Scalable Ontology-Based
Information Systems

lan Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group

Oxford University Computing Laboratory

What is an Ontology?

What is an Ontology?

A model of (some aspect of) the world

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary
relevant to domain, e.g.:

—_ Anatomy Trachea

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary

relevant to domain, e.g.: T Rough
Peroxlsome \/ ¢ Eagag:ﬁ:mlc

— Anatomy \\ .’”

Cellular biology

Plasma
= Membrane

Nucleolus

4
A2
T Nuclear
Envelope

Micro —

Rough
Endoplasmic
Reticulum

Endoplasmic
Reticulum

What is an Ontology?

A model of (some aspect of) the world
° Introduces vocabulary

relevant to domain, e.g.:

— Anatomy

— Cellular biology

— Aerospace

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary
relevant to domain, e.g.: "\ g cecosw »

- Anatomy Eye r.l % W}hers /

Base of tail
7

— Cellular biology o | 3 S Saddie
° 0
— Aerospace i ?
< ~Shou er Ribs
— Dogs

Under chest
Elbow

N Forearm

N Pastern
ks

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary

relevant to domain, e.g.: —

Dash of Celery Salt
Yellow Mustard

— Anatomy

— Cellular biology
— Aerospace

— Dogs

— Hotdogs

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary
relevant to domain

* Specifies meaning (semantics)
of terms

Heart is a muscular organ that
Is part of the circulatory system

What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary
relevant to domain

* Specifies meaning (semantics)
of terms

Heart is a muscular organ that
Is part of the circulatory system

* Formalised using suitable logic

Vx.[Heart(z) — MuscularOrgan(z) A
Jy.[isPartOf(x,y) A
CirculatorySystem(y)]]

Web Ontology Language OWL (2)

* W3C recommendation(s)

* Motivated by Semantic Web activity

Add meaning to web content by annotating
it with terms defined in ontologies

——

° Supported by tools and infrastructure
— APIs (e.g., OWL API, Thea, OWLink) |

— Development environments
(e.g., Protégée, Swoop, TopBraid Composer, Neon)

— Reasoners & Information Systems
(e.g., Pellet, Racer, HermiT, Quonto, ...)

* Based on Description Logics (SHOIN /| SROIQ)

Description Logics (DLs)

* Fragments of first order logic designed for KR

* Desirable computational properties
— Decidable (essential)

— Low complexity (desirable)

° Succinct and variable free syntax

Vz.[Heart(xz) — MuscularOrgan(z) A
Jy.[isPartOf(z,y) A
CirculatorySystem(y)]]

Heart = MuscularOrgan I
disPartOf.CirculatorySystem

Description Logics (DLs)

DL Knowledge Base (KB) consists of two parts:

— Ontology (aka TBox) axioms define terminology (schema)

Heart C MuscularOrgan M
disPartOf.CirculatorySystem
HeartDisease = Disease '
Jaffects.Heart
VascularDisease = Disease N
Jaffects.(JisPartOf.CirculatorySystem)

— Ground facts (aka ABox) use the terminology (data)

John : Patient
dsuffersFrom.HeartDisease

Why Care About Semantics?

Why Care About Semantics?

Why Care About Semantics?

Why should | care about semantics? J

Why Care About Semantics?

Why should | care about semantics? J

Why Care About Semantics?

Why should | care about semantics? J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

Why Care About Semantics?

Why should | care about semantics? J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

That's OK, but | don’t get paid for philosophy. J

Why Care About Semantics?

Why should | care about semantics? J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

That’s OK, but | don’t get paid for philosophy. J

a
From a practical POV, in order to specify and test
(ontology-based) information systems we need
to precisely define their intended behaviour

-

What are Ontologies Good For?

* Coherent user-centric view of domain

— Help identify and resolve disagreements

* Ontology-based Information Systems

— View of data that is independent of logical/
physical schema

— Answers reflect schema & data, e.g.:

“Patients suffering from Vascular Disease”

Now... that should clear up a
few things around here

What are Ontologies Good For?

