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The Semantic Web 

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a 
physicist working at CERN 

  His original vision of the Web was much more ambitious than the reality 
of the existing (syntactic) Web: 

  This vision of the Web has become known as the Semantic Web 
  Latest (refined) definition:  

"a web of data that can be processed directly and indirectly by machines" 

“… a set of connected applications … forming a 
consistent logical web of data … information is 
given well-defined meaning, better enabling 
computers and people to work in cooperation …” 
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Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

  Development tools 

  Resulting robust infrastructure used in SW applications 

  Also increasingly used in “Intelligent Information System” 
applications 



How Does it Work? 

 Standardised language for exchanging data 

  W3C standard for data exchange is RDF 
  RDF is a simple language consisting of <S P O> triples 

  for example <eg:Ian eg:worksAt eg:Oxford> 

  all S,P,O are URIs or literals (data values) 

  URIs provides a flexible naming scheme 
  Set of triples can be viewed as a graph 
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Triple 
S P O 
em1234 rdf:type Person 
em1234 name “Eric Miller” 
em1234 title “Dr” 
em1234 mailbox mailto:em@w3.org 
em1234 worksfor w3c 
w3c rdf:type organisation 
w3c hq Boston 
w3c name “W3C” 
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❶  
PERSON 

ID NAME TITLE MAILBOX WORKSFOR 

em1234 “Eric Miller” “Dr” mailto:em@w3.org w3c 

... ... ... ... ... 

ORGANISATION 

ID NAME HQ 

w3c “W3C” Boston 

... ... ... 

... 



How Does it Work? 

 Standardised language for exchanging vocabularies/schemas 

  W3C standard for vocabulary/schema exchange is OWL 
  OWL provides for rich conceptual schemas, aka ONTOLOGIES  

❷   



How Does it Work? 

 Standardised language for querying ontologies+data 

  W3C standard for querying is SPARQL 
  SPARQL provides a rich query language comparable to SQL 

  ?x worksfor ?y . 
?y rdf:type organisation . 
?y hq Boston . 

  Select ?x 
where  { ?x worksfor ?y . 
    ?y rdf:type organisation . 
    ?y hq Boston . } 

  Q(?x)  worksfor(?x,?y) ^Æ organisation(?y) ^Æ hq(?y,Boston) 
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  SNOMED-CT (Clinical Terms) ontology  
  provides common vocabulary for recording clinical data 

  used in healthcare systems of more than 15 countries, including Australia, 
Canada, Denmark, Spain, Sweden and the UK 

  “classified and checked for equivalencies” using ontology reasoners 

  OBO foundry includes more than 100 biological and biomedical 
ontologies 

 “continuous integration server running Elk and/or HermiT 24/7 checking 
that multiple independently developed ontologies are mutually consistent” 

  Siemens “actively building OWL based clinical solutions” 

Applications: HCLS 



Applications: Energy Supply Industry 

  EDF Energy offer personalised energy  
saving advice to every customer 

  OWL ontology used to model relevant  
environmental factors 

  HermiT reasoner used to match customer  
circumstances with relevant pieces of advice 



Applications: Intelligent Mobile Platform 

  Samsung developing Intelligent Moblile 
Platform to support context-aware applications 

  IMP monitors environment via sensor data  
(GPS, compass, accelerometer, ...) 

  OWL ontology used to model environment 
and infer context (e.g., coffee with friends) 

  Applications exploit context to enable 
more intelligent behaviour 



Applications: Oil and Gas Industry  

  Statoil use data to inform production  
and exploration management 

 Large and complex data sets are 
difficult and time consuming to use 

  Semantic technology can improve  
access to relevant data 

  Test deployment in EU project 
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 How can we provide robustly scalable query answering? 

Theory        Practice 
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A Word from our Sponsors 
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  Decidable fragments of First Order Logic 

Any questions? 

Thank you for listening 



What Are Description Logics? 

  A family of logic based Knowledge Representation formalisms 
  Originally descended from semantic networks and KL-ONE 
  Describe domain in terms of concepts (aka classes), roles (aka 

properties, relationships) and individuals 

Cat 

Animal 

IS-A 
has-color Black 

Felix Mat 

IS-A 

sits-on 

• [Quillian, 1967] 



What Are Description Logics? 

