
Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

ON THE DECIDABILITY AND COMPLEXITY OF METRIC

TEMPORAL LOGIC OVER FINITE WORDS
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Abstract. Metric Temporal Logic (MTL) is a prominent specification formalism for real-
time systems. In this paper, we show that the satisfiability problem for MTL over finite
timed words is decidable, with non-primitive recursive complexity. We also consider the
model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed
automaton satisfy a given MTL formula. We show that this problem is decidable over finite
words. Over infinite words, we show that model checking the safety fragment of MTL—
which includes invariance and time-bounded response properties—is also decidable. These
results are quite surprising in that they contradict various claims to the contrary that have
appeared in the literature.

1. Introduction

In the linear-temporal-logic approach to verification, an execution of a system is mod-
elled by a sequence of states or events. This representation abstracts away from the precise
times of the observations, retaining only their relative order. Such an approach is inade-
quate to express specifications of systems whose correct behaviour depends on quantitative
timing requirements. To address this deficiency, much work has gone into adapting linear
temporal logic to the real-time setting; see, e.g., [6, 7, 9, 10, 23, 26, 31, 34].

Real-time logics feature explicit time references, typically by recording timestamps
throughout computations. In this paper, we concentrate exclusively on the dense-time,
or real-time, semantics, in which the timestamps are drawn from the set of real numbers.1

An important distinction among real-time models is whether one adopts a state-based se-
mantics [7, 20, 31] or an event-based semantics [15, 9, 10, 17, 18, 34]. In the former, an
execution of a system is modelled by a function that maps each point in time to the state
propositions that are true at that moment. In the latter, one records only a countable
sequence of events, corresponding to changes in the state of the system. The distinction be-
tween these two semantic models is discussed, among others, in [8, 17]. As we will explain,
the main results of this paper crucially depend on our adoption of the event-based model.

Key words and phrases. Metric Temporal Logic, Timed Automata, Alternating Automata, Well-quasi-
orders.

1By contrast, in discrete-time settings timestamps are usually integers, which yields more tractable the-
ories that however correspond less closely to physical reality [18, 5].
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One of the earliest and most popular proposals for extending temporal logic to the
real-time setting is to replace the temporal operators by time-constrained versions—see [8]
and the references therein. Metric Temporal Logic (MTL), introduced fifteen years ago
by Koymans [23], is a prominent and successful instance of this approach.2 MTL extends
Linear Temporal Logic by constraining the temporal operators by (bounded or unbounded)
intervals of the real numbers. For example, the formula ♦[3,4]ϕ means that ϕ will hold
within 3 to 4 time units from now.

Unfortunately, over the state-based semantics, the satisfiability and model checking
problems for MTL are undecidable [15]. This has led some researchers to consider various
restrictions on MTL to recover decidability; see, e.g., [6, 7, 18, 34]. Undecidability arises
from the fact that MTL formulas can capture the computations of a Turing machine: con-
figurations of the machine can be encoded within a single unit-duration time interval, since
the density of time can accommodate arbitrarily large amounts of information. An MTL
formula can then specify that the configurations be accurately propagated from one time
interval to the next, in such a way that the timed words satisfying the formula correspond
precisely to the halting computations of the Turing machine.

It turns out that the key ingredient required for this procedure to go through is punc-
tuality : the ability to specify that a particular event is always followed exactly one time
unit later by another one: �(p → ♦=1q). It has in fact been claimed that, in the state-
based and the event-based semantics alike, any logic strong enough to express the above
requirement will automatically be undecidable—see [8, 9, 17, 19], among others. While the
claim is correct over the state-based semantics, we show in this paper that it is erroneous
in the event-based semantics. Indeed, we show that both satisfiability and model checking
for MTL over finite timed words are decidable, albeit with non-primitive recursive complex-
ity. Over infinite words, we show that model checking the safety fragment of MTL—which
includes invariance and punctual time-bounded response properties—is also decidable.

Upon careful analysis, one sees that the undecidability argument breaks down because,
over the event-based semantics, MTL is only able to encode faulty Turing machines, namely
Turing machines suffering from insertion errors: while the formula �(p ↔ ♦=1q) ensures
that every p is followed exactly one time unit later by a q, there might be some q’s that
were not preceded one time unit earlier by a p (indeed, by any event at all). Intuitively,
this problem does not occur over the state-based semantics because the system there is
assumed to be under observation at all instants in time, and therefore any insertion error
will automatically be detected thanks to the above formula.

MTL is also genuinely undecidable over the event-based semantics if in addition past
temporal operators are allowed [9, 15]. Indeed, in this setting insertion errors can be detected
by going backwards in time, and MTL formulas are therefore able to precisely capture the
computations of perfect Turing machines.3

The decidability results that we present in this paper are obtained by translating MTL
formulas into timed alternating automata. These generalise Alur-Dill timed automata, and
in particular are closed under complementation. Building on some of our previous work [27],
using the theory of well-structured transition systems, we show that the language emptiness
problem for one-clock timed alternating automata over finite timed words is decidable, which
then entails the decidability of MTL satisfiability over finite timed words. We furthermore

2As of early 2006, http://scholar.google.com lists over three hundred and fifty papers on the subject!
3The original undecidability proof in [9] was carried out in a monadic first-order theory of timed words,

which subsumes both forward and past temporal operators.
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show how to extend these results to the model checking problems discussed earlier. In
addition, we show that MTL formulas can capture the computations of insertion channel
machines; then, using a result of Schnoebelen about the complexity of reachability for lossy
channel machines [32], we give a non-recursive primitive lower bound for the complexity of
MTL satisfiability.

1.1. Related Work. Existing decidability results for MTL involve placing restrictions on
the semantics or the syntax of the logic to circumvent the problem of punctuality. Alur and
Henzinger [9] showed that the satisfiability and model checking problems for MTL relative
to a discrete-time semantics are EXPSPACE-complete. Alur, Feder, and Henzinger [6, 7]
introduced Metric Interval Temporal Logic (MITL) as a fragment of MTL in which the
temporal operators may only be constrained by nonsingular intervals. They showed that
the satisfiability and model checking problems for MITL relative to a dense-time semantics
are also EXPSPACE-complete. Wilke [34] considered MTL over a dense-time semantics
with bounded variability, i.e., the semantics is parameterised by a bound k on the number
of events per unit time interval. He shows that the satisfiability problem is decidable in
this semantics and that MTL with existential quantification over propositions is equally
expressive as Alur-Dill timed automata.

A notion of timed alternating automaton very similar to the one considered here has
recently and independently been introduced by Lasota and Walukiewicz [24]. They also
prove that the finite-word language emptiness problem is decidable for one-clock timed
alternating automata, and likewise establish a non-primitive recursive complexity bound
for this procedure. However they do not consider any questions related to MTL, or timed
logics in general.

Another closely related paper is that of Abdulla and Jonsson [4] on networks of one-
clock timed processes. This has a similar flavour to the work presented here in that it uses
abstractions based on clock regions and also Higman’s Lemma. The problems they study
are however very different from the ones considered in this paper.

All the decidability results presented in this paper concern timed alternating automata
over finite timed words, including the results that are ostensibly about infinite timed words.
In particular, our model checking procedure for the safety fragment of MTL over infinite
timed words depends on the fact that any infinite timed word violating a safety property
has a finite bad prefix, that is, a finite prefix none of whose extensions satisfies the property.
Since writing the extended abstract of this paper [28], we have obtained some positive and
negative decidability results about the language emptiness problem for timed alternating
automata over infinite words. We discuss these results in the Conclusion, Section 9.

2. Timed Words and Timed Automata

A time sequence τ = τ1τ2τ3 . . . is a non-empty finite or infinite sequence of time values
τi ∈ R≥0 satisfying the following constraints (where |τ | denotes the length of τ).

• Initialisation: τ1 = 0.
• Monotonicity : τi ≤ τi+1 for all i, 1 ≤ i < |τ |.
• Progress: if τ is infinite, then {τi : i ∈ N} is unbounded.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2σ3 . . . is a finite or
infinite word over Σ and τ is a time sequence of the same length. We also represent a timed
word as a sequence of timed events by writing ρ = (σ1, τ1)(σ2, τ2)(σ3, τ3) . . .. Given a timed
word ρ = (σ, τ) and n ≤ |ρ|, let ρ[1 . . . n] denote the prefix (σ1, τ1) . . . (σn, τn). Finally, write
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TΣ+ for the set of finite timed words over alphabet Σ, and TΣω for the set of infinite timed
words over Σ.

The requirement that infinite timed words be progressive is sometimes called non-
Zenoness or finite variability. It is equivalent to the requirement that an infinite number of
events not occur in a finite amount of time. Note however that, unlike [34], we place no a
priori bound on the number of events that can occur in a time interval of unit duration.

Stipulating that the first event of a timed word occur at time 0 is quite natural in the
present context, since the semantics of an MTL formula is insensitive to this time value
(a similar convention is adopted by Wilke [34]). Also, the convention that timed words be
non-empty is in line with the usual model-theoretic practice of excluding models with empty
domain. Intuitively one can think of the first position of a timed word as representing an
initialisation event.

2.1. Timed Automata. Definition 2.1 recalls the standard notion of a timed automa-
ton [5]. Elsewhere in this paper we refer to the timed automata defined below as Alur-Dill
automata. This is to distinguish them from the more general class of timed alternating
automata, which we introduce in Section 3 and which is our primary focus.

Let X = {x1, . . . , xn} be a finite set of clock variables. Define the set CX of clock
constraints over X by the grammar

ϕ ::= > | x ./ k | ϕ1 ∧ ϕ2 ,

where k ∈ N is a non-negative integer, x ∈ X, and ./ ∈ {<,≤,≥, >}.