Heart C MuscularOrgan
disPartOf.CirculatorySystem
HeartDisease = Disease "
Jaffects.Heart
VascularDisease = Disease
Jaffects.(JisPartOf.CirculatorySystem)

John : Patient M
dsuffersFrom.HeartDisease

What are Ontologies Good For?

* Coherent user-centric view of domain

— Help identify and resolve disagreements

° Ontology-based Information Systems

— View of data that is independent of logical/
physical schema

— Answers reflect schema & data, e.g.:

“Patients suffering from Vascular Disease”

— Query expansion/navigation/refinement

— Incomplete and semi-structured data Now... that should clear up a

. few things around here
— Integration of heterogeneous sources

Information-Based Decisions

Increasingly critical in many areas:

° In Healthcare industry

— Too much screening harms
patients and wastes money

— Too little screening costs
lives

Information-Based Decisions

Increasingly critical in many areas:

° In QOil and Gas industry

— Better quality information
could add €1B/year net
value to Statoil production

— Poorer quality information
and analysis costs
€6M/weekend!

Information-Based Decisions

Increasingly critical in many areas:

° InIT industry

— SAP deals with 80,000 queries/month at a cost of approx.
€16M

— SAP estimate 50% of support staff time spent searching for
relevant information

Information-Based Decisions

Increasingly critical in many areas:

° In Transport Security

— Failures can cost hundreds of lives

“We had sufficient information, but failed to
integrate and understand it”

Analysis Bottleneck

Collect Gather Information Make

Data Decisions
/}D&“\

* Decisions based on information
* Integration and analysis of data is the bottleneck

Healthcare

* UK NHS £10 billion “Connecting for Health” IT
programme

* Key component is Care Records Service (CRS)

— ‘“Live, interactive patient record service accessible 24/7"

— Patient data distributed across local centres in 5 regional
clusters, and a national DB

— SNOMED-CT ontology provides common vocabulary for data

 Clinical data uses terms drawn from ontology

SNOMED-CT

* It's BIG - over 400,000 concepts
* Language used is EL profile of OWL 2

* Multiple hierarchies and rich definitions

EH CliniClue 2006: SNOMED CT{International 0801intlRelease]) [Registered user: phendler@hotmail.com]
File Edit Subsets Restrict Language Layout Tools Help

rasTtRLEe=% ___—1 Pulmonary Tuberculosis

Concept d| 154283005 ﬂhs - Pulmonary tuberculosis —
Desciptiond| 1784750013 |clinical finding
T} _ il = = - pulmonary tuberculosis - Definition
l% Concept Status: Current . I’ [~
- *Descriptions A kind of pneumonitis
End |pulmonary tuber HE pulmonary tuberculosis (fdorder)

|>

[d pulmonary tuberculosis -[& pulmonary tuberculosi

S|TB - Pulmonary tuberculosis rEPTE - Pulmonary tubg#culosis

[@pulmonary tuberose sclerosis ‘A TE - Pulmanary tubgrculosis

EIPTE - Pulmonary tuberculosis TDefinition: Fully defingfi by ... : :
Einactive pulmonary tuberculosis ~is a B klnd Of tUberCUIOSIS
= pneumanitis
p)inflammatory disordepdt lower respiratory tract
E] disorder of lung
Hierarchy ISubtype hierarchy - o] inflammation pecific body organs
= M tuberculosis
[§205237003 pneurnonitis = = pulmonary disease due to Mycobacteria
[@36717001 tuberculosis , infectious disease of lung
[€54353005 pulmonary disease due to Mycobacteria R bacterial lower respiratary infection
= 283005 Julmonary tuberculosis) mycobacteriosis
[[{428697002 inactive tuberculosis of lung “causative agent
[{ 186175002 infiltrative lung tuberculosis i Mycobacterium tuberculosis complex
EI= 186188004 isolated tracheal or bronchial tuberculosis Group
-[d 77668003 isolated tracheal tuberculosis i . .
HE 50602006 nodular tuberculosis of lung rfji?wgegi'tas morphology kl nd Of PUImonary d |Sease
+[@ 186192006 respiratory tuberculosis, bacteriologically and hist #§lung structure .
+[d 186202007 respiratory tuberculosis, not confirmed bacteriolog /E-JQuaﬁﬁers due to Mycobactena
' 1 8 ‘I T?GG: LLJ‘LIP:‘I L LIEU _I_ Ul ;LJ[g v -.'iL} | L.-:!'-."iL-:! Lil_ll | Severlty
1 C Ehksls 2 tbelel|chi s (A N gagiths inpoberpeat of " i+
[« 186 [ljbfu r‘tdl Einlt =2 ﬁgﬂ |§ ttu Qm r_ﬂa nd 23}’;2}@8
- 186 1L tuberculnsic of ing _confirmed by cuilb) Dnly episodicities
-[a 186193001 tuberculosis of lung, confirmed by sputum micros clinical course
[186195008 tuberculosis of lung, confirmed histologically H3courses

