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Abstract

Functional programmers have many things for which to thank the late David Turner: design decisions
he made in his languages SASL, KRC, and Miranda over the last 50 years are still influential and
inspiring now.

One example program that he popularized as an illustration of lazy evaluation and list comprehen-
sions in SASL is a one-line recursive “sieve” to generate the infinite list of prime numbers. Turner
called this algorithm The Sieve of Eratosthenes. In a lovely paper called “The Genuine Sieve of
Eratosthenes” (JFP, 2009), Melissa O’Neill argued that Turner’s algorithm is not in fact a faithful
implementation of the algorithm, and gave a detailed presentation using priority queues of the real
thing. She included a variation by Richard Bird, which uses only lists but makes clever use of circular
programming. Bird describes his circular program again in his textbook “Thinking Functionally with
Haskell”, and sets its proof of correctness as an exercise. Unfortunately, his hint for a solution is
incorrect. So what should a proof look like?

One of the last projects Turner worked on was the notion of “Total Functional Programming”. He
observed that most programs are already structurally recursive or corecursive, therefore guaranteed
respectively terminating or productive, and conjectured that “with more practice we will find this is
always true”. Compelling as this vision is, it seems that we are still some way off achieving it. We
explore Bird’s circular Sieve of Eratosthenes as a challenge problem for Turner’s Total Functional
Programming.

The late David Turner had great taste in language design and programming. One example
program that he introduced (Turner, 1982) to illustrate lazy evaluation and list compre-
hensions in SASL is a one-line recursive “sieve” to generate the infinite list of prime
numbers:

primes :: [ Integer ]
primes = sieve [2 . . ] where sieve (p : xs) = p : sieve [x | x← xs, x mod p ̸ 0]

That is, sieve takes a stream of candidate primes; the head p of this stream is a prime, and
the remaining primes are obtained by removing all multiples of p from the candidates and
sieving what’s left. It’s also a nice unfold (Gibbons and Jones, 1998; Meertens, 2004).
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2 Primes

Turner called this algorithm “The Sieve of Eratosthenes”. Unfortunately, as O’Neill
(2009) observes, this nifty program is not in fact faithful to Eratosthenes. The problem is
that for each prime p, every remaining candidate x is tested for divisibility by p. O’Neill calls
this algorithm “trial division”, and argues that the Genuine Sieve of Eratosthenes should
eliminate every multiple of p without reconsidering all the candidates in between. That
is, only at most every other natural number should be touched when eliminating multiples
of 2, at most one in every three for multiples of 3, and so on. As an additional optimization,
it suffices to eliminate multiples of p starting with p2, since by that point all composite
numbers with a smaller nontrivial factor will already have been eliminated.

O’Neill’s paper presents a purely functional implementation of the Genuine Sieve of
Eratosthenes. The tricky bit is keeping track of all the eliminations when generating an
unbounded stream of primes, since obviously one can’t eliminate all the multiples of one
prime before producing the next prime. Her solution is to maintain a priority queue of
iterators; indeed, the main argument of her paper is that functional programmers are often
too quick to use lists, when other data structures such as priority queues might be more
appropriate.

O’Neill’s paper was published in the Journal of Functional Programming, when Richard
Bird was the handling editor for Functional Pearls. The paper includes an epilogue that
presents a purely list-based but circular implementation of the Genuine Sieve, contributed
by Bird during the editing process. Bird describes his circular program again in his textbook
“Thinking Functionally with Haskell” (Bird, 2014)∗, and sets its proof of correctness as an
exercise. Unfortunately, his hint for a solution is incorrect.

One of the last projects Turner worked on was the notion of “Total Functional
Programming” (Turner, 2004), “designed to exclude the possibility of non-termination”.
He observed that most programs are already structurally recursive or corecursive, therefore
guaranteed respectively terminating or productive, and conjectured that “with more practice
we will find this is always true”. But it seems that it is not always so easy. In this paper,
we explore Bird’s circular Sieve of Eratosthenes as a challenge problem for Turner’s Total
Functional Programming. What should Bird’s proof hint have said?