  Modern DLs (after Baader et al) distinguished by: 
  Fully fledged logics with formal semantics 

  Decidable fragments of FOL (often contained in C2) 
  Closely related to Propositional Modal/Dynamic Logics & 

Guarded Fragment 
  Computational properties well understood (worst case complexity) 
  Provision of inference services 

  Practical decision procedures (algorithms) for key problems  
(satisfiability, subsumption, query answering, etc) 

  Implemented systems (highly optimised) 

  The basis for widely used ontology languages 



DL Syntax 

  Signature  
  Concept (aka class) names, e.g., Cat, Animal, Doctor 

  Equivalent to FOL unary predicates 
  Role (aka property) names, e.g., sits-on, hasParent, loves 

  Equivalent to FOL binary predicates 
  Individual names, e.g., Felix, John, Mary, Boston, Italy 

  Equivalent to FOL constants 



DL Syntax 

  Operators 
  Many kinds available, e.g., 

  Standard FOL Boolean operators (u, t, ¬) 
  Restricted form of quantifiers (9, 8) 
  Counting (¸, ·, =) 
  … 



DL Syntax 

  Concept expressions, e.g., 
  Doctor t Lawyer 
  Rich u Happy 
  Cat u 9sits-on.Mat 

  Equivalent to FOL formulae with one free variable 
    
    
    



DL Syntax 

  Special concepts 
   >   (aka top, Thing, most general concept) 
   ?   (aka bottom, Nothing, inconsistent concept) 

 used as abbreviations for 
  (A t ¬ A) for any concept A 
  (A u ¬ A) for any concept A  



DL Syntax 

  Role expressions, e.g., 
    
  hasParent ± hasBrother 

  Equivalent to FOL formulae with two free variables 
    
    



DL Syntax 

  “Schema” Axioms, e.g., 
  Rich v ¬Poor              (concept inclusion) 
  Cat u 9sits-on.Mat v Happy   (concept inclusion) 
  BlackCat ´ Cat u 9hasColour.Black               (concept equivalence) 
  sits-on v touches        (role inclusion) 
  Trans(part-of)         (transitivity) 

  Equivalent to (particular form of) FOL sentence, e.g., 
  8x.(Rich(x) ! ¬Poor(x)) 
  8x.(Cat(x) ^Æ 9y.(sits-on(x,y) ^Æ Mat(y)) ! Happy(x)) 
  8x.(BlackCat(x) $ (Cat(x) ^Æ 9y.(hasColour(x,y) ^Æ Black(y))) 
  8x,y.(sits-on(x,y) ! touches(x,y)) 
  8x,y,z.((sits-on(x,y) ^Æ sits-on(y,z)) ! sits-on(x,z)) 



DL Syntax 

  “Data” Axioms (aka Assertions or Facts), e.g., 
  BlackCat(Felix)     (concept assertion) 
  Mat(Mat1)     (concept assertion) 
  Sits-on(Felix,Mat1)    (role assertion) 

  Directly equivalent to FOL “ground facts” 
  Formulae with no variables 



DL Syntax 

  A set of axioms is called a TBox, e.g.: 

{Doctor v Person, 
  Parent ´ Person u 9hasChild.Person, 
  HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 

  A set of facts is called an ABox, e.g.: 

{HappyParent(John),  
  hasChild(John,Mary)} 

  A Knowledge Base (KB) is just a TBox plus an Abox 
  Often written K = hT, Ai 

Note 
Facts sometimes written 
John:HappyParent,  
John hasChild Mary, 
hJohn,Maryi:hasChild 



The DL Family 

  Many different DLs, often with “strange” names 
  E.g., EL, ALC, SHIQ 

  Particular DL defined by: 
  Concept operators (u, t, ¬, 9, 8, etc.) 
  Role operators (-, ±, etc.) 
  Concept axioms (v, ´, etc.) 
  Role axioms (v, Trans, etc.) 



