
Machine Learning Michaelmas 2017

Principal Component Analysis
James Worrell

1 Introduction

1.1 Goals of PCA

Principal components analysis (PCA) is a dimensionality reduction technique that can be used to give a compact
representation of data while minimising information loss. Suppose we are given a set of data, represented as
vectors in a high-dimensional space. It may be that many of the variables are correlated and that the data closely
fits a lower dimensional linear manifold. In this case, PCA finds such a lower dimensional representation in
terms of uncorrelated variables called principal components. PCA can also be kernelised, allowing it to be used
to fit data to low-dimensional non-linear manifolds. Besides dimensionality reduction, PCA can also uncover
patterns in data and lead to a potentially less noisy and more informative representation. Often one applies PCA
to prepare data for further analysis, e.g., finding nearest neighbours or clustering.

1.2 Technical Overview

In a nutshell, PCA proceeds as follows. We are given a collection of data in the form of n vectors x1, . . . ,xn ∈
Rm. By first translating the data vectors, if necessary, we may assume that the input data are mean centred,
that is,

∑n
i=1 xi = 0. Given a target number of dimensions k � m, PCA aims to find an orthonormal

family of k vectors u1, . . . ,uk ∈ Rm that “explain most of the variation in the data”. More precisely, for
i = 1, . . . , n we approximate each data point xi by a linear expression zi1u1 + . . . + zikuk for some scalars
zi1, . . . , zik ∈ R; the goal of PCA is to choose the ui so as to optimise the quality of this approximation over
all data points. The optimal such vectors u1, . . . ,uk are the k principal components: u1 is direction of greatest
variance in the data, u2 is the direction of greatest variance that is orthogonal to u1, etc. To find the principal
components we apply a matrix factorisation technique—the singular value decomposition—to them×nmatrix
whose columns are the mean-centred data points xi. In the end, representing each data point xi ∈ Rm by its
coordinates zi = (zi1, . . . , zik) with respect to the k principal components yields a lower dimensional and
(hopefully) more informative representation.

Example 1. Figure 2 represents the output of PCA (with k = 2) on a DNA database representing the genomes
of 1400 Europeans. In this database each genome was represented by a vector in Rm (where m ≈ 200, 000)
representing the results of sampling the DNA in certain positions. When projected onto the top two principal
components there are natural clusters that correspond to the spacial distribution of the genomes. Thus PCA
reveals that the two spacial dimensions are “latent variables” that explain much of the variation in the DNA of
modern Europeans.

2 Singular-Value Decomposition

We start by describing a mathematical construction that can used to carry out PCA.
LetA be a real m× n matrix of rank r. Write Ir for the r× r identity matrix. A singular value decompo-

sition (SVD) ofA is a factorisationA = UΣV >, where

• U is an m× r matrix such that U>U = Ir,

1

Figure 1: Genetic differences within European populations

• V is an n× r matrix such that V >V = Ir,

• Σ is an r × r diagonal matrix Σ =

σ1 . . . 0
...

. . .
...

0 . . . σr

, where σ1 ≥ . . . ≥ σr are strictly positive.

The columns u1, . . . ,ur of U , which form an orthonormal set, are called left singular vectors.. The columns
v1, . . . ,vr of V , which also form an orthonormal set, are called right singular vectors. The SVD yields a
decomposition ofA as a sum of r rank-one matrices:

A = UΣV > =
r∑

i=1

σiuiv
>
i . (1)

The factorisation (1) can equivalently be expressed by the equationsAvi = σiui for i = 1, . . . , r.
Given an SVD A = UΣV >, we can expand U to an m × m orthogonal matrix Û by adding m − r

extra columns. We can likewise expand V to an n × n orthogonal matrix V̂ by adding n − r extra columns,
and furthermore expand Σ to an m × n matrix by adding extra entries that are all zero. In this case we have
A = ÛΣ̂V̂

>
. We call such a factorisation of A into a product of an m × m orthogonal matrix, m × n

nonnegative diagonal matrix, and n × n orthogonal matrix, a full SVD.1 A full SVD expresses the linear
transformation represented byA as a rotation, followed by a scaling, following by another rotation.

