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What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary

relevant to domain, e.g.: —

Dash of Celery Salt
Yellow Mustard

— Anatomy

— Cellular biology
— Aerospace

— Dogs

— Hotdogs
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What is an Ontology?

A model of (some aspect of) the world

° Introduces vocabulary
relevant to domain

* Specifies meaning (semantics)
of terms

Heart is a muscular organ that
Is part of the circulatory system

* Formalised using suitable logic

Vx.[Heart(z) — MuscularOrgan(z) A
Jy.[isPartOf(x,y) A
CirculatorySystem(y)]]




Web Ontology Language OWL (2)

* W3C recommendation(s)

* Motivated by Semantic Web activity

Add meaning to web content by annotating
it with terms defined in ontologies

——

° Supported by tools and infrastructure
— APIs (e.g., OWL API, Thea, OWLink) |

— Development environments
(e.g., Protégée, Swoop, TopBraid Composer, Neon)

— Reasoners & Information Systems
(e.g., Pellet, Racer, HermiT, Quonto, ...)

* Based on Description Logics (SHOIN /| SROIQ)




Description Logics (DLs)

* Fragments of first order logic designed for KR

* Desirable computational properties
— Decidable (essential)

— Low complexity (desirable)

° Succinct and variable free syntax

Vz.[Heart(xz) — MuscularOrgan(z) A
Jy.[isPartOf(z,y) A
CirculatorySystem(y)]]

Heart = MuscularOrgan I
disPartOf.CirculatorySystem




Description Logics (DLs)

DL Knowledge Base (KB) consists of two parts:

— Ontology (aka TBox) axioms define terminology (schema)

Heart C MuscularOrgan M
disPartOf.CirculatorySystem
HeartDisease = Disease '
Jaffects.Heart
VascularDisease = Disease N
Jaffects.(JisPartOf.CirculatorySystem)

— Ground facts (aka ABox) use the terminology (data)

John : Patient
dsuffersFrom.HeartDisease
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Why Care About Semantics?

Why should | care about semantics? J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

That’s OK, but | don’t get paid for philosophy. J

a
From a practical POV, in order to specify and test
(ontology-based) information systems we need
to precisely define their intended behaviour

-




What are Ontologies Good For?

* Coherent user-centric view of domain

— Help identify and resolve disagreements

* Ontology-based Information Systems

— View of data that is independent of logical/
physical schema

— Answers reflect schema & data, e.g.:

“Patients suffering from Vascular Disease”

Now... that should clear up a
few things around here
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What are Ontologies Good For?

* Coherent user-centric view of domain

— Help identify and resolve disagreements

° Ontology-based Information Systems

— View of data that is independent of logical/
physical schema

— Answers reflect schema & data, e.g.:

“Patients suffering from Vascular Disease”

— Query expansion/navigation/refinement

— Incomplete and semi-structured data Now... that should clear up a

. few things around here
— Integration of heterogeneous sources




Information-Based Decisions

Increasingly critical in many areas:

° In Healthcare industry

— Too much screening harms
patients and wastes money

— Too little screening costs
lives
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Increasingly critical in many areas:

° In QOil and Gas industry

— Better quality information
could add €1B/year net
value to Statoil production

— Poorer quality information
and analysis costs
€6M/weekend!




Information-Based Decisions

Increasingly critical in many areas:

° InIT industry

— SAP deals with 80,000 queries/month at a cost of approx.
€16M

— SAP estimate 50% of support staff time spent searching for
relevant information



Information-Based Decisions

Increasingly critical in many areas:

° In Transport Security

— Failures can cost hundreds of lives

“We had sufficient information, but failed to
integrate and understand it”



Analysis Bottleneck

Collect Gather Information Make

Data Decisions
/}D&“\

* Decisions based on information
* Integration and analysis of data is the bottleneck




Healthcare

* UK NHS £10 billion “Connecting for Health” IT
programme

* Key component is Care Records Service (CRS)

— ‘“Live, interactive patient record service accessible 24/7"

— Patient data distributed across local centres in 5 regional
clusters, and a national DB

— SNOMED-CT ontology provides common vocabulary for data

 Clinical data uses terms drawn from ontology




SNOMED-CT

* It's BIG - over 400,000 concepts
* Language used is EL profile of OWL 2

* Multiple hierarchies and rich definitions
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What About Scalability?

