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1 Logical Theories

In this lecture we work exclusively with first-order logic with equality.

Fix a signature σ. A theory T is a set of σ-sentences that is closed under semantic entailment,
i.e., if T |= F then F ∈ T . Given a σ-structure A it is clear that the set of sentences that hold in
A is a theory. We denote this theory by Th(A) and call it the theory of A. For example, below we
will consider the theory of the ordered set (Q, <).

Another important source of theories is from sets of axioms. Given a set of sentences S, the
set T = {F : S |= F} is a theory. We call S a set of axioms for the theory T . For example, if S
comprises the group axioms (over a suitable signature σ) then T is the theory of groups, i.e., the
set of all σ-sentences that are true in every group.

We say that a theory T is complete if for any sentence F , either F ∈ T or ¬F ∈ T . Clearly the
theory of any particular structure is complete; however the theory of an axiomatically presented
class of structures can easily fail to be so. For example, the theory of groups is not complete:
if m denotes the binary multiplication operation then the theory of groups neither contains the
sentence ∀x ∀y (m(x, y) = m(y, x)) nor its negation (some groups are abelian and other groups
are non-abelian). More simply, the set of valid σ-formulas is an example of a theory that is not
complete.

We say that a theory T admits quantifier elimination if for any formula ∃xF , with F quantifier-
free, there exists a quantifier-free formula G with the same free variables as ∃xF such that T |=
∃xF ↔ G, that is, for any assignment A that is a model of T , A |= ∃xF if and only if A |= G. (It is
worth emphasising that quantifier elimination is defined on formulas that may have free variables.)
We furthermore say that T has a quantifier elimination procedure if there is an algorithm to obtain
G given F .

Example 1. Let T denote the theory of the structure (R,+, ·, 0, 1) and consider the formula
F := ∃x (ax2 + bx+ c = 0) in free variables a, b, c. This formula asserts that the quadratic equation
ax2 + bx + c = 0 has a real solution. By the quadratic formula we have T |= F ↔ b2 ≥ 4ac. As
another example, consider the formula

F := (x1a+ x2c = 1) ∧ (x1b+ x2d = 0) ∧ (x3a+ x4c = 0) ∧ (x3b+ x4d = 1) .

F can be written

(
x1 x2
x3 x4

)(
a b
c d

)
=

(
1 0
0 1

)
in matrix notation. Thus ∃x1∃x2∃x3∃x4F asserts

that the matrix

(
a b
c d

)
has a multiplicative inverse. Thus T |= ∃x1∃x2∃x3∃x4F ↔ ad− bc 6= 0.

The definition of quantifier elimination refers only to the existential quantifier. The universal
quantifier can be handled using duality. Consider a formula ∀xF with F quantifier-free. If a theory
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T has quantifier elimination then we can find a quantifier-free formula G such that T |= ∃x¬F ↔ G.
But then T |= ∀xF ↔ ¬G.

A theory T is decidable if there is an algorithm that, given a sentence F , determines whether
or not F ∈ T . A theory T is decidable if it has a quantifier elimination-procedure and a procedure
for determining whether or not F ∈ T for a variable-free atomic formula F . Given an arbitrary
formula F , to determine whether F ∈ T , first convert F to an equivalent formula in prenex
normal form, and eliminate quantifiers from the inside out. In particular, if T |= ∃xF ∗ ↔ G then
T |= Q1x1 . . . QnxnQxF

∗ ↔ Q1x1 . . . QnxnG, where Qi, Q ∈ {∃,∀}. Eventually one obtains a
sentence F ′ such that T |= F ↔ F ′. Thus F ∈ T if and only if F ′ ∈ T . But by assumption we
have a procedure to decide this last membership query.

2 Unbounded Dense Linear Orders

Consider a signature with a single binary relation <. The theory TUDLO of unbounded dense linear
orders is the set of sentences entailed by the following set of axioms:

F1 ∀x¬(x < x)

F2 ∀x ∀y ∀z (x < y ∧ y < z → x < z)

F3 ∀x ∀y (x < y ∨ y < x ∨ x = y)

F4 ∀x ∀y (x < y → ∃z (x < z ∧ z < y))

F5 ∀x ∃y ∃z (y < x < z) .