2.1 Existence of SVDs

Every matrixA has an SVDA = UΣV >. As we shall see, the singular values are uniquely determined byA.

Theorem 2. Every matrixA ∈ Rm×n has an SVD.
1Conversely, the version of the SVD defined above is sometimes called the reduced SVD.

2

Proof. Inductively define an orthonormal sequence of vectors v1, . . . ,vr ∈ Rn such that

v1 := arg max
‖v‖=1

‖Av‖,

v2 := arg max
v⊥v1 ‖v‖=1

‖Av‖,

v3 := arg max
v⊥v1,v⊥v2 ‖v‖=1

‖Av‖, etc.,

where the sequence stops at the first index r such that A is zero on {v1, . . . ,vr}⊥. Furthermore, for i =
1, . . . , r, define σi := ‖Avi‖ and define the unit vector ui ∈ Rm byAvi = σiui.

The set {v1, . . . ,vr} is orthonormal by construction. To prove the theorem it suffices to show that {u1, . . . ,ur}
is an orthonormal set and that A =

∑r
i=1 σiuiv

>
i (as in (1)). For the latter task, write B :=

∑r
i=1 σiuiv

>
i .

A direct calculation shows that Avi = Bvi for i = 1, . . . , r and that Av = Bv = 0 for any vector
v ∈ {v1, . . . ,vr}⊥. It follows thatA = B.

Finally we show that u>i uj = 0 for all 1 ≤ i < j ≤ r. To this end, define w : R → Rn by w(t) =
(vi+εvj)√

1+t2
. Sincew(t) is a unit vector orthogonal to v1, . . . ,vi−1 for all t it must be that ‖Aw(t)‖2 is maximised

at t = 0. But

‖Aw(t)‖2 = ‖σiui + tσjuj‖2

1 + t2
=
σ2i + 2tσiσj(u

>
i uj) + t2σ2j

1 + t2
(2)

and a direct caluclation shows that (2) has zero derivative at t = 0 if and only if u>i uj = 0.

2.2 SVDs and Spectral Theory

In this section we explain the relationship between a singular value decomposition of a matrix A and the
eigenvalues and eigenvectors of the matrices A>A and AA>. Note here that A>A and AA> are square
matrices and so it makes sense to talk about their eigenvectors and eigenvalues.

In a general a matrix may have many different SVDs. However the following proposition shows that all
SVDs involve the same singular values. Thus we may speak of the singular values of a matrix A.

Proposition 3. Given any SVD of A, the singular values are the square roots of the nonzero eigenvalues of
A>A orAA> (these matrices have the same eigenvalues).

Proof. We show the result forA>A. Given a full SVDA = UΣV >, we have

A>AV = (UΣV >)>(UΣV >)V

= V Σ>U>UΣV >V

= V Σ>ΣV >V

= V Σ2 .

It follows that for i = 1, . . . , r each right singular vector vi of A is an eigenvector of A>A with non-zero
eigenvalue σ2i . The remaining columns of V span the eigenspace of A>A corresponding to the eigenvalue
zero.

One can similarly show that the left singular values ofA are eigenvectors ofAA>.

From the proof of Proposition 3 we see that in any full SVD A = UΣV >, the columns of U comprise
an orthonormal basis of eigenvectors of AA> and the columns of V comprise an orthonormal basis of eigen-
vectors of A>A. Indeed an alternative way to prove the existence of an SVD of matrix A is to rely on results
about the spectral theory of either of the matricesA>A orAA>. 2

2For example, the matrix A>A, being symmetric positive semidefinite, has an orthonormal basis of eigenvectors v1, . . . ,vn with

3

3 The Eckhart-Young Theorem

3.1 The Frobenius Norm

The main application of SVD for our purposes is to compute a best low-rank approximation of a given matrix.
In order to formalise this notion we introduce the Frobenius matrix norm. The Frobenius norm of an m × n
matrixA = (aij), denoted ‖A‖F , is defined by

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

a2ij =

√
trace(A>A) .

Note that the Frobenius norm ofA is a function of the singular values ofA. Indeed, ifA = UΣV > then

‖A‖2F = trace(A>A) = trace((UΣV >)>(UΣV >) = trace(Σ>Σ) = σ21 + . . .+ σ2r .

