques for data curation and KG
construction (e.g., [192]) are also worth investigating as
another potential way for further augmenting ZSL and FSL.

B. Learning Paradigms

1) KG-Aware ZSL: The mapping-based paradigm has
been widely investigated, while the data augmentation
paradigm has only four methods, one of which uses rules
while the remaining three of which use generation mod-
els. Mapping-based methods are often biased to unseen
classes in prediction, while the generation-based paradigm
can flexibly choose the model and avoid the bias after
data are generated. Thus, we think that generation-based
methods conditioned on KG embeddings are worth of more
investigation in the future. Meanwhile, it is hard to use
rules to generate numeric samples or features, but in KG
completion, it is feasible to use ontological schemas and
logical rules to infer triples for unseen entities and/or
relations. It would be a promising direction to combine
symbolic reasoning with data augmentation.

Regarding the propagation-based paradigm, belief prop-
agation has not been widely investigated but would be
a good solution for some CV tasks such as scene graph
extraction and VQA, where multiple objects in an image or
video, as well as their semantic relationships, need to be
recognized. With the development of pretrained language
models, the class feature paradigm is becoming more and
more popular, especially for tasks whose inputs are text,
such as text classification, QA, and knowledge extraction.
We think that this trend will continue in the future, while
KGs will still play an important role by providing symbolic
knowledge that these parameter-based language models
cannot represent.

2) KG-Aware FSL: Many FSL methods focus on utilizing
the few-shot samples via applying meta-learning algo-
rithms or extending the ZSL methods. It is still challenging
to combine the KG auxiliary information and the few-shot
samples. For the data augmentation paradigm, how to
merge the generated samples and the few-shot samples?
For the optimization-based paradigm, how to use KG to

guide the meta-learning algorithm? For the transfer-based
paradigm, how to guide the model transfer with KG? For
embedding propagation for KG completion, how to aug-
ment the propagation models such as GNN with auxiliary
information especially the ontological schema? We think
that all these are still open problems and worth further
investigation in the future.

C. ZSL and FSL in KG Construction

Nowadays, KG construction uses not only heuristics
(e.g., handcraft rules and templates), symbolic knowledge
engineering, and manual curation but also ML prediction
for (semi)automation [193]. Prediction tasks range from
knowledge extraction from different data sources such as
text, tables, and web pages, to knowledge curation such as
KG completion, entity alignment, entity resolution, entity
typing, and schema inference. Many such tasks rely on
supervised learning but often suffer from the shortage
of labeled samples. Although some tasks, such as entity
linking and KG completion, have been widely investigated
in FSL and ZSL, developing robust ZSL and FSL methods
for these prediction tasks under a KG context is still an
open problem and should attract wider attention. Mean-
while, some KG construction and curation tasks, such as
entity typing and table to KG matching, some dynamic
KG contexts with, e.g., involving schema and/or data, and
some complex knowledge representations such as OWL
ontology and Datalog rule can be considered for new
benchmarks for KG-aware ZSL and FSL.

D. Benchmarking

Although there have been some benchmarking studies
for ZSL and FSL [27], [194], systematic evaluation and
comparison of KG-aware methods is still not enough. The
existing KG-aware ZSL and FSL benchmarks are usually
associated with fixed KGs. The current methodology stud-
ies do not consider the impact of different settings on
knowledge coverage, representation, and quality settings,
and rarely apply one method to different tasks, which can-
not show the generalization capability. Our recent bench-
marking work [91] has analyzed the impact of different
KG semantics such as textual information, attributes, and
RDFS schemas on two typical and representative ZSL
methods OntoZSL [14] and DeViSE [10] for three tasks
(see results in the original paper), but fare and com-
prehensive comparison of more methods across different
datasets, different knowledge settings, and different tasks
are urgently needed in the future. Meanwhile, more bench-
marks should be developed to cover more domains where
KGs are widely used such as health science domains.

VIII. C O N C L U S I O N
KGs have become popular auxiliary information for
augmenting ZSL and FSL, and at the same time, KG con-
struction also involves many prediction tasks with zero-
and few-shot settings. Thus, KG-aware ZSL and FSL have
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gained widespread attention and popularity in many
domains such as CV, NLP, ML, and the semantic web. In this
survey, we systematically review over 90 KG-aware studies
for addressing sample shortage in ML from perspectives of
the KG, the methodology, and the application. The content
covers: 1) the introduction of KGs that have been applied
and the methods for constructing such task-specific KGs;
2) the review of the KG-aware ZSL and FSL methods

of each paradigm; and 3) the presentation of the devel-
opment of ZSL and FSL research for different tasks in
CV, NLP, and KG completion, as well as the resources
that can be used for evaluating KG-aware ZSL and FSL
methods. Besides, we have also analyzed and discussed the
challenges of KG-aware ZSL and FSL, and some potential
future directions.
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