Definition 2.1. A timed automaton is a tuple A = (Σ, S, s0, F,X,∆), where

• Σ is a finite alphabet of events
• S is a finite set of locations
• s0 ∈ S is an initial location
• F ⊆ S is a set of accepting locations
• X is a finite set of clocks
• ∆ ⊆ S × Σ × S × CX × 2X is a finite set of edges. An edge (s, a, s′, ϕ,R) allows
a-labelled transition from s to s′, provided the precondition ϕ on clocks is met. Af-
terwards, the clocks in R are reset to zero, while all other clocks remain unchanged.

A clock valuation of A is a vector v = (v1, . . . , vn), where vi ∈ R≥0 gives the value of
clock xi. If t ∈ R≥0, we let v + t be the clock valuation whose i-th component is vi + t.
A state of A is a pair (s,v), where s ∈ S is a location and v is a clock valuation. Write
Q = S × (R≥0)

n for the set of states.
Automaton A induces a labelled transition system TA = (Q, ,−→) on the set of states,

where  ⊆ Q×R≥0 ×Q is called the flow-step relation, and −→ ⊆ Q×Σ×Q is called the
edge-step relation. Flow steps model the evolution of time while the automaton remains in a
given location, while edge steps corresponds to instantaneous transitions between locations.

The flow-step transition relation is deterministic, and is defined by (s,v) t
 (s,v + t),

where t ∈ R≥0. The edge-step relation is defined by (s,v) a−→ (s′,v′) iff there is an edge
(s, a, s′, ϕ,R) ∈ ∆ such that v satisfies ϕ, v′i = 0 for all xi ∈ R and vi = v′i for all xi 6∈ R.

Let ρ = (σ, τ) be a timed word and write di = τi+1 − τi for the time delay between the
i-th and (i + 1)-st events, where 1 ≤ i < |ρ|. Define a run of A on ρ to be an alternating
sequence of edge steps and flow steps in TA:

(s0,v0)
σ1−→ (s1,v1)

d1
 (s2,v2)

σ2−→ (s3,v3)
d2
 · · ·

dn−1
 C2n−2

σn−→ C2n−1 ,
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where s0 is the initial location and v0 maps every clock to 0.
A finite run is accepting if the last control state in the run is accepting. An infinite run

is accepting if infinitely many control states in the run are accepting. We write Lf (A) for
the set of finite timed words over which A has an accepting run, and we write Lω(A) for
the set of infinite timed words over which A has an accepting run.

3. Timed Alternating Automata

In this section we define timed alternating automata. These arise by extending alter-
nating automata [11, 13, 33] with clock variables, in much the same way that Alur-Dill
timed automata extend nondeterministic finite automata. A similar notion has indepen-
dently been investigated by Lasota and Walukiewicz in a recent paper [24]. It will soon
become apparent that timed alternating automata strictly generalise Alur-Dill automata.
However we chose to introduce Alur-Dill automata separately in Section 2 since by so doing
we can avoid considering timed alternating automata with Büchi acceptance conditions.
(This greatly simplifies the definition of a run of an alternating automaton because we can
elide the tree structure—see below.)

Timed alternating automata can in general be defined to have any number of clocks.
Our goal, however, is to use them to represent metric temporal logic formulas, for which
one clock suffices. Accordingly, we shall exclusively focus on one-clock timed alternating
automata in this paper.4 In this section we only consider timed alternating automata over
finite timed words.

Let S be a finite set of locations and let x be a distinguished clock variable. Extend-
ing our previous notion of clock constraint, the set of formulas Φ(S) is generated by the
grammar:

ϕ ::= > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | s | x ./ k | x.ϕ ,

where k ∈ N, ./ ∈ {<,≤,≥, >}, and s ∈ S.
A term of the form x ./ k is called a clock constraint and the expression x.ϕ is a binding

construct corresponding to the operation of resetting the clock x to 0.
In the definition of a timed alternating automaton, below, the transition function maps

each location s ∈ S and event a ∈ Σ to an expression in Φ(S). Thus alternating au-
tomata allow two modes of branching: existential branching, represented by disjunction,
and universal branching, represented by conjunction.

Definition 3.1. A timed alternating automaton is a tuple A = (Σ, S, s0, F, δ), where

• Σ is a finite alphabet
• S is a finite set of locations
• s0 ∈ S is the initial location
• F ⊆ S is a set of accepting locations
• δ : S × Σ → Φ(S) is the transition function.

The notion of a run of a timed alternating automaton, defined below, is somewhat
involved, so we first give an example.

Example 3.2. We define an automaton A over the singleton alphabet Σ = {a} that
accepts all those finite timed words in which no two events are separated by exactly one
time unit. This language is known not to be expressible as the language of an Alur-Dill

4We note in passing that virtually all decision problems, and in particular language emptiness, are in
general undecidable for timed alternating automata that have more than one clock.
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timed automaton [21]. The required automaton has set of locations {s0, s1}, with s0 initial,
and both s0 and s1 accepting. The transition function is defined by:

δ(s0, a) = s0 ∧ x.s1

δ(s1, a) = s1 ∧ x 6= 1 .

A run of A starts in location s0. Every time an a-event occurs, the automaton makes
a simultaneous transition to both s0 and s1, thus opening up a new thread of computation.
The automaton resets a fresh copy of clock x whenever it transitions from location s0 to s1,
and ensures that no event can happen when this clock equals 1. Every run of this automaton
is accepting, since every location is accepting, but there is no run over any word in which
two events are separated by exactly one time unit.

We now proceed to the formal definitions. A state of A is a pair (s, v), where s ∈ S is
a location and v ∈ R≥0 is a clock valuation. Write Q = S × R≥0 for the set of all possible
states.

A set of states M ⊆ Q and a clock valuation v ∈ R≥0 defines a Boolean valuation on
Φ(S) as follows:

• M |=v s iff (s, v) ∈M
• M |=v x ./ k iff v ./ k
• M |=v x.ϕ iff M |=0 ϕ.

(The Boolean connectives are handled in the expected way.)
Note that the satisfaction relation is monotone: N |=v ϕ and N ⊆M implies M |=v ϕ.

We say that M is a minimal model of ϕ ∈ Φ(S) with respect to v if M |=v ϕ and there is
no proper subset N ⊂ M with N |=v ϕ. Also, if ϕ ∈ Φ(S) is a closed formula, i.e., every
occurrence of x lies within the scope of a binding operator x.−, then the relation M |=v ϕ
is independent of the value of v, and we feel free to omit it.

A configuration of A is a finite set of states; the set of configurations is denoted ℘(Q).
The initial configuration is {(s0, 0)} and a configuration is accepting if every location that it
contains is accepting. Note in particular that the empty configuration is always accepting.
The language accepted by a timed alternating automaton over finite words can be described
in terms of a transition system of configurations, defined below.

Definition 3.3. Given a timed alternating automaton A, we define the labelled transition
system TA = (℘(Q), ,−→) over the set of configurations as follows. The (R≥0)-labelled
transition relation  ⊆ ℘(Q) × R≥0 × ℘(Q) captures time evolutions, or flow steps, and is
defined by

C t
 C ′ if C ′ = {(s, v + t) : (s, v) ∈ C} .

The Σ-labelled transition relation −→ ⊆ ℘(Q)×Σ×℘(Q) captures instantaneous transitions
between locations, or edge steps. Let C = {(si, vi)}i∈I . We include a transition C a−→ C ′

iff one can choose, for each i ∈ I, a minimal model Mi of δ(si, a) with respect to vi, such
that C ′ =

⋃
i∈I Mi.

Let ρ = (σ, τ) be a finite timed word with |ρ| = n. Write di = τi+1 − τi for the time
delay between the i-th and (i+1)-st events, 1 ≤ i<n. Define a run of A on ρ to be a finite
alternating sequence of edge steps and flow steps in TA:

C0
σ1−→ C1

d1
 C2

σ2−→ C3
d2
 · · ·

dn−1
 C2n−2

σn−→ C2n−1 ,
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where C0 is the initial configuration. The run is accepting if the last configuration C2n−1 is
accepting, and the timed word ρ is accepted by A if there is some accepting run of A on ρ.
We write Lf (A) ⊆ TΣ+ for the language of finite timed words accepted by A.5

Example 3.4. A time-bounded response property such as ‘for every a-event there is a
b-event exactly one time unit later’ can be expressed by the following automaton. Let A
have two locations {s0, s1} with s0 the initial and only accepting location, and transition
function δ given by the following table:

a b
s0 s0 ∧ x.s1 s0
s1 s1 (x = 1) ∨ s1

Location s0 represents an invariant, and is present in every configuration in any run of A.
When an a-event occurs, the conjunction in the definition of δ(s0, a) results in the creation
of a new thread of computation, starting in location s1. Since this location is not accepting,
the automaton must eventually leave it. This is only possible if a b-event happens exactly
one time unit after the new thread was spawned.

3.1. Duality and Complementation. The following derivation shows that the class of
languages definable by timed alternating automata is closed under complement. Since
it is straightforward to show that this class is also closed under union, timed alternating
automata are closed under all Boolean operations. The arguments presented here are similar
to the untimed case [11, 13].

Given ϕ ∈ Φ(S), we define a dual formula ϕ ∈ Φ(S) as follows. The dual of a clock
constraint is its negation (e.g., x < k = x ≥ k), whereas each location is self-dual: s = s for
s ∈ S. For the propositional connectives we have the usual de Morgan dualities: ϕ1 ∨ ϕ2 =
ϕ1∧ϕ2 and ϕ1 ∧ ϕ2 = ϕ1∨ϕ2. Finally, clock-resets distribute through the duality operator:
x.ϕ = x.ϕ.