1 The Genuine Sieve, using lists

Bird’s program appears in §9.2 of his book (Bird, 2014), henceforth “TFWH”. It deals with
lists, but these will be infinite, sorted, duplicate-free streams, and these should be thought of
as representing infinite sets, in this case sets of natural numbers. In particular, the program
involves no empty or partial lists, only properly infinite ones (but our proofs later will have
to deal with partial lists).

The prime numbers are what you get by eliminating the composite numbers from the
“plural” naturals (those greater than one), and the composite numbers are the proper
multiples of the primes—so the program is cleverly circular:

primes, composites :: [ Integer ]
primes = makeP composites
composites = makeC primes

∗ JFP doesn’t list O’Neill’s paper as a Pearl, but Bird’s book describes it that way. Either way, presumably Bird
was the handling editor for the paper.
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where

makeP, makeC :: [ Integer ] → [ Integer ]
makeP cs = 2 : ( [3 . . ] \\ cs)
makeC ps = mergeAll (map multiples ps)

(for later convenience, we have refactored the program as presented by Bird, here naming
the components makeP and makeC).

We’ll come back in a minute to mergeAll, which unions a set of sets to a set; but (\\) is the
obvious implementation of list difference of strictly increasing streams (hence, representing
set difference):

(\\) :: Ord a⇒ [a] → [a] → [a]
(x : xs) \\ (y : ys)
| x < y = x : (xs \\ (y : ys))
| x y = xs \\ ys
| x > y = (x : xs) \\ ys

and multiples p generates the multiples of p starting with p2:

multiples p = iterate (p+) (p × p)

Thus, the composites are obtained by merging together the infinite stream of infinite streams
[ [4, 6 . . ], [9, 12 . . ], [25, 30 . . ], . . . ]. You might think that you could have defined instead
primes = [2 . . ] \\ composites, but this doesn’t work: this won’t compute the first prime
without first computing some composites, and you can’t compute any composites without
at least the first prime, so this definition would be unproductive. Somewhat surprisingly,
it suffices to “prime the pump” (so to speak) just with 2, and everything else flows freely
from there.

Returning to mergeAll, here is the obvious implementation of merge, which merges two
strictly increasing streams into one (hence, representing set union):

merge :: Ord a⇒ [a] → [a] → [a]
merge (x : xs) (y : ys)
| x < y = x : (merge xs (y : ys))
| x y = x : merge xs ys
| x > y = y : merge (x : xs) ys

Then mergeAll is basically a stream fold with merge. You might think you could
define this simply by mergeAll (xs : xss) = merge xs (mergeAll xss), but again this would
be unproductive. After all, you can’t merge the infinite stream of sorted streams
[ [5, 6 . . ], [4, 5 . . ], [3, 4 . . ], . . . ] into a single sorted stream, because there is no least
element with which to start. Instead, we have to make the assumption that we have a sorted
stream of sorted streams; then the binary merge can exploit the fact that the head of the left
stream is the head of the result, without even examining the right stream. So, we define:

mergeAll :: Ord a⇒ [ [a] ] → [a]
mergeAll (xs : xss) = xmerge xs (mergeAll xss)
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4 Primes

xmerge :: Ord a⇒ [a] → [a] → [a]
xmerge (x : xs) ys = x : merge xs ys

This program is now productive, and primes yields the infinite sequence of prime numbers,
using the genuine algorithm of Eratosthenes.

2 The Approx Lemma

Bird uses this circular program as an illustration of the Approx Lemma. Define

approx :: Int→ [a] → [a]
approx (n + 1) [ ] = [ ]
approx (n + 1) (x : xs) = x : approx n xs

Then we have:

Lemma 1 (Approx Lemma). For finite, partial, or infinite lists xs, ys,

(xs = ys) ⇐⇒ (∀n ∈N . approx n xs = approx n ys)

Note that approx 0 xs is undefined; the function approx n preserves the outermost n con-
structors of a list, but then chops off anything deeper and replaces it with ⊥ (undefined),
returning a partial list if the input was longer. So, the lemma states that to prove two lists
equal, it suffices to prove equal all their partial approximations.

