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Abstract. The Bird–Meertens Formalism, colloquially known as “Squig-
gol”, is a calculus for program transformation by equational reasoning
in a function style, developed by Richard Bird and Lambert Meertens
and other members of IFIP Working Group 2.1 for about two decades
from the mid 1970s. One particular characteristic of the development
of the Formalism is fluctuating emphasis on novel ‘squiggly’ notation:
sometimes favouring notational exploration in the quest for conciseness
and precision, and sometimes reverting to simpler and more rigid nota-
tional conventions in the interests of accessibility. This paper explores
that historical ebb and flow.

1 Introduction

In 1962, IFIP formed Working Group 2.1 to design a successor to the seminal
algorithmic language Algol 60 [4]. WG2.1 eventually produced the specification
for Algol 68 [63, 64]—a sophisticated language, presented using an elaborate two-
level description notation, which received a mixed reception. WG2.1 continues to
this day; technically, it retains responsibility for the Algol languages, but practi-
cally it takes on a broader remit under the current name Algorithmic Languages
and Calculi. Over the years, the Group has been through periods of focus and
periods of diversity. But after the Algol 68 project, the period of sharpest focus
covered the two decades from the mid 1970s to the early 1990s, when what later
became known as the Bird–Meertens Formalism (BMF) drew the whole group
together again. It is the story of those years that is the subject of this paper.

BMF arose from the marriage of the work of Richard Bird (then at the Uni-
versity of Reading) in recursive programming [15, 14] and of Lambert Meertens
(then at the Mathematisch Centrum in Amsterdam) in programming language
design, notably ABC [48, 34].1 The motivation for the BMF is transformational
programming : developing an efficient program by starting with an obviously cor-
rect but possibly hopelessly inefficient—maybe even unexecutable—initial speci-
fication, then applying a series of meaning-preserving transformations to yield an
extensionally equivalent but acceptably efficient final program. In other words,
the approach follows Christopher Strachey’s First Law of Programming: “Decide
what you want to say before you worry about how you are going to say it” [5].

1 Guido van Rossum, who worked on the ABC project in Amsterdam, was mentored
by Meertens and went on to design Python [55] based on some of the ideas in ABC.
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The essence of the formalism is a concise functional notation. The functional
approach ensures referential transparency, and admits the straightforward ma-
nipulation technique of substitution of equals by equals, as in high school algebra.
Concision is necessary in order to make such manipulations feasible with just
pen and paper. In particular, like APL [36], BMF embraced funny symbols such
as a slash for reduction (“+/” sums a sequence of numbers), arrows for directed
folds and scans (“ /→” and “//→”, now called “foldl” and “scanl” in Haskell),
and banana brackets (“([. . .])”) for homomorphisms; this tendency led to the no-
tation being nicknamed Squiggol. Little emphasis was placed on executability:
the notation was ‘wide-spectrum’ [7], accommodating convenient specification
notations such as inverses and intersection as well as a sublanguage with an
obvious correspondence to executable code.

The BMF research paradigm consisted of establishing a body of theorems
about recurring problem structures and corresponding solution techniques. Typ-
ical examples are fusion properties (combining two traversals over a data struc-
ture into one), scan lemmas (replacing the independent reductions of overlap-
ping parts of a data structure with a single accumulation across the whole), and
Horner’s Rule (exploiting distributivity, as for products over sums in polynomial
evaluation). These three formed the core of a beautiful derivation of a linear-
time solution to the Maximum Segment Sum problem [23], a central example in
the BMF canon. The effort culminated in Bird and de Moor’s book The Alge-
bra of Programming [10], with a collection of theorems expressed in a relational
notation providing greedy and dynamic-programming solutions to optimization
problems.

WG2.1’s passion for the approach started to fade after Bird and de Moor’s
book appeared, and the group’s focus diversified again. Partly this was due to
falling out of love with the Squiggolly notation, which may be convenient for
aficionados but excludes the unfamiliar reader; later work favours more con-
ventional syntax. It was also partly due to dissatisfaction with the relational
approach, which seems necessary for many optimization problems but is too
complicated for most readers (and even for writers!); in fact, Bird is returning in
a forthcoming book [24] to tackling many of the same ‘Algebra of Programming’
optimization problems but using a nearly completely functional approach. The
purpose of this paper is to pick out some of the lessons from this ebb and flow
of enthusiasm.2

2 From its start, my own research career has been intimately entwined with WG2.1
and the BMF, although I came somewhat late to the party. Bird supervised my
DPhil dissertation (1987–1991) [35], and Meertens was my external examiner. I have
worked on and off with Bird ever since, and most of my research has been inspired by
the BMF; I am Bird’s co-author on his forthcoming book [24]. I served as secretary of
WG2.1 for thirteen years (1996–2009), during the Chairmanships of Doug Smith and
Lambert Meertens, and then succeeded Meertens as Chair myself for the following
six years (2009–2015).
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2 Abstracto

The history of the development of Algol 68 has been well reported [38, 53, 37],
and we will not dwell on it here. After 1968, WG2.1 spent a few years making
small improvements to the language and clarifying its description, leading to the
publication of the Revised Report [64] in 1974.3 The Group then entered a brief
‘what next?’ phase, setting up a Future Work subcommittee chaired by Robert
Dewar. This subcommittee in turn organized two conferences on New Directions
in Algorithmic Languages in 1975 and 1976, with proceedings [56, 57] edited by
Stephen Schuman. These conferences were public, intended to collect input from
the broader community about research topics in algorithmic languages.