Let A = (Σ, S, s0, F, δ) be an alternating timed automaton. The complement automa-

ton Ac is defined by Ac = (Σ, S, s0, S \ F, δ), where δ(s, a) = δ(s, a) for each s ∈ S and
a ∈ Σ. Thus we take the dual transition function and the complement of the set of accepting
locations.

Proposition 3.5. Let ϕ ∈ Φ(S), v ∈ R≥0, and let R ⊆ Q be a set of states; then R |=v ϕ
iff Q \R 6|=v ϕ.

Proof. The proof is by structural induction on ϕ, and is straightforward from the definition
of ϕ.

Proposition 3.6. L(A) ∩ L(Ac) = ∅.

Proof. Suppose that both A and Ac have runs on the same timed word ρ = (σ, τ), with
|ρ| = n. Denote the run of A by

C0
σ1−→ C1

d1
 C2

σ2−→ C3
d2
 · · ·

dn−1
 C2n−2

σn−→ C2n−1 ,

and denote the run of Ac by

D0
σ1−→ D1

d1
 D2

σ2−→ D3
d2
 · · ·

dn−1
 D2n−2

σn−→ D2n−1 .

5It is usual to define a run of an alternating automaton as a tree of states. However, over finite words
the branching structure plays no role in the definition of acceptance, and we simply define a run to be a
sequence of configurations, where each configuration represents a given level of the run tree.
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We show by induction on i 6 2n − 1 that Ci and Di have non-empty intersection. In
particular we deduce that C2n−1 and D2n−1 meet, so the two runs cannot both be accepting
since A and Ac have disjoint sets of accepting states.

The base case of the induction is just the observation that C0 = D0 = {(s0, 0)}. For
the induction step, suppose that (s, v) ∈ Ci ∩ Di. In case i = 2j + 1 is odd, that is, the
next transition is a flow step, then (s, v + dj+1) ∈ Ci+1 ∩Di+1. In case i = 2j is even, then

Ci+1 |=v δ(s, σj+1) and Di+1 |=v δ(s, σj+1). But then it follows from Proposition 3.5 that
Ci+1 and Di+1 are not disjoint. This completes the induction step.

Proposition 3.7. L(A) ∪ L(Ac) = TΣ+.

Proof. We claim that, given a finite timed word ρ = (σ, τ) and a set of states R ⊆ Q, either
A has a run on ρ whose last configuration is a subset of R, or Ac has a run on ρ whose last
configuration is a subset of Q \ R. The proposition follows from the claim by taking R to
be the set of states in A whose underlying location is accepting.

We prove the claim by induction on |ρ| as follows. Let ρ = (σ, τ) and R ⊆ Q be given
as in the claim, with |ρ| = n+ 1. Also, let dn = τn+1 − τn and write

pred(R) = {(s, v) : R |=v+dn
δ(s, σn+1)} .

Observe also that by Proposition 3.5

Q \ pred(R) = {(s, v) : R 6|=v+dn
δ(s, σn+1)}

= {(s, v) : Q \R |=v+dn
δ(s, σn+1)} . (3.1)

By induction, either A has a run on ρ[1 . . . n] whose last configuration C is a subset of
pred(R), or Ac has a run on ρ[1 . . . n] whose last configuration D is a subset of Q \ pred(R).
In the former case, it is immediate that we can extend the given run of A into a run on ρ.
Indeed, since C ⊆ pred(R), for each (s, v) ∈ C we can choose a finite subset of R that is a
minimal model of δ(s, σn+1) with respect to clock value v+dn. In the latter case, in similar
fashion, it follows from (3.1) that Ac has a run on ρ whose last configuration is a subset of
Q \R.

Corollary 3.8. The class of languages definable by timed alternating automata is effectively
closed under all Boolean operations.

4. Decidability of Language Emptiness

It is well known that the universality problem for Alur-Dill timed automata is un-
decidable [5]. Since the class of multi-clock timed alternating automata is closed under
complement and includes the class of Alur-Dill automata, the language-emptiness problem
for multi-clock timed alternating automata is not decidable either. However we show in
this section that if we restrict our attention to alternating automata with single clock, then
language emptiness is decidable. The decision procedure that we present is a generalisation
of our previous algorithm for deciding universality for one-clock Alur-Dill automata [27].

The language-emptiness problem for a one-clock alternating automaton A is equiva-
lent to the following reachability question on the derived transition system TA: ‘Is there a
path from the initial configuration to an accepting configuration?’. Since TA has uncount-
ably many states—indeed each state has uncountably many successors under the flow-step
relation—an abstraction is required to explore the state space. Deriving such an abstraction
is the subject of the next subsection.
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4.1. The Bisimulation Lemma. Let k be a non-negative integer. Define an equivalence
relation ∼k on R≥0 by u ∼k v if either u, v > k, or due = dve and buc = bvc. The
corresponding set of equivalence classes, or regions, is REGk = {r0, r1, . . . , r2k+1}, where
r2i = {i} for i ≤ k, r2i+1 = (i, i + 1) for i < k, and r2k+1 = (k,∞). Let regk(u) denote the
equivalence class of u ≥ 0. In practice we prefer to omit explicit reference to the threshold k
in our notation, and infer it from the context. Thus we adopt the convention that whenever
u, v are clock values of a timed automaton A, then u ∼ v means u ∼k v, where k is the
largest constant appearing in the clock constraints of A.

The fractional part of a nonnegative real x ∈ R≥0 is frac(x) = x−bxc. Using this notion
we define the relation ≈ on (R≥0)

n—an n-dimensional analog of ∼, also depending on an
invisible threshold k—by u ≈ v iff ui ∼ vi for each i ∈ {1, . . . , n} and frac(ui) ≤ frac(uj)
iff frac(vi) ≤ frac(vj) for all i, j ∈ {1, . . . , n}. Note that ≈ has finite index.

The following is a standard result; see, e.g., [5]. Intuitively, it says that ≈ is a bisimu-
lation with respect to time evolutions.

Proposition 4.1. Let u,v ∈ (R≥0)
n with u ≈ v. Then for all t ≥ 0 there exists t′ ≥ 0

such that (u + t) ≈ (v + t′).

Definition 4.2. An equivalence relation R ⊆ ℘(Q) × ℘(Q) is a time-abstract bisimulation
on TA if p R q implies

• (∀a ∈ Σ)(p a−→ p′ implies ∃q′(q a−→ q′ and p′ R q′))

• (∀t ∈ R≥0)(p
t
 p′ implies ∃t′∃q′(q t′

 q′ and p′ R q′)).

Note that the definition above does not require that we match flow steps ‘on the nose’:
the durations of the matching transitions can differ. This explains why we call this notion
time-abstract. Before employing this definition, we take another look at the notion of
minimal model underlying the edge-step transition relation.

Any formula ϕ ∈ Φ(S) can be written in disjunctive normal form ϕ ≡
∨

j∈J

∧
Aj ,

where each Aj is a set of terms of the form s, x.s, and x ./ k (which we call atoms). The
minimal models of ϕ can be read off from the disjunctive normal form as follows. For a
set of atoms A and a clock valuation v ∈ R≥0, let A[v] ⊆ Q be the set of states given by
A[v] = {(s, v) : s ∈ A} ∪ {(s, 0) : x.s ∈ A}. Then each minimal model M of ϕ with respect
to v has the form M = Aj [v], for some j ∈ J , where v satisfies all the clock constraints in
Aj .

Lemma 4.3 (Bisimulation Lemma). Define the relation ≡ ⊆ ℘(Q) × ℘(Q) by C ≡ C ′ iff
there is a bijection f : C → C ′ such that: (i) f(s, u) = (t, u′) implies s = t and u ∼ u′; (ii) if
f(s, u) = (s, u′) and f(t, v) = (t, v′), then frac(u) ≤ frac(v) iff frac(u′) ≤ frac(v′). Then ≡
is a time-abstract bisimulation on TA.

Proof. Suppose that C = {(si, ui)}i∈I and D = {(ti, vi)}i∈I are configurations of A, and
that f : C → D, where f(si, ui) = (ti, vi), is a bijection witnessing C ≡ D.

Matching edge transitions. Suppose C makes an edge transition C a−→ C ′ for some
a ∈ Σ. By the above considerations on minimal models we know that C ′ =

⋃
i∈I Ai[ui],

where, for each i ∈ I, the set of atoms Ai is a clause in the disjunctive normal form
expression for δ(si, a). Setting D′ =

⋃
i∈I Ai[vi] we have D a−→ D′. (Here we rely on the

fact that ui ∼ vi, so ui and vi satisfy the same clock constraints.) We also have C ′ ≡ D′

since we can define a bijection f ′ : C ′ → D′ by f ′(s, ui) = (s, vi) and f ′(s, 0) = (s, 0).

Matching flow transitions. Suppose C makes a flow transition C t
 C ′ for some t ∈ R≥0.

Writing u = (ui)i∈I and v = (vi)i∈I , notice that C ≡ D implies that u ≈ v in the sense of
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Proposition 4.1. By that proposition there exists t′ with (u + t) ≈ (v + t′). Thus, writing

D′ = D + t′, we have D t′
 D′ and C ′ ≡ D′.

4.2. The transition system WA. As we have already remarked, the transition system
TA is, informally speaking, not an effective structure—it has uncountably many states, and
each state can make uncountably many transitions. Now, using the Bisimulation Lemma,
we isolate a sub-transition-system of TA, denoted WA, which can be regarded as an effective
skeleton of TA.6 In particular, WA has only countably many states and is finitely branching;
nonetheless, for each configuration of TA there is a bisimilar configuration of WA. The key
to obtaining a finitely branching transition system here is to realise that, up to bisimulation,
only finitely many configurations are reachable via flow steps from a given configuration.