So to prove that primes does indeed produce the prime numbers, it suffices to prove that

approx n primes = p1 : . . . : pn :⊥

for all n, where pj is the jth prime (we take p1 = 2—for consistency with TFWH, we count
the primes starting from one). Bird therefore defines

prs n = approx n primes

and claims that

prs n = approx n (makeP (crs n))
crs n = makeC (prs n)

To prove the claim, he observes that it suffices for crs n to be well defined at least up to the
first composite number greater than pn−1, because then crs n delivers enough composite
numbers to supply prs (n + 1), which will in turn supply crs (n + 1), and so on. It is a
“non-trivial result in Number Theory” that pn−1 < (pn)2; therefore it suffices that

crs n = c1 : . . . : c𝑚 :⊥

where c 𝑗 is the jth composite number (so c1 = 4) and c𝑚 = (pn)2. Completing the proof
is set as Exercise 9.I of TFWH, and Answer 9.I gives a hint about using induction to show
that crs (n + 1) is the result of merging crs n with multiples pn+1.†

† Incidentally, there is a typo in TFWH: the body of the chapter, the exercise, and its solution all have “m = (pn )2”
instead of “c𝑚 = (pn )2”.
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Unfortunately, the hint in Answer 9.I is at best unhelpful. For example, it implies that
crs 2 (which equals 4 : 6 : 8 : 9 :⊥) could be constructed from crs 1 (which equals 4 :⊥) and
multiples 3 (which equals [9, 12 . . ]); but where do the 6 and 8 come from? Nevertheless,
the claim in Exercise 9.I is valid. What should the hint for the proof have been?

3 The Membership Lemma

Bird’s program is a dance involving two partners, with the definitions of the lists primes
and composites (and likewise, the functions prs and crs) depending on each other. However,
the two dancers move at different speeds. The first few primes indeed correspond to the
first few composites, but each with different numbers of defined elements: approx n primes
corresponds to approx m composites for some m, but it is hard to work out which m. This
means that the Approx Lemma alone is not really sufficient when trying to prove the
program correct.

We introduce a new result that is better suited to this problem; in particular, better suited
to proving equality between two infinite lists representing infinite sets of naturals, being
duplicate-free and strictly increasing.

Define membership of partial or infinite strictly increasing lists as follows:

elem :: Ord a⇒ a→ [a] → Bool
elem z (x : xs) | z < x = False

| z x = True
| z > x = elem z xs

For properly infinite strictly increasing lists with fully defined elements, this is always
defined. But for a partial list with defined elements, it is defined only for z at most the
last defined element. (For such a list xs, there is a least n such that xs = approx n xs. Then
xs = x0 : x1 : . . . : xn−1 :⊥, and elem z xs is defined iff z ⩽ xn−1.) We will only use elem on
partial or infinite lists, so we do not need a case for [ ].

Then we have:

Lemma 2 (Membership Lemma). For partial or infinite strictly increasing lists xs, ys over
a flat element type,

(xs = ys) ⇐⇒ (∀z . elem z xs = elem z ys)

Note that the lemma does not hold for unordered or even for weakly increasing lists: it
corresponds to set equality, not bag or list equality. Nor does it hold for finite lists; for
example, [ ] and ⊥ agree everywhere on membership (because we have left elem undefined
on the empty list), but are different. Similarly, it does not hold for partial or infinite lists
over non-flat element types; for example, consider ⊥ and ⊥ :⊥.