3.2 Low-Rank Approximation via the SVD

Consider a matrix A that has an SVD A =
∑r

i=1 σiuiv
>
i . Given k ≤ r we obtain a rank-k matrix Ak by

“truncating” the SVD after the first k terms:

Ak :=
k∑

i=1

σiuiv
>
i . (3)

The image of Ak is spanned to the top k left singular vectors. Hence Ak has rank k. By construction, Ak has
singular values σ1, . . . , σk. Likewise,A−Ak =

∑r
i=k+1 σiuiv

>
i has singular values σk+1, . . . , σr. Thus

‖A−Ak‖F =
√
σk+1 + . . .+ σr .

Note that σk+1 is the top singular vector ofA−Ak.

3.3 Eckhart-Young Theorem

The following result says thatAk is a best rank-k approximation of k with respect to the Frobenius norm. Since
proof of this result is beyond the scope of the course we relegate it to an appendix.

Theorem 4 (Eckhart-Young). Let A be a real m× n matrix. Then for any k ∈ N and any real m × n matrix
B of rank at most k we have ‖A−Ak‖F ≤ ‖A−B‖F .

The Eckhart-Young Theorem can also be formulated in terms of orthogonal projections. Write P k :=∑k
i=1 uiu

>
i for the matrix representing the orthogonal projection of Rm onto the subspace spanned by the top

k left singular vectors ofA.

Theorem 5. Let A be a real m× n matrix. Then for any k ∈ N and any m×m orthogonal projection matrix
P of rank k, we have ‖A− P kA‖F ≤ ‖A− PA‖F .

The equivalence of Theorems 4 and 5 follows from two simple facts. First, by a simple calculation, we
have that Ak = P kA. Second, for any rank-k matrix B we have ‖A − B‖F ≤ ‖A − PA‖F , where P
denotes the orthogonal projection onto the column space ofB (since for any vector x, Px is the closest vector
to x lying in the column space ofB). Theorem 5 moreover gives some intuition behind the construction of the
SVD in Theorem 2. The idea is that for any any orthogonal projection P , by Pythagoras’s Theorem, we have
‖A − PA‖2F = ‖A‖2F − ‖PA‖2F . Thus minimising ‖A − PA‖2F is the same as maximising ‖PA‖2F . This
corresponds to the length-maximising characterisation of the right singular vectors in the proof of Theorem 2.

the associated eigenvalues λ1, . . . , λn being real and nonnegative. Writing σi :=
√
λi, and ui := Avi for i = 1, . . . , r it can be

proved that A =
∑r

i=1 σiuiv
>
i is a full SVD.

4

3.4 Choosing k

The Eckhart-Young Theorem can help to detemine what value of k to take in order to ensure that Xk is a “suffi-
cently good” approximation of X . In particular it allows to express the relative error a low-rank approximation
Xk in terms of the singular values ofX , since

‖X −Xk‖2F
‖X‖2F

=
σ2k+1 + · · ·+ σ2r
σ21 + · · ·+ σ2r

. (4)

Thus if our goal is to ensure a given bound on the relative error (say at most 0.05), then we can find an
approprate value of k by examining the singular values, instead of proceeding by trial and error and computing
Xk for various values of k.

4 PCA

In this section we show how the singular value decomposition is used in principal components analysis. In PCA
the input is a family x1, . . . ,xn of data points in Rm. Write µ := 1

n

∑n
i=1 xi for the mean data point. By first

replacing xi by xi −µ we may assume that the input data are mean centred. Given a target dimension k ≤ m,
our goal is to find points x̃1, . . . , x̃n ∈ Rm such that the reconstruction error

∑n
i=1 ‖xi − x̃i‖2 is minimised

subject to the constraint that x̃1, . . . , x̃n lie in a subspace of Rm of dimension at most k.3

Respectively write the mean-centred data points and their approximants as the columns of two m × n
matrices

X :=

 | |
x1 . . . xn

| |

 and X̃ :=

 | |
x̃1 . . . x̃n

| |


Then the reconstruction error is nothing but ‖X − X̃‖2F . Thus by the Eckhart-Young Theorem an optimal
choice of X̃ is the matrix Xk, as defined in (3) via a “truncated” SVD. Now recall that if Uk is the n × k
matrix whose columns are the top k left singular vectors ofX then, writing Z := U>kX , we have

Xk = UkU
>
kX = UkZ . (5)

The output of PCA is the pair of matrices Uk and Z. The columns of Uk are the top k left singular vectors,
while the columns of Z give the coefficients that respectively approximate each mean centred data point xi as
a linear combination of the top k left singular vectors.

