
Logic and Proof Hilary 2024

Equivalence and Normal Forms

James Worrell

1 Equational Reasoning

A “brute-force” method to show that two formulas are logically equivalent is to use truth tables.
In this lecture we introduce an alternative approach that is more practical in many cases, namely
equational reasoning. The idea is to start from some basic equivalences (the Boolean algebra
axioms) and derive new equivalences using the closure of logical equivalence under substitution.

1.1 Boolean Algebra Axioms

Proposition 1. The following equivalences hold for all formulas F , G and H:

F ∧ F ≡ F
F ∨ F ≡ F (Idempotence)

F ∧G ≡ G ∧ F
F ∨G ≡ G ∨ F (Commutativity)

(F ∧G) ∧H ≡ F ∧ (G ∧H)
(F ∨G) ∨H ≡ F ∨ (G ∨H) (Associativity)

F ∧ (F ∨G) ≡ F
F ∨ (F ∧G) ≡ F (Absorption)

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H)
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) (Distributivity)

¬¬F ≡ F (Double negation)

¬(F ∧G) ≡ (¬F ∨ ¬G)
¬(F ∨G) ≡ (¬F ∧ ¬G) (De Morgan’s Laws)

F ∨ ¬F ≡ true
F ∧ ¬F ≡ false (Complementation)

F ∨ true ≡ true
F ∧ false ≡ false (Zero Laws)

F ∨ false ≡ F
F ∧ true ≡ F (Identity Laws)

Proof. These can all be shown using truth tables.

Notice that the Boolean algebra axioms come in pairs: the equivalences in each pair are dual
to each other in the sense that one is obtained from the other by by interchanging ∨ and ∧ and
interchanging true and false.

Exercise 2. Given a formula F , define the De Morgan dual F by induction as follows. The
base cases are that F has the form true or false, or has the form P or ¬P for a propositional

1



variable P . Here we define true := false, false := true, P := ¬P , and ¬P := P . Furthermore,
for formulas F and G we define G ∨H := G ∧ H, G ∧H := G ∨ H, and ¬G = ¬G if G is not a
propositional variable. Show that F ≡ ¬F .

1.2 Substitution

The essence of equational reasoning is the substitution of equals for equals. To formalise this we
first give a precise definition of substitution.

We use the symbol = to denote syntactic equality, i.e., F = G means that F and G are the
same formula.

Given a formula F and propositional variable P we define a new formula G[F/P ] (read “G
with F substituted for all occurrences of P”) by induction on the structure of G as follows. For a
propositional variable Q we have

Q[F/P ] :=

{
F if Q = P
Q if Q ̸= P

Otherwise we inductively define

(G1 ∧G2)[F/P ] := G1[F/P ] ∧G2[F/P ]

(G1 ∨G2)[F/P ] := G1[F/P ] ∨G2[F/P ]

(¬G1)[F/P ] := ¬(G1[F/P ])

For example, (p1 ∧ (p2 ∨ p1))[¬q1/p1] = ¬q1 ∧ (p2 ∨ ¬q1). Note that all occurrences of p1 are
substituted.

The above definition was purely about syntax. Next we define an update operation on assign-
ments that can be seen as a semantic counterpart of substitution.

Given an assignment A, propositional variable P , and truth value b ∈ {0, 1}, define the assign-
ment A[P 7→b] by

A[P 7→b][[Q]] =

{
b if Q = P
A[[Q]] if Q ̸= P

for each propositional variable Q. In other words, this assignment behaves like A except that
variable P gets mapped to b.

Substitution and update are related in the following lemma.

Lemma 3 (Translation Lemma). Given formulas F , G, propositional variable P , and assignment
A, we have A[[G[F/P ]]] = A[P 7→A[[F ]]][[G]].

Proof. The proof is by induction on G, exploiting the inductive definition of substitution.

The first base case is that G = P . Then we have

A[[P [F/P ]]] = A[[F ]] = A[P 7→A[[F ]]][[P ]] .

The second base case is that G = Q for some propositional variable Q different from P . Then

A[[Q[F/P ]]] = A[[Q]] = A[P 7→A[[F ]]][[Q]] .

2



The induction case for conjunction is as follows. If G = G1 ∧G2 then

A |= (G1 ∧G2)[F/P ] iff A |= G1[F/P ] ∧G2[F/P ]

iff A |= G1[F/P ] and A |= G2[F/P ]

iff A[P 7→A[[F ]]] |= G1 and A[P 7→A[[F ]]] |= G2 induction hypothesis

iff A[P 7→A[[F ]]] |= G1 ∧G2

The induction cases for disjunction and negation are similar and are omitted.

Theorem 4 (Substitution Theorem). Let F1, F2, G1, G2 be formulas, and P a propositional vari-
able. If F1 ≡ F2 and G1 ≡ G2, then G1[F1/P ] ≡ G2[F2/P ].

Proof. The proof is a direct application of Lemma 3.

A[[G1[F1/P ]]] = A[P 7→A[[F1]]][[G1]] by Lemma 3

= A[P 7→A[[F1]]][[G2]] since G1 ≡ G2

= A[P 7→A[[F2]]][[G2]] since F1 ≡ F2

= A[[G2[F2/P ]]] by Lemma 3

Typically one applies the Substitution Theorem in the special case that that G1 = G2 and there
is a single occurrence of P in G1 = G2. In this case one starts with a formula G and obtains an
equivalent formula by replacing one occurrence of a subformula F1 by an equivalent formula F2.