-[| 23022004 tuberculous bronchiectasis i e codes
[|@90117007 tuberculous fibrosis of lung >l Vovininal Snomedid - R-FA6R3 !

What About Scalability?

Only useful in practice if we can deal with large
ontologies and/or large data sets

Unfortunately, many ontology languages are highly
intractable

— OWL 2 satisfiability is 2NEXPTIME-complete w.r.t. schema
— and NP-Hard w.r.t. data (upper bound open)

Problem addressed in practice by

— Algorithms that work well in typical cases

— Highly optimised implementations

— Use of tractable fragments (aka profiles)

Tableau Reasoning Algorithms

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —VascularDisease)} is not satisfiable

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

x : HeartDisease [—VascularDisease

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

x : HeartDisease [—VascularDisease
x : HeartDisease

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

x : HeartDisease N —VascularDisease
x : HeartDisease
x : Disease

x : Jaffects.Heart

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease
: HeartDisease

: Disease

: Jaffects.Heart

: affects

: Heart

8 8 8 8

p—

(z,y

<

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease
: HeartDisease

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

—
£
E 85888

T e

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease
: HeartDisease

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

. isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease x : ~VascularDisease
: HeartDisease

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

. isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease x : ~VascularDisease

: HeartDisease x :Disease U

: Disease —Jaffects.(JisPartOf.CirculatorySystem)
: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

. isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

: HeartDisease M —VascularDisease z : =VascularDisease

: HeartDisease z : —Disease L
: Disease —Jaffects.(JisPartOf.CirculatorySystem)

: Jaffects.Heart x : ~Disease
: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

: isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model:

HeartDisease M —VascularDisease —VascularDisease
HeartDisease —Disease L
x : Disease — 3 (3 .CirculatorySystem)

= .Heart x : —Disease

,Y)
Heart
MuscularOrgan
- .CirculatorySystem

CirculatorySystem

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

: HeartDisease M —VascularDisease x : ~VascularDisease

: HeartDisease z : —Disease L

: Disease —Jaffects.(JisPartOf.CirculatorySystem)
: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

. isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

: HeartDisease M —VascularDisease x : mVascularDisease

: HeartDisease x : —Disease L

: Disease —Jaffects.(JisPartOf.CirculatorySystem)
: Jaffects.Heart z : mJaffects.(JisPartOf.CirculatorySystem)
: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem

: isPartOf

: CirculatorySystem

—
£
Cee o888 8

—
<
N

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem
. isPartOf

: CirculatorySystem

8 8 8 8
8

—
8
<
~—
8

T e

—
<
N

: HeartDisease M —VascularDisease xT:
: HeartDisease T:

—VascularDisease
—Disease L
—Jaffects.(JisPartOf.CirculatorySystem)

: mJaffects.(JisPartOf.CirculatorySystem)
: Vaffects. (VisPart Of.—CirculatorySystem)

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

x : HeartDisease N —VascularDisease x:
x : HeartDisease x:
x : Disease
x : Jaffects.Heart T
(z,y) : affects x
y : Heart y:
1y : MuscularOrgan
y : disPartOf.CirculatorySystem
(y, 2) : isPartOf
z: CirculatorySystem

—VascularDisease
—Disease L
—Jaffects.(JisPartOf.CirculatorySystem)

: mJaffects.(JisPartOf.CirculatorySystem)
: Vaffects. (VisPart Of.—CirculatorySystem)