After that short period of scanning the horizon, the Group decided to focus
again on specific topics. Robert Dewar, as Chair of the Future Work Subcom-
mittee, wrote a letter to members in July 1977, in advance of Meeting #23 of
the Group in Oxford in December of that year, explaining:

We have decided to break with our two year old ‘tradition’ of holding
conferences with invited outside participants. These conference have been
helpful in exploring ideas, but now it is time to get back to the work of
our working group and concentrate on the resources of our membership.
[30]

The decision was for the Group to focus for the time being on two topics: pro-
gramming languages for beginners, and “Abstracto”. The former direction led to
Meertens’s development of ABC [42, 43, 34, 54] and hence eventually to Python
[55]; but it is the latter that is of interest to us here.

The name Abstracto arose through a misunderstanding:

The first author [Geurts], teaching a course in programming, remarked
that he would first present an algorithm “in abstracto” (Dutch [sic] for
“in the abstract”) before developing it in Algol 60. At the end of the
class, a student expressed his desire to learn more about this Abstracto
programming language. [33]

Abstracto itself is defined in Dewar’s letter as follows:

We have taken the name to describe a programming language some of
whose features we know:

1. It is very high level, whatever that means.

2. It is suitable for expressing initial thoughts on construction of a pro-
gram.

3 It is fair to say that the Reports did not meet with universal acclaim. One reason for
the mixed reception was the use of van Wijngaarden’s two-level grammar notation for
describing the language, whereby a possibly infinite language grammar is generated
by a finite meta-grammar. The Algol 68 experience has engendered a keen interest
in notational issues within the Group ever since.
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First we proceed with the easy part, (Si). Where 
the refinements are given here in two steps, a 
trained algorlthmician would immediately jump to 
the final version, much like a mathematician is 
used to do. From (e) we obtain 

z,x,y := z',x',y" I z%x',y': z'.x'Y'=x Y. 

By using the unit list u = i,X,Y in (h), this sim- 
plifies to 

z,x,y := i,X,Y I E: true. 

This gives us the final, concrete expression, since 
now rule (i) is applicable: 

z,x,y := i,X,Y. 

As to ($2), this fits (f) with the assertion 
z.xY=X Y for p and y#O for b. For the mapping 0 we 
can. simply take the identity, since the "goal" is 
to get y to 0. We thus refine ($2) to 

*(y#0 --> z,x,y := z',x',y" I z',x;y': 
z.xY = X Y & y@0 ~ z'.x'Y'=X Y & y'<y). 

Using (g), this may again be refined to 

*(y#0 --> z,x,y := z',x;y" I z',x',y',r: 
z "= z-x r & x'= x-x & y=2y'+r & 

(r=0 v r=l)). 

If operations / and % are available, satisfying y = 
2(y/2)+(y%2) and (y%2=0 v y%2=i), the use of the 
unit list u = ZZ,x.x,y/2,y%2 in (d) of Lemma 2, 
where ZZ is shorthand for (y%2=0-->z 0y%2=l-->z.x), 
allows to simplify this to 

*(y#0 --> z,x,y := ZZ,x.x,y/2). 

Here (i) has also been applied. It has now been 
shown that 

z:=[true ~ z=X Y] < 
z,x,y := I,X,Y; 
*(y#0 --> z,x,y := ZZ,x.x,y/2). 

(Note that we may use "<" rather than "<*" since 
the right-hand side is concrete.) 

This proof is admittedly quite lengthy (and 
boring) for the feat it performs. But this would 
also be the case for attempts to determine an inde- 
finite integral, say, by following the rules from 
the calculus book step for step and displaying all 
intermediate results. A more appropriate proof 
might read: "this concretization is obtained by 
keeping z.xY=X Y invariant". 
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Fig. 1. Abstracto 84 [41]

3. It need not be (and probably is not) executable. This arises either
from efficiency considerations, or even non-effective dictions, say
those involving infinite sets.

Abstracto is not a specification language as such since it is still concerned
with how to do things and not just what is to be done, but it allows the
expression of the ‘how’ in the simplest and most abstract possible way.
[30]

So Abstracto was envisioned as an algorithmic language: for describing the al-
gorithmic steps in a computation, not just the input–output relation or similar
behavioural specification. But it was still envisaged as an exploratory medium,
a pen-and-paper notation, a ‘tool of thought’, rather than primarily an imple-
mentation language.

A representative example of Abstracto is shown in Figure 1. This is part of
the development of a ‘fast exponentiation’ algorithm: given natural numbers X
and Y , compute z = XY using only O(log2 Y ) iterations. The first program
shows a ‘while’ loop, with invariant z × xy = XY , variant y , and guard y 6= 0.
The second program factors out r = y mod 2, refining the nondeterminism in
the first program to a deterministic loop. Thus, Meertens’ vision for Abstracto
is a kind of refinement calculus for imperative programs, as later developed in
much greater depth by Ralph Back [1, 2] and Carroll Morgan [49, 50].4

4 Indeed, the loop body in the first exponentiation program is a ‘specification state-
ment’ in Morgan’s sense [49], albeit one without a frame.
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Although it was intended as a focus for the whole Group, the work on a
notation named Abstracto was mainly undertaken by Meertens and his group at
the Mathematisch Centrum (later CWI) in Amsterdam, and the few published
papers [33, 41] are written by them. (In 1987, Meertens very helpfully collected
these papers—and other papers of his on BMF—into a reader [46] for WG2.1,
interspersed with a retrospective commentary on the background to the original
publications.)