Only useful in practice if we can deal with large
ontologies and/or large data sets

Unfortunately, many ontology languages are highly
intractable

— OWL 2 satisfiability is 2NEXPTIME-complete w.r.t. schema
— and NP-Hard w.r.t. data (upper bound open)

Problem addressed in practice by

— Algorithms that work well in typical cases

— Highly optimised implementations

— Use of tractable fragments (aka profiles)
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Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

: Disease

: Jaffects.Heart

: affects

: Heart

: MuscularOrgan

: disPartOf.CirculatorySystem
. isPartOf

: CirculatorySystem

8 8 8 8
8

—
8
<
~—
8

T e

—
<
N

: HeartDisease M —VascularDisease xT:
: HeartDisease T:

—VascularDisease
—Disease L
—Jaffects.(JisPartOf.CirculatorySystem)

: mJaffects.(JisPartOf.CirculatorySystem)
: Vaffects. (VisPart Of.—CirculatorySystem)



Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
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Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model
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Tableau Reasoning Algorithms

Standard technique based on (hyper-) tableau

— Reasoning tasks reducible to (un)satisfiability

» E.g., KB F HeartDisease C VascularDisease iff
KB U {x:(HeartDisease N —~VascularDisease)} is not satisfiable

— Algorithm tries to construct (an abstraction of) a model

HeartDisease M —VascularDisease —VascularDisease
HeartDisease ﬁDiseaseu
.Circulat rySystem

‘Note S|m|Iar|t¥ to chase!
) ﬁQrculatorySystem

Heart ﬁClrculatorySystem

MuscularOrgan z: —rClrcuIatorySystem

- .CirculatorySystem

)
z: CirculatorySystem



Highly Optimised Implementations

* Lazy unfolding

* Simplification and rewriting,
eg, AMBCC — ACCU-B

* HyperTableau (reduces non-determinism)
* Fast semi-decision procedures

* Search optimisations

* Reuse of previous computations

* Heuristics

Not computationally optimal,
but effective with many realistic ontologies




Scalability Issues

* Problems with very large and/or cyclical ontologies

LeftSide C dhasComponent.AorticValve
LeftSide C JhasComponent.MitralValve
AorticValve C dhasConnection.LeftVentircle
MitralValve C JhasConnection.LeftVentircle
LeftVentricle C JisDivisionOf.LeftSide

* Ontologies may define 10s/100s of thousands of terms

* Can lead to construction of very large models




(a7

Scalability Issues

* Problems with large data sets (ABoxes)

— Main reasoning problem is (conjunctive) query answering,
e.g., retrieve all patients suffering from vascular disease:

Q(z) < Patient(x) A suffersFrom(z,y) A VascularDisease(y)

— Decidability still open for OWL, although minor restrictions (on
cycles in non-distinguished variables) restore decidability

— Query answering reduced to standard decision problem,
e.g., by checking for each individual x if KB F Q(x)

— Model construction starts with all ground facts (data)

* Typical applications may use data sets with
10s/100s of millions of individuals (or more)




OWL 2 Profiles

* OWL recommendation now updated to OWL 2

* OWL 2 defines several profiles — fragments with
desirable computational properties

— OWL 2 EL targeted at very large ontologies
— OWL 2 QL targeted at very large data sets




OWL 2 EL

* A (near maximal) fragment of OWL 2 such that
— Satisfiability checking is in PTime (PTime-Complete)
— Data complexity of query answering also PTime-Complete

* Based on £L family of description logics

* Can exploit saturation based reasoning techniques
— Computes classification in “one pass”

— Computationally optimal
— Can be extended to Horn fragment of OWL DL




Saturation-based Technique (basics)
* Normalise ontology axioms to standard form:

ACB AnNnBCC ACdR.B dR.BCC
e Saturate using inference rules:

ACB BCC ACB ACC BnCccbhb
ACC ACD

ACJR.B BCC 4dR.CCD
ACD

* Extension to Horn fragment requires (many) more rules
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Example:

