
Logic and Proof Hilary 2024

The DPLL Algorithm

James Worrell

1 The DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a procedure that combines search
and deduction to decide satisfiability of CNF formulas. This algorithm underlies most modern
SAT solvers. While the basic procedure itself is 50 years old, practical DPLL-based SAT solvers
only started to appear from the mid 1990s as a result of enhancements such as clause learning,
non-chronological backtracking, branching heuristics, restart strategies, and lazy data structures.

The DPLL algorithm is based around backtrack search for a satisfying valuation. Here we
describe a version of the algorithm with clause learning and non-chronological backtracking. At
every unsuccessful leaf of the search tree (called a conflict) the algorithm uses resolution to compute
a conflict clause. This clause is added to the formula whose satisfiability is being determined. One
can think of conflict clauses as “caching” previous search results. Conflict clauses also determine
backtracking, as will be explained below.

2 The Main Procedure

The DPLL algorithm is shown in Figure 1. Essentially the algorithm looks for a satisfying valuation
of a given CNF-formula by depth-first search. At any time the state of the algorithm is a pair (F,A),
where F is a CNF-formula and A is a valuation. We say that such a state is successful if A sets
some literal in each clause of F to true, that is, A |= F . A conflict state is one in which A sets all
literals in some clause of F to false, that is, A ̸|= F .

Input: CNF formula F .

1. Initialise A to be the empty list of assignments.

2. While there is a unit clause {L} in F |A, add assignment L 7→ 1 to A.

3. If F |A contains no clauses then stop and output A.

4. If F |A contains the empty clause then apply the learning procedure to add a new clause C
to F . If C is the empty clause then stop and output “UNSAT”. Otherwise backtrack to the
highest level at which C is a unit clause. Go to Line 2.

5. Apply the decision strategy to determine a new decision assignment P 7→ b to be added to A.
Go to Line 2.

Figure 1: DPLL Algorithm

We represent a CNF-formula F as a set of clauses, with each clause being a set of literals. A

1



valuation is represented as a sequence of assignments ⟨p1 7→ b1, . . . , pr 7→ br⟩, where p1, . . . , pk are
distinct propositional variables and b1, . . . , bk ∈ {0, 1}.

We classify each assignment pi 7→ bi in a valuation as either a decision assignment or an
implied assignment. We call the variable pi in a decision assignment pi 7→ bi a decision variable.

We sometimes use the notation pi
C7→ bi to denote an implied assignment arising through unit

propagation (see below) on clause C. The decision level of an assignment pi 7→ bi in a given state
valuation A is the number of decision assignments in A that precede pi 7→ bi.

By F |A we denote the set of clauses obtained by deleting from F any clause that contains a
true literal under A and deleting from each remaining clause all literals that are false under A.
Note that (F,A) is a conflict state if F |A contains the empty clause 2 and (F,A) is a successful
state if F |A is the empty set of clauses.

2.1 Unit Propagation

A unit clause is a clause with a single literal. The while loop in Line 2 of the DPLL algorithm adds
the assignment L 7→ 1 to the state whenever there is a unit clause {L} in F |A. This subroutine is
called unit propagation.

Example 1. Consider an execution of the DPLL algorithm starting with the set of clauses F =
{C1, . . . , C5}, where

C1 : {¬p1,¬p4, p5}
C2 : {¬p1, p6,¬p5}
C3 : {¬p1,¬p6, p7}
C4 : {¬p1,¬p7,¬p5}
C5 : {p1, p4, p6} .

Suppose that the current valuation is given by the following sequence of decision assignments
A = ⟨ p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1 ⟩. Notice that F |A contains the unit clause {p5}. From this,

unit propagation generates the further sequence of implied assignments ⟨ p5
C17→ 1, p6

C27→ 1, p7
C37→ 1 ⟩.

This leads to a conflict, with clause C4 being made false.

2.2 Conflict Analysis

On termination of unit propagation, if the procedure is neither in a conflict state nor a successful
state, then another decision assignment is made (Line 5). If, on the other hand, a conflict has been
reached then a learned clause is added to the current state (Line 4). Intuitively the learned clause
summarises the reason for the conflict.

We will explain in detail one method of clause learning in the next section. For now we just
note the properties that a learned clause is required to have under our learning scheme.

If the state of the algorithm is (F,A) then we say that a clause C is a conflict clause if all
literals in C are made false by A. If (F,A) is a conflict state and clause C is learned then it is
required that:

1. F ≡ F ∪ {C};

2



2. C be a conflict clause;

3. all variables in C be decision variables.

2.3 Correctness

We first argue termination of the algorithm. To this end, notice that a sequence of decisions that
leads to a conflict cannot be repeated. This is because all the variables in the learned clause C are
decision variables. Thus if all but one of the literals in C are made false in some future assignment
then the remaining variable cannot be a decision variable since its value is determined by the unit
propagation rule.