Proof. Clearly the implication holds from left to right. For the other direction, suppose
∀z . elem z xs = elem z ys. We conduct a case analysis on whether xs is partial or infinite.
Case xs is partial. Let n be the least such that xs = approx n xs, so xs = x0 : x1 : . . . : xn−1 :
⊥.
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6 Primes

Subcase n = 0. Then xs = ⊥, so elem z xs = ⊥ for any z, so therefore also elem z ys = ⊥
for any z, so ys = ⊥ = xs too.
Subcase n > 0. Then

elem z xs = True, if 𝑧 = 𝑥𝑖 for some 0 ≤ 𝑖 < 𝑛

= False, if 𝑧 < 𝑥0, or 𝑥𝑖−1 < 𝑧 < 𝑥𝑖 for some 0 < 𝑖 < 𝑛

= ⊥, if 𝑧 > 𝑥𝑛−1

By the premise, elem z ys satisfies the same properties; that is, elem z ys is false for z < x0,
true for z = x0, false for x0 < z < x1, and so on up to z = xn−1; therefore, approx n ys =

x0 : x1 : . . . : xn−1 :⊥ = approx n xs. Moreover, we must have ys !! n = ⊥ (because otherwise
ys !! n > xn−1, and then

elem (ys !! n) ys = True ≠⊥ = elem (ys !! n) xs

contradicting the premise); therefore ys = approx n ys, and hence ys = xs.
Case xs is infinite. Then xs = x0 : x1 : . . .. Similarly to the non-empty partial case,

elem z xs = True, if 𝑧 = 𝑥𝑖 for some 0 ≤ 𝑖 < 𝑛

= False, if 𝑧 < 𝑥0, or 𝑥𝑖−1 < 𝑧 < 𝑥𝑖 for some 0 < 𝑖

But elem z ys must satisfy the same properties, and therefore ys = x0 : x1 : . . . = xs too.
□

We use Lemma 2 in particular for the proof of Proposition 8, our key result.

4 Proving the Sieve of Eratosthenes correct

Now we can turn to the proof of correctness of Bird’s program; in particular, the proof of
productivity. Here is the direct specification of the primes and composites:

primesspec = filter isPrime [2 . . ]
compositesspec = [2 . . ] \\ primesspec

divisors n = [d | d← [2 . . n], n mod d 0]
isPrime n = (divisors n [n])

By convention, 1 is considered neither prime nor composite (Sloane, 1999).
We state the following lemma without proof:

Lemma 3 (relating specification and implementation).

primesspec = makeP compositesspec
compositesspec = makeC primesspec

4.1 Approximations

We will use some lemmas about membership of partial approximations to various compo-
nents of the primes program. Some are statements about partial lists, and hence equalities
between partial expressions. For these, we introduce the form
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lhs = g ⊳ rhs

where ⊳ “guards” a value by a condition:

(⊳) :: Bool→ a→ a
g ⊳ x | g = x

That is, rhs may be more defined than lhs, but guarding rhs by g to yield g ⊳ rhs makes
something precisely equal to lhs: either both sides are defined and evaluate to the same
result, or both are undefined. We make ⊳ loose binding for notational convenience—it will
mostly be the outermost operator, and then we do not need parentheses around the guard.

Here are two variations on approx, using a predicate for termination instead of a count:

approxWhile, approxUntil :: (a→ Bool) → [a] → [a]
approxWhile p (x : xs) = p x ⊳ x : approxWhile p xs
approxUntil p (x : xs) = x : (not (p x) ⊳ approxUntil p xs)

That is, approxWhile p xs gives the longest approximation to xs all of whose elements
satisfy p, and approxUntil p xs gives the shortest approximation to xs containing an element
satisfying p. Our lists will be strictly increasing, and we will use an upper bound for
approxWhile and a lower bound for approxUntil; for example,

approxWhile (⩽ 5) [1, 3 . . ] = 1 : 3 : 5 :⊥
approxWhile (⩽ 6) [1, 3 . . ] = 1 : 3 : 5 :⊥
approxUntil (⩾ 5) [1, 3 . . ] = 1 : 3 : 5 :⊥
approxUntil (⩾ 4) [1, 3 . . ] = 1 : 3 : 5 :⊥

The two functions are related by the following result:

Lemma 4 (approxWhile and approxUntil). For partial or infinite xs with x ∈ xs,

approxWhile (⩽ x) xs = approxUntil (⩾ x) xs

(we write “x ∈ xs” when x = xs !! n for some n).

