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Abstract. An effectful traversal of a data structure iterates over every
element, in some predetermined order, collecting computational effects
in the process. Depth-first effectful traversal of a tree is straightforward
to define compositionally, since it precisely follows the shape of the
data. What about breadth-first effectful traversal? An indirect route is to
factorize the data structure into shape and contents, traverse the contents,
then rebuild the data structure with new contents. We show that this can
instead be done directly using staging, expressed using a construction
related to free applicative functors. The staged traversals lend themselves
well to fusion; we prove a novel fusion rule for effectful traversals, and
use it in another solution to Bird’s ‘repmin’ problem.
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1 Introduction

This paper is about effectful traversals of data structures, in which the effects are
modelled as applicative functors. This encompasses monadic effects (since every
monad is also an applicative functor), but also generalizes to include monoidal
aggregation, among other possibilities.

Applicative traversals capture the essence of the Iterator design pattern [9].
Informally, an applicative traversal processes a container data structure in a pre-
determined order, visiting each element precisely once, collecting computational
effects as it goes (for example, in the state monad), and replacing each element
with a new one while preserving the shape of the data structure.

For any polynomial datatype, it is completely straightforward to define an
applicative traversal that follows the structure of the data. Indeed, the definition
is so straightforward that it can be automated, or expressed as a single datatype-
generic program. That straightforward traversal will be depth-first, completely
traversing one child before moving on to the next. We give an example on lists
in Section 2.1, and one on trees in Section 2.2.

But there are other possible traversal orders. In particular, what about
breadth-first traversal of a tree? This is more awkward, because it goes against
the grain of the tree, so to speak. One approach is to factorize the tree into shape
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(a tree of unit values) and contents (by breadth-first enumeration to a sequence
of elements). One can then traverse the contents in isolation from the shape, then
reassemble the unchanged shape and new contents into a new tree.

Executing breadth-first traversal in multiple passes in this way is a bit clumsy.
Can we do the same thing in a single pass? We can! The key idea is to construct
a multi-phase computation, with one phase per level of the tree. This multi-phase
computation can be assembled in a single pass over the tree; then the phases of this
computation are run one after the other. Although breadth-first traversal itself
is not compositional (one cannot construct the breadth-first traversal of a tree
from the traversals of its children), the multi-phase computation is compositional,
because it is conveniently broken up into layers.

We present a novel approach to multi-phase computation in terms of ap-
plicative functors. In particular, we use a data representation due recently to
Kidney and Wu [12], isomorphic to the free applicative functor on a given base
functor but using a different applicative instance than that of the free applicative.
Informally, we need to ‘zip’ together phases rather than concatenating them in
order to combine computations.

We show that this approach also provides alternative solutions to other
problems involving transforming multiple passes into one, but avoiding the need
for laziness, such as breadth-first relabelling of a tree [11]. Examples include such
as Bird’s ‘repmin’ problem [2] and some other problems using circular definitions.

The paper is structured as follows. Section 2 relates background material
on applicative functors and applicative traversal. Section 3 presents the indirect
breadth-first approach via factorization into shape and contents. Our contribution
starts in Section 4, which introduces two-phase computation, using the Day
convolution of two functors, and discusses how to fuse traversals at multiple
phases into a single multi-phase traversal. Section 5 generalizes this to arbitrarily
many phases, by iterating Day convolution. Section 6 returns to breadth-first
traversal and breadth-first relabelling, but now expressed compositionally in
multi-phase terms and without needing laziness. Section 7 concludes. The key
result about fusion of traversals used in Section 4 is proved in Appendix A.

We use Haskell as a vehicle of expression, but almost always read it in terms
of sets and total functions rather than CPOs with strictness considerations. (The
only divergence from that position is in discussing Bird’s essentially lazy repmin
solution, but our solution avoids this essential laziness.) The code in the paper
is slightly simplified for presentation purposes, but the full details are available
online [8]. We follow Haskell in using lowercase letters for polymorphic type
parameters; but as a presentation convention, in prose though not in code, we
use uppercase letters when discussing specific types. For example, map has the
polymorphic type (a → b)→ [a ]→ [b ] (the type parameters a, b are implicitly
universally quantified), but if applied to a specific function f :: A→ B then we
say that map f has type [A ]→ [B ].
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2 Applicative functors

We focus on effects modelled as applicative functors, a slightly more general
perspective than the more familiar monads. But we use the simpler categorically-
inspired presentation, called the monoidal interface [14] rather than the more
program-oriented one in the Haskell libraries:

class Functor f ⇒ Applicative f where
unit :: f ()
(⊗) :: f a → f b → f (a, b)

