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In this lecture we introduce Herbrand structures and state Herbrand’s theorem. We then prove the
Ground Resolution Theorem, which justifies the use of the ground resolution deduction technique
in first-order logic. The Ground Resolution Theorem is one of the central results of the course. Its
proof combines Herbrand’s Theorem with the Resolution Theorem and Compactness Theorem for
propositional logic. Throughout this lecture we work in first-order logic without equality. There are
versions of resolution that handle equality but we do not consider them in this course.

1 Herbrand’s Theorem

Definition 1. Let σ be a signature with at least one constant symbol. A σ-structure H is called
a Herbrand structure if the following hold:

1. The universe UH is the set of ground terms over σ.

2. For every constant symbol c in σ we have cH = c.

3. For every k-ary function symbol f in σ and for all ground terms t1, t2 . . . , tn ∈ UH we have
fH(t1, . . . , tk) = f(t1, . . . , tk).

Thus a Herbrand structure is built from syntax, with terms and function symbols being inter-
preted “as themselves”.

Example 2. Consider a signature with a constant symbol a, unary function symbol f , and unary
predicate symbol P . Then a Herbrand structure H has UH = {a, f(a), f(f(a)), . . .}, aH = a and
fH(f

n(a)) = fn+1(a). Note that PH can be an arbitrary subset of UH.

The following proposition expresses a key property of Herbrand structures: the interpretation
of a ground term in a Herbrand structure is the term itself.

Proposition 3. Let H be a Herbrand structure and t a ground term. Then H[[t]] = t.

Proof. The proof is by structural induction over terms. The base case is that t is constant symbol
c. Then H[[c]] = c by definition of a Herbrand structure. The induction step is that t has the form
f(t1, . . . , tk) for f a k-ary function symbol and ground terms t1, . . . , tk. Then

H[[f(t1, . . . , tk)]] = fH(H[[t1]], . . . ,H[[tk]])

= fH(t1, . . . , tk) induction hyp.

= f(t1, . . . , tk) defn. of fH.

Building on Proposition 3 we show that the Translation Lemma has a particularly simple form
for Herbrand structures.
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Lemma 4 (Translation Lemma for Herbrand structures). Let H be a Herbrand structure, F a
formula, and t a ground term. Then H |= F [t/x] if and only if H[x 7→t] |= F .

Proof. By the version of the Translation Lemma proved previously we have H |= F if and only if
H[x 7→H[[t]]] |= F . But by Proposition 3 we have H[[t]] = t and the result follows.

We now come to what can be regarded as the central result of the course. The value of this
result is that it cuts down the “search space” of potential models for a given formula.

Theorem 5 (Herbrand’s Theorem). Let F = ∀x1 . . . ∀xn F ∗ be a closed formula in Skolem form.
Then F is satisfiable if and only if it has a Herbrand model.

Proof. If F has a Herbrand model then it is clearly satisfiable.

Conversely, suppose that F is satisfied by some structure A. Then we show that F has a
Herbrand model H. To define H it suffices to define the interpretation of the predicate symbols
since the interpretation of the constants, function symbols and the universe are already determined.
The idea is to define H to mimic A. To this end, given a k-ary predicate symbol P we define
(t1, . . . , tk) ∈ PH if and only if A |= P (t1, . . . , tk).

We claim that for all closed formulas G = ∀y1 . . . ∀ykG∗ in Skolem form, if A |= G then H |= G.
It follows from this that H |= F . The proof of the claim is by induction on the number of quantifiers
k.

The base case is that n = 0. Since G is closed it is a Boolean combination of atomic formulas
P (t1, . . . , tk), where t1, . . . , tk are ground terms. But, by construction, A and H assign the same
truth value to each such atom. Thus A |= G implies H |= G.

The induction step is as follows. Suppose A |= ∀y G. We cannot directly apply the induction
hypothesis to G since y might appear free in G, in which case it is not closed. However by the
Translation Lemma we have that A |= G[t/y] iff A[y 7→A[[t]]] |= G, and thus A |= G[t/y] for all ground
terms t. Since G[t/y] is closed we can we can apply the induction hypothesis to it and conclude that
H |= G[t/y] for all ground terms t. But now by the Translation Lemma for Herbrand structures
we have H[y 7→t] |= G for all t ∈ UH, i.e., H |= ∀y G.

Example 6. Is the following first-order formula satisfiable?