Theorem 2. The theory TUDLO of unbounded dense linear orders is complete, decidable, and has
quantifier elimination.

Proof. The main step of the proof is to show that TUDLO has an effective quantifier-elimination
procedure. Consider a formula ∃xF , with F quantifier-free. We give a quantifier-free formula G
with the same free variables as ∃xF such that for any assignment A that is a model of TUDLO ,
A |= ∃xF if and only if A |= G. The quantifier-elimination procedure has two phases: first we
simplify the formula F through logical manipulations and then we show how to eliminate quantifiers
within formulas in simplified form.

As a first step, we can convert F into a logically equivalent formula in DNF. We can moreover
eliminate negative literals by replacing the subformula ¬(xi < xj) with xi = xj ∨ xj < xi and
replacing the subformula ¬(xi = xj) with xi < xj ∨ xj < xi.

Henceforth we assume that F is in DNF and negation-free. Now using the equivalence ∃x (F1 ∨
F2) ≡ ∃xF1∨∃xF2 it suffices that we be able to eliminate the quantifier ∃x in case F is a conjunction
of atomic formulas. Finally, using the equivalence ∃x (F1 ∧F2) ≡ ∃xF1 ∧F2 in case x is not free in
F2, it suffices that we be able to eliminate the quantifier ∃x in case F is a conjunction of atomic
formulas all of which mention x. Such formulas have the form x = y, x < y or y < x for some
variable y.

For the final case above, we proceed as follows. If F contains a conjunct x < x then we have
TUDLO |= ∃xF ↔ false. Otherwise, if F contains a conjunct x = y for some other variable y then
we have that TUDLO |= ∃xF ↔ F [y/x].

If neither of the above applies then (after deleting conjuncts of the form x = x if present) we
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can write F in the form

F =
m∧
i=1

li < x ∧
n∧

j=1

x < uj ,

where the li and uj are variables different from x. Now if m = 0, i.e., there are no lower bounds on
x, then TUDLO |= ∃xF ↔ true (since we’re considering the theory of unbounded orders). Likewise
if n = 0, i.e., there are no upper bounds on x, then TUDLO |= ∃xF ↔ true. Otherwise, by density
of the order relation, we have

TUDLO |= ∃xF ↔
m∧
i=1

n∧
j=1

li < uj .

Decidability of TUDLO follows straightforwardly from the existence of a quantifier-elimination
procedure. Starting from a sentence F , after eliminating all quantifiers from F we are left with
a variable-free formula G such that T |= F ↔ G. But G must be a propositional combination of
true or false, and therefore logically equivalent to either true or false. The same reasoning shows
inter alia that TUDLO is complete: given a sentence F , either F holds on all unbounded dense
linear orders, or its negation holds on all unbounded dense linear orders.

Theorem 2 shows that (Q, <) and (R, <) satisfy the same first-order sentences. (This finally
answers Exercise 7 from the lecture introducing first-order logic.) You may recall that (R, <) is
Dedekind complete: any non-empty set of reals that is bounded above has a least upper bound.
This property fails for the rationals since, e.g., {x ∈ Q : x2 < 2} has no least upper bound in the
rationals. Evidently Dedekind completeness cannot be expressed in first-order logic in the language
of linear orders.

3 Ordered Divisible Abelian Groups

Consider a signature with a binary relation symbol <, binary function symbol +, and a constant
symbol 0. Via an obvious notational shortcut, it will be convenient to admit Z-linear expressions
in variables as terms. For example, we write 3x + y for the term x + (x + (x + y)) and we write
x− 2y < z for the formula x < (z + y) + y.

The set of axioms {F1, . . . , F8}∪ {Gn : n ∈ N+}, shown below, determines the theory TODAG of
(non-trivial) ordered divisible abelian groups.