However, other members of the Group were conducting parallel projects with
similar goals. Fritz Bauer’s group at the Technical University in Munich, includ-
ing Helmuth Partsch, Bernhard Möller, and Peter Pepper, were working on the
Computer-Aided, Intuition-Guided Programming (CIP) project [6–8], develop-
ing a wide-spectrum language to encompass both abstract specifications and
efficient implementations of programs. Jack Schwartz, Robert Dewar, and Bob
Paige at New York University designed SETL [58, 51, 59] as a language that
accommodated the gradual transformation of specifications using high-level set-
oriented dictions such as comprehensions into lower-level programs by instantiat-
ing abstract datatypes with concrete implementations and by applying ‘strength
reduction’ [52] to loops. These are just two of the larger projects; there were many
smaller ones as well.

3 Disillusionment and enlightenment

For some of the subsequent meetings of the Group, members were set specific
problems to work on in advance [31], so that approaches and solutions could
be presented at the meeting—applications such as a text editor and a patient
monitoring system, and more technical problems such as string matching and
longest upsequence. Meertens observed in the introduction to the Algorithmics
paper [45] included in the Abstracto Reader [46]:

Using the framework sketched in [41], I did most of the examples from the
problem sets prepared for the Brussels meeting of WG2.1 in December
1979 [Meeting #26] and the meeting in Wheeling WV in August 1980
[Meeting #27]. On the whole, I was reasonably successful, but I never-
theless abandoned the approach. [46]

To illustrate Meertens’ disillusionment, consider the two programs shown
in Figure 2. The problem is to find the (assumed unique) oldest inhabitant of
the Netherlands, where the data is given by a collection dm of Dutch munici-
palities, and an array mr [−] of municipal registers of individuals, one register
per municipality. The program on the left combines all the municipal registers
into one national register; the program on the right finds the oldest inhabitant
of each municipality, and then findest the oldest among these “local Methuse-
lahs”. Provided that no municipality is empty of inhabitants, these programs
have equivalent behaviour. However, one cannot reasonably expect precisely the
transformation from one to the other to be present in any catalogue of trans-
formations; the development should proceed by a series of simpler steps that
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Algorithmics 295 

brings us closer to the ideal of "Algorithmics" aimed at. This is expressed in 
the following quote from a paper by BIRD [ 3], describing a new technique of 
program transformation: "The manipulations described in the present paper 
mirror very closely the style of derivation of mathematical formulas." There 
are several impediments to the application of this method. In the first place, 
the more usual algorithmic notations in programming languages suffer from 
verbosity. This makes manipulating an algorithmic description a cumbersome 
and tiring process. To quote [3] again: "As the length of the derivations tes-
tify, we still lack a convenient shorthand with which to describe programs." 
Furthermore, most programming languages have unnecessarily baroque seman-
tics. In general, transformations are applicable only under certain conditions; 
checking these applicability conditions is all too often far from simple. The 
asymmetry of " => " makes these transformations also less general than is usual 
in mathematics. The requirement that the initial form be a program already 
(and "evidently correct'', at that), is not always trivial to satisfy. In this 
respect, the method is a step backwards, compared to Dijkstra's and Wirth's 
approach. Finally, there is a very important issue: which are the correctness-
preserving transformations? Can we give a "catalogue" of transformations? 
Before going deeper into that question, it is instructive to give an example. 

Take the following problem. We want to find the oldest inhabitant of the 
Netherlands (disregarding the problem of there being two or more such 
creatures). The data needed to find this out are kept by the Dutch municipali-
ties. Every inhabitant is registered at exactly one municipality. It is (theoreti-
cally) possible to lump all municipal registrations together into one gigantic 
data base, and then to scan this data base for the oldest person registered, as 
expressed in figure 2a in "pidgin ALGOL". 

input dm, mr; 
gdb := 0; 
formEdmdo 

gdb: = gdb U mr[m] 
endfor; 
aoi := -oo; 
for iEgdb do 

if i·age > aoi then 
oi, aoi: = i, i·age 

endif 
endfor; 
output oi. 

FIGURE 2a. Program A for determining the oldest inhabitant 

A different possibility is to determine the oldest inhabitant for each munici-
pality first. The oldest person in the set bf local Methuselahs thus obtained is 
the person sought. This is expressed in figure 2b. 

Replacing (possibly within another program) program A by program B is 
then a transformation. Were there no inhabitants of the Netherlands, both 

⇒

296 

input dm, mr; 
slm := 0; 
for medm do 

aim:= -oo; 
for i E mr[m] do 

if i·age > aim then 
Im, aim : = i, i·age 

end.if 
endfor; 
slm := slm U {Im} 

endfor; 
aoi := -oo; 
for ieslm do 

if i· age > aoi then 
oi, aoi: = i, i·age 

end.if 
endfor; 
output oi. 

FIGURE 2b. Program B for determining the oldest inhabitant 

L. Meertens 

programs would have an undefined result. This is generally not seen as affect-
ing the applicability of the transformation B. But if-assuming at least 
one inhabitant in the country-some municipality had no registered inhabit-
ants, then program A would have a defined result, whereas the outcome of B 
might be undefined. (The problem is that in the line "slm : = slm U {Im}" the 
variable Im has no defined value if the empty municipality is the first one to be 
selected by ''for m E dm do".) So the transformation A B has the following 
applicability condition: 

(Vmedm: mr[m] = 0)V(Vmedm: mr[m]-:/:- 0). 

We happen to know that for the given application this condition is satisfied, 
but it is easy to think of applications of this transformation where it is less 
obvious and has to be checked. Overlooking such conditions that are only 
exceptionally not satisfied is a typical source of programming errors. Note 
that a human interpreter of the original descriptions in natural language would 
almost certainly handle exceptional cases reasonably. 

How large must a catalogue of transformations be before it is reasonable to 
expect it to contain this transformation? Obviously, unmanageably large. It is 
possible to have a manageable catalogue, and to require proofs of other 
transformations that are not in the catalogue. But how do you prove such a 
transformation? Hopefully, again with transformations, otherwise the practi-
tioner of Transformational Programming needs two proof techniques instead 
of one. But what transformations will gradually transform A into B? 