The DL Family 

  E.g., EL is a well known “sub-Boolean” DL 
  Concept operators: u, ¬, 9 
  No role operators (only atomic roles) 
  Concept axioms: v, ´ 
  No role axioms 

  E.g.: 

 Parent ´ Person u 9hasChild.Person 



The DL Family 

  ALC is the smallest propositionally closed DL 
  Concept operators: u, t, ¬, 9, 8 
  No role operators (only atomic roles) 
  Concept axioms: v, ´ 
  No role axioms 

  E.g.: 

 ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor) 



The DL Family 

  S used for ALC extended with (role) transitivity axioms 
  Additional letters indicate various extensions, e.g.: 

  H for role hierarchy (e.g., hasDaughter v hasChild) 

  R  for role box (e.g., hasParent ± hasBrother v hasUncle) 
  O for nominals/singleton classes (e.g., {Italy}) 
  I  for inverse roles (e.g., isChildOf ´ hasChild–) 
  N  for number restrictions (e.g., >2hasChild, 63hasChild) 
  Q  for qualified number restrictions (e.g., >2hasChild.Doctor) 
  F  for functional number restrictions (e.g., 61hasMother) 

  E.g., SHIQ = S + role hierarchy + inverse roles + QNRs 



The DL Family 

  Numerous other extensions have been investigated 
  Concrete domains (numbers, strings, etc) 
  DL-safe rules (Datalog-like rules) 
  Fixpoints 
  Role value maps 
  Additional role constructors (\Å, [, ¬, ±, id, …) 
  Nary (i.e., predicates with arity >2) 
  Temporal 
  Fuzzy 
  Probabilistic 
  Non-monotonic 
  Higher-order 
  … 



DL Semantics 

Via translaton to FOL, or directly using FO model theory: 

Interpretation domain ΔI Interpretation function I 

Individuals  iI 2 ΔI 
 John 

 Mary 

Concepts   CI µ ΔI 

 Lawyer 

 Doctor 

 Vehicle 

Roles   rI µ ΔI £ ΔI 
 hasChild 

 owns 



DL Semantics 

  Interpretation function extends to concept expressions in the 
obvious(ish) way, e.g.: 



DL Semantics 

  Given a model M =  
    
    
    
    
    



DL Semantics 

  Satisfiability and entailment 
  A KB K is satisfiable iff there exists a model M s.t. M ² K 

  A concept C is satisfiable w.r.t. a KB K iff there exists a model  
M = hD, ·Ii s.t. M ² K and CI ≠ ; 

  A KB K entails an axiom ax (written K ² ax) iff for every model  
M of K, M ² ax  (i.e., M ² K implies M ² ax) 



DL Semantics 

E.g., 

  K ² John:Person ? 
  K ² Peter:Doctor ? 
  K ² Mary:HappyParent ? 
  What if we add “Mary hasChild Jane” ? 

 K ² Peter = Jane 

  What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ? 
 K ² HappyPerson v Parent 

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, John hasChild Sally, 
          Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild) 



DL and FOL 

  Most DLs are subsets of C2 
  But reduction to C2 may be (highly) non-trivial 

  Trans(R) naively reduces to  

  Why use DL instead of C2? 
  Syntax is succinct and convenient for KR applications 
  Syntactic conformance guarantees being inside C2 

  Even if reduction to C2 is non-obvious 
  Different combinations of constructors can be selected 

  To guarantee decidability 
  To reduce complexity 

  Decidability/complexity landscape mapped out in great detail 
  See http://www.cs.man.ac.uk/~ezolin/dl/ 





Complexity Measures 

  Taxonomic complexity 
 Measured w.r.t. total size of “schema” axioms 

  Data complexity 
 Measured w.r.t. total size of “data” facts 

  Query complexity 
 Measured w.r.t. size of query 

  Combined complexity 
 Measured w.r.t. total size of KB (plus query if appropriate) 



Complexity Classes 

  LogSpace, PTime, NP, PSpace, ExpTime, etc 
  worst case for a given problem w.r.t. a given parameter 
  X-hard means at-least this hard (could be harder); 

in X means no harder than this (could be easier); 
X-complete means both hard and in, i.e., exactly this hard 

  e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t. 
combined complexity and NP-hard w.r.t. data complexity 

  Note that: 
  this is for the worst case, not a typical case 
  complexity of problem means we can never devise a more efficient 

(in the worst case) algorithm 
  complexity of algorithm may, however, be even higher  

(in the worst case) 



DLs and Ontology Languages 

        ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL 
  OWL 2 based on SROIQ, i.e., ALC extended with  

transitive roles, a role box nominals, inverse roles and  
qualified number restrictions 

  OWL 2 EL based on EL 
  OWL 2 QL based on DL-Lite 

  OWL 2 EL based on DLP 

  OWL was  based on SHOIN 
  only simple role hierarchy, and  

unqualified NRs 



Class/Concept Constructors 



Ontology Axioms 

•  An Ontology is usually considered to be a TBox  
–  but an OWL ontology is a mixed set of TBox and ABox axioms 



