
Ian Horrocks
Information Systems Group
Department of Computer Science
University of Oxford

Semantic Technologies: Beyond the Semantic Web

The Semantic Web

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a
physicist working at CERN

  His original vision of the Web was much more ambitious than the reality
of the existing (syntactic) Web:

  This vision of the Web has become known as the Semantic Web
  Latest (refined) definition:

"a web of data that can be processed directly and indirectly by machines"

“… a set of connected applications … forming a
consistent logical web of data … information is
given well-defined meaning, better enabling
computers and people to work in cooperation …”

Semantic Technologies

  Initial focus was on necessary underpinning, including:

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

Hermit

CEL

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

  Also increasingly used in “Intelligent Information System”
applications

How Does it Work?

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S P O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

❶

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
eg:organisation

eg:w3c

http://...rdf-syntax-ns/#type

eg:worksfor

eg:Boston

eg:hq

W3C

http://...fullName

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
Triple
S P O
em1234 rdf:type Person
em1234 name “Eric Miller”
em1234 title “Dr”
em1234 mailbox mailto:em@w3.org
em1234 worksfor w3c
w3c rdf:type organisation
w3c hq Boston
w3c name “W3C”
...

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
PERSON

ID NAME TITLE MAILBOX WORKSFOR

em1234 “Eric Miller” “Dr” mailto:em@w3.org w3c

...

ORGANISATION

ID NAME HQ

w3c “W3C” Boston

...

...

How Does it Work?

 Standardised language for exchanging vocabularies/schemas

  W3C standard for vocabulary/schema exchange is OWL
  OWL provides for rich conceptual schemas, aka ONTOLOGIES

❷

How Does it Work?

 Standardised language for querying ontologies+data

  W3C standard for querying is SPARQL
  SPARQL provides a rich query language comparable to SQL

  ?x worksfor ?y .
?y rdf:type organisation .
?y hq Boston .

  Select ?x
where { ?x worksfor ?y .
 ?y rdf:type organisation .
 ?y hq Boston . }

  Q(?x) worksfor(?x,?y) ^Æ organisation(?y) ^Æ hq(?y,Boston)

How Does it Work?

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

Q(?p) Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

Q(?p) Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

Q(?p) Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

Q(?p) Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Is heart disease a kind
of vascular disease?

Q() subClassOf(HeartDisease,
 VascularDisease)

How Does it Work?

Is heart disease a kind
of vascular disease?

Q() subClassOf(HeartDisease,
 VascularDisease)

How Does it Work?

Why?

How Does it Work?

Why?

Applications: Semantic Web

Applications: Semantic Web

Applications: Semantic Web

  SNOMED-CT (Clinical Terms) ontology
  provides common vocabulary for recording clinical data

  used in healthcare systems of more than 15 countries, including Australia,
Canada, Denmark, Spain, Sweden and the UK

  “classified and checked for equivalencies” using ontology reasoners

  OBO foundry includes more than 100 biological and biomedical
ontologies

 “continuous integration server running Elk and/or HermiT 24/7 checking
that multiple independently developed ontologies are mutually consistent”

  Siemens “actively building OWL based clinical solutions”

Applications: HCLS

Applications: Energy Supply Industry

  EDF Energy offer personalised energy
saving advice to every customer

  OWL ontology used to model relevant
environmental factors

  HermiT reasoner used to match customer
circumstances with relevant pieces of advice

Applications: Intelligent Mobile Platform

  Samsung developing Intelligent Moblile
Platform to support context-aware applications

  IMP monitors environment via sensor data
(GPS, compass, accelerometer, ...)

  OWL ontology used to model environment
and infer context (e.g., coffee with friends)

  Applications exploit context to enable
more intelligent behaviour

Applications: Oil and Gas Industry

  Statoil use data to inform production
and exploration management

 Large and complex data sets are
difficult and time consuming to use

  Semantic technology can improve
access to relevant data

  Test deployment in EU project

Theory Practice

  OWL based on description logic SROIQ

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

 How can we provide robustly scalable query answering?

Theory Practice

and now:

A Word from our Sponsors

What Are Description Logics?

What Are Description Logics?

  Decidable fragments of First Order Logic

Any questions?

Thank you for listening

What Are Description Logics?

  A family of logic based Knowledge Representation formalisms
  Originally descended from semantic networks and KL-ONE
  Describe domain in terms of concepts (aka classes), roles (aka

properties, relationships) and individuals

Cat

Animal

IS-A
has-color Black

Felix Mat

IS-A

sits-on

• [Quillian, 1967]

What Are Description Logics?

