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No polynomial-time algorithm is known for the SAT problem. However if a propositional formula
is satisfiable then there is a short and easily checkable certificate of this fact—namely a satisfying
valuation. An important question is whether there likewise exist short certificates of unsatisfiability.
One candidate for such a certificate would be a resolution refutation, i.e., we can ask whether there
exists a polynomial upper bound on the length of the shortest refutation of an unsatisfiable formula.
In this lecture we give a negative answer to this question by exhibiting a family of formulas with
long (i.e., exponential in the formula size) refutations.

We will give a lower bound on the length of resolution proofs of the pigeonhole principle:

If n pigeons are placed in n− 1 boxes then some box contains at least two pigeons.

Fix n ∈ N. For i ∈ {1, . . . , n} and j ∈ {1, . . . , n − 1}, let propositional variable xi,j denote that
pigeon i is in box j. We consider the following formulas:

Pi :=
n−1∨
j=1

xi,j “pigeon i is in some box”

CRITn :=
n−1∧
j=1

n∨
i=1

xi,j “every box contains some pigeon”

∧
n−1∧
j=1

∧
1≤i<i′≤n

(¬xi,j ∨ ¬xi′,j) “no box contains two different pigeons”

∧
n∧

i=1

∧
1≤j<j′≤n−1

(¬xi,j ∨ ¬xij′) “no pigeon is in two different boxes”

A valuation that satisfies CRITn is said to be critical. Such a valuation corresponds to a bijective
assignment of n− 1 out of n pigeons to n− 1 boxes, with one pigeon left unassigned. We formalise
the pigeonhole principle for n pigeons to be the statement that PHPn := CRITn ∧

∧n
i=1 Pi is

unsatisfiable. The rest of the lecture is devoted to a proof of the following result.

Theorem 1. Every resolution refutation of PHPn has length at least 2n/21.

We lay the groundwork for the proof by introducing some key concepts. We say that a sequence
of monotone clauses (i.e., clauses with only positive literals) C1, . . . , Cm is a pseudo refutation of
PHPn if Cm is the empty clause and for all 1 ≤ i ≤ m either:

PR1 CRITn ∧ Pj |= Ci for some 1 ≤ j ≤ n, or

PR2 CRITn ∧ Cj ∧ Ck |= Ci for some j, k < i.

We say that W ⊆ {1, . . . , n} is a witness of a clause C if CRITn ∧
∧

i∈W Pi |= C (i.e., every critical
assignment that houses all pigeons in W satisfies C). Every clause in a pseudo refutation has a
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witness: a clause that follows by rule PR1 has a singleton witness, while a clause that follows from
PR2 has as witness the union of the witnesses of its two antecedents under PR2. We further define
the weight of C to be the minimum cardinality of any witness of C.

For a clause C, let C∗ be the clause in which each negative literal ¬xi,j is replaced by
∨

i′ ̸=i xi′,j .
Observe that CRITn |= C ↔ C∗—that is, for all critical assignments, pigeon i is not in box j iff
some other pigeon is in box j. It follows that if C1, . . . , Cm is a resolution refutation of PHPn then
C∗
1 , . . . , C

∗
m is a pseudo refutation of PHPn. It thus suffices to prove a lower bound on the length

of pseudo refutations of PHPn.

Proposition 2. Every pseudo refutation of PHPn contains a clause with at least 2n2

9 variables.

Proof. Consider a pseudo refutation ρ := C1, . . . , Cm of PHPn. Since Cm (which is the empty
clause) has weight n, there exists a first clause C in ρ with weight ≥ n/3. But then C has weight
at most 2n/3 (at most the sum of the weight of its antecedents under rule PR2), i.e., its weight lies
between n/3 and 2n/3.

We now argue that the clause C, identified above, contains at least 2n2

9 variables. Let W be
a minimal witness for C, with n/3 ≤ |W | ≤ 2n/3. For each i1 ∈ W we exhibit n − |W | different
variables in C of the form xi1,j . We conclude that C contains at least |W |(n−|W |) ≥ 2n2

9 variables.

Fix i1 ∈ W . By the minimality of W as a witness, there exists a critical assignment A that
leaves out pigeon i1 and does not satisfy C. Now let i2 ̸∈ W and suppose that A assigns i2 to
box j2. Define an assignment A′ by A′[[xi1,j2 ]] = 1, A′[[xi2,j2 ]] = 0, and otherwise A′ agrees with
A. (That is, A′ assigns pigeon i1 to box j2 and makes i2 the unassigned pigeon.) Then A′ satisfies
CRITn∧

∧
i∈W Pi and hence A′ satisfies C. But the fact that A′ satisfies C while A does not satisfy

C entails that xi1,j2 is mentioned in C. This completes the proof.

Proof of Theorem 1. Let ρ := C1, . . . , Cm be a pseudo refutation of PHPn. Say that a clause is long
if it contains at least n2

8 variables. Suppose that ρ has ℓ long clauses. By double counting (i.e., using
the fact that the sum of the number of variables in each long clause equals the sum of the number
of long clauses that each variable belongs to) we see that some variable is mentioned in as least ℓ/8
long clauses. By renaming variables if necessary, we can assume that the aforementioned variable
is xn,n−1. Now we transform ρ by “assigning pigeon n to box n−1”—formally we delete any clause
containing xn,n−1 and then delete from the remaining clauses every variable xi,j with either i = n or
j = n− 1. Then the resulting sequence C ′

1, . . . , C
′
m′ is a pseudo refutation of PHPn−1 with at most

7
8ℓ long clauses.1 Repeating this process n/4 times we arrive at pseudo refutation of PHP3n/4 with

at most
(
7
8

)n/4
ℓ long clauses. But by Proposition 2, every pseudo refutation of PHP3n/4 contains

a clause with 2
9(3n/4)

2 = n2

8 variables, i.e., a long clause. We deduce that
(
7
8

)n/4
ℓ ≥ 1 and hence

ℓ ≥
(
8
7

)n/4 ≥ 2n/21. But this means that there are more than 2n/21 clauses in ρ.

The proof technique above has been called a bottleneck counting argument. The bottlenecks are
the long clauses. The proof combines a lower bound on bottlenecks (that every pseudo refutation
of PHP3n/4 contains at least one long clause) and an upper bound on bottlenecks (if a pseudo

refutation of PHPn has ℓ long clauses then PHP3n/4 has a pseudo refutation with at most (7/8)n/4ℓ
long clauses).

1You are asked to give a formal proof of this in Exercise Sheet 2. The substitution lemma for propositional logic
will prove helpful.
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