Definition 4.4. Let C ⊆ Q be a configuration. If C is non-empty then let xmin =
min{frac(v) : (s, v) ∈ C} and xmax = max{frac(v) : (s, v) ∈ C} be respectively the min-
imum and maximum fractional parts of the clock values appearing in C. Now define the
time successor of C to be the configuration next(C) given by the following clauses.

• If C = ∅ then next(C) = C.
• If C 6= ∅ and xmin = 0, then next(C) = C + (1 − xmax )/2.
• If C 6= ∅ and xmin > 0 then next(C) = C + (1 − xmax ).

Example 4.5. Consider a configuration C = {(s, 1.25), (t, 2.5), (s, 0.75)}. Then next(C) =
{(s, 1.5), (t, 2.75), (s, 1)} (in which time has advanced by 0.25 units, and the clock value
in C with largest fractional part has moved to a new region). On the other hand, if
C = {(s, 1), (t, 0.5)}, then next(C) = {(s, 1.25), (t, 0.75)} (in which the clock value in C
with zero fractional part moves to a new region, while all other clock values remain in the
same region).

Definition 4.6. Define the labelled transition system WA as follows.

• Alphabet. The alphabet of WA is Σ ∪ {ε}.
• States. The states of WA are those configurations C ⊆ Q in which all clock values

are rational (henceforth call such configurations rational).
• Transitions. Each state C makes a unique ε-transition to its time successor

next(C). For a ∈ Σ, we declare that C a−→ C ′ in WA iff C a−→ C ′ in TA.

Let ( ε−→)∗ denote the reflexive transitive closure of the relation ε−→. The next two
properties show that, up to bisimulation, there is no loss in expressiveness in replacing the
flow-step transition relation with ( ε−→)∗.

Proposition 4.7. Suppose that C,D ⊆ Q are configurations such that C ≡ D and D is

rational. Then for any flow step C t
 C ′ there exists a rational configuration D′, with

D ( ε−→)∗ D′ and C ′ ≡ D′.

Proof. Observe that if C t
 C ′, then C ′ ≡ nextn(C) for some n ≥ 0. Furthermore, notice

that if C ≡ D, then next(C) ≡ next(D). It follows that C ′ ≡ nextn(D) for some n ≥ 0; but
D ( ε−→)∗ nextn(D), so the proposition is established.

6In the extended abstract of this paper WA was described as a quotient of TA, akin to the clock-region
quotient of an Alur-Dill automaton. However in our opinion the technical details are more straightforward
under the present approach.
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Proposition 4.8. If configuration C is reachable from the initial configuration C0 in TA,
then there is a rational configuration C ′, with C ≡ C ′, such that C ′ is reachable from C0 in
WA.

Proof. Given a path in TA

C0
σ1−→ C1

d1
 C2

σ2−→ C3
d2
 · · ·

σn−→ C2n−1 = C ,

we use Lemma 4.3 and Proposition 4.7 to generate, step by step, a ‘matching’ path in WA

C0
σ1−→ C ′

1 ( ε−→)∗ C ′
2

σ2−→ C ′
3 ( ε−→)∗ · · ·

σn−→ C ′
2n−1 = C ′ ,

where Ci ≡ C ′
i for 0 ≤ i ≤ 2n− 1.

We have now reduced the language-emptiness problem for A to the following reach-
ability question for WA: ‘Is there a path from the initial configuration to an accepting
configuration?’. In passing from TA to the finitely-branching transition system WA we have
achieved a useful rationalisation (no pun intended), however WA still has infinitely many
states, albeit only countably many, so it is not obvious that we can decide reachability in
this transition system. We bridge this gap by observing the existence of a well-quasi-order
on the state space of WA. This serves in lieu of finiteness to guarantee the termination of
a state-exploration algorithm that computes an over-approximation of the set of reachable
states. This is described in the next subsection in terms of the theory of well-structured
transition systems [14].

4.3. Well-quasi-orders. Recall that a quasi-order (W,4) consists of a set W together
with a reflexive, transitive relation 4. An infinite sequence w1, w2, w3, . . . in (W,4) is said
to be saturating if there exist indices i < j such that wi 4 wj . (W,4) is a well-quasi-order
(wqo) if every infinite sequence in (W,4) is saturating.

Given a quasi-order (Λ,4), the induced monotone domination order (or subword order)
v on Λ∗ is defined by a1 . . . am v b1 . . . bn if there exists a strictly increasing function
f : {1 . . .m} → {1, . . . , n} such that ai 4 bf(i) for all i ∈ {1, . . . ,m}.

Lemma 4.9 (Higman’s Lemma [22]). If (Λ,4) is a wqo, then the monotone domination
order v is a wqo on Λ∗.

Next we use Higman’s Lemma to establish the existence of a well-quasi-order on the
state space of the transition system WA. The first step is to define a class of abstract
configurations, which are intended as canonical representatives of ≡-equivalence classes of
configurations.

Definition 4.10. An abstract configuration is a finite word over the alphabet Λ = ℘(S ×
REG) of nonempty finite subsets of S × REG .

Observe immediately that the alphabet Λ under the subset order, being finite, is trivially
a wqo. It follows from Lemma 4.9 that the set of abstract configurations is a wqo under
the monotone domination order.

Roughly speaking, each (concrete) configuration C of A gives rise to an abstract con-
figuration as follows. First, C is converted from a set to a list by ordering its elements
according to the fractional part of their clock values. Then each clock value is replaced by
the region it lies in. Formally, define an abstraction function H : ℘(Q) → Λ∗, yielding an
abstract configuration H(C) for each configuration C as follows. First, lift the function reg
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to configurations by reg(C) = {(s, reg(v)) : (s, v) ∈ C}. Now given a configuration C, par-
tition C into a sequence of subsets C1, . . . , Cn, such that for all (s, v) ∈ Ci and (t, v′) ∈ Cj ,
frac(v) 6 frac(v′) iff i 6 j (so (s, v) and (t, v′) are in the same block Ci iff v and v′ have
the same fractional part). Then define H(C) = reg(C1)reg(C2) . . . reg(Cn) ∈ Λ∗.

Example 4.11. Consider the automaton A from Example 3.2. The maximum clock con-
stant appearing in A is 1, thus the corresponding regions are r0 = {0}, r1 = (0, 1), r2 = {1}
and r3 = (1,∞). Given a concrete configuration C = {(s, 1), (t, 0.4), (s, 1.4), (t, 0.8)}, the
corresponding abstract configuration H(C) is the word {(s, r2)} {(t, r1), (s, r3)} {(t, r1)}.

Next we show that concrete configurations that map to the same abstract configuration
are time-abstract bisimilar.

Proposition 4.12. If C and C ′ are A-configurations such that H(C) = H(C ′), then C
and C ′ are bisimilar in TA.

Proof. This follows from the Bisimulation Lemma and the observation that H(C) = H(C ′)
iff C ≡ C ′.

Taking stock, we have defined a class of abstract configurations that carries a natural
well-quasi-order, and we have shown that abstract configurations are indeed abstract with
respect to the notion of time-abstract bisimilarity. Next we show how to exploit these two
observations.

4.4. Well-Structured Transition Systems. The notion of well-structured transition sys-
tem (wsts) provides a uniform framework for expressing decidability results about a variety
of infinite-state systems, including Petri nets, broadcast protocols and lossy channel sys-
tems [1, 14]. Definition 4.13 presents a particular variant, called a downward wsts in [14].

Definition 4.13. A well-structured transition system is a triple W = (W,4,−→), where
(W,−→) is a finitely-branching (unlabelled) transition system equipped with a wqo 4 such
that:

• 4 is a decidable relation.
• Succ(w) := {w′ : w −→ w′} is computable for each w ∈W .
• 4 is downward compatible: if w, v ∈W with w 4 v, then for any transition v −→ v ′

there exists a matching sequence of transitions w (−→)∗ w′ with w′ 4 v′.

Note that downwards compatibility allows a single transition of v to be matched by zero or
more transitions of w.

Theorem 4.14. [14, Theorem 5.5] Let W = (W,4,−→) be a wsts. Let V ⊆ W be a
downward-closed (i.e. v′ 4 v and v ∈ V imply v′ ∈ V ) decidable subset of W . Then, given
a state u ∈ W , it is decidable whether there is a sequence of transitions starting at u and
ending in V .

We now seek to apply Theorem 4.14 to the case at hand.

Proposition 4.15. The transition system WA is a wsts (after forgetting the labels on the
transitions).

Proof. Define a quasi-order on the set of configurations by C 4 D iff H(C) v H(D), that
is, if the word H(C) corresponding to C is a subword of the word H(D) corresponding to
D. It is straightforward that 4 inherits the property of being a well-quasi-order from v.
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Moreover 4 is a decidable relation on rational configurations, since H is computable on
rational configurations and v is decidable.

It remains to prove that 4 is downward compatible. Now suppose C 4 D and there is a
transition D −→ D′. We show how to produce a matching sequence of transitions for C. To
this end, it is helpful to first observe that C 4 D implies that there is a configuration E ⊆ D
with C ≡ E. We now consider two cases according to whether the transition D −→ D ′ is
an edge step or a flow step.