YisPartOf.~CirculatorySystem

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

S

: HeartDisease

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem
. isPartOf

: CirculatorySystem

— —
< £
ANl e eS8 8 8
N RO

: HeartDisease M —VascularDisease xT:
- = Disease L

—VascularDisease

—Jaffects.(JisPartOf.CirculatorySystem)

: mJaffects.(JisPartOf.CirculatorySystem)
: Vaffects. (VisPart Of.—CirculatorySystem)
: VisPartOf.—~CirculatorySystem

: CirculatorySystem

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

HeartDisease M —VascularDisease —VascularDisease

HeartDisease —Disease LI

Disease —3 (3 .CirculatorySystem)

3 .Heart —3 (3 .CirculatorySystem)
(z,) Y (V .~ CirculatorySystem)

Heart \4 .~ CirculatorySystem

MuscularOrgan z : = CirculatorySystem

- .CirculatorySystem

(4, 2)

z: CirculatorySystem

(v,

Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

HeartDisease M —VascularDisease —VascularDisease
HeartDisease ﬁDiseaseu
.Circulat rySystem

‘Note S|m|Iar|t¥ to chase!
) ﬁQrculatorySystem

Heart ﬁClrculatorySystem

MuscularOrgan z: —rClrcuIatorySystem

- .CirculatorySystem

)
z: CirculatorySystem

Highly Optimised Implementations

* Lazy unfolding

* Simplification and rewriting,
eg, AMBCC — ACCU-B

* HyperTableau (reduces non-determinism)
* Fast semi-decision procedures

* Search optimisations

* Reuse of previous computations

* Heuristics

Not computationally optimal,
but effective with many realistic ontologies

Scalability Issues

* Problems with very large and/or cyclical ontologies

LeftSide C dhasComponent.AorticValve
LeftSide C JhasComponent.MitralValve
AorticValve C dhasConnection.LeftVentircle
MitralValve C JhasConnection.LeftVentircle
LeftVentricle C JisDivisionOf.LeftSide

* Ontologies may define 10s/100s of thousands of terms

* Can lead to construction of very large models

(a7

Scalability Issues

* Problems with large data sets (ABoxes)

— Main reasoning problem is (conjunctive) query answering,
e.g., retrieve all patients suffering from vascular disease:

Q(z) < Patient(x) A suffersFrom(z,y) A VascularDisease(y)

— Decidability still open for OWL, although minor restrictions (on
cycles in non-distinguished variables) restore decidability

— Query answering reduced to standard decision problem,
e.g., by checking for each individual x if KB F Q(x)

— Model construction starts with all ground facts (data)

* Typical applications may use data sets with
10s/100s of millions of individuals (or more)

OWL 2 Profiles

* OWL recommendation now updated to OWL 2

* OWL 2 defines several profiles — fragments with
desirable computational properties

— OWL 2 EL targeted at very large ontologies
— OWL 2 QL targeted at very large data sets

OWL 2 EL

* A (near maximal) fragment of OWL 2 such that
— Satisfiability checking is in PTime (PTime-Complete)
— Data complexity of query answering also PTime-Complete

* Based on £L family of description logics

* Can exploit saturation based reasoning techniques
— Computes classification in “one pass”

— Computationally optimal
— Can be extended to Horn fragment of OWL DL

Saturation-based Technique (basics)
* Normalise ontology axioms to standard form:

ACB AnNnBCC ACdR.B dR.BCC
e Saturate using inference rules:

ACB BCC ACB ACC BnCccbhb
ACC ACD

ACJR.B BCC 4dR.CCD
ACD

* Extension to Horn fragment requires (many) more rules

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M Jsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M Jsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M Jsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant
OrganTransplant C dsite.Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M Jsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
dsite.Heart C SH