1.3 Example

Using the Substitution Theorem and the fact that logical equivalence is reflexive, symmetric, and
transitive, we can derive new equivalences from the Boolean algebra axioms. In the following
example, each line of the deduction is annotated with the Boolean-algebra axiom that is being used
together with ST if the Substitution Theorem is being invoked.

Example 5. We give an equational derivation of the equivalence

(P ∨ (Q ∨R) ∧ (R ∨ ¬P )) ≡ R ∨ (¬P ∧Q) .

We have

(P ∨ (Q ∨R)) ∧ (R ∨ ¬P ) ≡ (P ∨Q) ∨R) ∧ (R ∨ ¬P ) (Assoc. and ST)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P ) (Comm. and ST)

≡ R ∨ ((P ∨Q) ∧ ¬P ) (Distr.)

≡ R ∨ (¬P ∧ (P ∨Q)) (Comm. and ST)

≡ R ∨ ((¬P ∧ P ) ∨ (¬P ∧Q)) (Distr. and ST)

≡ R ∨ (false ∨ (¬P ∧Q)) (Complement. and ST)

≡ R ∨ (¬P ∧Q) (Ident. and ST)

The algebraic laws in Proposition 1 allow us to relax some distinctions among formulas. For
example, the associativity law allows us to unambiguously write

∧n
i=1 Fi and

∨n
i=1 Fi respectively

for the conjunction and disjunction of F1, F2, . . . , Fn.

3



2 Normal Forms

A literal is a propositional variable or the negation of a propositional variable. In the former case
the literal is positive and in the latter case it is negative. A formula F is in conjunctive normal
form (CNF) if it is a conjunction of clauses, where each clause is a disjunction of literals Li,j :

F =
n∧

i=1
(
mi∨
j=1

Li,j).

A formula F is in disjunctive normal form (DNF) if it is a disjunction of clauses, where each
clause is a conjunction of literals Li,j :

F =
n∨

i=1
(
mi∧
j=1

Li,j).

Note that we consider true to be a CNF formula with no clauses, and we consider false to be a
CNF formula with a single clause, which contains no literals.

Example 6. The formulas representing the 3-colouring problem and the Sudoku problem in the
previous lecture are both CNF formulas.

2.1 Equational Transformation to CNF and DNF

Theorem 7. For every formula F there is an equivalent formula in CNF and an equivalent formula
in DNF.

Proof. We can transform a formula F into an equivalent CNF formula using equational reasoning
as follows:

1. Using the Double Negation law and De Morgan’s laws, substitute in F every occurrence of a
subformula of the form

¬¬G by G

¬(G ∧H) by (¬G ∨ ¬H)

¬(G ∨H) by (¬G ∧ ¬H)

¬true by false

¬false by true

until no such formulas occur (i.e., push all negations inward until negation is only applied to
propositional variables).

2. Using the Distributivity laws, substitute in F every occurrence of a subformula of the form

G ∨ (H ∧R) by (G ∨H) ∧ (G ∨R)

(H ∧R) ∨G by (H ∨G) ∧ (R ∨G)

G ∨ true by true

true ∨G by true

until no such formulas occur (i.e., push all disjunctions inward until no conjunction occurs
under a disjunction).

4



A B C F

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 1: Truth table for F

3. Use the Identity and Zero laws to remove false from any clause and to delete all clauses
containing true.

The resulting formula is then in CNF.

The translation of F to DNF has the same first step, but dualises steps 2 and 3 (swap ∧ and
∨, and swap true and false).

2.2 Normal Forms from Truth Tables

Alternatively, given a formula F , we can read off equivalent DNF and CNF formulas from its truth
table.

To obtain a DNF formula, the idea is to have a (conjunctive) clause for each row of the truth
table of F for which F has value 1, i.e., for each satisfying assignment of F . The clause corresponding
to a given assignment is the unique clause that is satisfied by that assignment and no others. For
example, if F has truth table as in Figure 1 we get an equivalent DNF formula

(¬A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧B ∧ C) . (1)

Dually, we can define a CNF formula that is equivalent to F that has a clause for each row
of the truth table of F in which F has value 0. The (disjunctive) clause corresponding to a given
row is the unique clause that takes value 0 in that row but 1 in all other rows. For example from
Figure 1 we get the CNF formula

(A ∨B ∨ ¬C) ∧ (A ∨ ¬B ∨ C) ∧ (¬A ∨B ∨ ¬C) ∧ (¬A ∨ ¬B ∨ C) . (2)

2.3 Summary

In summary, we see that CNF formulas and DNF formulas both have the same expressiveness as
the class of all formulas. However you will see in Exercise Sheet 1 that they differ in succinctness:
a CNF can be exponentially shorter than the corresponding DNF and vice versa. Note in relation
to this that the SAT problem is trivial for DNF formulas. On the other hand, we will see later on
that SAT for general formulas is easily reduced to SAT for CNF formulas.

5


	Equational Reasoning
	Boolean Algebra Axioms
	Substitution
	Example

	Normal Forms
	Equational Transformation to CNF and DNF
	Normal Forms from Truth Tables
	Summary