• Suppose that D a−→ D′ is an edge step. Since E ⊆ D and the successors of a
configuration under edge steps are computed pointwise (cf. Definition 3.3), there is
a configuration E ′ ⊆ D′ with E a−→ E′. Now C ≡ E, so the Bisimulation Lemma
yields a transition C a−→ C ′ with C ′ ≡ E′. But C ′ ≡ E′ and E′ ⊆ D′ together
imply C ′ 4 D′.

• Suppose that D ε−→ D′ is a flow step. Then D′ = D+ t for some t ≥ 0, and, writing
E′ = E + t, we have E ′ ⊆ D′. By the Bisimulation Lemma, there exists t′ ≥ 0
such that (C + t′) ≡ E′. As explained in the proof of Proposition 4.7, there is some
configuration C ′ with C ( ε−→)∗ C ′ and C ′ ≡ (C+t′). Then C ′ ≡ (C+t′) ≡ E′ ⊆ D′,
so C ′ 4 D′. This completes the proof.

We are now ready to assert one of our main results.

Theorem 4.16. Let A be a one-clock timed alternating automaton and let B be an Alur-Dill
timed automaton. Then the language-emptiness problem ‘Lf (A) = ∅?’ and the language-
inclusion problem ‘Lf (B) ⊆ Lf (A)?’ are both decidable.

Proof. Since a configuration of WA is accepting if it only mentions accepting locations of
A, the set of accepting configurations of WA is downward-closed with respect to 4. By
Proposition 4.14 it is decidable whether an accepting configuration of WA is reachable
from the initial configuration. In turn this entails, by Proposition 4.7, that it is decidable
whether an accepting configuration of TA is reachable from the initial configuration. But
this question is equivalent to language emptiness for A. This proves the first assertion
of Theorem 4.16. The proof of the second assertion relies on the construction of a wsts
representing the execution of B and A in parallel. We omit the details since we treat at
length essentially the same construction in Section 8, where we consider a closely related
language inclusion problem over infinite timed words.

As noted earlier, these results have recently and independently been obtained by Lasota
and Walukiewicz [24], also building on our earlier paper [27].

5. Metric Temporal Logic

In this section we define the syntax and semantics of Metric Temporal Logic (MTL).
As discussed in the Introduction, there are two different dense-time semantics for MTL:
event-based and state-based, and for our concerns the difference is crucial. Following [15,
9, 10, 17, 18, 34], among others, we adopt an event-based semantics using timed words.
A key observation about this semantics is that the temporal connectives quantify over a
countable set of positions in a timed word. In contrast, the state-based semantics, adopted
in, e.g., [7, 20, 31], associates a state to each point in real time, and the temporal connectives
quantify over the whole time domain. In the state-based semantics one can use a formula of
the type �(p↔ ♦=1q) to specify a perfect channel, whereas in the event-based semantics the
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same formula only specifies a channel with insertion errors (see Section 7). This observation
helps understand why MTL is undecidable under the state-based semantics, whereas, at
least over finite words, it is decidable in the event-based semantics (Theorem 6.2).

In the event-based semantics the atomic propositions in MTL refer to particular events,
and the temporal connectives quantify over future events. This offers a natural idiom for
reasoning about real-time behaviours, as we demonstrate in Example 5.3.

Definition 5.1. Given an alphabet Σ of events, the formulas of MTL are built up from
Σ by Boolean connectives and time-constrained versions of the next operator © and the
until operator U as follows:

ϕ ::= a | > | ϕ1 ∧ ϕ2 | ¬ϕ | ©I ϕ | ϕ1 UI ϕ2 ,

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with endpoints in
N ∪ {∞}. If I = [0,∞), then we omit the annotation I in ©I and UI . We also use pseudo-
arithmetic expressions to denote intervals. For example, the expression ‘≥ 1’ denotes [1,∞)
and ‘= 1’ denotes the singleton {1}.

Additional temporal operators are defined using the usual conventions. We have the
constrained eventually operator ♦Iϕ ≡ > UI ϕ, and the constrained always operator �I ϕ ≡
¬♦I¬ϕ. We define a dual until operator via the standard duality: ϕ1 ŨI ϕ2 ≡ ¬(¬ϕ1 UI

¬ϕ2). Finally, we define end ≡ ¬©>, which is true precisely in the last position of a word.

Definition 5.2. Given a (finite or infinite) timed word ρ = (σ, τ) over alphabet Σ and
an MTL formula ϕ, the satisfaction relation (ρ, i) |= ϕ (read ρ satisfies ϕ at position i) is
defined as follows (note that we include a clause for dual until, even though it is a derived
operator, for future reference):

• (ρ, i) |= a iff σi = a
• (ρ, i) |= >
• (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

• (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
• (ρ, i) |= ©I ϕ iff i < |ρ|, τi+1 − τi ∈ I and (ρ, i+ 1) |= ϕ
• (ρ, i) |= ϕ1 UI ϕ2 iff there exists j > i such that (ρ, j) |= ϕ2, τj − τi ∈ I, and

(ρ, k) |= ϕ1 for all k with i 6 k < j.

• (ρ, i) |= ϕ1 ŨI ϕ2 iff for all j > i such that τj − τi ∈ I, either (ρ, j) |= ϕ2 or there
exists k with i 6 k < j and (ρ, k) |= ϕ1.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 1) |= ϕ. The set of finite models of an MTL
formula ϕ is given by Lf (ϕ) = {ρ ∈ TΣ+ : ρ |= ϕ}. The set of infinite models of ϕ is given
by Lω(ϕ) = {ρ ∈ TΣω : ρ |= ϕ}.

Example 5.3. Consider a set of events Σ = {req i, acq i, rel i : i = X,Y } denoting the actions
of two processes X and Y that request, acquire, and release a lock.

•
�

(acqX →
�

<3¬acqY ) says that Y cannot acquire the lock less than 3 seconds after
X acquires the lock.

•
�

(acqX → relX Ũ<3 ¬acqY ) says that Y cannot acquire the lock less than 3 seconds
after X acquires the lock, unless X first releases it.

•
�

(reqX → ♦<2(acqX∧♦=1relX)) says that whenever X requests the lock, it acquires
the lock within 2 seconds and releases it exactly one second later.

We believe that this example illustrates the convenience of event-based reasoning in the real-
time setting, and invite the reader to specify similar properties in the state-based approach.
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Every MTL formula can be put into negation normal form, i.e., where negation is only
applied to atomic formulas, by using in addition the dual until and end operators. This
proceeds in the usual manner, the only awkward case being that of the next operator, which
is dealt with as follows:

¬©I ϕ ≡ (©I¬ϕ) ∨ (©I′>) ∨ (©I′′>) ∨ end ,

where I ′ ∪ I ′′ = R≥0 \ I. In other words, ©Iϕ fails just in case ϕ fails in the next position,
or the next event occurs outside of I, or the end of the word has been reached.

6. MTL over Finite Words

In this section we consider the satisfiability problem for MTL over finite words: ‘Given
an MTL formula ϕ, is Lf (ϕ) nonempty?’. We also consider the following model-checking
problem: ‘Given an MTL formula ϕ and an Alur-Dill timed automaton B, is it the case
that Lf (B) ⊆ Lf (ϕ)?’. In both cases we show decidability by translating the MTL formulas
into equivalent one-clock timed alternating automata and invoking Theorem 4.16. We also
show that both problems have non-primitive recursive complexity.

6.1. Decidability. Given an MTL formula ϕ in negation normal form, we define a one-
clock alternating automaton Aϕ such that Lf (Aϕ) = Lf (ϕ). Since timed alternating au-
tomata are closed under union and intersection, and since it is clear how to define Aϕ in
case ϕ is an atomic formula or the negation of an atomic formula, without loss of generality

we assume that the outermost connective in ϕ is ©I , UI or ŨI .
Define the closure of ϕ, denoted cl(ϕ), to consist of ϕ itself, all subformulas of ϕ whose

outermost connective is a temporal modality (including end), plus, for each subformula
©I ψ, an element (©I ψ)r called the residual copy of ©I ψ.7 A location is accepting iff it

corresponds to a subformula whose outermost connective is ŨI or end.
Recall that a state of Aϕ is a pair consisting of a location of Aϕ, i.e., a subformula of

ϕ, and a clock value. We define the transition function δ so that the presence of state (ψ, 0)
in a configuration during a run of Aϕ ensures that the input word satisfies ψ at the current
position. To enforce this requirement, when ψ is encountered the automaton starts a fresh
clock and thereafter propagates ψ from configuration to configuration in the run until all

7The inclusion of both ©I ψ and the residual copy (©I ψ)r in cl(ϕ) is mainly a convenience to give a
more uniform definition of the transition function of Aϕ, and to help prove the correctness of the translation
in Proposition 6.1. In fact, if the formula ϕ itself is not of the form ©Iψ, then only residual copies of
next-subformulas will occur in runs of Aϕ.
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the obligations that it stipulates are discharged. Formally, δ is defined by:

δ(a, b) =

{
> if a = b
⊥ if a 6= b

δ(ψ1 ∨ ψ2, a) = δ(ψ1, a) ∨ δ(ψ2, a)

δ(ψ1 ∧ ψ2, a) = δ(ψ1, a) ∧ δ(ψ2, a)

δ(ψ1 UI ψ2, a) = ((x.δ(ψ2, a)) ∧ x ∈ I) ∨

((x.δ(ψ1, a)) ∧ (ψ1 UI ψ2))

δ(ψ1 ŨI ψ2, a) = ((x.δ(ψ2, a)) ∨ x 6∈ I) ∧

((x.δ(ψ1, a)) ∨ (ψ1 ŨI ψ2))

δ(©I ψ, a) = x.(©I ψ)r

δ((©I ψ)r, a) = (x ∈ I) ∧ x.δ(ψ, a)

δ(end, a) = ⊥ .