Fig. 2. The oldest inhabitant, in Abstracto [45]

themselves are present in a smaller and more manageable catalogue of more
general-purpose transformations. But what would those atomic general-purpose
transformations be?

Meertens continued:

The framework is, in fact, largely irrelevant: finding the theorems to be
applied is the key to the development [. . . ] If the Abstracto dream is to
come true [. . . ] the key ‘transformations’ are the mathematical theorems
and not the boring blind-pattern-match manipulations that I looked upon
until now as being ‘the’ transformations. [46]

The breakthrough was to abandon the imperative Algol-like language and the
corresponding refinement-oriented approach of Abstracto, and to switch to a
more algebraic, functional presentation. Meertens continued:

Then came the Nijmegen meeting [Meeting #28] in May 1981, at which
Richard Bird entered the stage5 and presented a paper entitled “Some
Notational Suggestions for Transformational Programming”.6 It used an
applicative (functional) style [. . . ] There were notations for high-level
concepts, and just the kind of manipulations, at the right level, that you
would want to see [. . . ] Investigating this led to a whole lot of other

5 In fact, Bird and Meertens had both been present at Meeting #27 in Wheeling in
August 1980, although the meeting of minds evidently had to wait a bit longer.

6 Meertens’ preface in the Abstracto Reader, Meertens’ contemporary papers, and the
WG2.1 minutes all record Bird’s paper under the title “Some Notational Sugges-
tions. . . ” [17]; but the technical report [16] is entitled “Notational Suggestions. . . ”.
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Fig. 3. Notational Suggestions for Functional Programming [16]

discoveries (the applicability to ‘generic’ structures [. . . ]), and I was very
excited about this. [46]

Some of Bird’s suggested notations are shown in Figure 3: “f · S” for map-
ping function f over collection S , “P : S” for filtering collection S to retain
only elements satisfying predicate P , “any S” for choosing an arbitrary element
of (nonempty) collection S ; “(max\f ) S” for the element of collection S that
maximizes function f ; “sub S” for the powerset of collection S ; juxtaposition for
function composition; and so on. Thus rule ∆1 is what became known as “map
fusion”7 and ∆10 as “filter promotion”8.

The equivalent transformation for the problem of the oldest inhabitant using
Bird’s suggestions [45] is:

Algorithmics 297 

As another example, consider young Gauss's "transformation". This may be 
expressed as 

input a, b, n; 
sum, t := 0, a; 
for i from 1 to n do => sum, t: = sum+t, t +b 
endfor; 
output sum 

input a, b, n; 
output (n /2) x (2Xa +(n- l)Xb) 

Again, this is an unlikely transformation to be catalogued. Now compare this 
to the mathematical derivation: 

+(i - l)b} = j- (a +(i - l)b} + (a +(i - l)b}] 

l +(i - l)b} + {a +(n -i)b)] = {2a +(n - l)b} = 
tn{2a +(n -l)b}. 

It is usual in presenting such derivations to omit obvious intermediate steps, 
and this one is no exception. For example, the first step has the pattern 
S = t<S+S); a complete derivation would have S = IS = <-!·2)S = 
-!(2S) = t(S+S). Nevertheless, the only step that possibly requires looking 
twice to check it is the substitution of n + I - i for one of the two summation 
variables i. 

In what follows, an attempt is made to sketch an "algorithmic language" to 
overcome the drawbacks mentioned. To give a taste of what will be presented 
there, here, in that language, is the "transformation" A ==;. B of the oldest-
inhabitant problem: 

iagel +/mr•dm = i0ge/(i0g.,/mr) •dm. 
Comparing this with figure 2a and 2b should explain my complaint about the 
verbosity of algorithmic languages. And yet that pidgin is a terse language 
when compared to those mountains of human achievement, from FORTRAN to 

Note also the reinstatement of the symmetric "= ", which will be 
explained in Section 6. 

The emphasis on the similarity with Mathematics creates a clear difference 
with much of the work in the area of Transformational Programming, such as 
that of the Munich CIP group (BAUER et al. [2]). In that work, the emphasis 
is on creating a tool for mechanical aid in, and the verification of, program 
development. The prerequisite of mechanical verifiability puts its stamp on a 
language. Note that the language of Mathematics has not been developed with 
any regard to mechanical verifiability; the only important factor has been the 
sustenance offered in reasoning and in manipulation of formulae. In this 
respect, the approach of, e.g., BIRD [ 3] is much more closely related, even if its 
framework is different. To quote that paper once more: "[ ... ]we did not start 

The left-hand side takes the oldest in the union of the registers of each of the
municipalities, and the right-hand side takes the oldest among the oldest inhabi-
tants of each of the municipalities. (Here, “⊕/” reduces a collection using binary

7 Applying g to every element of S and then f to every element of the result is the
same as applying g then f to every element of S in a single pass.

8 Applying f to every element and then filtering to keep the results that satisfy P is
the same as filtering first, using the predicate “P after f ”, then applying f to every
element that will subsequently satisfy P .
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494 • R.S. Bird 

subsequences of x, of which there are 2" if n = length x, test each one for the path 
property, compute the length of each sequence that passes the test, and finally 
extract the maximum. Clearly, the algorithm is exponential in the length of the 
given sequence. 

The form of (D1) strongly suggests the use of promotion to improve efficiency. 
As the first step, we instantiate the definition of subs in the right-hand side of 
(D1). There are two cases to consider: 

lip [ ] = max (length • path: subs [ ]) 

-- max (length • path:  {[ ]}) 

-- max (length • {[ ]}) 

--- max {0} 

= 0  

after some routine simplification, and 

lip ( a ; x )  = max (length • p a t h :  subs x U (a;) • subs ~). 