F1 ∀x¬(x < x)

F2 ∀x ∀y ∀z (x < y ∧ y < z → x < z)

F3 ∀x ∀y (x < y ∨ y < x ∨ x = y)

F4 ∀x ∀y (x+ y = y + x)

F5 ∀x ∀y ∀z ((x+ y) + z = x+ (y + z)))

F6 ∀x ∃y (x+ y = 0)

F7 ∀x ∀y ∀z (x < y → x+ z < y + z)

F8 ∃x¬(x = 0)

Gn ∀x ∃y (ny = x) .
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A model of TODAG is a structure (A,<,+, 0) such that (A,<) is a linearly ordered set, (A,+, 0) is
a divisible Abelian group, addition + is monotone in both variables, and A is non-trivial as a group
(it has some non-zero element). Examples include (R, <,+, 0) and (Q, <,+, 0). We leave it as an
exercise to show that for any model (A,<,+, 0) of TODAG the order < is unbounded and dense.

Theorem 3. TODAG has quantifier elimination.

Proof. Following the proof of Theorem 2, it suffices to show how to eliminate the quantifier ∃x
in ∃xF , where F is a conjunction of atomic formulas all of which mention x. Each such atomic
formula has the form t1 < t2 or t1 = t2 for terms t1 and t2, where at least one of t1 or t2 mentions
x. We can further simplify to assume that there exists a positive integer m such that each formula
in F has the form mx < t, t < mx, or mx = t for some term t (where some variables may occur in
t with negative coefficients). Suppose that F has the form

n1∧
i=1

ti < mx ∧
n2∧
j=1

mx < sj ∧
n3∧
k=1

mx = uk .

Then, by the divisibility axioms, TODAG |= ∃xF ↔ ∃y G where

G :=

n1∧
i=1

ti < y ∧
n2∧
j=1

y < sj ∧
n3∧
k=1

y = uk ,

for some fresh variable y not occurring in F . If n3 > 0 then ∃y G ≡ G[u1/y]. If n3 = 0 then
TODAG |= ∃y G↔

∧n1
i=1

∧n2
=1 ti < sj .

The quantifier elimination procedure for TODAG can be used to solve certain elementary prob-
lems in convex geometry. In this context quantifier elimination is sometimes called Fourier-Motzkin
elimination. For example, given matrices A and C and vectors b and d, all with rational en-
tries, determining the whether the polygon {x ∈ Rn : Ax ≤ b} is included in the polygon
{x ∈ Rn : Cx ≤ d} can straightforwardly be reduced to the decision problem for TODAG.

4 The Random Graph

Let σ be the signature with a single binary relation symbol R. The σ-theory TRG is axiomatised
by the set of sentences {F1, F2, F3}, which axiomatise the class of undirected graphs wIth at least
two vertices, and the extension axioms {Hm,n : m,n ∈ N}, given as follows.

F1 ∃x ∃y ¬(x = y)

F2 ∃x¬R(x, x)

F3 ∀x ∀y(R(x, y)→ R(y, x))

Hm,n ∀x1 . . . ∀xm ∀y1 . . . ∀yn

 m∧
i=1

n∧
j=1

¬(xi = yj)→ ∃z
m∧
i=1

R(xi, z) ∧
n∧

j=1

¬R(yj , z)


We call TRG the theory of the random graph.

The so-called Rado Graph is a model of TRG. This has the positive integers as its set of vertices
and two integers m < n are connected by an undirected edge iff the m-th bit in the infinite binary
expansion of n is 1, i.e., writing n =

∑∞
i=0 bi2

i with bi ∈ {0, 1}, we have bm = 1.

4



Theorem 4. TRG is complete, decidable, and has quantifier elimination.

Proof. Completeness and decidability follow from the existence of an effective quantifier-elimination
procedure, since every quantifier-free σ-sentence is equivalent to either true of false. To eliminate
quantifiers in general it suffices to eliminate quantifiers in the case of a formula ∃xF , where F
arises as a conjunction of atoms and negated atoms. See Exercise Sheet 5 for details.