Proposition 6.1. Lf (Aϕ) = Lf (ϕ).

Proof. We first show that Lf (Aϕ) ⊆ Lf (ϕ). To this end, let ρ = (σ, τ) be a timed word in
Lf (Aϕ), with |ρ| = n. As usual, write di = τi+1 − τi for 1 ≤ i < n. Suppose that Aϕ has an
accepting run on ρ:

C0
σ1−→ C1

d1
 C2

σ2−→ C3
d2
 · · ·

σn−→ C2n−1 .

We claim that for each subformula ψ of ϕ and each i such that 1 6 i 6 n, (ρ, i) |= ψ
whenever C2i−1 |=0 δ(ψ, σi). We prove this claim by structural induction on ψ.

The base case, in which ψ ≡ a or ψ ≡ ¬a for an atomic formula a, is immediate. The
only non-trivial cases in the induction step are when the outermost connective of ψ is a
temporal modality. We consider the cases ψ ≡ ©I ψ1 and ψ ≡ ψ1 UI ψ2; the case for dual
until is similar to that for until, and end is straightforward.

• ψ ≡ ©I ψ1. If C2i−1 |=0 δ(ψ, σi) then, since δ(ψ, σi) = x.(©I ψ1)
r, we must have

((©I ψ1)
r, 0) ∈ C2i−1. In turn, this entails that C2i+1 |=0 δ(ψ1, σi+1) and τi+1−τi ∈

I. Thus, by the induction hypothesis, we have (ρ, i+1) |= ψ1, whence (ρ, i) |= ©I ψ1.
• ψ ≡ ψ1 UI ψ2. Suppose C2i−1 |=0 δ(ψ, σi). We consider two possibilities, cor-

responding to the two disjuncts in the definition of δ(ψ, σi). One possibility is
that C2i−1 |=0 δ(ψ2, σi) and 0 ∈ I. In this case, by the induction hypothesis, we
have (ρ, i) |= ψ2, whence (ρ, i) |= ψ1 UI ψ2. On the other hand, we may have
C2i−1 |=0 δ(ψ1, σi) and (ψ, 0) ∈ C2i−1. Then the definition of the transition func-
tion δ ensures that for each successive value of j ≥ i we have that C2j−1 |= δ(ψ1, σj)
and (ψ, τj −τi) ∈ C2j+1 until at some point C2j+1 |= δ(ψ2, σj) and τj −τi ∈ I. (Note
that the latter must eventually occur since ψ is not an accepting location.) From
the induction hypothesis it is clear that this implies that (ρ, i) |= ψ. This completes
the proof of the claim.

Having proved the claim, we observe that (ϕ, 0) ∈ C0 (the initial configuration), and
so C1 |=0 δ(ϕ, σ0). Thus, applying the claim in the case i = 0 and ψ ≡ ϕ, we immediately
get that ρ |= ϕ whenever Aϕ has an accepting run on ρ. This completes the proof that
Lf (Aϕ) ⊆ Lf (ϕ).

It remains to show the converse inclusion. To this end, observe that A¬ϕ = (Aϕ)c,
that is, the automaton representing ¬ϕ is the complement of the automaton representing
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ϕ. Indeed, the duality that was used to define the transition function of the complement
automaton (cf. Section 3.1) corresponds directly to the duality used to define negation in
MTL. Now, using the inclusion that we have just proved, we have

TΣ+ \ Lf (Aϕ) = Lf ((Aϕ)c) = Lf (A¬ϕ) ⊆ Lf (¬ϕ) = TΣ+ \ Lf (ϕ) .

But this directly gives Lf (ϕ) ⊆ Lf (Aϕ), which completes the proof.

In conjunction with Theorem 4.16, Proposition 6.1 immediately yields:

Theorem 6.2. The satisfiability and the model-checking problems for MTL over finite words
are both decidable.

7. Complexity

Using a result of Schnoebelen [32] about channel systems, we prove that the satisfiability
problem for MTL has non-primitive recursive complexity.

A channel machine consists of a finite-state automaton acting on an unbounded fifo
channel, or queue. More precisely, a channel machine is a tuple C = (S,M,∆), where S is a
finite set of control states, M is a finite set of messages, and ∆ ⊆ S×Σ×S is the transition
relation over label set Σ = {m!,m? : m ∈ M}. A transition labelled m! writes message m
to tail of the channel, and a transition labelled m? reads message m from the head of the
channel.

We define an operational semantics for channel machines as follows. A global state of
C is a pair γ = (s, x), where s ∈ S is the control state and x ∈ M ∗ represents the contents
of the channel. The rules in ∆ induce a Σ-labelled transition relation on the set of global

states thus: (s,m!, t) ∈ ∆ yields a transition (s, x) m!−→ (t, x · m) that writes m ∈ M to

the tail of the channel, and (s,m?, t) ∈ ∆ yields a transition (s,m·x) m?−→ (t, x) that reads
m ∈ M from the head of the channel. If we only allow the transitions indicated above,
then we call C an error-free channel machine. A computation of such a machine is a finite
sequence of transitions between global states

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1
−→ (sn, xn) .

We also consider channel machines that operate with insertion errors. Given x, y ∈
M∗, write x v y if x can be obtained from y by deleting any number of letters, e.g.,
sub v stubborn, as indicated by the underlining. (This is an instance of the monotone
domination order introduced earlier.) Following [32] we model insertion errors by extending
the transition relation on global states with the following clause: if (s, x) α−→ (t, y), x′ v x
and y v y′, then (s, x′) α−→ (t, y′). Dually, we define lossy channel machines by adding
a clause: if (s, x) α−→ (t, y), x v x′ and y′ v y, then (s, x′) α−→ (t, y′). The notion
of a computation of a channel machine with insertion errors or lossiness errors is defined
analogously to the error-free case.

The control-state reachability problem asks, given a channel machine C = (S,M,∆) and
two distinct control states sinit , sfin ∈ S, whether there is a finite computation of C starting
in global state (sinit , ε) and ending in global state (sfin , x) for some x ∈M∗. This problem
was proved to be decidable for lossy channel machines by Abdulla and Jonsson [4]. Later
Schnoebelen [32] showed that it has non-primitive recursive complexity. The dual control-
state reachability problem asks, given a channel machine C = (S,M,∆) and two distinct
control states sinit , sfin ∈ S, whether there is a finite computation of C starting in control
state (sfin , x) and ending in state (sinit , ε), for some initial channel contents x ∈M ∗.
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Note that the difference between the control-state reachability problem and the dual
control-state reachability problem depends on whether the initial or final channel is required
to be empty. This difference is significant. For instance, the control-state reachability prob-
lem is trivial for channel machines with insertion errors. In this case there is a computation
from (sinit , ε) to (sfin , x) for some x ∈M∗ iff there is a path from sinit to sfin in the under-
lying control automaton. Indeed, given such a path we can always construct a matching
computation of the channel machine by using insertion errors to ensure that every read-
transition along the path is enabled. In contrast, for the dual control-state reachability
problem we have the following result.

Proposition 7.1. The dual control-state reachability problem for channel machines with
insertion errors has non-primitive recursive complexity.

Proof. Given a channel machine C = (S,M,∆), the opposite channel machine is defined by
Cop = (S,M,∆op) where

∆op = {(s,m!, t) : (t,m?, s) ∈ ∆} ∪ {(s,m?, t) : (t,m!, s) ∈ ∆} .

Note that C has a computation from (s, x) to (t, y) with lossiness errors iff Cop has a
computation from (t, yop) to (s, xop) with insertion errors, where (−)op : M∗ →M∗ reverses
the order of a word. Thus the dual control-state reachability problem for C with insertion
errors is equivalent to the control-state reachability problem for Cop with lossiness errors.
But, as we mentioned above, this last problem is known to be decidable with non-primitive
recursive complexity.

Theorem 7.2. The satisfiability and model checking problems for MTL over finite words
have non-primitive recursive complexity.

Proof. We give a reduction of the dual control-state reachability problem for channel ma-
chines with insertion errors to the satisfiability problem for MTL.

Let C = (S,M,∆) and sinit , sfin ∈ S be an instance of the dual control-state reachability
problem. We consider MTL formulas over the set of events Σ = S ∪ {m!,m? : m ∈ M}.
We use the formula ϕCHAN below to capture the behaviour of a channel: every write-event
is followed one time unit later by a matching read-event. However, there is no guarantee
that every read-event is preceded one time unit earlier by a write-event, so the channel may
have insertion errors.

ϕCHAN ≡
∧

m∈M �(m! → ♦=1m?) .

In order that there be no confusion in terms of matching write-events with their cor-
responding subsequent read-events, we require that time be strongly monotonic (no two
events can occur at the same time). This is captured by the formula ϕSM :

ϕSM ≡ (©>0>) U end .

We encode the finite control of C using the formula ϕCONT :

ϕCONT ≡
∧

s∈S

(s→
∨

(s,µ,t)∈∆

(©µ ∧©© t)) .

We then use ϕRUN to assert that a run must start in control state sfin and obey the
discrete controller until it terminates in control state sinit with empty channel:

ϕRUN ≡ sfin ∧ (ϕCONT U (sinit ∧ end)) .
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We combine all these requirements into ϕREACH :

ϕREACH ≡ ϕCHAN ∧ ϕSM ∧ ϕRUN .