Other OWL Features 

  XSD datatypes and (in OWL 2) facets, e.g., 
  integer, string and (in OWL 2) real, float, decimal, datetime, … 
  minExclusive, maxExclusive, length, … 
  PropertyAssertion( hasAge Meg "17"^^xsd:integer )  
  DatatypeRestriction( xsd:integer xsd:minInclusive "5"^^xsd:integer 

xsd:maxExclusive "10"^^xsd:integer ) 

 These are equivalent to (a limited form of) DL concrete domains 

  Keys 
  E.g., HasKey(Vehicle Country LicensePlate) 

  Country + License Plate is a unique identifier for vehicles 

 This is equivalent to (a limited form of) DL safe rules 



Obvious Database Analogy 

  Ontology axioms analogous to DB schema  
  Schema describes structure of and constraints on data 

  Ontology facts analogous to DB data 
  Instantiates schema 
  Consistent with schema constraints 

  But there are also important differences… 



Obvious Database Analogy 

Database: 
  Closed world assumption (CWA) 

  Missing information treated  
as false 

  Unique name assumption (UNA) 
  Each individual has a single, unique 

name 

  Schema behaves as constraints on 
structure of data 

  Define legal database states 

Ontology: 
  Open world assumption (OWA) 

  Missing information treated  
as unknown 

  No UNA 
  Individuals may have more  

than one name 

  Ontology axioms behave like 
implications (inference rules) 

  Entail implicit information 



Database -v- Ontology 

E.g., given the following ontology/schema: 
 HogwartsStudent ´ Student u 9 attendsSchool.Hogwarts 
 HogwartsStudent v 8hasPet.(Owl or Cat or Toad) 
 hasPet ´ isPetOf -   (i.e., hasPet inverse of isPetOf) 
 9hasPet.> v Human   (i.e., domain of hasPet is Human) 
 Phoenix v 8isPetOf.Wizard  (i.e., only Wizards have Phoenix pets) 
 Muggle v ¬Wizard   (i.e., Muggles and Wizards are disjoint) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

Query: Is Draco Malfoy a friend of HarryPotter? 
  DB: No 
  Ontology: Don’t Know 

 OWA (didn’t say Draco was not Harry’s friend) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

Query: How many friends does Harry Potter have? 
  DB: 2 
  Ontology: at least 1 

 No UNA (Ron and Hermione may be 2 names for same person) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

 RonWeasley ≠ HermioneGranger 
Query: How many friends does Harry Potter have? 

  DB: 2 
  Ontology: at least 2 

 OWA (Harry may have more friends we didn’t mention yet) 





Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 
 RonWeasley ≠ HermioneGranger 
 HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger} 

Query: How many friends does Harry Potter have? 
  DB: 2 
  Ontology: 2! 





Database -v- Ontology 

Inserting new facts/data: 
 Dumbledore: Wizard 
Fawkes: Phoenix 
Fawkes isPetOf Dumbledore 

What is the response from DBMS? 
  Update rejected: constraint violation 

 Domain of hasPet is Human; Dumbledore is not Human (CWA) 

What is the response from Ontology reasoner? 
  Infer that Dumbledore is Human (domain restriction) 
  Also infer that Dumbledore is a Wizard (only a Wizard can have a 

pheonix as a pet) 

9hasPet.> v Human 
Phoenix v 8isPetOf.Wizard 



DB Query Answering 

  Schema plays no role 
  Data must explicitly satisfy schema constraints 

  Query answering amounts to model checking 
  I.e., a “look-up” against the data 

  Can be very efficiently implemented 
  Worst case complexity is low (logspace) w.r.t. size of data 



Ontology Query Answering 

  Ontology axioms play a powerful and crucial role 
  Answer may include implicitly derived facts 
  Can answer conceptual as well as extensional queries 

  E.g., Can a Muggle have a Phoenix for a pet? 