For a positive integer N , let GN be the set of all graphs with set of vertices {1, . . . , N}. For a
σ-sentence ϕ, we denote by PrN (ϕ) the probability that ϕ is satisfied by a graph drawn uniformly
at random from GN , that is,

PrN (ϕ) :=
|{G ∈ GN : G |= ϕ}|

|GN |
.

Proposition 5. For all m,n ∈ N we have limN→∞ PrN (Hm,n) = 1.

Proof. Let N > m+n. Fix a1, . . . , am, b1, . . . , bn ∈ {1, . . . , N}. We claim that for a graph G drawn
uniformly at random from GN the probability that

H[x1 7→a1,...,xm 7→am,y1 7→b1,...,yn 7→bn] 6|= ∃z

 m∧
i=1

E(xi, z) ∧
n∧

j=1

E(yj , z)


is at most qN−m−n, where q := 1 − 2−(n+m) < 1. Indeed, for each possible choice of c from
{1, . . . , N} \ {a1, . . . , am, b1, . . . , bn}, the probability that

H[x1 7→a1,...,xm 7→am,y1 7→b1,...,yn 7→bn,z 7→c] 6|=
m∧
i=1

E(xi, z) ∧
n∧

j=1

E(yj , z)

is at most q. Since these are independent events for the (at least N −m−n many) different choices
of c, the claim follows. Given the claim, taking a union bound over the Nn+m possible choices of
a1, . . . , am, b1, . . . , bn ∈ {1, . . . , N} we have that PrN (¬Hm,n) ≤ Nn+mqN−(n+m). Since q < 1 we
have limN→∞ PrN (Hm,n) = 1.

.

We can now prove the following zero-one law for first-order logic over the language of graphs.

Theorem 6. For every σ-formula ϕ the limit limN→∞ PrN (ϕ) exists and is either zero or one.
Moreover TRG = {ϕ : limN→∞ PrN (ϕ) = 1}.

Proof. We have already established that TRG is complete. Thus to prove the theorem it suffices
to show that limN→∞ PrN (ϕ) = 1 for every formula ϕ in TRG. But, by the compactness theorem
for first-order logic, there exist m,n ∈ N such that {F1, F2, F3, Hm,n} entails ϕ (we can take a
single extension axiom here since Hm,n |= Hm′,n′ whenever m ≥ m′ and n ≥ n′). Hence PrN (ϕ) ≥
PrN (Hm,n), which entails limN→∞ PrN (ϕ) = 1.
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5 Presburger Arithmetic

Our final decidability result concerns the theory of the structure (N, 0, 1,+, <), sometimes called
Presburger arithmetic. In this case the proof of decidability does not proceed via quantifier
elimination, but instead exploits closure properties of the class of regular languages. In fact
Th(N, 0, 1,+, <) does not have quantifier elimination since, e.g., the formula ∃y (x = y + y) is
not equivalent to a quantifier-free formula

Recall that a regular language is a language accepted by a nondeterministic finite automaton
(NFA). Recall also that the class of regular languages is closed under intersection and comple-
mentation, and under direct and inverse images with respect to renaming functions. Amplify-
ing the last two closure properties, recall that a renaming function is a map f : Σ → Γ be-
tween two alphabets. We extend such a function pointwise to a map f : Σ∗ → Γ∗ by defin-
ing f(σ1 . . . σm) = f(σ1) . . . f(σm). Then given a regular language L ⊆ Γ∗, its inverse image
f−1(L) = {w ∈ Σ∗ : f(w) ∈ L} is also regular. Likewise given a regular language L ⊆ Σ∗, its direct
image f(L) = {f(w) : w ∈ L} is also regular.