4.1 Facial Recognition

In this section we describe an application of PCA to the problem of facial recognition. Suppose we have a
database of n faces. Given a new face we want to find the closest match in the database. Each face is a grey-
scaled image consisting of m pixels. We represent a face as a vector x ∈ Rm, where xi represents the intensity
of the i-th pixel. The dimension m is typically in the tens or hundreds of thousands. However after applying
PCA it has been found that an accurate representation of the input images can be obtained using a few hundred
principal components.

LetX be them×nmatrix whose columns represent the collection of (mean centred) faces in the database.
Let Uk be an n × k matrix whose columns are the top k left singular vectors of X . The columns u1, . . . ,uk

of Uk are called eigenfaces and express the directions of greatest variance among the faces. The columns
3It can be shown that finding the best fit k-dimensional subspace for the mean-centred data xi is equivalent to finding the best fit

affine k dimensional subspace for the original data x∗i .

5

z1, . . . ,zn ∈ Rk of the matrix Z := U>kX are the coefficients that (approximately) express each face in the
database as a linear combination of eigenfaces.

Given a new face x ∈ Rm, suppose we want to find the best match for x in the database. Let µ denote the
mean of the vectors in the database (prior to mean centring). The coordinates of the projection of x − µ on
the subspace spanned by u1, . . . ,uk are given by U>k (x − µ). We can then find the best match for x in the
database by finding the nearest neighbour to U>k (x− µ) among the vectors zi for i = 1, . . . , n.

4.2 Latent Semantic Analysis

We would like to partition a given collection of n documents into groups of documents about similar topics.
Given a collection of m key words, we represent each document as vector in Rm recording the frequency of
each key word (the number of occurrences of the key word divided by the total number of occurrences of all
key words).

Let the vectors x1, . . . ,xn ∈ Rn represent the documents in the collection after mean centring. One idea
is to model the similarity of any two documents xi and xj by taking the inner product x>i xj (e.g., the inner
product is 0 if the documents have no word in common and more positive if there are lots of words in common).
However there are some problems with this idea. For example, the inner product is oblivious to correlations
among keywords—it does not take account of the fact that two different key words, e.g., football and Premier
League, may be closely related and should not be treated as orthogonal.

Carrying out PCA, we represent the i-th (mean centred) document as a linear combination of the top k
principal components, for some well-chosen k. Let vector zi denote the coefficients of this linear combination.
As explained above, it is hoped that the inner product z>i zj will better represent the similarity of the i-th and
j-th documents than x>i xj .

5 Computing an SVD

Computing the SVD is an important topic in numerical linear algebra. Here we sketch a very simple “in-
principle” power-iteration method to compute the SVD (which however takes no account of numerical stability).

Let A be an m × n matrix with SVD A =
∑r

i=1 σiuiv
>
i . Recall that v1, . . . ,vr are eigenvectors of the

matrix A>A with respective eigenvalues λ1 = σ21, . . . , λr = σ2r . We first show how to use power iteration to
find the top eigenvector v1 and then explain how to find the remaining eigenvectors. The procedure to compute
v1 is as follows:

1. Select a unit vector x0 ∈ Rn uniformly at random.4

2. For k = 1, 2, . . ., set xk := (A>A)xk−1 and yk := xk
‖xk‖ . Stop when ‖yk − yk−1‖ is “sufficiently

small” and output yk.

The idea is that by iteratively applying A>A to a random vector we will (with high probability) converge to a
vector that points in the direction v1 or−v1. The following gives a bound on the speed of convergence in terms
of the ratio λ1/λ2—the so called spectral gap ofA>A. The larger the spectral gap, the faster the convergence.
In case λ1 = λ2 Proposition 6 gives no guarantee of convergence. However the proposition can easily be
generalised to show that with high probability the procedure will converge to some vector in the eigenspace of
A>A corresponding to the leading eigenvalue.