Thus, there is a distinguished collection unit of unit values, and one can combine
two collections into a collection of pairs. Categorically, an applicative functor is
“strong lax-monoidal functor”. Strength comes for free in a higher-order language
like Haskell; and lax monoidality amounts to left- and right-unit and associativity
properties, where (‹$›) :: Functor f ⇒ (a → b)→ f a → f b is the binary version
the functorial mapping fmap.

unitl ‹$› (unit ⊗ ys) = ys
unitr ‹$› (xs ⊗ unit) = xs
assoc ‹$› (xs ⊗ (ys ⊗ zs)) = (xs ⊗ ys)⊗ zs

that hold not on the nose, but only up to some conversions; we write

unitl :: ((), a)→ a unitl−1 :: a → ((), a)

unitr :: (a, ())→ a unitr−1 :: a → (a, ())
assoc :: (a, (b, c))→ ((a, b), c) assoc−1 :: ((a, b), c)→ (a, (b, c))

for the obvious isomorphisms witnessing the (so-called ‘strong’) monoidal struc-
ture of the product.

While we are on the subject of isomorphisms for pairs, we will also make use
of two involutions involving commutativity:

twist :: (a, b)→ (b, a)
exch4 :: ((a, b), (c, d))→ ((a, c), (b, d))

The monoidal and the usual Haskell presentations of applicative functors are
equivalent, and the interfaces interdefinable. In particular, we will still find the
Haskell interface convenient for programming, and it can be implemented as
follows:

pure :: Applicative f ⇒ a → f a
pure x = fmap (const x ) unit

(‹∗›) :: Applicative f ⇒ f (a → b)→ f a → f b -- left-associative
fs ‹∗› xs = fmap (λ(f , x )→ f x ) (fs ⊗ xs)

(∗›) :: Applicative f ⇒ f a → f b → f b -- left-associative
xs ∗› ys = fmap snd (xs ⊗ ys)
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This situation is analogous to the distinction between the presentation of monads
in terms of bind (>>=), which is more convenient for programming, and in terms
of multiplication join, which is more categorically perspicuous.

Every monad is an applicative functor, with the following implementation:

instance Monad m ⇒ Applicative m where
unit = return ()
xs ⊗ ys = do {x ← xs; y ← ys; return (x , y)}

—that is, (⊗) can be seen as a form of sequencing. An illuminating applicative
functor instance that does not arise from a monad is that of colists [ ]ω—that is,
finite and infinite lists together—under zipping:

instance Applicative [ ]ω where
unit = repeat ()
(⊗) = zip

Another is the constant applicative functor Const A for monoid A:

data Const a b = Const {getConst :: a }
instance Monoid a ⇒ Applicative (Const a)where

unit = Const mempty
x ⊗ y = Const (mappend (getConst x ) (getConst y))

2.1 Applicative traversal

Applicative traversal is “the essence of the Iterator design pattern” [9], captur-
ing computations that iterate over a data structure, in a predetermined order,
processing each element in turn and collecting effects as they go:

class Functor t ⇒ Traversable t where
traverse :: Applicative f ⇒ (a → f b)→ t a → f (t b)

For example, left-to-right traversal of (finite) lists just follows the shape of the
list datatype:

instance Traversable [ ]where
traverse f [ ] = pure [ ]
traverse f (x : xs) = (:) ‹$› f x ‹∗› traverse f xs

Well-behaved traversals are those satisfying three axioms of naturality, lin-
earity, and unitarity [10]. These essentially say that traverse is ‘natural’ in the
applicative functor, and respects the compositional structure of applicative func-
tors. This implies, among other consequences, that a well-behaved traversal
preserves the shape of the data structure it traverses, and visits every element
precisely once.
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Formally, an applicative morphism φ : F → G between applicative functors F
and G is a polymorphic function φ :: ∀a .F a → G a that respects the applicative
structure. To be explicit, we write (⊗F ), unitF for the applicative operations for
applicative functor F . Then for φ to be an applicative morphism, it must satisfy:

φ unitF = unitG
φ (xs ⊗F ys) = φ xs ⊗G φ ys

for xs :: F A and ys :: F B . Then the naturality axiom of a well-behaved traversal
states that it respects applicative morphisms: for f :: A→ F B and applicative
morphism φ : F → G ,

traverse (φ ◦ f ) = φ ◦ traverse f

Applicative functors are closed under functor composition: the identity functor
I is applicative, and if F and G are applicative then so is their composition F ◦G .
The other two conditions on well-behaved traversals are that they should respect
this compositional structure. To be explicit again, we subscript generic functions
with the applicative functor. The unitarity axiom states that traversal with the
identity function id :: A→ I A is itself the identity:

traverseI id = id

Together with the free theorem of the type (A → F B) → T A → F (T B)
of traverse, we get more generally that traversal in the identity applicative
functor—that is, traversal with a pure function f :: A→ I B—is just a map:

traverseI f = fmap f

The linearity axiom states that traversal in the composition of applicative functors
is a composition of traversals. That is, given applicative functors F and G , and
traversal bodies f :: A → F B and g :: B → G C , write (‹◦›) for the obvious
composition:

g ‹◦› f = fmapF g ◦ f :: A→ F (G C )

Then we have:

traverseF◦G (g ‹◦› f ) = traverseG g ‹◦› traverseF f

Here we have equated I A with A, and (F ◦G) A with F (G A). This isn’t possible
in Haskell; we would have to introduce Identity and Compose datatype wrappers,
with corresponding injection and projection isomorphisms, and include those
isomorphisms in the statements of the properties.

One more important result about traversals, a theorem rather than an axiom:
the Representation Theorem for traversals [1] states that well-behaved traversals
over an arbitrary traversable datatype are fully characterised by the corresponding
list-based traversals over their contents, and so results about traversals in general
follow from results about traversals over lists in particular. We will cover this
theorem when we need it, in Section 4.



6 J. Gibbons et al.

2.2 Trees

We will use the following datatype of trees throughout the paper:

data Tree a = Node a (Forest a)
type Forest a = [Tree a ]

For example, here is a tree of integers:

t :: Tree Int
t = Node 3 [Node 1 [Node 1 [ ]

,Node 5 [ ]]
,Node 4 [Node 9 [ ]

,Node 2 [ ]]]

3 1 1

5

4 9

2

Depth-first traversal of a tree is easily captured as a Traversable instance:

instance Traversable Tree where
traverse f (Node x ts) = Node ‹$› f x ‹∗› traverseF f ts
where traverseF f = traverse (traverse f )

This again follows the shape of the Tree datatype, which is mutually recursive
with the Forest type. We will encounter several times this pattern of mutual
recursion between the function on trees and the corresponding function on forests;
here is another example, for computing the depths of a tree and a forest:

depth :: Tree a → Int
depth (Node x ts) = 1 + depthF ts

depthF :: Forest a → Int
depthF [ ] = 0
depthF ts = maximum (map depth ts)

The definition of traversal over trees is actually very similar in principle to
the traversal of lists, as defined in Section 2.1. In fact, the outermost traverse
in the definition of traverseF is that list instance of traversal. Moreover, each
definition can in principle be derived automatically from the corresponding
datatype definition.

But what about breadth-first traversal? It is not obvious how to do that
structurally, as we have done for lists and for depth-first traversal of trees; in
particular, it does not follow directly from the structure of the datatype definition.

3 Shape, contents, relabelling

An indirect approach to breadth-first traversal can be made by factoring a tree
into its shape and contents [6]; here we see how.
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Let us first consider breadth-first enumeration, returning just the list of
elements in the tree. This is not compositional, because one cannot compute the
breadth-first enumeration of a tree from the enumerations of its children. But
the related “level-order enumeration”, giving a list of lists, one list per level, is
compositional:

levels :: Tree a → [[a ]]
levels (Node x ts) = [x ] : levelsF ts

levelsF :: Forest a → [[a ]]
levelsF = foldr (lzw (++)) [ ] ◦map levels

Here, lzw (for “long zip with”) is similar to zipWith, but returns a list as long as
its longer argument [7]:

lzw :: (a → a → a)→ [a ]→ [a ]→ [a ]
lzw f (x : xs) (y : ys) = f x y : lzw f xs ys
lzw f [ ] ys = ys
lzw f xs [ ] = xs

For example, with t as in Section 2, we have:

levels t = [ [3],
[1, 4],
[1, 5, 9, 2]

]

3 1 1

5

4 9

2

Given level-order enumeration, breadth-first enumeration is obtained by
concatenation:

bf :: Tree a → [a ]
bf = concat ◦ levels

so that bf t = [3, 1, 4, 1, 5, 9, 2].