Further manipulation of this last expression makes use of three rules governing 
the distribution of U through set expressions: 

(R1) p:sUt-- (p:s)U(p:t). 
(R2) f ,sUt-- ([.s)U(f.t). 
(R3) max (s U t) = max {max s, max t}. 

Each rule can be proved correct by a straightforward induction argument on the 
definitions of the respective operators. It is noteworthy that rules such as these 
permit derivations to be expressed much more tersely than would be the case if 
all transformations had to be justified at the fold-unfold level. Expressions that 
contain combinations of patterns of recursion are manipulated by appealing to 
the relationships between the operators defining the combinations. We see some 
more in a moment. Although no use is made of them in the present derivation, 
here are three rules that correspond to the above in the case of generalized union 
U {sl, s 2 , . . . } = s l U s 2 U . . . :  

p:UX= U ( ( p : ) . X )  
f ,  u x = u  ( ( / , ) , x )  
max (U X) = max(max • X). 

The second rule, for example, says that the application of f to each member of 
the union of a collection of sets gives the same result as taking the union of the 
collection of sets in which f is applied to each member. The rule is easy enough 
to justify: 

U ( ( f , ) , X )  = U { f , x l x ~ X }  
= U { I fa l a ~ x } l x ~ X }  

= { f a l a ~ U X }  
= f ,  U X .  

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984. 
Fig. 4. The Promotion and Accumulation Strategies [18]

operator ⊕, absent from Bird’s suggestions; “+” is binary union; “↑f ” chooses
which of two arguments has the greater f -value; “g∗” maps function g over a
collection; and function composition is indicated by juxtaposition.)

Clearly the BMF presentation is an order of magnitude shorter than the Ab-
stracto one. It is also easier to see what form the small general-purpose trans-
formation steps should take—just the kinds of equation shown in Figure 3.

4 Evolution

The BMF notations evolved through use, and through interactions at subsequent
WG2.1 meetings. The Algorithmics paper [45] was presented at the Symposium
on Mathematics and Computer Science in November 1983, when the Mathema-
tisch Centrum in Amsterdam changed its name to the Centrum voor Wiskunde
en Informatica (CWI).9

Bird and Meertens produced another working paper [12] for IFIP WG2.1,
trying to converge on notational conventions such as operator precedence and
semantic considerations such as indeterminacy for an “as yet unborn Science of
Algorithmics”. This was done together with Dave Wile, whose PhD thesis [65]
had been on “a closely related approach to language design” [46]; although Wile
was also a member of WG2.1, he could only contribute by post whereas Bird and

9 Publication of the proceedings of this conference seems to have taken frustratingly
long: in a 1984 working paper [44] using the same notation, Meertens cites the Algo-
rithmics paper [45] as appearing in the year “[]/ (1984≤)/U”, that is, the arbitrary
choice of any number at least 1984. The same joke appears in a 1985 working paper
[12] but with a 1985 lower bound.
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Transformational programming and the paragraph problem 163 

which uses ': ' ,  here reserved for the filter operator). We write [a] in preference to 
a;[]  and, more generally, [a l ,  a 2 , . . . , a n ]  in preference to a l ; a 2 ; . ,  an;[]. The 
append operator & (KRC uses ++)  can be defined by the equations 

[ ] & y  = y, 

( a ; x ) & y  = a ; ( x & y )  

which illustrates the use of pattern-matching on the left-hand sides of definitions. 
(By the right association rule of operators, the right-hand expression of the last 
equation could have been written without parentheses.) The map and filter operators 
can also be applied to sequences, in which case they possess the following inductive 
definitions: 

f , [ ]  = [], 

f * ( a ; x )  = ( f a ) ; ( f * x ) ;  

P : [ ]  = [], 

(a ;x)  = I a ; (P :  
x) 

P:  
[ P:x  

if P a, 

otherwise. 

The last definition shows how we write conditional equations. 
There are a number of algebraic laws relating the operators introduced so far. 

The seven which follow are all easily proved from the definitions above: 

(L1) f * g . S = ( f  o g) . S, 

(L2) P : g . S  = g . ( p o g ) : S ,  

(L3) f S g *  S = g , ( f o g ) , [ S ,  

(L4) f *  A• B = ( f *  A ) u ( f *  B), 

(L5) P : A u  B = ( P : A ) u ( P : B ) ,  

(L6) f , [ a u  B = f ~ ( f $ a ) u ( f S B ) ,  

(L7) f S f S a  = f $ a .  

Law (L5), for instance, says that the filter of the union of two sets is the union of 
the filters. (L6) is perhaps not so obvious: it says that the f-minimising elements of 
the union of two sets can be obtained by first taking the f-minimising elements of 
each set separately, and then taking the f-minimising elements of the result. Law 
(L7) states that minimise is an idempotent operation. Two further simple properties 
of minimise will be used frequently: 

f${} = {}, 

f~{x} = {x}. 

Fig. 5. Transformational Programming and the Paragraph Problem [20]

Meertens met twice in person, so “his influence [. . . ] has probably been much
less than it otherwise would have been” [46].10

Bird used his version of the notation in journal papers published in 1984 [18]
and 1986 [20], extracts from which are shown in Figure 4 and Figure 5 respec-
tively. Note that Bird has switched to Meertens’ convention of using an asterisk
rather than a centred dot for ‘map’,11 but still has no general ‘reduce’ operator.
The latter only came with a series of tutorial papers [19, 21, 22], produced in
quick succession and with very similar notation, two being lecture notes from
Marktoberdorf and one from the University of Texas at Austin Year of Program-
ming; an example, the calculation for the Maximum Segment Sum problem, is
shown in Figure 6. Now the centred dot is used for function composition, and
juxtaposition (not shown) is used only for function application; moreover, filter
(also not shown) is written with a triangle “/” rather than a colon.