Given termination, correctness is straightforward. By Condition 1 above we have F ≡ F ∪{C}
for any learned clause C. Thus if the empty clause is learned then the original formula was
unsatisfiable. On the other hand, if the algorithm terminates with a satisfying assignment A then
the input formula is also satisfied by A.

3 Clause Learning

Let A = ⟨ p1 7→ b1, . . . , pk 7→ bk ⟩ be a sequence of assignments leading to a conflict. We compute
an associated sequence of clauses A1, . . . , Ak+1 by backward induction as follows:

1. Define Ak+1 to be any conflict clause under the assignment A.

2. If pi 7→ bi is a decision assignment or if pi is not mentioned in Ai+1 then define Ai = Ai+1.

3. If pi
Ci7→ bi is an implied assignment and pi is mentioned in Ai+1 then define Ai to be the

resolvent of Ai+1 and Ci with respect pi.

The final clause A1 is the learned clause.1

Example 2. Consider the conflict described in Example 1. From this situation the learning pro-
cedure generates clauses A8, A7, . . . , A1 as shown below.

A8 := {¬p1,¬p7,¬p5} (clause C4)

A7 := {¬p1,¬p5,¬p6} (resolve A8, C3)

A6 := {¬p1,¬p5} (resolve A7, C2)

A5 := {¬p1,¬p4} (resolve A6, C1)

...

A1 := {¬p1,¬p4}

The learned clause A1 is a conflict clause that contains only decision variables, including an
occurrence of the top-level decision variable p4. This clause captures the intuition that the conflict
arose from the decision to make both p1 and p4 true (and is nothing to do with p2 and p3, which

1Note that we are describing one policy for learning clauses and that alternative policies exist.

3



are not even mentioned in the formula). The addition of clause A1 to F ensures that valuations
in which p1 and p4 are both true are no longer reachable. Indeed, the algorithm backtracks to the
highest level in which A1 is a unit clause (namely the valuation p1 7→ 1) and then unit propagation
immediately leads to the assignment p4 7→ 0.

The following proposition shows that the above learning procedure fulfils the desiderata listed
in Section 2.2.

Proposition 3. Suppose that state (F,A) is a conflict and let C be the learned clause. Then C is
a conflict clause, all variables occurring in C are decision variables in A, and F ≡ F ∪ {C}.

Proof. Suppose that A = ⟨ p1 7→ b1, . . . , pk 7→ bk ⟩. Then clause learning produces a sequence of
clauses Ak+1, Ak, . . . , A1, with Ak+1 the conflict clause and A1 = C the learned clause. Since C is
obtained by a resolution proof from F , we have F ≡ F ∪ {C} by the Resolution Lemma.

Now we claim that the following hold for each clause Ai, 1 ≤ i ≤ k + 1:

1. Ai is a conflict clause (i.e., is made false by A);

2. The non-decision variables appearing in Ai lie all in {p1, . . . , pi−1}.

The proof of claim is by “backward” induction on i, from k + 1 down to 1.

The base case is i = k + 1. By definition Ak+1 is a conflict clause. It follows that Ak+1 can
only mention variables in the domain of A, so Condition 2 is satisfied.

The induction step divides into two cases. Suppose that Ai+1 satisfies Conditions 1 and 2 above.
The first case is that pi is either a decision variable or does not occur in Ai+1 then Ai = Ai+1, and
clearly Ai satisfies Conditions 1 and 2.

The second case is that pi
Ci7→ bi is an implied assignment and pi occurs in Ai+1. Then Ai is a

resolvent of Ai+1 and Ci (with respect to pi). In particular Ai does not mention the variable pi. It
remains to check that Conditions 1 and 2 hold for Ai.

Now Ci is a unit clause under the assignment ⟨ p1 7→ b1, . . . , pi−1 7→ bi−1 ⟩. Thus, other than
pi, Ci can only mention variables in the set {p1, . . . , pi−1} and all literals in Ci pertaining to these
variables are made false by A. This shows that Conditions 1 and 2 hold for the resolvent Ai.

Remark 4. We have proved that all variables that appear in a learned clause C are decision
variables. By a similar inductive argument it can be shown that C must mention the top-level
decision variable. It follows that if a top-level decision assignment p 7→ b leads to conflict after unit
propagation, then after backtracking the assignment p 7→ 1−b is performed by the unit propagation
rule before any further decisions.

4 Other Enhancements

Modern sat solvers include numerous enhancements beyond what is discussed above. These include
techniques, such as watched literals, to efficiently discover which clauses become unsat, decision
heuristics for choosing decision variables, clause removal (removing learned clauses), and random
restarts.

4


	The DPLL Algorithm
	The Main Procedure
	Unit Propagation
	Conflict Analysis
	Correctness

	Clause Learning
	Other Enhancements