4.2 Bertrand’s Postulate

Bird’s “non-trivial result in Number Theory” is Bertrand’s Postulate (Bertrand, 1845),
which states that pn+1 < 2 pn for n > 0. As a corollary, pn+1 < (pn)2; this is the key fact that
makes Bird’s program productive. We encapsulate this in the following proposition:

Proposition 5 (number theory). For n ⩾ 0,

approx (n + 1) primesspec
= approxWhile (⩽ pn+1) (makeP (approxWhile (⩽ (pn)2) compositesspec))

Proposition 5 rests on the following two lemmas, stated without proof:

Lemma 6 (introducing approxWhile). For strictly increasing xs, whether partial or infinite,
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8 Primes

approx (n + 1) xs = approxWhile (⩽ (xs !! n)) xs

provided that xs is defined at least as far as xs !! n (that is, xs !! n ∈ xs).

Lemma 7 (approxWhile of difference). For partial or infinite, strictly increasing xs, ys with
y ∈ ys, x ∈ (xs \\ ys), and x < y,

approxWhile (⩽ x) (xs \\ ys) = approxWhile (⩽ x) (xs \\ approxWhile (⩽ y) ys)

Proof of Proposition 5. For n ⩾ 1,

approx (n + 1) primesspec
= [[ Lemma 6, and primesspec !! n = pn+1 ]]

approxWhile (⩽ pn+1) primesspec
= [[ Lemma 3 ]]

approxWhile (⩽ pn+1) ( [2 . . ] \\ compositesspec)
= [[ Lemma 7, with y = (pn)2 > pn+1 ]]

approxWhile (⩽ pn+1) ( [2 . . ] \\ approxWhile (⩽ (pn)2) compositesspec)
= [[ 2 is not composite ]]

approxWhile (⩽ pn+1) (2 : ( [3 . . ] \\ approxWhile (⩽ (pn)2) compositesspec))
= [[ definition of makeP ]]

approxWhile (⩽ pn+1) (makeP (approxWhile (⩽ (pn)2) compositesspec))

The above application of Lemma 7 is not valid when n = 0, because p0 is undefined, and
hence so too is the set difference; nevertheless, the overall proposition

approx 1 primesspec
= approxWhile (⩽ 2) (makeP (approxWhile (⩽⊥2) compositesspec))

still holds, both sides being equal to 2 :⊥. □

4.3 Approximating primes and composites

We prove the following result:

Proposition 8 (approximations). For all n,

approx n primes = approx n primesspec
approxWhile (⩽ (pn)2) composites = approxWhile (⩽ (pn)2) compositesspec

The proof is in Section 4.5. Then:

Theorem 9 (the primes program is correct).

primes = primesspec

Proof. A direct corollary of Proposition 8, by Lemma 1. □
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4.4 Subsidiary lemmas

We collect here two lemmas needed for the proof of Proposition 8, which are themselves
not specifically about primes.

Lemma 10 (mergeAll and approx). For n ⩾ 0 and partial or infinite list xss of properly
infinite lists, such that xss is defined at least as far as xss !! n,

mergeAll (approx (n + 1) xss) = approxUntil (⩾ head (xss !! n)) (mergeAll xss)

Proof. By induction on n.

Base case. For n = 0, we have

mergeAll (approx (n + 1) ((x : xs) : xss))
= [[ definition of approx ]]

mergeAll ((x : xs) :⊥)
= [[ definition of mergeAll, xmerge ]]

x : merge xs (mergeAll⊥)
= [[ definition of mergeAll, merge ]]

x :⊥
= [[ definition of approxUntil ]]

approxUntil (⩾ x) (x : merge xs (mergeAll xss))
= [[ definition of mergeAll, xmerge ]]

approxUntil (⩾ x) (mergeAll ((x : xs) : xss))