Transplant M SH C HeartTransplant

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
dsite.Heart C SH

Transplant M SH C HeartTransplant

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
dsite.Heart C SH

Transplant M SH C HeartTransplant

Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
AC3JdR.B BCC 3JRCCD

Heart Transplant = Transplant N dsite.Heart
ACD

Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

Heart Transplant = Transplant

HeartTransplant C dsite.Heart
Jsite.Heart = SH

Transplant M SH C HeartTransplant

Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
AC3JdR.B BCC 3JRCCD

Heart Transplant = Transplant N dsite.Heart
ACD

Heart C Organ

OrganTransplant C Transplant HeartTransplant C SO
OrganTransplant C dsite.Organ

dsite.Organ C SO
Transplant M SO C OrganTransplant
Heart Transplant = Transplant
HeartTransplant C dsite.Heart

Jsite.Heart = SH
Transplant M SH C HeartTransplant

Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ
ACB ACC BnCccbD

Heart Transplant = Transplant N dsite.Heart
ACD

Heart C Organ

OrganTransplant C Transplant HeartTransplant = SO
OrganTransplant C dsite.Organ

dsite.Organ C SO
Transplant M SO C OrganTransplant

HeartTransplant C Transplant

Heart Transplant C dsite.Heart
Jsite.Heart = SH
Transplant M SH C HeartTransplant
Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ

Heart Transplant = Transplant N dsite.Heart ACB ACC BNCED

ACD
Heart C Organ .
OrganTransplant C Transplant HeartTransplant C SO
OrganTransplant C dsite.Organ HeartTransplant = OrganTransplant

dsite.Organ C SO
Transplant M SO C OrganTransplant
HeartTransplant C Transplant
Heart Transplant C dsite.Heart
Jsite.Heart = SH
Transplant M SH C HeartTransplant
Heart C Organ

Saturation-based Technique

Performance with large bio-medical ontologies:

GO NCI | Galen v.0 | Galen v.7 | SNOMED
Concepts: | 20465 | 27652 2748 23136 389472
FACT++ 15.24 6.05 465.35 — 650.37
HERMIT 199.52 | 169.47 45.72 — —
PELLET 72.02 | 26.47 — — —
CEL 1.84 5.76 — — | 1185.70
CB 1.17 3.57 0.32 9.58 49.44
Speed-Up: | 1.57X| 1.61X 143X 00 13.15X

OWL 2 QL

* A (near maximal) fragment of OWL 2 such that
— Data complexity of conjunctive query answering in AC?

° Based on DL-Lite family of description logics

* Can exploit query rewriting based reasoning technique
— Computationally optimal

— Data storage and query evaluation can be delegated to
standard RDBMS

— Can be extended to more expressive languages (beyond ACP?)
by delegating query answering to a Datalog engine

Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)

Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query

Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query

@ M
l l >
/
O —> Rewrite < > Map SQL > A . > Ans

Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query
* Resolution based query rewriting

— Clausify ontology axioms
— Saturate (clausified) ontology and query using resolution

— Prune redundant query clauses

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

Q(x) « treats(z, y) A Patient(y)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(x)) < Doctor(z) Q(x) « treats(z, y) A Patient(y)
Patient(f(z)) < Doctor(x)
Doctor(z) « Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(x)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) <« Doctor(x)

Doctor(z) < Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) < Doctor(x) Q(z) « Doctor(z) A Patient(f(z))

Doctor(z) < Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(x) Q(x) « treats(z, y) A Patient(y)
Patient(f(z)) < Doctor(x) Q(x) « Doctor(z) A Patient(f(z))

Doctor(z) < Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(x) Q(x) « treats(z, y) A Patient(y)
Patient(f(z)) < Doctor(x) Q(x) « Doctor(z) A Patient(f(z))
Doctor(z) « Consultant(z) Q(z) « treats(z, f(z)) A Doctor(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(x)) < Doctor(z) Q(z) <« Doctor(z) A Patient(f(z))
Doctor(x) < Consultant(z) Q(z) « treats(z, f(z)) A Doctor(z)

Query Rewriting Technique (basics)

* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(x)) < Doctor(z) Q(z) <« Doctor(z) A Patient(f(z))
Doctor(x) < Consultant(z) Q(z) « treats(z, f(z)) A Doctor(z)

Q(z) « Doctor(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) <« Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) <« Doctor(x) Q(z) < Doctor(z) A Patient(f(z))
Doctor(z) < Consultant(z) Q(z) « treats(z, f(z)) A Doctor(z)
Q(z) « Doctor(z)