  Query answering amounts to theorem proving 
  I.e., logical entailment 

  May have very high worst case complexity 
  E.g., for OWL, NP-hard w.r.t. size of data 

(upper bound is an open problem) 
  Implementations may still behave well in typical cases 
  Fragments/profiles may have much better complexity 



Ontology Based Information Systems 

  Analogous to relational database management systems 
  Ontology ¼ schema; instances ¼ data 

  Some important (dis)advantages 
+  (Relatively) easy to maintain and update schema 

  Schema plus data are integrated in a logical theory 

+  Query answers reflect both schema and data 
+  Can deal with incomplete information 
+  Able to answer both intensional and extensional queries 
  Semantics can seem counter-intuitive, particularly w.r.t. data 

  Open -v- closed world; axioms -v- constraints 

  Query answering (logical entailment) may be much more difficult 
  Can lead to scalability problems with expressive logics 
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Back to our  
Scheduled Program 



  OWL based on description logic SROIQ 
  DLs are a family of FOL fragments  

  Clear semantics 

  Well understood computational properties 
(e.g., decidability, complexity) 

  Simple goal directed reasoning algorithms 

  OWL is decidable, but highly highly intractable 
  N2ExpTime-comlete combined complexity 

  NP-hard data complexity (-v- logspace for databases) 

 How can we provide robustly scalable query answering? 

Theory        Practice 



Various Approaches — Different Tradeoffs 

➊  Use full power of OWL and a complete reasoner: 

 Well-suited for modeling complex domains  
 Reliable answers 
  High worst-case complexity  
  Scalability problems for large ontologies & datasets 

Complete OWL reasoners: 
•  E.g., FaCT++, HermiT, Pellet, ... 
•  Based on (hyper)tableau (model construction) theorem provers 
•  Highly optimised implementations effective on many ontologies,  

but not robust and unlikely to scale to large data sets 



(Hyper)tableau — How Does It Work? 

 Standard technique based on (hyper-) tableau 
  Reasoning tasks reducible to (un)satisfiability 

  E.g., KB ² HeartDisease v VascularDisease iff  
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable  
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(Hyper)tableau — How Does It Work? 

 Standard technique based on (hyper-) tableau 
  Reasoning tasks reducible to (un)satisfiability 

  E.g., KB ² HeartDisease v VascularDisease iff  
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable  

  Algorithm tries to construct (an abstraction of) a model 

Note similarity to chase! 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
OWL 2 defines language subsets, aka profiles that can be 
“more simply and/or efficiently implemented” 
  OWL 2 EL  

  Based on EL++ 

  PTime-complete for combined and data complexity 
  OWL 2 QL 

  Based on DL-Lite 
  AC0 data complexity (same as DBs) 

  OWL 2 RL 
  Based on “Description Logic Programs” (                   ) 
  PTime-complete for combined and data complexity 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 Tractable query answering 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 EL ontology reasoners: 
•  E.g., CEL, ELK, ... 
•  Based on “consequence based” (deduction) theorem provers 
•  Target HCLS applications where many ontologies are (mainly) 

in the EL profile 



Consequence Based — How Does It Work? 

  Normalise ontology axioms to standard form: 

  Saturate using inference rules (for EL): 

  Extension to EL++ requires (many) more rules 
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Schema Reasoning — Solved Problem? 



Schema Reasoning — Solved Problem? 

  Full expressive power may be needed to model, e.g.: 
  non-viral pneumonia (negation) 

  infectious pneumonia is caused by a virus or a bacterium 
(disjunction) 

  double pneumonia occurs in two lungs (cardinalities) 

  groin has a part that is part of the abdomen, and has a part that  
is part of the leg (inverse properties) 

  Single non-EL axiom may incur massive performance penalty 



MORe Modular Reasoner 

  Integrates powerful (slower) and weaker (faster) reasoners 
  Exploits module extraction techniques to identify subset of 

ontology that can be completely classified using fast reasoner. 
  Slower reasoner performs as few computations as possible 
  Bulk of computation delegated to faster reasoner 
  Current prototype integrates HermiT and ELK [1] 

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners 
for Ontology Classification. In Proc. of ISWC 2012 (to appear). 
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OWL 2 EL — Data Retrieval Queries?  

  PTime potentially problematical for very large datasets 
  Various approaches: 

  Materialise taxonomy and use DBMS (incomplete reasoning) 

  “Combined approach” using materialisation + OBDA [2] 

  Datalog engine with (some form of) query rewriting [3] 

  Highly optimised ABox reasoners [4] 

[2]  Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to 
Ontology-Based Data Access. IJCAI 2011. 