Proposition 6. With probability at least 9/10 over the random choice of x0, for all k ≥ 0 we have

|y>k v1| ≥ 1− 20n (λ2/λ1)
k .

4This can be done, e.g., by sampling each component of x0 independently from the Gaussian distribution N(0, 1) and rescaling the
resulting vector to have length 1.

6

Proof. Consider the random variableX denoting the absolute value of the inner product of a random unit vector
in Rn with any fixed unit vector. A simple calculation shows that X has expected value 1√

n
. We will use the

concentration bound Pr(X > 1
20
√
n
) ≥ 9/10, which can be proved by a geometric argument5.

Let b1, . . . , bn be the (uniquely defined) scalars such that x0 =
∑n

i=1 bivi. Then we have that |b1| > 1
20
√
n

with probability at least 9/10. Assuming that |b1| ≥ 1
20
√
n

, we have

y>k v1 =
[(A>A)kx0]

>v1

‖(A>A)kx0‖
=
x>0 (A

>A)kv1

‖(A>A)kx0‖
=

λk1x
>
0 v1

‖(A>A)kx0‖
=

λk1b1√
b21λ

2k
1 + . . .+ b2nλ

2k
n

(6)

We now give a lower bound on (6) using the fact that
√
a+ b ≤

√
a+
√
b:

(6) ≥ λk1b1√
b21λ

2k
1 + nλ2k2

≥ λk1b1

b1λk1 +
√
nλk2

=
1

1 + 20n(λ2/λ1)k
≥ 1− 20n(λ2/λ1)

k .

Having computed v1 we can compute the next singular vector v2 by adapting the above procedure as
follows. We modify the update step by projecting xk orthogonally to v1, that is, we perform the update xk :=
xk − (x>k v1)v1. Continuing in this manner we compute all the singular values.

6 Kernel PCA

In this section we show that PCA can be kernelised. This in particular allows to use PCA to find non-linear
“directions of greatest variance”, cf. Figure 2.

Suppose we have a feature map φ : Rm → Rd and associated kernel function κ(x,x′) = φ(x)>φ(x′).
Let x1, . . . ,xn be the original data points in Rm. Let µ = 1

n

∑n
i=1 φ(xi) be the mean of the transformed

data points. After applying the feature map and translating the data points to make them mean centred, we
obtain new data points xi

∗ := φ(xi) − µ for i = 1, . . . , n. Consider the d × n data matrix X with columns
x∗1, . . . ,x

∗
n. Given k, our aim is to compute the k× n matrix Z such thatXk = UkZ, whereUk is the matrix

whose columns are the top k left singular vectors u1, . . . ,uk of X . We show how to use the kernel function
function κ to obtain Z as the product U>kX without explicitly constructing either of the the matricesX or U .

First, we can use the kernel function to compute the n× n matrixX>X . Indeed we have

(X>X)ij

= (x∗i)
>x∗j

= (φ(xi)− µ)>(φ(xj)− µ)

=
(
φ(xi)− 1

n

∑n
k=1 φ(xk)

)> (
φ(xj)− 1

n

∑n
l=1 φ(xl)

)
= φ(xi)

>φ(xj)− 1
n

∑n
l=1 φ(xi)

>φ(xl)− 1
n

∑n
k=1 φ(xk)

>φ(xj) +
1
n2

∑n
k,l=1 φ(xk)

>φ(xl)

= κ(xi,xj)− 1
n

∑n
l=1 κ(xi,xl)− 1

n

∑n
k=1 κ(xk,xj) +

1
n2

∑n
k,l=1 κ(xk,xl) .