Suppose we are given a timed word ρ satisfying ϕREACH ; then we can construct a
computation of C as follows. First, observe that ρ consists of an alternating sequence of
events from S and events from {m!,m? : m ∈ M}. This gives the sequence of control
states and transitions in the desired computation; it remains to construct the contents of
the channel at each control state. Suppose event s ∈ S occurs at some point along ρ with
timestamp t. Then the channel contents associated to this occurrence of s is the sequence of
read events occurring in ρ in the time interval (t, t+1). Observe how this definition ensures
that a message can only be read from the head of the channel, and how each write event
adds a message to the tail of the channel. Finally, observe that any timed word satisfying
ϕREACH must have sinit as its last event; this ensures that the channel is empty at that
point.

Conversely, suppose we are given a computation of C,

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1
−→ (sn, xn)

with s0 = sfin , sn = sinit and xn = ε. We then derive a timed word ρ = (σ, τ) that satisfies
ϕREACH . We define σ = s0α0s1α1 . . . sn; this guarantees that ρ satisfies ϕCONT . It remains
to choose a sequence of timestamps τ such that ϕCHAN ∧ ϕSM is also satisfied.

Since the given computation of C ends with the empty channel, every message that is
written to the channel is eventually read from the channel. Thus for each write event m! in
σ there is a ‘matching’ read event m? later on. We choose the timestamps τ so that each
such matching pair is separated by one time unit. Formally we choose the τi sequentially,
starting with τ0 = 0 and maintaining the following invariant: τi is chosen such that for each
matching pair σj = m! and σk = m?, if j < k = i then τi − τj = 1, and if j < i < k then
τi − τj < 1. It is clearly possible to do this using the density of time.

Thus a channel machine C = (S,M,∆) and pair of control states sinit , sfin ∈ S is a
positive instance of the dual reachability problem iff the formula ϕREACH is satisfiable.
This shows that the satisfiability problem for MTL has non-primitive recursive complexity.

Finally, consider a universal Alur-Dill timed automaton, i.e., one that accepts all non-
Zeno timed traces. Model checking this automaton against a given MTL formula is equiv-
alent to asking whether the formula is valid, i.e., whether its negation is unsatisfiable. The
complexity of model checking MTL is therefore also non-primitive recursive.

8. Infinite Words: Safety MTL

In this section we reuse constructions from Section 4 to prove the decidability of the
model-checking problem over infinite words for a subset of MTL, called Safety MTL. Safety
MTL consists of those MTL formulas in negation normal form that only include instances
of the constrained until operator UI in which interval I has bounded length. Note that no

restrictions are placed on the dual-until operator ŨI .
Safety MTL can express time-bounded response properties, but not arbitrary response

formulas. For instance, the formulas ϕ1 ≡ �(a → ♦=1b) and ϕ2 ≡ �(a → ♦≤5(b ∧ ♦=1c))
are in Safety MTL, but ϕ3 ≡ ♦a is not. Note in passing that intuitively ϕ2 is much harder
to model check than ϕ1. To find a counterexample to ϕ1 one need only guess an a-event,
and check that there is no b-event one time unit later—a task requiring only one clock. On
the other hand, to find a counterexample to ϕ2 one must not only guess an a-event, but
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also check that every b-event in the ensuing five time units fails to have a matching c-event
one time unit later—a task requiring a potentially unbounded number of clocks.

To explain the name Safety MTL, recall from [16] that a language L ⊆ TΣω defines a
safety property relative to the divergence of time if for every ρ 6∈ L there exists n ∈ N such
that no infinite timed word in TΣω extending ρ[1 . . . n] is contained in L. In this case we
say that ρ[1 . . . n] is a bad prefix of ρ.

Proposition 8.1. For every Safety MTL formula ϕ, Lω(ϕ) is a safety property relative to
the divergence of time.

Proof. It is straightforward to prove this result by structural induction on ϕ. However, we
do not give details since we do not use this result in the sequel and since it follows directly,
in any case, from Proposition 8.2 and Proposition 8.3.

To model check a Safety MTL formula ϕ on an Alur-Dill automaton B we need only
check whether any of the bad prefixes of ϕ are prefixes of words accepted by B. We can
do this by invoking a variant of the idea used in the proof of Theorem 4.16. To set up
this model-checking procedure we first define a translation of ϕ into a one-clock alternating

automaton Asafe
ϕ in which every location is accepting.

Asafe
ϕ is a modification of the automaton Aϕ from Section 6.1. Asafe

ϕ has the same

alphabet, locations and initial location as Aϕ, but we declare every location of Asafe
ϕ to be

accepting. To compensate for this last change, we modify a single clause in the definition
of the transition function δ—the clause for ϕ1 UI ϕ2—as indicated below.

δ(ϕ1 UI ϕ2, a) = ((x.δ(ϕ2, a)) ∧ x ∈ I)∨

((x.δ(ϕ1, a)) ∧ (ϕ1 UI ϕ2) ∧ (x ≤ sup(I))) .

Intuitively, the above definition uses a ‘timeout’ rather than an acceptance condition to
ensure that the second argument of UI eventually becomes true. In a non-Zeno run, the
automaton cannot get stuck forever in location ϕ1 UI ϕ2 since the clock constraints in the
definition of δ(ϕ1 UI ϕ2, a) only allow transitions when the value of clock x is no greater
than sup(I).

Recall that so far we have only considered alternating automata on finite words. In

order to state the correctness of the definition of Asafe
ϕ we consider runs of timed alternat-

ing automata on infinite words. Our task is simplified by the fact that we only consider
automata in which every location is accepting. (Technically this means that, as with au-
tomata over finite words, we can elide the tree structure that is usually associated with runs
of alternating automata.) Suppose then that A is a timed alternating automaton in which
every location is accepting. A run of A on an infinite timed word ρ = (σ, τ) is an infinite
alternating sequence of edge steps and flow steps in TA:

C0
σ1−→ C1

d1
 C2

σ2−→ C3
d2
 · · ·

dn
 C2n

σn+1
−→ · · · ,

where C0 is the initial configuration and di = τi+1 − τi. We define Lω(A) to be the set of
ρ ∈ TΣω over which A has a run. (Since every state of A is accepting, there is no need to
consider an acceptance condition here.)

Proposition 8.2. Lω(ϕ) = Lω(Asafe
ϕ ) for each Safety MTL formula ϕ.

Proof. The proof of Proposition 6.1 carries over almost verbatim to the present setting.
Referring to the details of that proof, the only change is to observe that it is the ‘timeout’
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in the definition of δ(ϕ1 UI ϕ2, a), rather than the fact that ϕ1 UI ϕ2 is non-accepting, that
ensures that whenever (ϕ1 UI ϕ2, 0) lies in some configuration C2i−1 in a run, then there
exists j ≥ i such that C2j−1 |= δ(ϕ2, σj).

8.1. The model checking procedure. Given an Alur-Dill automaton B, and a one-clock
timed alternating automaton A in which every state is accepting, we describe a decision
procedure for the model-checking problem ‘Lω(B) ⊆ Lω(A)?’. Combining this procedure
with Proposition 8.2 gives a method for model checking Safety MTL formulas on Alur-Dill
automata.

The following proposition helps enable us to decide whether Lω(B) ⊆ Lω(A), while
only considering finite runs of A. The idea is that for any word ρ ∈ TΣω \ Lω(A), there is
a finite bad prefix ρ[1 . . . n] none of whose (non-Zeno) extensions lies in Lω(A).

Proposition 8.3. Let A be a timed alternating automaton in which every state is accepting.
Then ρ ∈ TΣω \ Lω(A) iff there exists n ∈ N such that ρ[1 . . . n] ∈ Lf (Ac).

Proof. The ‘if’ direction of the proof is straightforward. Suppose that ρ[1 . . . n] ∈ Lf (Ac).8

By Proposition 3.6 there can be no run of A on the finite word ρ[1 . . . n]. (Any such run
would be accepting, since every location of A is accepting.) A fortiori there can be no run
of A on ρ.

Now we show the ‘only if’ direction. If ρ 6∈ Lω(A) then A does not have a run on ρ.
Moreover we observe that for each i ≥ 1 there are only finitely many ways to extend a
run of A on the finite prefix ρ[1 . . . i] to a run on ρ[1 . . . (i + 1)]. Thus, by König’s lemma,
there exists n ∈ N such that A does not have a run on ρ[1 . . . n]. For this choice of n the
complement automaton Ac accepts ρ[1 . . . n].

From this point on, the explanation of the model checking procedure closely follows
Section 4. In fact, the remainder of this section consists of recapitulations of the definitions
and propositions from Section 4, changing what needs to be changed. Briefly, the main
difference between Section 4 and the present section is that rather than just considering
a wsts generated by a timed alternating automaton, we consider a wsts generated by a
timed alternating automaton Ac and an Alur-Dill automaton B executing in parallel. We
reduce the language emptiness problem ‘Lω(B) ∩ Lω(Ac) = ∅?’ (which is equivalent to
‘Lω(B) ⊆ Lω(A)?’) to reachability on this wsts.

Suppose that B is an Alur-Dill timed automaton with n clocks. Recall that a state
of B is a pair γ = (s,v), where s is a location of B and v ∈ (R≥0)

n is a clock valuation.
Given also a one-clock alternating automaton A, define a B-Ac-configuration to be a pair
(γ,C), where γ is a state of B and C is a configuration of Ac. Following the pattern of
Definition 4.6 we define a labelled transition system TB,Ac , representing B and Ac executing
in parallel.

Definition 8.4. The set of states of TB,Ac is the set of B-Ac-configurations. Following

Definition 4.6 we define an (R≥0)-labelled flow-step transition relation by (γ,C) t
 (γ +

t, C + t) for t ≥ 0, and a Σ-labelled edge-step transition relation by (γ,C) a−→ (γ′, C ′) if
γ a−→ γ′ and C a−→ C ′, where a ∈ Σ.