Query Rewriting Technique (basics)

* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(x)) < Doctor(z) Q(x) « treats(z, y) A Patient(y)
Patient(f(x)) < Doctor(z) Q(z) <« Doctor(z) A Patient(f(z))
Doctor(z) < Consultant(z) Q(z) « treats(z, f(z)) A Doctor(z)

Q(z) « Doctor(z)
Q(z) « Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(x)) < Doctor(z) Q(x) « treats(z, y) A Patient(y)
Patient(f(z)) < Doctor(x) Q(z) « Doctor(z) A Patient(f(x))
Doctor(z) < Consultant(x) Q(z) « treats(z, f(z)) A Doctor(z)

Q(z) « Doctor(z)
Q(z) « Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(z) Q(z) « treats(z, y) A Patient(y)

Patient(f(z)) < Doctor(x) - ~—DecterterARatiert{FH{e—

Doctor(z) « Consultant(z) - —trenistorF{eADoctor (s
Q(z) « Doctor(z)

Q(z) « Consultant(z)

Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(z) Q(z) « treats(z, y) A Patient(y)

Patient(f(z)) < Doctor(x) - ~—DecterterARatiert{FH{e—

Doctor(z) < Consultant(x) - —trenistorF{eADoctor (s
Q(z) « Doctor(z)

Q(z) <« Consultant(z)

° For DL-Lite, result is a union of conjunctive queries

Q(x) « (treats(z,y) A Patient(y)) V Doctor(x) v Consultant(x)

Query Rewriting Technique (basics)

* Data can be stored/left in RDBMS

* Relationship between ontology and DB defined by
mappings, e.g.:
Doctor +— SELECT Name FROM Doctor

Patient +— SELECT Name FROM Patient
treats +— SELECT DName, PName FROM Treats

Query Rewriting Technique (basics)

* Data can be stored/left in RDBMS

* Relationship between ontology and DB defined by
mappings, e.g.:

Doctor +— SELECT Name FROM Doctor
Patient — SELECT Name FROM Patient
treats +— SELECT DName, PName FROM Treats

* UCQ translated into SQL query:

Q(x) « (treats(z, y) A Patient(y)) V Doctor(x) Vv Consultant(x)

¢

SELECT Name FROM Doctor UNION
SELECT DName FROM Treats, Patient WHERE PName=Name

Problems & Research Challenges

* Combining best features of DLs & DBs
— In particular, integrating OWA and CWA

* Hard to find a coherent semantic framework

— Problems mainly due to existential quantifiers: should
existentially implied objects be considered different?

» Does a person owning a phone and an ipod own 2 things?
* Does a person owning a phone and an iphone own 2 things?
» Does a person owning a phone and a phone own 2 things?

° Interesting ideas emerging in DL & DB communities, e.g.:

— Cali et al. Datalog+: a unified approach to ontologies and integrity
constraints. ICDT 2009.

— Moitik et al. Bridging the gap between OWL and relational databases.
WWWw 2007.

Problems & Research Challenges

° Open questions w.r.t. query rewriting

Problems & Research Challenges

° Open questions w.r.t. query rewriting

— Currently only for very weak ontology languages

Problems & Research Challenges

° Open questions w.r.t. query rewriting

— Currently only for very weak ontology languages

— Even for these languages, queries can get very large (order
(lo]-19))'°"), and existing RDBMSs may behave poorly

* Not clear if this will be a problem in practice, see, e.g., Savo et
al. MASTRO at Work: Experiences on Ontology-based Data
Access. DL 2010.

Problems & Research Challenges

° Open questions w.r.t. query rewriting

— Currently only for very weak ontology languages

— Even for these languages, queries can get very large (order
(lo]-19))'°"), and existing RDBMSs may behave poorly

* Not clear if this will be a problem in practice, see, e.g., Savo et
al. MASTRO at Work: Experiences on Ontology-based Data
Access. DL 2010.

— Larger fragments require (at least) Datalog engines and/or
extension to technique (e.g., partial materialisation)

« Promising new work in this area, see, e.g., Lutz et al.
Conjunctive Query Answering in the Description Logic EL Using
a Relational Database System. IJCAI 2009.