The top k right singular vectors v1, . . . ,vk of X can be constructed as eigenvectors of X>X . These
vectors lie in Rn and can be explicitly constructed fromX>X (e.g., using power iteration). The associated left

5see https://www.cs.cmu.edu/ venkatg/teaching/CStheory-infoage/book-chapter-4.pdf for a proof

7

Figure 2: The left-hand diagram shows the input points before PCA. The right-hand figure shows the input
points after PCA with the polynomial kernel κ(x,y) = (x>y+ 1)2, corresponding to the feature map φ(x) =
(1,
√
2x1,
√
2x2,
√
2x1x2, x

2
1, x

2
2). The top principal component corresponds to the radius of the points.

singular vectors u1, . . . ,uk are defined via the equation

ui =
1

‖Xvi‖
Xvi (7)

for i = 1, . . . , k. Now we can compute

‖Xvi‖2 = (Xvi)
>(Xvi) = v

>
i (X

>X)vi

having already computed X>X . Thus we obtain from (7) coefficients αij such that ui =
∑n

j=1 αijx
∗
j for

i = 1, . . . , k, that is, we express the the left singular vectors as linear combinations of the transformed data
vectors x∗1, . . . ,x

∗
n.

Let Uk be the k × d matrix whose columns are the top k left singular vectors u1, . . . ,uk. We can use the
kernel function to compute the matrix Z := U>kX such that

Xk = UkU
>
kX = UkZ .

Let us emphasize that the above derivation does not require an explicit representation of either the data vectors
x∗i nor singular vectors ui as elements of Rd.

7 Appendix: Proof of the Eckhart-Young Theorem

The key to proving the Eckhart-Young theorem is the following lemma, which gives a lower bound on the
singular values of a perturbation of matrix A by matrix B of rank at most k. In the lemma we use the notation
σi(A) to refer to the i-th singular value of a matrix A. If i greater than the rank of A then σi(A) is defined to
be 0. The proof of the lemma uses the following “triangle inequality” (whose proof we leave as an exercise):
for any two matricesA andB of the same dimension, σ1(A+B) ≤ σ1(A) + σ1(B).

Lemma 7. IfA,B ∈ Rm×n, withB having rank at most k, then σk+i(A) ≤ σi(A−B) for all i.

Proof. We first show the lemma in case i = 1, i.e., we prove that σk+1(A) ≤ σ1(A−B).

8

The kernel of B has dimension n− k and thus there must exist a unit-length vector w that lies both in the
kernel ofB and in the span of the top k + 1 singular vectors v1, . . . ,vk+1. Then we have

‖Aw‖ = ‖(A−B)w‖ ≤ σ1(A−B)‖w‖ . (8)

On the other hand, from the SVDA =
∑r

i=1 σiuiv
>
i we have

‖Aw‖2 =

∥∥∥∥∥
k+1∑
i=1

σiui(v
>
i w)

∥∥∥∥∥
2

since w ∈ span(v1, . . . ,vk+1)

=
k+1∑
i=1

σ2i (v
>
i w)2

≥ σ2k+1

k+1∑
i=1

(v>i w)2

= σ2k+1‖w‖2 .

We conclude that σk+1(A)‖w‖ ≤ σ1(A−B)‖w‖ and hence σk+1(A) ≤ σ1(A−B).
Now we do the general case:

σi(A−B) = σi(A−B) + σ1(B −Bk) sinceB = Bk

= σ1(A−B − (A−B)i−1) + σ1(B −Bk) see comments in Section 3.2

≥ σ1(A−B − (A−B)i−1 +B −Bk) by the triangle inequality

= σ1(A− (A−B)i−1 −Bk) algebraic simplification

≥ σi+k(A) by the previous case, since rank((A−B)i−1 +Bk) ≤ i+ k − 1.

Proof of Theorem 4. We argue as follows:

‖A−Ak‖2F =
r∑

i=k+1

σi(A)2

≤
r−k∑
i=1

σi(A−B)2 by Lemma 7

≤ ‖A−B‖2F .

9

	Introduction
	Goals of PCA
	Technical Overview

	Singular-Value Decomposition
	Existence of SVDs
	SVDs and Spectral Theory

	The Eckhart-Young Theorem
	The Frobenius Norm
	Low-Rank Approximation via the SVD
	Eckhart-Young Theorem
	Choosing k

	PCA
	Facial Recognition
	Latent Semantic Analysis

	Computing an SVD
	Kernel PCA
	Appendix: Proof of the Eckhart-Young Theorem