  Modern DLs (after Baader et al) distinguished by:
  Fully fledged logics with formal semantics

  Decidable fragments of FOL (often contained in C2)
  Closely related to Propositional Modal/Dynamic Logics &

Guarded Fragment
  Computational properties well understood (worst case complexity)
  Provision of inference services

  Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, query answering, etc)

  Implemented systems (highly optimised)

  The basis for widely used ontology languages

DL Syntax

  Signature
  Concept (aka class) names, e.g., Cat, Animal, Doctor

  Equivalent to FOL unary predicates
  Role (aka property) names, e.g., sits-on, hasParent, loves

  Equivalent to FOL binary predicates
  Individual names, e.g., Felix, John, Mary, Boston, Italy

  Equivalent to FOL constants

DL Syntax

  Operators
  Many kinds available, e.g.,

  Standard FOL Boolean operators (u, t, ¬)
  Restricted form of quantifiers (9, 8)
  Counting (¸, ·, =)
  …

DL Syntax

  Concept expressions, e.g.,
  Doctor t Lawyer
  Rich u Happy
  Cat u 9sits-on.Mat

  Equivalent to FOL formulae with one free variable
 
 
 

DL Syntax

  Special concepts
  > (aka top, Thing, most general concept)
  ? (aka bottom, Nothing, inconsistent concept)

 used as abbreviations for
  (A t ¬ A) for any concept A
  (A u ¬ A) for any concept A

DL Syntax

  Role expressions, e.g.,
 
  hasParent ± hasBrother

  Equivalent to FOL formulae with two free variables
 
 

DL Syntax

  “Schema” Axioms, e.g.,
  Rich v ¬Poor (concept inclusion)
  Cat u 9sits-on.Mat v Happy (concept inclusion)
  BlackCat ´ Cat u 9hasColour.Black (concept equivalence)
  sits-on v touches (role inclusion)
  Trans(part-of) (transitivity)

  Equivalent to (particular form of) FOL sentence, e.g.,
  8x.(Rich(x) ! ¬Poor(x))
  8x.(Cat(x) ^Æ 9y.(sits-on(x,y) ^Æ Mat(y)) ! Happy(x))
  8x.(BlackCat(x) $ (Cat(x) ^Æ 9y.(hasColour(x,y) ^Æ Black(y)))
  8x,y.(sits-on(x,y) ! touches(x,y))
  8x,y,z.((sits-on(x,y) ^Æ sits-on(y,z)) ! sits-on(x,z))

DL Syntax

  “Data” Axioms (aka Assertions or Facts), e.g.,
  BlackCat(Felix) (concept assertion)
  Mat(Mat1) (concept assertion)
  Sits-on(Felix,Mat1) (role assertion)

  Directly equivalent to FOL “ground facts”
  Formulae with no variables

DL Syntax

  A set of axioms is called a TBox, e.g.:

{Doctor v Person,
 Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

  A set of facts is called an ABox, e.g.:

{HappyParent(John),
 hasChild(John,Mary)}

  A Knowledge Base (KB) is just a TBox plus an Abox
  Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
hJohn,Maryi:hasChild

The DL Family

  Many different DLs, often with “strange” names
  E.g., EL, ALC, SHIQ

  Particular DL defined by:
  Concept operators (u, t, ¬, 9, 8, etc.)
  Role operators (-, ±, etc.)
  Concept axioms (v, ´, etc.)
  Role axioms (v, Trans, etc.)

The DL Family

  E.g., EL is a well known “sub-Boolean” DL
  Concept operators: u, ¬, 9
  No role operators (only atomic roles)
  Concept axioms: v, ´
  No role axioms

  E.g.:

 Parent ´ Person u 9hasChild.Person

The DL Family

  ALC is the smallest propositionally closed DL
  Concept operators: u, t, ¬, 9, 8
  No role operators (only atomic roles)
  Concept axioms: v, ´
  No role axioms

  E.g.:

 ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family

  S used for ALC extended with (role) transitivity axioms
  Additional letters indicate various extensions, e.g.:

  H for role hierarchy (e.g., hasDaughter v hasChild)

  R for role box (e.g., hasParent ± hasBrother v hasUncle)
  O for nominals/singleton classes (e.g., {Italy})
  I for inverse roles (e.g., isChildOf ´ hasChild–)
  N for number restrictions (e.g., >2hasChild, 63hasChild)
  Q for qualified number restrictions (e.g., >2hasChild.Doctor)
  F for functional number restrictions (e.g., 61hasMother)