F = ∃x1 ∃x2 ∃x3 (¬(¬P (x1) → P (x2)) ∧ ¬(¬P (x1) → ¬P (x3))) .

One way to simplify the problem is to Skolemise, that is, eliminate the existential quantifiers by
introducing new constants a, b, and c. Doing this we obtain an equisatisfiable formula

G = ¬(¬P (a) → P (b)) ∧ ¬(¬P (a) → ¬P (c)) .

Now by Herbrand’s Theorem, G is satisfiable if and only if it has a Herbrand model.

A Herbrand model H of G has universe the set of ground terms UH = {a, b, c}. The constants
are interpreted “as themselves”, i.e., we have aH = a, bH = b and cH = c. Thus to specify H it
remains to say how to interpret the predicate symbol P . We can represent the possibilities in the
following truth table, each line of which represents a Herbrand structure.
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P (a) P (b) P (c) G

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

We conclude that G is satisfiable and therefore F is satisfiable.

Generalising the above example we get a method to decide satisfiability of any formula F =
∃x1 . . . ∃xn F ∗ for which the matrix F ∗ does not contain a function symbol. The key property of
such a formula is that if it satisfiable then it has a finite model.

The technique in the above example breaks down on a slightly more complex formula. Consider
the formula F = ∀x1 ∃x2 F ∗. The Skolem form is ∀x1 F ∗[f(x1)/x2], where f is fresh unary function
symbol. The presence of f ensures that each Herbrand structure is also infinite. More generally, it
can be the case that a formula F is only satisfied by infinite structures (can you give an example
of such a formula, without using equality?).

2 Ground Resolution

In general, a satisfiable formula may not have a finite model. Intuitively it might not be possible
to provide a finite witness that a formula is satisfiable. By contrast we will show that if a formula
F is unsatisfiable then there is always a ground resolution proof of 2 from F . Such a proof could
be considered a finite witness of unsatisfiability.

Fix a signature σ. Let F = ∀x1 . . . ∀xn F ∗ be a closed formula in Skolem form with matrix F ∗.
Then the Herbrand expansion E(F ) is defined as

E(F )
def
= {F ∗[t1/x1] . . . [tn/xn] | t1, . . . , tn ground σ-terms} .

That is, the formulas in E(F ) are obtained by substituting ground terms for the variables in F ∗ in
all possible ways.

Each formula in E(F ) is a Boolean combination of atomic formulas P (t1, . . . , tk), for P a k-ary
predicate symbol and t1, . . . , tk ground terms. In particular, E(F ) has a Herbrand model if and
only if it is “propositionally satisfiable”, that is, there is some truth assignment to the set of closed
atomic formulas that makes all formulas in E(F ) evaluate to true (cf. Example 6).

Theorem 7. A closed formula F in Skolem form is satisfiable if and only if E(F ) is satisfiable
when considered as a set of propositional formulas.

Proof. By Herbrand’s Theorem, a formula in Skolem form is satisfiable if and only if it has a
Herbrand model. Thus it suffices to show that F has a Herbrand model if and only if E(F ) is
satisfiable considered as a set of propositional formulas. Let F have the form ∀x1 . . . ∀xn F ∗. Given
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a Herbrand structure H we have

H |= F iff H[x1 7→t1]...[xn 7→tn] |= F ∗ for all (ground terms) t1, . . . , tn ∈ UH

iff H |= F ∗[t1/x1] . . . [tn/xn] Translation Lemma for Herbrand structures

iff H |= E(F ) .

Observe that H |= E(F ) for some Herbrand structure H iff E(F ) is satisfiable as a set of proposi-
tional formulas.

As a corollary of Theorem 7 we can prove the Ground Resolution Theorem.

Theorem 8 (Ground Resolution). A closed formula F in Skolem form is unsatisfiable if and only
if there is a propositional resolution proof of 2 from E(F ).

Proof. By the compactness theorem of propositional logic E(F ) is unsatisfiable if and only if some
finite subset of E(F ) is unsatisfiable. By the soundness and completeness of propositional resolution
this holds if and only if we can derive 2 from E(F ) using resolution.

In summary we have the following situation. Given a first-order formula F in Skolem form, if
F is unsatisfiable then by systematically generating all resolvents of ground instances of clauses
in F we are guaranteed to eventually generate 2. However if F is satisfiable then this process of
generating resolvents can proceed forever.
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