Around the time of Bird’s three sets of lecture notes, presumably during one
of Bird’s presentations at WG2.1, Robert Dewar passed a note to Meertens which
has one word on it, “Squigol”, making a pun with language names such as Algol,
Cobol, and Snobol [47]. The name first appears in the minutes of Meeting #35
in Sausalito in December 1985. However, it has come to be written “Squiggol”,
perhaps to emphasise that the pronunciation should be "skwIg6l (“qui”) rather
than "skwaIg6l (“quae”).

10 Nevertheless, Wile’s ‘sectioning’ notation (giving a binary operator one of its two
arguments, as in the positivity predicate “(> 0)” and the reciprocal function “(1/)”)
was discussed, and it persists today in Haskell.

11 In fact, Meertens says that he deliberately used a very small asterisk for ‘map’,
looking from a distance or on a poor photocopy like a ragged dot, so as not to have
to choose between the two notations.
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1.11 Application 

Let us give one application of Horner's rule. There is a famous problem, 
called the max"imum segment sum (mss) problem, which is to compute the 
maximum of the sums of all segments of a given sequence of numbers, posi-
tive, negative or zero. In symbols 

mss = i/· +1'· segs 

Direct evaluation of the right-hand side of this equation requires D( n 3 ) steps 
on a list of length n. There are D( n2 ) segments and each can be summed 
in D( n) steps, giving D( n3 ) steps in all. Using Horner's rule it is easy to 
calculate an O( n) algorithm: 

mss :::;:  definition  
i/· +1'· segs  

=  defini tion of segs 

i/· +1'· *1· tails. ·inits 
map and reduce promotion 
i/· (i/· +1'· tails). ·inits 

=  Horner's rule with a@ b = (a + b) i 0 
i I . @ fo •. inits 
accumulation lemma 
i I . @lfo 

Horner's rule is applicable because + distributes through 1, and 0 = id+. 
The result is a linear time algorithm. 

An interesting variation ofthe problem is not so well-known. It is to compute 
the maximum segment product. In symbols 

msp = i/· xl' . segs 

Since X does not distribute through 1 for negative numbers, the previous 
derivation does not work. However, we do have 

(aib)xc = (axc)i(bxc) ifc;;'O 
(a i b) x c = (a xc) I (b xc) if c " 0 

where 1takes the minimum of its two arguments. A similar pair of equations 
holds for (a 1 b) X c. These facts are enough to ensure that, with suitable 
cunning, Horner's rule can be made to work. The idea is to define EEl by 

(a], bel) <ll (,,>, 1>,) = (a, I ,,>, bel i 1>,) 

14 

Fig. 6. Constructive Functional Programming, showing Maximum Segment Sum [22]

5 Generic structures

An important practical concern for a calculus of program transformations is that
the body of transformations is not only large enough and sufficiently general to
cover lots of applications, but also small enough and sufficiently structured to be
easy to navigate. In his preface to the Algorithmics paper [45], Meertens writes:

My main worry was the scope of applicability. Would I find that I needed
more and more primitive functions and corresponding rules as I did more
examples? So I started doing some problems this way. First I found that
I indeed had to invent new functions and laws all the time, which was
disappointing. I put it down for some time, but took it up again while I
was visiting NYU in ’82/’83, since it still looked like the most promising
line of research. Then I suddenly realized that there was a pattern in the
new functions and laws. [46]

The pattern Meertens noticed is that several of the core datatypes (namely
lists, bags, and sets) form a hierarchy of algebraic structures, and many of the
core operations (such as maps, filters, and reductions) are homomorphisms from
these algebras. Specifically, each of these three datatypes is generated from an
empty structure, singleton structures, and a binary combination operation—
for example, the empty list, singleton lists, and list concatenation—and differ
only in terms of the algebraic laws (associativity, commutativity, idempotence)
imposed on the binary operation. Meertens called these ‘generic structures’ in
the Algorithmics paper, as shown in Figure 7.

Meertens used the same names for all three datatypes (“0” for the empty
structure, “ x̂” for a singleton structure containing element x , “+” for the binary
operation), disambiguating by context. In contrast, Bird introduced different
names for the different datatypes, as shown in Figure 8. One might also impose
no laws on the binary operation, yielding a kind of binary tree as a fourth member
of the hierarchy, as in the following table:
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Fig. 7. Generic structures, from the Algorithmics paper [45] (reference [17] in the figure
is to McCarthy’s 1963 paper “A Basis for a Mathematical Theory of Computation”)

type empty singleton binary laws

tree 〈 〉 〈·〉 � identity
list [ ] [·] ++ . . . and associativity
bag * + *·+ ] . . . and commutativity
set { } {·} ∪ . . . and idempotency

(although there is no consensus on the naming conventions for trees).

Crucially, each datatype is the free algebra on the common signature with
a given set of equations, generated by a domain of individual elements; that is,
there exists a unique homomorphism from the datatype to any other algebra
of the same kind. Therefore to define a homomorphic function over one of the
datatypes in the hierarchy, it suffices to identify the target algebra. This leads to
the canonical definition scheme (see Figure 8)12, as used for example for defining

12 Essentially the same canonical scheme is commonly used today in modern functional
programming languages like Haskell:

map f [ ] = [ ]
map f (x : xs) = f x : map f xs

but for the signature of asymmetric ‘cons’ lists, rather than symmetric ‘cat’ lists.
This again depends on lists being a free algebra, so the equations have a unique
solution, namely the function being defined.
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The primitive operation on lists is concatenation, denoted by the sign -ft. 
For example: 

[1] * [2] * [1] = [1,2,1) 
Concatenation is a.n associative operation, that is, 

x*(y*z) =(x*y)*z 
for all lists x, y and z in [oj. 