Inductive step. Let n ⩾ 0 and b = head (xss !! n), and assume as inductive hypothesis that

mergeAll (approx (n + 1) xss) = approxUntil (⩾ b) (mergeAll xss)

Then we have

mergeAll (approx (n + 2) ((x : xs) : xss))
= [[ definition of approx ]]

mergeAll ((x : xs) : approx (n + 1) xss)
= [[ definition of mergeAll, xmerge ]]

x : merge xs (mergeAll (approx (n + 1) xss))
= [[ inductive hypothesis ]]

x : merge xs (approxUntil (⩾ b) (mergeAll xss))
= [[ merge and approxUntil (see below) ]]

x : approxUntil (⩾ b) (merge xs (mergeAll xss))
= [[ x < head (xss !! n) = b ]]

approxUntil (⩾ b) (x : merge xs (mergeAll xss))
= [[ definition of mergeAll, xmerge ]]

approxUntil (⩾ b) (mergeAll ((x : xs) : xss))

The hint about merge and approxUntil is that

approxUntil (⩾ b) (merge xs ys) = merge xs (approxUntil (⩾ b) ys)
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10 Primes

for infinite xs, ys with b an element of ys, which follows from the fact that merge becomes
undefined as soon as either argument does.

□

Lemma 11 (membership of approxWhile). For partial or infinite list xs with y ∈ xs,

elem z (approxWhile (⩽ y) xs) = z ⩽ y ⊳ elem z xs

Proof. Let n be such that y = xs !! n; then

approxWhile (⩽ (xs !! n)) xs = approx (n + 1) xs

from which the result follows. □

4.5 Completing the proof

Proof of Proposition 8. By induction on n.

Base case. When n = 0, both equations trivially hold, because approx 0 and p0 are
undefined. When n = 1, both equations hold by inspection.

Inductive step. We now consider the case n + 1 with n > 0. Assume the inductive hypothesis

approx n primes = approx n primesspec
approxWhile (⩽ (pn)2) composites = approxWhile (⩽ (pn)2) compositesspec

Note that the second equation implies that composites is defined at least as far as (pn)2.
Therefore, by Proposition 5, also makeP (approxWhile (⩽ (pn)2) composites) is defined at
least as far as pn+1; we refer to this fact as “pn+1 is present” in hints below. Then we have:

elem z (approx (n + 1) primesspec)
= [[ Proposition 5 ]]

elem z (approxWhile (⩽ pn+1) (makeP (approxWhile (⩽ (pn)2) compositesspec)))
= [[ Lemma 11, since pn+1 is present ]]

z ⩽ pn+1 ⊳ elem z (makeP (approxWhile (⩽ (pn)2) compositesspec))
= [[ inductive hypothesis ]]

z ⩽ pn+1 ⊳ elem z (makeP (approxWhile (⩽ (pn)2) composites))
= [[ Lemma 11, since pn+1 is present ]]

elem z (approxWhile (⩽ pn+1) (makeP (approxWhile (⩽ (pn)2) composites)))
= [[ definition of makeP; see (∗) below ]]

elem z (approxWhile (⩽ pn+1) ( [2 . . ] \\ approxWhile (⩽ (pn)2) composites))
= [[ Lemma 7 ]]

elem z (approxWhile (⩽ pn+1) ( [2 . . ] \\ composites))
= [[ definition of makeP; see (∗) below ]]

elem z (approxWhile (⩽ pn+1) (makeP composites))
= [[ definition of primes ]]

elem z (approxWhile (⩽ pn+1) primes)
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= [[ Lemma 6, since pn+1 is present ]]
elem z (approx (n + 1) primes)

(For the two steps marked (∗), we switch freely between makeP cs = 2 : ( [3 . . ] \\ cs) and
[2 . . ] \\ cs for different values of cs; this is sound, because in both cases cs is defined at
least as far as its head, namely 4.) Then by the Membership Lemma (Lemma 2),

approx (n + 1) primes = approx (n + 1) primesspec

which deals with the first equation. Note that therefore primes is defined at least as far as
pn+1. For the second equation, let b = (pn+1)2, so that

b = head (map multiples primesspec !! n) = head (map multiples primes !! n)