Problems & Research Challenges

* |nfrastructure

Problems & Research Challenges

* Infrastructure

— Standardised query language
« SPARQL standard for RDF

» Currently being extended for OWL, see http.//www.w3.0rg/
2009/sparql/wiki/Main_Page

Problems & Research Challenges

* Infrastructure

— Standardised query language
 SPARQL standard for RDF
» Currently being extended for OWL, see http.//www.w3.0rg/
2009/sparql/wiki/Main_Page
— Privacy and information hiding
« May want to keep parts of data/schema private

« Difficulties compounded when information can be inferred, see,
e.g., Cuenca Grau et al. Privacy-preserving query answering in
logic-based information systems. ECAI 2008.

Problems & Research Challenges

* Infrastructure

— Standardised query language
 SPARQL standard for RDF
» Currently being extended for OWL, see http.//www.w3.0rg/
2009/sparql/wiki/Main_Page
— Privacy and information hiding
« May want to keep parts of data/schema private

« Difficulties compounded when information can be inferred, see,
e.g., Cuenca Grau et al. Privacy-preserving query answering in
logic-based information systems. ECAI 2008.

The 9th International Semantic Web Conference

Shanghai International Convention Center, Shanghai, China
Nov 7th -11th, 2010

“ http://iswc2010.semanticweb.org

General Chair

Ian Horrocks

Program Chairs
Peter F. Patel-Schneider
Yue Pan
Local Chair
Yong Yu
Workshop & Tutorial Chairs
Philippe Cudré-Mauroux

Bijan Parsia

Poster & Demo Chairs W

Huajun Chen

Axel Polleres ’
Industry & Semantic Web in Use Chairs

Pascal Hitzler
Peter Mika

h=
Doctoral Consortium Chair V
N

Jeff Pan
Semantic Web Challenge Chairs

Chris Bizer

Diana Maynard
Publicity Chair W

Sebastian Rudolph i
Metadata Chair Hit e :

Jie Bao = i
Proceedings Chair

l

iy |
N i

il e
: 1

Birte Glimm

Sponsor Chairs
Kendall Clark
Anand Ranganathan

Local Organization

Dingyi Han

Gui-Rong Xue
Haofen Wang
Lei Zhang

p—"— IBM
TEXLLE Resecrch

(e)

Thanks To

* Boris Motik

°* Yevgeny Kazakov

* Hector Pérez-Urbina

* Rob Shearer

° Bernardo Cuenca Grau
* Birte Glimm

Thank you for listening

Thank you for listening

EXACTLY. | DONT | | WHAT ARE You IN 'gz SEMANTICS.
LIKE TOMATOES, | | FOR THIS TIME? @

EATHER.)

A
{
|
X

n

WHAT 15 THE
DIFFERENCE?

IF | HAYE 12
TOMATOES AND
TAKE AWAY TWO

/

/% %

m
N
3
N
3
K
D
(
™

3

o~)
i r""'<7»
\‘\5‘- o
Y
/)

Sl
&

©2005 Jef Mallett/Distributed by United Feature Syndicate, Inc.

www.comics.com jefmalleti@yahoo.com

"y MALLETT

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions?

Select Bibliography

[1] Baader, Horrocks, and Sattler. Description Logics. In Handbook of Knowledge
Representation. Elsevier, 2007.

[2] Motik, Shearer, and Horrocks. Hypertableau reasoning for description
logics. J. of Artificial Intelligence Research, 2009.

[3] Baader, Brandt, and Lutz. Pushing the EL envelope. IJCAI 2005, pages
364-369, 2005.

[4] Kazakov. Consequence-driven reasoning for Horn-SHIQ ontologies.
IJCAI 2009, pages 2040-2045, 2009.

[5] Calvanese, De Giacomo, Lembo, Lenzerini, and Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385—429, 2007.

[6] Perez-Urbina, Motik, and Horrocks. Tractable query answering and
rewriting under description logic constraints. J. of Applied Logic, 2009.

[7] Andrea Cali, Georg Gottlob, Thomas Lukasiewicz. Datalogz: a unified
approach to ontologies and integrity constraints. ICDT 2009: 14-30.