[3]  Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012 

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family 
of Description Logics. KR 2012 
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Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 LogSpace query answering (in size of data) 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 QL ontology reasoners: 
•  E.g., QuOnto, Requiem, ... 
•  Based on query rewriting technique — ontology used to  

rewrite (expand) query 
•  Targets applications where data stored in RDBMS — aka 

Ontology Based Data Access (OBDA) 
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Query Rewriting — How Does It Work? 

Given ontology O query Q and mappings M:  
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to 

answering Q w.r.t. O for any dataset 
  Map ontology queries → DB queries (typically SQL) using 

mappings M to rewrite Q’ into a DB query 
  Evaluate (SQL) query against DB 
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Query Rewriting — Issues 

➊ Rewriting 
  May be large (worst case exponential in size of ontology) 
  Queries may be hard for existing DBMSs 
  Ongoing work on OBDA optimisation techniques, e.g., [5] 

❷ Mappings 
  May be difficult to develop and maintain 
  Little work in this area to date 

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite 
Ontologies. KR 2012 



Various Approaches — Different Tradeoffs 

 Use full power of OWL and incomplete reasoner: 

 Well-suited for modeling complex domains  
 Favourable scalability properties 
 Flexibility: no inputs rejected 
  Incomplete answers (and degree of incompleteness not known)  

OWL 2 RL ontology reasoners: 
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ... 
•  Based on RDF triple stores and chase-like materialisation 
•  Widely used in practice to reason with large datasets 
•  Complete (only) for RL ontologies and ground atomic queries 
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Given (RDF) data DB, ontology O and query Q:  
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0 

equivalent to answering Q w.r.t. DB and O 
nb:  Closely related to chase procedure used with DB dependencies 

  Evaluate Q against DB0 
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DB DB0 



Dealing With Frequently Changing Data 

Adding data is relatively easy 
  Monotonicity of FOL means that extending existing 

materialisation is sound 
  Can still be quite costly if naively implemented 

Changing/retracting data is much harder 
  Naive solution requires all materialised facts to be discarded 
  Re-materialisation very costly for large data sets 
  But incremental reasoning is possible using view  

maintenance based techniques [6] 

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent 
mobile platform. In Proc. of WWW 2012. 



Dealing with Incompleteness 

  Materialisation based reasoning complete for OWL 2 RL profile 
(and ground atomic queries) 

  But for ontologies outside the profile: 
  Reasoning may be incomplete 
  Incompleteness difficult to measure via empirical testing 

  Possible solutions offered by recent work: 

  Measuring and repairing incompleteness 

  Chase materialisation 

  Computing upper and lower bounds 



Measuring and Repairing Incompleteness 

  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
    
    

  A reasoner R passes     if: 
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Measuring and Repairing Incompleteness 

  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
    
    

  A reasoner R passes     if: 
    
    

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for 
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012. 



Chase Materialisation 

  Applicable to acyclic ontologies 
  Acyclicity can be checked using, e.g., graph based techniques 

(weak acyclicity, joint acyclicity, etc.) 
  Many realistic ontologies turn out to be acyclic 

  Given acyclic ontology O, can apply chase materialisation: 
  Ontology translated into existential rules (aka dependencies) 
  Existential rules can introduce fresh Skolem individuals 
  Termination guaranteed for acyclic ontologies 

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering 
in Description Logics. In Proc. of KR 2012. 
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Computing Lower and Upper Bounds 

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L 



Computing Lower and Upper Bounds 

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L 

  Transform O into strictly stronger OWL RL ontology 
  Transform ontology into Datalog±,v rules 

  Eliminate ∨ by transforming to ∧ 

  Eliminate existentials by replacing with Skolem constants 

  Discard rules with empty heads 

  Transform rules into OWL 2 RL ontology O’ 



Computing Lower and Upper Bounds 

  RL reasonting w.r.t. O’gives (complete but unsound)  
upper bound answer U 
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Computing Lower and Upper Bounds 

  RL reasonting w.r.t. O’gives (complete but unsound)  
upper bound answer U 

  If L = U, then both answers are sound and complete 
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers 

  Indicates range of uncertainty 

  Can (more efficiently) check possible answers using, e.g., HermiT 

  Future work: use U \ L to identify (small) “relevant” subset of data 
needed to efficiently compute exact answer 

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query 
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR. 
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Looking forward to similar progress  
on query answering! 
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Any questions? 
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