Then

approxUntil (⩾ b) composites
= [[ definition of composites ]]

approxUntil (⩾ b) (makeC primes)
= [[ definition of makeC ]]

approxUntil (⩾ b) (mergeAll (map multiples primes))
= [[ Lemma 10, given that primes is defined at least as far as pn+1 ]]

mergeAll (approx (n + 1) (map multiples primes))
= [[ naturality of approx ]]

mergeAll (map multiples (approx (n + 1) primes))
= [[ above ]]

mergeAll (map multiples (approx (n + 1) primesspec))
= [[ naturality of approx ]]

mergeAll (approx (n + 1) (map multiples primesspec))
= [[ Lemma 10 ]]

approxUntil (⩾ b) (mergeAll (map multiples primesspec))
= [[ definition of makeC ]]

approxUntil (⩾ b) (makeC primesspec)
= [[ Lemma 3 ]]

approxUntil (⩾ b) compositesspec

Moreover, b is in compositesspec, so also in composites; therefore also

approxWhile (⩽ b) composites = approxWhile (⩽ b) compositesspec

by Lemma 4, as required.

□

This completes the proof of Proposition 8, and hence of Theorem 9:

primes = primesspec
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5 Conclusion

Total Functional Programming: David Turner’s ambition (Turner, 2004) was for lan-
guages “designed to exclude the possibility of non-termination”. He observed that most
programs are already structurally recursive or corecursive, therefore guaranteed respec-
tively terminating or productive, and conjectured that “with more practice we will find this
is always true”. He explicitly admits that “rewriting the well known sieve of Eratosthenes
[by which he means trial division] program in this discipline involves coding in some
bound on the distance from one prime to the next”. We have coded that bound by appeal to
Bertrand’s Postulate (Proposition 5)—but Turner’s vision would require that appeal at least
to be acknowledged by the totality checker. One could go as far as full dependent types,
in which case the relevant assumption can be formally expressed as a theorem—but still,
one would either have to prove the theorem (a decidedly non-trivial matter) or accept it
as an unverified axiom; Turner said that he was “interested in finding something simpler”.
Much as I find the idea of total functional programming appealing, I fear that we are still
some way off, even after 20 years of “more practice”. But I would love to be shown to be
unnecessarily pessimistic.

Trial division: Turner popularized the trial division algorithm in various publications; I
believe his first publications of it is in the SASL Manual. Interestingly, SASL changed
from eager semantics (Turner, 1975) to lazy semantics (Turner, 1976); the primes program
appears only in the later of those two documents, despite them both having the same
technical report number. Turner (2020) notes that the program appeared in Kahn and
MacQueen (1977):

Did I see a preprint of that in 1976? I don’t recall but it’s possible, in
which case my contribution was to express the idea using recursion and
lazy lists.

Kahn and MacQueen (1977) in turn credit it to McIlroy (1968). McIlroy (2014) records:

For examples in a talk at the Cambridge Computing Laboratory (1968)
I cooked up some interesting coroutine-based programs. One, a prime-
number sieve, became a classic, spread by word of mouth.

Turner (1976) and Kahn and MacQueen (1977) call the trial division algorithm “The Sieve
of Eratosthenes”, but McIlroy (1968, 2014) does not.

Proofs about infinite lists: Our Membership Lemma (Lemma 2) is applicable to partial
or infinite strictly increasing lists over any totally ordered flat element type; but not for
non-flat element types, unordered lists or lists with duplicates, or (as observed above) for
finite lists. We also considered an ApproxWhile Lemma, more closely analogous to the
Approx Lemma (Lemma 1):

Lemma (ApproxWhile Lemma). For infinite sequence b0 < b1 < · ·· of integer bounds, and
two lists xs, ys of integers, whether finite, partial, or infinite,

(xs = ys) ⇐⇒ (∀i . approxWhile (⩽ bi) xs = approxWhile (⩽ bi) ys)
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But this is more restrictive than the Membership Lemma: the bounds must grow without
bound, so it doesn’t hold universally for rationals, or pairs, or strings. Moreover, it did not
seem very helpful in proving the primes program correct.