  E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

The DL Family

  Numerous other extensions have been investigated
  Concrete domains (numbers, strings, etc)
  DL-safe rules (Datalog-like rules)
  Fixpoints
  Role value maps
  Additional role constructors (\Å, [, ¬, ±, id, …)
  Nary (i.e., predicates with arity >2)
  Temporal
  Fuzzy
  Probabilistic
  Non-monotonic
  Higher-order
  …

DL Semantics

Via translaton to FOL, or directly using FO model theory:

Interpretation domain ΔI Interpretation function I

Individuals iI 2 ΔI
 John

 Mary

Concepts CI µ ΔI

 Lawyer

 Doctor

 Vehicle

Roles rI µ ΔI £ ΔI
 hasChild

 owns

DL Semantics

  Interpretation function extends to concept expressions in the
obvious(ish) way, e.g.:

DL Semantics

  Given a model M =
 
 
 
 
 

DL Semantics

  Satisfiability and entailment
  A KB K is satisfiable iff there exists a model M s.t. M ² K

  A concept C is satisfiable w.r.t. a KB K iff there exists a model
M = hD, ·Ii s.t. M ² K and CI ≠ ;

  A KB K entails an axiom ax (written K ² ax) iff for every model
M of K, M ² ax (i.e., M ² K implies M ² ax)

DL Semantics

E.g.,

  K ² John:Person ?
  K ² Peter:Doctor ?
  K ² Mary:HappyParent ?
  What if we add “Mary hasChild Jane” ?

 K ² Peter = Jane

  What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ?
 K ² HappyPerson v Parent

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
 Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)

DL and FOL

  Most DLs are subsets of C2
  But reduction to C2 may be (highly) non-trivial

  Trans(R) naively reduces to

  Why use DL instead of C2?
  Syntax is succinct and convenient for KR applications
  Syntactic conformance guarantees being inside C2

  Even if reduction to C2 is non-obvious
  Different combinations of constructors can be selected

  To guarantee decidability
  To reduce complexity

  Decidability/complexity landscape mapped out in great detail
  See http://www.cs.man.ac.uk/~ezolin/dl/

Complexity Measures

  Taxonomic complexity
 Measured w.r.t. total size of “schema” axioms

  Data complexity
 Measured w.r.t. total size of “data” facts

  Query complexity
 Measured w.r.t. size of query

  Combined complexity
 Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes

  LogSpace, PTime, NP, PSpace, ExpTime, etc
  worst case for a given problem w.r.t. a given parameter
  X-hard means at-least this hard (could be harder);

in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

  e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

  Note that:
  this is for the worst case, not a typical case
  complexity of problem means we can never devise a more efficient

(in the worst case) algorithm
  complexity of algorithm may, however, be even higher

(in the worst case)

DLs and Ontology Languages

  ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL
  OWL 2 based on SROIQ, i.e., ALC extended with

transitive roles, a role box nominals, inverse roles and
qualified number restrictions

  OWL 2 EL based on EL
  OWL 2 QL based on DL-Lite

  OWL 2 EL based on DLP

  OWL was based on SHOIN
  only simple role hierarchy, and

unqualified NRs

Class/Concept Constructors

Ontology Axioms

•  An Ontology is usually considered to be a TBox
–  but an OWL ontology is a mixed set of TBox and ABox axioms

Other OWL Features

  XSD datatypes and (in OWL 2) facets, e.g.,
  integer, string and (in OWL 2) real, float, decimal, datetime, …
  minExclusive, maxExclusive, length, …
  PropertyAssertion(hasAge Meg "17"^^xsd:integer)
  DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer

xsd:maxExclusive "10"^^xsd:integer)

 These are equivalent to (a limited form of) DL concrete domains

  Keys
  E.g., HasKey(Vehicle Country LicensePlate)

  Country + License Plate is a unique identifier for vehicles

 This is equivalent to (a limited form of) DL safe rules

Obvious Database Analogy

  Ontology axioms analogous to DB schema
  Schema describes structure of and constraints on data

  Ontology facts analogous to DB data
  Instantiates schema
  Consistent with schema constraints

  But there are also important differences…

Obvious Database Analogy

Database:
  Closed world assumption (CWA)