Now, enumeration is invertible, in the sense that one can reconstruct the tree
given its shape (a tree of units) and its level-order enumeration (a list of elements).
One way to define the inverse process is to pass the level-order enumeration
around the tree, incrementally snipping bits off it. Here is a mutually recursive
pair of functions to relabel a tree with a given list of lists, returning also the
unused tails from the list of lists:

relabel :: (Tree (), [[a ]])→ (Tree a, [[a ]])
relabel (Node () ts, (x : xs) : xss) = let (us, yss) = relabelF (ts, xss)

in (Node x us, xs : yss)
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relabelF :: (Forest (), [[a ]])→ (Forest a, [[a ]])
relabelF ([ ], xss) = ([ ], xss)
relabelF (t : ts, xss) = let (u, yss) = relabel (t , xss)

(us, zss) = relabelF (ts, yss)
in (u : us, zss)

Assuming that the given list of lists is ‘big enough’—that is, each list has enough
elements for that level of the tree—the result is well-defined. Then relabel is
determined by the equivalence

relabel (t , xss) = (u, yss)⇐⇒
shape u = shape t ∧ length yss = length xss ∧ lzw (++) (levels u) yss = xss

where shape discards the elements of a tree:

shape :: Tree a → Tree ()
shape = fmap (const ())

In particular, if the given list of lists is the level-order enumeration of the tree, and
so is exactly the right size, then yss will have no remaining elements, consisting
entirely of empty levels:

relabel (shape t , levels t) = (t , replicate (depth t) [ ])

So we can factor a tree into its shape and contents, and reconstruct the tree from
such data:

split :: Tree a → (Tree (), [[a ]])
split t = (shape t , levels t)

combine :: Tree ()→ [[a ]]→ Tree a
combine u xss = fst (relabel (u, xss))

This lets us traverse a tree in breadth-first order, by performing the traversal on
the contents in isolation. We separate the tree into shape and contents, perform
a list-based traversal, and reconstruct the tree:

bftSC :: Applicative f ⇒ (a → f b)→ Tree a → f (Tree b)
bftSC f t = combine (shape t) ‹$› traverse (traverse f ) (levels t)

Incidentally, it is not necessary to have the enumeration of the tree conveniently
partitioned into levels; one can also relabel the tree just from its breadth-first
enumeration. The trick is to construct the appropriate partition of the breadth-
first enumeration into levels. There is a clever cyclic program due to Geraint
Jones [11] to do this at the same time as relabelling:

bflabel :: Tree ()→ [a ]→ Tree a
bflabel t xs = let (u, xss) = relabel (t , xs : xss) in u
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Note that xss is defined cyclically, so it is crucial that this let has letrec
semantics—that is, the variables bound on the left of the equals sign are in scope
on the right as well as in the body. Informally, the output leftovers xss on one
level also form the input elements to be used for relabelling all the lower levels.
Given this definition, we have

bflabel (shape t) (bf t) = t

for any t . We can use this approach instead in the definition of breadth-first
traversal:

bftL :: Applicative f ⇒ (a → f b)→ Tree a → f (Tree b)
bftL f t = bflabel (shape t) ‹$› traverse f (bf t)

However, both these implementations of breadth-first traversal are clunky and
inefficient, because of having to factor into shape and contents. Also, breadth-first
relabelling given only the enumeration is tricky: the program is cyclic, so doing it
in a single pass seems to require laziness [13]. We will show that this impression is
false: there are perfectly good ways of presenting it that make no use of laziness.

4 Fusing traversals via staged computation

The circular function for breadth-first relabelling is tricky because it fuses two
passes (splitting the input stream into levels, then applying these levels across the
tree) into one, entangling the two together. There is a whole class of programs
of this form: circular definitions, fusing together multiple passes into one. The
classic example is Bird’s ‘repmin’ problem [2]. Studying the structure of repmin
will help us see what is going on with breadth-first relabelling.

4.1 The repmin problem

The repmin problem is to replace every element of a tree with the minimum
element in that tree:

repmin :: Tree Int → Tree Int
repmin t = replaceT t (minT t)where

minT :: Tree Int → Int
minT (Node x [ ]) = x
minT (Node x ts) = min x (minF ts)

minF :: Forest Int → Int
minF = minimum ◦map minT

replaceT :: Tree a → b → Tree b
replaceT (Node x ts) y = Node y (replaceF ts y)

replaceF :: Forest a → b → Forest b
replaceF ts y = [replaceT t y | t ← ts ]
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but to do so in one pass rather than two. Bird’s technique is to define a composite
function that computes the minimum in a tree and replaces all elements with
a given element all in one go, and to feed the minimum output back in as the
replacement input:

repminRSB :: Tree Int → Tree Int
repminRSB t = let (u,m) = auxT t m in u
where

auxT :: Tree Int → a → (Tree a, Int)
auxT (Node x [ ]) y = (Node y [ ], x )
auxT (Node x ts) y = (Node y us,min x z )

where (us, z ) = auxF ts y

auxF :: Forest Int → a → (Forest a, Int) -- non-empty forest
auxF ts y = (us,minimum ys)

where (us, ys) = unzip [auxT t y | t ← ts ]

Note that the m in repminRSB is defined cyclically, as with Jones’s breadth-first
relabelling, so that let must have letrec semantics.