OrganTransplant = Transplant M Jsite.Organ
Heart Transplant = Transplant N dsite.Heart
Heart C Organ
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Saturation-based Technique

Performance with large bio-medical ontologies:

GO NCI | Galen v.0 | Galen v.7 | SNOMED
Concepts: | 20465 | 27652 2748 23136 389472
FACT++ 15.24 6.05 465.35 — 650.37
HERMIT 199.52 | 169.47 45.72 — —
PELLET 72.02 | 26.47 — — —
CEL 1.84 5.76 — — | 1185.70
CB 1.17 3.57 0.32 9.58 49.44
Speed-Up: | 1.57X| 1.61X 143X 00 13.15X




OWL 2 QL

* A (near maximal) fragment of OWL 2 such that
— Data complexity of conjunctive query answering in AC?

° Based on DL-Lite family of description logics

* Can exploit query rewriting based reasoning technique
— Computationally optimal

— Data storage and query evaluation can be delegated to
standard RDBMS

— Can be extended to more expressive languages (beyond ACP?)
by delegating query answering to a Datalog engine




Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)




Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query




Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query

@ M
l l >
/
O —> Rewrite < > Map SQL > A . > Ans




Query Rewriting Technique (basics)

* Given ontology O and query 9, use O to rewrite Q
as 9's.t., for any set of ground facts A:

— ans(Q, O, A) = ans(9Q’, 0, A)
* Use (GAV) mapping M to map Q' to SQL query
* Resolution based query rewriting

— Clausify ontology axioms
— Saturate (clausified) ontology and query using resolution

— Prune redundant query clauses
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Query Rewriting Technique (basics)
* Example:

Doctor C dtreats.Patient
Consultant C Doctor

treats(z, f(z)) « Doctor(z) Q(z) « treats(z, y) A Patient(y)

Patient(f(z)) < Doctor(x) - ~—DecterterARatiert{FH{e—

Doctor(z) < Consultant(x) - —trenistorF{eADoctor (s
Q(z) « Doctor(z)

Q(z) <« Consultant(z)

° For DL-Lite, result is a union of conjunctive queries

Q(x) « (treats(z,y) A Patient(y)) V Doctor(x) v Consultant(x)
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Query Rewriting Technique (basics)

* Data can be stored/left in RDBMS

* Relationship between ontology and DB defined by
mappings, e.g.:

Doctor +— SELECT Name FROM Doctor
Patient — SELECT Name FROM Patient
treats +— SELECT DName, PName FROM Treats

* UCQ translated into SQL query:

Q(x) « (treats(z, y) A Patient(y)) V Doctor(x) Vv Consultant(x)

¢

SELECT Name FROM Doctor UNION
SELECT DName FROM Treats, Patient WHERE PName=Name




Problems & Research Challenges

* Combining best features of DLs & DBs
— In particular, integrating OWA and CWA

* Hard to find a coherent semantic framework

— Problems mainly due to existential quantifiers: should
existentially implied objects be considered different?

» Does a person owning a phone and an ipod own 2 things?
* Does a person owning a phone and an iphone own 2 things?
» Does a person owning a phone and a phone own 2 things?

° Interesting ideas emerging in DL & DB communities, e.g.:

— Cali et al. Datalog+: a unified approach to ontologies and integrity
constraints. ICDT 2009.

— Moitik et al. Bridging the gap between OWL and relational databases.
WWWw 2007.
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Problems & Research Challenges

° Open questions w.r.t. query rewriting

— Currently only for very weak ontology languages

— Even for these languages, queries can get very large (order
(lo]-19))'°"), and existing RDBMSs may behave poorly

* Not clear if this will be a problem in practice, see, e.g., Savo et
al. MASTRO at Work: Experiences on Ontology-based Data
Access. DL 2010.

— Larger fragments require (at least) Datalog engines and/or
extension to technique (e.g., partial materialisation)

« Promising new work in this area, see, e.g., Lutz et al.
Conjunctive Query Answering in the Description Logic EL Using
a Relational Database System. IJCAI 2009.
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