Importantly the above closure properties are all effective. For example, let A = (Γ, Q,Q0,∆, F )
be a NFA for a given language L ⊆ Γ∗, with set of states Q, initial states Q0, final states F , and
transition relation ∆ ⊆ Q × Γ × Q. Then, given a renaming map f : Σ → Γ, an NFA for the
inverse image f−1(L) is B = (Σ, Q,Q0,∆

′, F ), with transition relation ∆′ given by ∆′ = {(p, σ, q) :
(p, f(σ), q) ∈ ∆}. We leave an an exercise the straightforward proof that this construction does
the job.

Theorem 7. Th(N, 0, 1,+, <) is decidable.

Proof. It will suffice to show that Th(N,+) is decidable, since any formula over the richer signature
can be rewritten to a formula using only + (and equality) that defines the same property on N.
(We leave it as an exercise to check this.)

Consider a quantifier-free formula F that mentions variables x1, . . . , xn. We show how to define
an automaton AF over the alphabet of n-dimensional bit vectors

Σn =

{[ 0
0
...
0

]
, . . . ,

[ 1
1
...
1

]}

whose language is in one-to-one correspondence with the set of values of the free variables x1, . . . , xn
that satisfy F . Here each natural number is encoded in binary, with the value for xi represented
in the i-th component of each tuple in Σn. For example, the valuation x1 = 1, x2 = 4, x3 = 9 is
encoded by the word [

1
0
1

] [
0
0
0

] [
0
1
0

] [
0
0
1

]
where the least significant bits occur on the left. Note that Σ0 is a singleton set consisting of the
empty vector {[]} (the only 0-dimensional bit vector).

The construction of AF is predicated on the following two basic automata.

We have the following one-state automaton A= over the alphabet Σ2, corresponding to the
equality relation x1 = x2:
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A=
//

[ 00 ],[ 11 ]

��

And we have the a two-state automata A+ over the alphabet Σ3, corresponding to the addition
function x1 + x2 = x3:

A+
//

[
0
0
0

]
,

[
0
1
1

]
,

[
1
0
1

]

��

[
1
1
0

]
,,[

0
0
1

]ll

[
1
0
0

]
,

[
0
1
0

]
,

[
1
1
1

]

��

We now define the automaton AF by induction on the structure of the formula F . The construc-
tion proceeds from the atoms A= and A+ using only the closure properties of the class of regular
languages.

Base cases: Suppose F is the formula xi = xj . Then the automaton AF is defined to be
automaton whose language is π−1(L(A=)), where π : Σn → Σ2 is the projection map

π :

[ x1
x2

...
xn

]
7→
[ xi
xj

]
Likewise, if F is the formula xi+xj = xk, then AF is defined to be an automaton whose language

is π−1(L(A+)), where π : Σn → Σ3 is the projection map

π :

[ x1
x2

...
xn

]
7→
[ xi
xj
xk

]
Case: F = F1∧F2. Then we define AF to be an automaton whose language is L(AF1)∩L(AF2).

Case: F = ¬G. Then we define AF to be the automaton with language Σ∗n \ L(AG).

This completes the definition of the automaton AF corresponding to a quantifier-free formula
F . Now consider a sentence Q1x1 . . . Qnxn F in prenex form. For k = 0, . . . , n, we write Fk :=
Qk+1xk+1 . . . QnxnF

∗ and define a corresponding automaton Ak over alphabet Σk such that Ak

accepts the set of values of the variables x1, . . . , xk that satisfy Fk. In particular, an invariant of
this construction is that Ak has non-empty language if and only if formula Fk is satisfiable.

We start by defining An to be the automaton AF , as constructed above.

Now suppose that Fk−1 = ∃xkFk. By induction we have an automaton Ak on alphabet Σk

corresponding to Fk. Then we define Ak−1 to be an automaton whose language is π(L(Ak)), where
π : Σk → Σk−1 is the map the projects out the k-th coordinate of each tuple in Σk.

Finally we handle the universal quantifier ∀xk by treating it as shorthand for ¬∃xk¬.

We end up with an automaton A0 for the sentence F0 (which is Q1x1 . . . Qnxn F ) over the
alphabet Σ0. This automaton has non-empty language if and only if (N,+) satisfies F0.
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