  Missing information treated
as false

  Unique name assumption (UNA)
  Each individual has a single, unique

name

  Schema behaves as constraints on
structure of data

  Define legal database states

Ontology:
  Open world assumption (OWA)

  Missing information treated
as unknown

  No UNA
  Individuals may have more

than one name

  Ontology axioms behave like
implications (inference rules)

  Entail implicit information

Database -v- Ontology

E.g., given the following ontology/schema:
 HogwartsStudent ´ Student u 9 attendsSchool.Hogwarts
 HogwartsStudent v 8hasPet.(Owl or Cat or Toad)
 hasPet ´ isPetOf - (i.e., hasPet inverse of isPetOf)
 9hasPet.> v Human (i.e., domain of hasPet is Human)
 Phoenix v 8isPetOf.Wizard (i.e., only Wizards have Phoenix pets)
 Muggle v ¬Wizard (i.e., Muggles and Wizards are disjoint)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
  DB: No
  Ontology: Don’t Know

 OWA (didn’t say Draco was not Harry’s friend)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
  DB: 2
  Ontology: at least 1

 No UNA (Ron and Hermione may be 2 names for same person)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

 RonWeasley ≠ HermioneGranger
Query: How many friends does Harry Potter have?

  DB: 2
  Ontology: at least 2

 OWA (Harry may have more friends we didn’t mention yet)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
 RonWeasley ≠ HermioneGranger
 HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger}

Query: How many friends does Harry Potter have?
  DB: 2
  Ontology: 2!

Database -v- Ontology

Inserting new facts/data:
 Dumbledore: Wizard
Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?
  Update rejected: constraint violation

 Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?
  Infer that Dumbledore is Human (domain restriction)
  Also infer that Dumbledore is a Wizard (only a Wizard can have a

pheonix as a pet)

9hasPet.> v Human
Phoenix v 8isPetOf.Wizard

DB Query Answering

  Schema plays no role
  Data must explicitly satisfy schema constraints

  Query answering amounts to model checking
  I.e., a “look-up” against the data

  Can be very efficiently implemented
  Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering

  Ontology axioms play a powerful and crucial role
  Answer may include implicitly derived facts
  Can answer conceptual as well as extensional queries

  E.g., Can a Muggle have a Phoenix for a pet?

  Query answering amounts to theorem proving
  I.e., logical entailment

  May have very high worst case complexity
  E.g., for OWL, NP-hard w.r.t. size of data

(upper bound is an open problem)
  Implementations may still behave well in typical cases
  Fragments/profiles may have much better complexity

Ontology Based Information Systems

  Analogous to relational database management systems
  Ontology ¼ schema; instances ¼ data

  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
  Semantics can seem counter-intuitive, particularly w.r.t. data

  Open -v- closed world; axioms -v- constraints

  Query answering (logical entailment) may be much more difficult
  Can lead to scalability problems with expressive logics

Ontology Based Information Systems

  Analogous to relational database management systems
  Ontology ¼ schema; instances ¼ data

  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
  Semantics can seem counter-intuitive, particularly w.r.t. data

  Open -v- closed world; axioms -v- constraints

  Query answering (logical entailment) may be much more difficult
  Can lead to scalability problems with expressive logics

Back to our
Scheduled Program

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

 How can we provide robustly scalable query answering?

Theory Practice

Various Approaches — Different Tradeoffs

➊ Use full power of OWL and a complete reasoner:

 Well-suited for modeling complex domains
 Reliable answers
 High worst-case complexity
 Scalability problems for large ontologies & datasets

Complete OWL reasoners:
•  E.g., FaCT++, HermiT, Pellet, ...
•  Based on (hyper)tableau (model construction) theorem provers
•  Highly optimised implementations effective on many ontologies,

but not robust and unlikely to scale to large data sets

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

Note similarity to chase!

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”
  OWL 2 EL

  Based on EL++

  PTime-complete for combined and data complexity
  OWL 2 QL

  Based on DL-Lite
  AC0 data complexity (same as DBs)

  OWL 2 RL
  Based on “Description Logic Programs” ()
  PTime-complete for combined and data complexity

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 Tractable query answering
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 EL ontology reasoners:
•  E.g., CEL, ELK, ...
•  Based on “consequence based” (deduction) theorem provers
•  Target HCLS applications where many ontologies are (mainly)

in the EL profile

Consequence Based — How Does It Work?

  Normalise ontology axioms to standard form:

  Saturate using inference rules (for EL):

  Extension to EL++ requires (many) more rules

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Schema Reasoning — Solved Problem?