In the majority of situations (though not all) it is convenient to assume 
the existence of a special list, denoted by [] and called the empty list, which 
acts as the identity element of concatenation. Thus, 

x*[]=[]*x=x 
for all x in [a]. To distinguish this possibility, we shall let [a] denote the 
type of lists over 0 including [], and [oJ+ the type of lists over a  

[I· Using algebraic terminology, ([0]'*,[J) is a monojd, while ([01+,*) is 
a semigroup. 

In order to specify functions over lists we need one more assumption, 
namely that ([0], *, [)) is the free monoid generated by 0 under the assign-
ment [.] : a ---+ [a]. This algebraic statement is equivalent to the assertion 
that for each function f : 0 ---+ {J and associative operator m: j3 X {3 ---+ (3, 
the three equations 

hi] = ide, 
h[a] = fa 
h(x*y) = hX'fJhy 

specify a unique function h : [0] ---+ {J. In the case that  is not defined, the 
last two equations by themselves determine a unique fnnction h : [aJ+ {3.--I' 

Any function h satisfying the first and third equations above is, by 
definition, a homomorphism from the monoid ([0], *, [)) to the monoid 
(fJ,'fJ,ide,). The statement that ([o],*,(]) is free is equivalent to the state-
ment that h is uniquely determined by its values on singletons. We shall 
discuss homomorphisms in greater detail in the next lecture. 

One simple example of a homomorphism is provided by the function 
# : [a] ---+ N which returns the length of a list. Here N denotes the natural 
numbers {O, 1, ...}. We have 

#[] o 
#[a] 1 
#(x * y) #x+#y 

Observe tha.t + is associative with identity 0, so (N, +, 0) is a monoid. 

3 

1.3 Bags and sets 

By definition, a (finite) bag is a list in which the order of the elements is 
ignored, Bags are constructed by adding the rule that * is commutative 
as well as associative. Also by definition, a (finite) set is a bag in which 
repetitions of elements are ignored. Sets are constructed by adding the rule 
that * is idempotent as well as commutative and associative. As we shall 
see, much of the theory developed below holds for bags and sets as well as 
lists. 

In the main we shall usc the single operator * for all three structures, 
relying on context to resolve ambiguity. However. in order to distinguish 
different uses in one and the same expression, we shall sometimes use l:!:i 
(ba.g union) for the concatenation operator on bags, and U (set union) for 
the same operator au sets. Singleton bags are denoted by laS and singleton 
sets by (a}. 

A similar algebraic statement about freeness holds for bags and sets as 
well as lists. We assume that nO's, t:!:I 1 l nis the free commutative monoid 
generated by a under the assignment l·j: a  laj. Similarly, ({a},U,O) 
is the free commutative and  monoid generated by a under the 
assignment {.} : a ---+ {a}. In the case of bags this means that for each 
/ : cr ---+ fJ and associative and commutative operator E9 : f3 X fJ ---+ fJ, the 
equations 

hll ide 
hlaj = fa 
hex I!J y) hxehy 

define a unique function h : laS --t fJ. Similar remarks apply to sets, except 
that we also require EB to be idempotent. 

For example 1 the size of a bag is the number of elements it contains, 
counting repetitions. It can be defined by the equations 

#ll o 
#laj I 
#(x I!J y) #x+#y 

However, although + is associative and commutative, it is not idempotent, 
so the same equations do not define the size function on sets. 

4 

Fig. 8. Generic structures, from “Constructive Functional Programming” [22]

maps:
f ∗[ ] = [ ]
f ∗[a] = [f a]
f ∗(x ++ y) = f ∗x ++ f ∗y

filters:
p / [ ] = [ ]
p / [a] = [a], if p a

= [ ], otherwise
p / (x ++ y) = p / x ++ p / y

and reductions:
⊕/[ ] = 1⊕
⊕/[a] = a
⊕/(x ++ y) = ⊕/x ⊕ ⊕/y

This hierarchy of datatypes has become known as the ‘Boom Hierarchy’—a
neat pun. The hierarchy was introduced by and named after Hendrik Boom [26];
but Hendrik Boom is Dutch, and ‘boom’ is also Dutch for ‘tree’. Stephen Spack-
man was a local observer at Meeting #37 hosted by Boom in Montreal in May
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1987, and gave a presentation [61] involving the Boom Hierarchy. Spackman was
studying for a Master’s degree at Concordia University at the time, supervised
by Boom and by Peter Grogono. Spackman recalls:

My recollection of how the name came about is that it was Peter Gro-
gono’s coinage, that Hendrik instantly said, “what, because it’s about
trees?”, that I laughed, and the name stuck from that moment. My con-
tribution was the appreciation of the joke, not the naming! [60]

Backhouse [3] presents a detailed study of the Boom Hierarchy, and a compar-
ison to the quantifier notation introduced by Edsger Dijkstra and colleagues at
Eindhoven. Like Meertens and unlike Bird, Backhouse uses a common naming
scheme for all members of the Hierarchy, albeit a different one from Meertens’:
“1++”, “τ”, and “++”.