Bird’s exercise: What of Bird (2014)? This paper was prompted by a series of ten emails
(Lieberich, 2018) pointing out errors in TFWH, including this particular error. Recall that
Bird’s hint towards the proof implies that crs 2 = 4 : 6 : 8 : 9 :⊥ can be obtained by merging
crs 1 = 4 :⊥ and multiples 3 = [9, 12 . . ]. In fact, a more helpful hint that Bird could have
given is that crs 2 can be constructed from crs 1 alone, without needing multiples 3 at all:
crs 2 = makeC (makeP (crs 1)). This doesn’t quite work for higher values, because the
right-hand side is too productive: makeC (makeP (crs 2)) yields the composites up to 49,
whereas crs 3 needs composites only up to (p3)2 = 25. But the general answer is

crs (n + 1) = makeC (approx (n + 1) (makeP (crs n)))

Nevertheless, the proof of that claim is neither short nor simple, so perhaps this is not an
appropriate correction for TFWH.
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123–140. In French; see also https://en.wikipedia.org/wiki/Bertrand’s_postulate.

Bird, R. (2014) Thinking Functionally with Haskell. Cambridge University Press. https://www.
cs.ox.ac.uk/publications/books/functional/.

Gibbons, J. & Jones, G. (1998) The under-appreciated unfold. International Conference on Functional
Programming. Baltimore, Maryland. pp. 273–279.

Kahn, G. & MacQueen, D. B. (1977) Coroutines and networks of parallel processes. IFIP Congress.
IFIP. pp. 993–998.

Lieberich, F. (2018) “Errata”. Personal communication (email).
McIlroy, M. D. (1968) Coroutines. Internal report. Bell Telephone Laboratories. Murray Hill, New

Jersey. http://www.iq0.com/notes/coroutine.html.
McIlroy, M. D. (2014) Coroutine prime number sieve. https://www.cs.dartmouth.edu/˜doug/
sieve/sieve.pdf.

Meertens, L. (2004) Calculating the Sieve of Eratosthenes. Journal of Functional Programming.

https://en.wikipedia.org/wiki/Bertrand's_postulate
https://www.cs.ox.ac.uk/publications/books/functional/
https://www.cs.ox.ac.uk/publications/books/functional/
http://www.iq0.com/notes/coroutine.html
https://www.cs.dartmouth.edu/~doug/sieve/sieve.pdf
https://www.cs.dartmouth.edu/~doug/sieve/sieve.pdf


599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Primes

14(6).
O’Neill, M. E. (2009) The genuine Sieve of Eratosthenes. Journal of Functional Programming. 19(1),

95–105.
Sloane, N. (1999) The composite numbers. In The On-Line Encyclopedia of Integer Sequences.
https://oeis.org/A002808.

Turner, D. A. (1975) SASL language manual. Technical Report CS/75/1. University of St Andrews,
Dept of Computational Science. Revised 16/9/75.

Turner, D. A. (1976) SASL language manual. Technical Report CS/75/1. University of St Andrews,
Dept of Computational Science. Revised 1/12/76.

Turner, D. A. (1982) Recursion equations as a programming language. In Functional Programming
and its Applications, Darlington, J., Henderson, P., & Turner, D. A. (eds). Cambridge University
Press. pp. 1–28.

Turner, D. A. (2004) Total functional programming. Journal of Universal Computer Science. 10(7),
751–768.

Turner, D. A. (2020) “SASL manual”. Personal communication (email).

https://oeis.org/A002808

	The Genuine Sieve, using lists
	The Approx Lemma
	The Membership Lemma
	Proving the Sieve of Eratosthenes correct
	Approximations
	Bertrand's Postulate
	Approximating primes and composites
	Subsidiary lemmas
	Completing the proof

	Conclusion