A configuration (γ,C) of TB,Ac is said to initial if γ is the initial state of B and C is
the initial configuration of Ac. Recall that Ac can only accept a word by moving to the

8Note that since none of the locations of Ac is accepting, Ac can only accept a word by moving to the
empty configuration.



22 OUAKNINE AND WORRELL

empty configuration. Thus a timed word ρ ∈ Lω(B) fails to lie in Lω(A) iff there is a
computation of Ac on a finite prefix of ρ that reaches ∅. Motivated by this observation, we
say that a B-Ac-configuration (γ,C) is doomed if C = ∅ (i.e., Ac has reached an accepting
configuration) and B can accept some infinite non-Zeno word starting in state γ. Then
Lω(B) 6⊆ Lω(A) iff there is a doomed configuration (γ, ∅) that is reachable from the initial
configuration of TB,Ac . Below we sketch how we can use Theorem 4.14 to prove that this
reachability problem is decidable.

To set up the application of Theorem 4.14 we reuse constructions from Section 4 to show
that TB,Ac contains a sub-transition-system WB,Ac that is a wsts. The first step is to adapt
the Bisimulation Lemma, Lemma 4.3, to the present setting. We define an equivalence
relation ≡ on B-Ac configurations that abstracts away from precise clock values, recording
only their values to the nearest integer, and the relative order of their fractional parts.

Definition 8.5. Given B-Ac configurations (γ,C) and (γ ′, C ′), define (γ,C) ≡ (γ′, C ′) if:

• C ≡ C ′ (in the sense of Lemma 4.3),
• if γ = (s,v) and γ′ = (s′,v′), then s = s′ and v ≈ v′, and
• if f : C → C ′ is the bijection witnessing C ≡ C ′ and f(s, u) = (s, u′) for some

(s, u) ∈ C, then frac(vi) ./ frac(u) iff frac(v′i) ./ frac(u′) for 1 ≤ i ≤ n and
./ ∈ {<,=, >}.

Note that we don’t just compare fractional parts among the clock values in C, and separately
among the clock values in γ—we also compare between values in γ and values in C. This
is the role of the third clause above.

Lemma 8.6 (Bisimulation Lemma). The equivalence relation ≡ in Definition 8.5 is a time-
abstract bisimulation on TB,Ac .

Proof. The significant difference between the proof here and that in Lemma 4.3 concerns
matching flow steps. We focus on this and elide the details about matching edge steps,
which are straightforward to adapt from Lemma 4.3.

Suppose (γ,C) ≡ (γ′, C ′) and that there is a flow step (γ,C) t
 (η,D). We must obtain

a ‘matching’ flow step for (γ ′, C ′).
Write γ = (s,v), γ′ = (s,v′), C = {(si, ui)}i∈I and C ′ = {(si, u

′
i)}i∈I and suppose that

the bijection f : C → C ′ that witnesses C ≡ C ′ maps (si, ui) to (si, u
′
i). Furthermore, write

u = (ui)i∈I and u′
f = (u′

f(i))i∈I , and let (u | v) denote the concatenation of row vectors u

and v. Then we have (u | v) ≈ (u′
f | v′) in the sense of Proposition 4.1. (Note the role

played here by the third clause in Definition 8.5 in preserving the ordering of the fractional
parts of the respective components of each vector.) By Proposition 4.1, there exists t′ such
that ((u | v) + t) ≈ ((u′

f | v′) + t′). Thus, writing D′ = C ′ + t′ and η′ = γ′ + t′ we have

(γ′, C ′) t′
 (η′, D′) and (η,D) ≡ (η′, D′).

Continuing to shadow the development in Section 4, we next define the time successor of
a B-Ac-configuration and we define a finitely branching transition system WB,Ac of rational
configurations.

Definition 8.7. Let (γ,C) be a B-Ac-configuration, where γ = (s,v), and let E = {vi |
1 ≤ i ≤ n} ∪ {v | (t, v) ∈ C} be the set of clock values occurring in (γ,C). Write
xmin = min{frac(v) : v ∈ E} and xmax = max{frac(v) : v ∈ E} for the respective minimum
and maximum fractional parts of the clock values appearing in E. Now define the time
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successor of (γ,C) to be the configuration next(γ,C) = (γ+d,C+d), where the time delay
d is given by the following clauses.

• If xmin = 0, then d = (1 − xmax )/2.
• If xmin > 0, then d = 1 − xmax .

Definition 8.8. Define the labelled transition system WB,Ac as follows.

• Alphabet. The alphabet of WB,Ac is Σ ∪ {ε}.
• States. The states of WB,Ac are those configurations (γ,C) in which all clock values

are rational (henceforth call such configurations rational).
• Transitions. Each configuration (γ,C) makes a unique ε-transition to its time

successor next(γ,C). For a ∈ Σ, we declare that (γ,C) a−→ (γ′, C ′) in WB,Ac iff

(γ,C) a−→ (γ,C ′) in WB,Ac .

Proposition 8.9. If configuration (γ,C) is reachable from the initial configuration in TB,Ac ,
then there is a rational configuration (γ ′, C ′), with (γ,C) ≡ (γ′, C ′), such that (γ′, C ′) is
reachable from the initial configuration in WB,Ac .

Proof. The proof is almost identical to that of Proposition 4.8, and we omit details.

To complete the correspondence with Section 4, it remains to show that WB,Ac is a
wsts. As we now explain, this requires a slight variation of the construction used in Propo-
sition 4.15.

Suppose that A has set of locations S and that B has set of locations T , where S and
T are disjoint. Define a finite alphabet

Λ = ℘(((S × {1, . . . , n}) ∪ T ) × REGk) ,

where k is the maximum constant mentioned in the clock constraints of B and A. Following
Definition 4.10, an abstract B-Ac-configuration is a finite word over Λ.

We reuse the abstraction function H from Section 4 to map B-Ac-configurations to
abstract configurations as follows: map a configuration ((s,v), C) of TB,Ac to the word
H({((s, 1), v1), . . . , ((s, n), vn)} ∪ C) ∈ Λ∗. From this word we can reconstruct all clock
values in ((s,v), C) up to the nearest integer and also the relative order of the fractional
parts of the clocks. As in Proposition 4.12 we use this observation to prove that the
kernel of H is a time-abstract bisimulation on TB,Ac , that is, H(γ,C) = H(γ′, C ′) implies
(γ,C) ≡ (γ′, C ′).

Proposition 8.10. Define a quasi-order on B-Ac-configurations by (γ,C) 4 (γ ′, C ′) iff
H(γ,C) v H(γ′, C ′), where v refers to the monotone domination order on Λ∗. Then
WB,Ac is a wsts when equipped with this quasi-order.

Proof. The proof is almost identical to that of Proposition 4.15.

Theorem 8.11. Let B denote an Alur-Dill automaton, and A a one-clock alternating au-
tomaton in which every state is accepting. Then the language inclusion problem ‘Lω(B) ⊆
Lω(A)?’ is decidable.

Proof. The inclusion Lω(B) ⊆ Lω(A) holds iff it is not possible to reach a doomed state from
the initial state in WB,Ac . Now the set of doomed states in WB,Ac is trivially downward-
closed with respect to the monotone domination order (recall that (γ,C) is doomed only if
C = ∅). The set of doomed states is also decidable: to decide doomedness of (γ, ∅) we have
to check whether B can accept a non-Zeno timed word starting from γ. This last problem
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is essentially the language-emptiness problem for Alur-Dill automata over infinite timed
words, which is well-known to be decidable—see [5]. Theorem 4.14 now yields a decision
procedure for the language inclusion question ‘Lω(B) ⊆ Lω(A)?’.

Corollary 8.12. The model checking problem for Safety MTL over infinite words is decid-
able: given an Alur-Dill automaton B and a Safety MTL formula ϕ, there is an algorithm
to decide whether or not Lω(B) ⊆ Lω(ϕ).

Proof. Apply Theorem 8.11 in case A = Asafe
ϕ , using the result of Proposition 8.2 that

Lω(ϕ) = Lω(Asafe
ϕ ).

9. Conclusion

In this paper, we have shown that Metric Temporal Logic is decidable over finite timed
words in its standard dense-time, point-based semantics, with non-primitive recursive com-
plexity. Over infinite words, we have shown that the important safety fragment of Metric
Temporal Logic can be model checked, although we do not know the complexity of this
problem.

To prove the decidability results above, we introduced the class of timed alternating au-
tomata, and showed that the language-emptiness problem for one-clock timed alternating
automata over finite words is decidable. In the words of [20], one-clock timed alternat-
ing automata constitute a fully decidable specification formalism for timed languages in
that they are closed under all Boolean operations and language emptiness is decidable. In
contrast to Alur-Dill timed automata, one-clock timed alternating automata do not admit
finite untimed quotients. In fact, it is straightforward to define a one-clock timed alternat-
ing automaton A such that the untimed language obtained from Lf (A) (by forgetting all
timestamps) is the classic non-regular language {anbm | 0 ≤ n ≤ m}. Reflecting this fact,
the termination proof for our language emptiness algorithm used a well-quasi-order derived
from Higman’s Lemma.

The focus of this paper has exclusively been on MTL over finite words. Recently we
have obtained both positive and negative decidability results for MTL over infinite words.
In particular, we have shown that the satisfiability problem for Safety MTL is decidable [30],
whereas the satisfiability problem for MTL is undecidable [29]. Thus restricting to safety
properties is crucial to obtaining decidability.

Acknowledgements. We thank Tom Henzinger for clarifying some of the undecid-
ability results for MTL, and for asking about the relationship between single-clock timed
automata and real-time temporal logics.
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