6 Retrenchment

The concern about whether or not to use a single notation for all the members
of the Boom Hierarchy gets to a key issue: a novel, rationalized notation can
help to reduce the number of definitions and laws and organize the theory, but
by disregarding mathematical convention it can make the presentation less ac-
cessible to outsiders. In his preface to the 1984 working paper [44], Meertens
recalls:

You can perhaps imagine my disappointment when I heard from Richard
that he had dropped this whole approach because he found it was gen-
erally ununderstandable to audiences. Subsequent presentations of the
Algorithmics paper at WG2.1 meetings strongly suggested the same to
me. [46]

But the convenience of a rational notation is seductive. In the preface to the 1985
working paper [12] (which was written jointly with Bird and Wile), Meertens
continues the story:

Somehow or other Richard picked up interest in my ‘squiggles’ again
(really his, if he had not disowned them). It cannot have been the general
acclaim they met with at my presentations that made him do so. Maybe it
was the ease with which I kept pulling functions and operators to the left
or pushing them to the right (while writing the formulas upside-down)
over a beer, even after many beers, that convinced him of the continued
value of this approach. [46]

Similar concerns apply more widely to the choice of notation. The 1985 working
paper itself reports a difference of opinion with Wile:

Whereas RB and LM feel that the predefined infix operators should prefer-
ably be single symbols, DW prefers longer operator names. Moreover, LM
does not like predefined names that are English words. [12]



14 J. Gibbons

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/32/2/122/543545 by guest on 24 Septem
ber 2019

Fig. 9. Algebraic Identities for Program Calculation, and Maximum Segment Sum [23]

In a journal paper published in 1989 [23], Bird revisited the Maximum Seg-
ment Sum problem he had tackled in earlier Marktoberdorf lectures [22]. But he
abandoned the squiggles and reverted to mostly alphabetic identifiers, perhaps
under pressure from the journal editor; compare the development in Figure 9
with the earlier one shown in Figure 6. Bird wrote in the paper:

In order to make the material as accessible as possible, we shall use the
notation for functional programming described by Bird and Wadler. This
is very similar to that used in Miranda. (Our preferred notation [19] is
rather different. For a start, it is more concise and mathematical [. . . ])
[23]

7 The Book on Algorithmics

A recurring theme in the Abstracto papers is the idea of an imagined textbook
on algorithmics:

Suppose a textbook has to be written for an advanced course in algorith-
mics. Which vehicle should be chosen to express the algorithms? Clearly,
one has the freedom to construct a new language, not only without the
restraint of efficiency considerations, but without any considerations of
implementability whatsoever. [33]

The textbook theme is frequently mentioned in the minutes of discussions at
WG2.1 meetings around this time, and becomes a central desideratum for Squig-
gol. It is alluded to in the title “Two Exercises Found in a Book on Algorithmics”
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Fig. 10. The Algebra of Programming [10]

of a short paper by Bird and Meertens [25], another paper with a long gestation
period (discussed at Meeting #34 in Utrecht in April 1985, presented at the TC2
Working Conference on Program Specification and Transformation in Bad Tölz
in April 1986, and eventually published in 1987).

About a decade later, Bird published the book “The Algebra of Program-
ming” [10] together with Oege de Moor. This book develops general theorems
and specific constructions for solutions to optimization problems: greedy algo-
rithms, dynamic programming, and so on. Bird and de Moor discovered that
this class of problem really calls for a calculus of relations rather than one of
functions, because many problems are most naturally expressed in terms of con-
verses, intersections, orderings, and other notions that are awkward to handle
using pure functions alone. Moreover, in the quest for crisp statements of general
results, the book followed Grant Malcolm’s lead [39, 40] in bringing in ideas from
category theory such as functors, natural transformations, and initial algebras.
Thus, it has more squiggles, and different ones, such as superscript circles for
converses, inclusions, relational divisions (a kind of weakest prespecification), as
shown in Figure 10.

The Algebra of Programming book is many things: a work of art, and a tour
de force, and perhaps even a coup de grâce for Squiggol. But one thing it is
not: an easy read. The relational algebra is very elegant, and unquestionably the
idealist’s tool for this class of problems; but it is inherently complicated, because
there are simply a lot of laws to remember.
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Bird envisioned this work as fulfilling the promise of the legendary textbook
on algorithmics [9], although the book does not actually present itself that way.
In fact, it follows closely the approach taken by de Moor in his doctoral thesis
[29], which itself drew on Freyd and Scedrov’s work on allegories as a categorical
axiomatization of relations [32], and Bird now says that “it turned out very
different to the book I had envisaged” [9].

8 Conclusions

The story of Squiggol is one of an ebb and flow of enthusiasm for the squiggly
notation. The notation is intended as a tool of thought more than a programming
language; so there is the freedom to experiment, to invent new operators, to
capture newly-observed recurring patterns, unfettered by the need to keep all
the paraphernalia of an automated tool chain up to date. But that freedom is a
mixed blessing, and it is all too easy to disappear down a rabbit-hole of private
scribbling; the notation should also be a tool of communication—with other
people, and even with one’s future self—and undisciplined invention blocks that
communication channel.

The supplementary website [11] for the Algebra of Programming book de-
scribes it as an “introductory textbook”, which is rather optimistic: few people
have read the book all the way through, and fewer still have assimilated and
can remember all the laws it presents. With a few honourable exceptions, al-
most everybody who was involved has abandoned the relational squiggles. De
Moor soon left this field and moved into work on programming tools, eventu-
ally leaving academia to found the company Semmle. Bird also quickly gave up
on the squiggly notation, succumbing to his 1989 critics [23] and doing almost
everything since the book in a purely functional (Haskell) notation.

Bird and the present author are putting the finishing touches to a new book
“Algorithm Design with Haskell” [24], addressing essentially the same material as
the Algebra of Programming book with no squiggles at all. This latest approach
definitely represents a compromise: a small excursion out of the world of pure
functions is required in order to accommodate nondeterministic choice [13]. Only
time will tell whether the balance is better this time, with greater accessibility
compensating for the loss of expressive power.
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