Schema Reasoning — Solved Problem?

  Full expressive power may be needed to model, e.g.:
  non-viral pneumonia (negation)

  infectious pneumonia is caused by a virus or a bacterium
(disjunction)

  double pneumonia occurs in two lungs (cardinalities)

  groin has a part that is part of the abdomen, and has a part that
is part of the leg (inverse properties)

  Single non-EL axiom may incur massive performance penalty

MORe Modular Reasoner

  Integrates powerful (slower) and weaker (faster) reasoners
  Exploits module extraction techniques to identify subset of

ontology that can be completely classified using fast reasoner.
  Slower reasoner performs as few computations as possible
  Bulk of computation delegated to faster reasoner
  Current prototype integrates HermiT and ELK [1]

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

MORe Modular Reasoner

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets
  Various approaches:

  Materialise taxonomy and use DBMS (incomplete reasoning)

  “Combined approach” using materialisation + OBDA [2]

  Datalog engine with (some form of) query rewriting [3]

  Highly optimised ABox reasoners [4]

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family
of Description Logics. KR 2012

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 QL ontology reasoners:
•  E.g., QuOnto, Requiem, ...
•  Based on query rewriting technique — ontology used to

rewrite (expand) query
•  Targets applications where data stored in RDBMS — aka

Ontology Based Data Access (OBDA)

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query
  Evaluate (SQL) query against DB

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Issues

➊ Rewriting
  May be large (worst case exponential in size of ontology)
  Queries may be hard for existing DBMSs
  Ongoing work on OBDA optimisation techniques, e.g., [5]

❷ Mappings
  May be difficult to develop and maintain
  Little work in this area to date

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite
Ontologies. KR 2012

Various Approaches — Different Tradeoffs

 Use full power of OWL and incomplete reasoner:

 Well-suited for modeling complex domains
 Favourable scalability properties
 Flexibility: no inputs rejected
 Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners:
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ...
•  Based on RDF triple stores and chase-like materialisation
•  Widely used in practice to reason with large datasets
•  Complete (only) for RL ontologies and ground atomic queries

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

  Evaluate Q against DB0

Materialisation — Example

DB

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Dealing With Frequently Changing Data

Adding data is relatively easy
  Monotonicity of FOL means that extending existing

materialisation is sound
  Can still be quite costly if naively implemented

Changing/retracting data is much harder
  Naive solution requires all materialised facts to be discarded
  Re-materialisation very costly for large data sets
  But incremental reasoning is possible using view

maintenance based techniques [6]

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent
mobile platform. In Proc. of WWW 2012.

Dealing with Incompleteness

  Materialisation based reasoning complete for OWL 2 RL profile
(and ground atomic queries)

  But for ontologies outside the profile:
  Reasoning may be incomplete
  Incompleteness difficult to measure via empirical testing

  Possible solutions offered by recent work:

  Measuring and repairing incompleteness

  Chase materialisation

  Computing upper and lower bounds

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

  Applicable to acyclic ontologies
  Acyclicity can be checked using, e.g., graph based techniques

(weak acyclicity, joint acyclicity, etc.)
  Many realistic ontologies turn out to be acyclic

  Given acyclic ontology O, can apply chase materialisation:
  Ontology translated into existential rules (aka dependencies)
  Existential rules can introduce fresh Skolem individuals
  Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering
in Description Logics. In Proc. of KR 2012.

Chase Materialisation — Example

DB

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

  Transform O into strictly stronger OWL RL ontology
  Transform ontology into Datalog±,v rules

  Eliminate ∨ by transforming to ∧

  Eliminate existentials by replacing with Skolem constants

  Discard rules with empty heads

  Transform rules into OWL 2 RL ontology O’

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

  If L = U, then both answers are sound and complete
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers

  Indicates range of uncertainty

  Can (more efficiently) check possible answers using, e.g., HermiT

  Future work: use U \ L to identify (small) “relevant” subset of data
needed to efficiently compute exact answer

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Looking forward to similar progress
on query answering!

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Hybrid techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Acknowledgements

References

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012
[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family

of Description Logics. KR 2012
[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite

Ontologies. KR 2012
[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an

intelligent mobile platform. In Proc. of WWW 2012.
[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for

Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012
[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering

in Description Logics. In Proc. of KR 2012.
[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query

Answers in Expressive Description Logics. In Proc. of DL 2012

Thank you for listening

Any questions?
FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