But Bird’s circular program making essential use of letrec semantics and
laziness is not the only way to solve the repmin problem. Pettorossi and Skowron
[15,16] show how to get the same results using only higher-order functions, and
needing only call-by-value evaluation. Pettorossi’s solution is as follows:

repminADP :: Tree Int → Tree Int
repminADP t = let (u,m) = auxT t in u m
where

auxT :: Tree Int → (a → Tree a, Int)
auxT (Node x [ ]) = (λy → Node y [ ], x )
auxT (Node x ts) = (λy → Node y (us y),min x z )

where (us, z ) = auxF ts

auxF :: Forest Int → (a → Forest a, Int) -- non-empty forest
auxF ts = (λy → map ($y) us,minimum ys)

where (us, ys) = unzip [auxT t | t ← ts ]

Where Bird’s auxT takes a replacement value as an input, and returns an updated
tree, Pettorossi’s auxT takes no such input, and returns instead a function from
replacement value to updated tree. Where Bird’s main function has a circular
definition, feeding the output minimum back in as an input and returning only
the updated tree, Pettorossi’s main function is not circular (the let need not be
treated as a letrec), and the output function is applied to the output minimum.
Danvy et al. [4] say more about the relationship between these two approaches.

Pettorossi’s approach neatly makes explicit the data dependencies, and there-
fore the sense in which the components of the solution are compositional, in
a way that Bird’s approach does not. Specifically, it is explicit in Pettorossi’s
program that the output minimum does not depend on the input replacement
value—because there is no input replacement value upon which to depend. In
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contrast, the input replacement value y in Bird’s auxT is in scope for the defini-
tion of the output minimum; it takes some kind of program analysis to confirm
that x , min x z , and minimum ys are all independent of y , as required in order
for the letrec to be productive and the result to be properly defined.

4.2 Fusing traversals

The crucial ingredient in fitting this development into our framework is an
appropriate fusion rule for traversals. Informally, two consecutive traversals over
the same data structure with the same class of effects can be fused into a single
traversal with a composite body. Formally, with applicative functor F , traversable
data structure t :: T A, and traversal bodies f :: A→ F B and g :: A→ F C , we
have:

traverse f t ⊗ traverse g t = fmap unzip (traverse (λx → f x ⊗ g x ) t)

where unzip separates a structure of pairs into a pair of structures:

unzip :: Functor t ⇒ t (a, b)→ (t a, t b)
unzip t = (fmap fst t , fmap snd t)

We will only use this rule in the special case in which f returns unit (that is,
B = ()), or returns values that we discard. Then no unzipping is required:

traverse f t ∗› traverse g t = traverse (λx → f x ∗› g x ) t

But neither fusion rule can hold in general, because of the order of effects: on
the left, all the f -effects precede any of the g-effects, and on the right they are
interleaved.

The interleaving would be irrelevant if F were commutative: that is, if

xs ⊗ ys = fmap twist (ys ⊗ xs)

for all xs :: F A, ys :: F B . But that condition is quite restrictive, ruling out in
particular anything stateful. However, the interleaving is still irrelevant even when
F is not commutative, provided more specifically that the f -effects commute with
g-effects, in the sense that

f x ⊗ g y = fmap twist (g y ⊗ f x )

for all x , y . With this assumption we can prove both fusion rules using the
Representation Theorem for applicative traversals [1]; the proof is given in
Appendix A.

In particular, whenever f and g specify effects that occur in distinct phases
of a two-phase computation, they will commute: it doesn’t matter whether you
say “do X now and Y later” or “do Y later and X now”, because either way X is
enacted before Y. So let us consider two-phase computations.
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4.3 Day convolution

The Day convolution [17] Day F G of two functors F ,G is given by:

data Day f g a where
Day :: ((a, b)→ c)→ f a → g b → Day f g c

Thus, Day f xs ys with xs :: F A, ys :: G B represents a two-phase computation,
with subcomputation xs happening in phase one generating effects in F , and
ys in phase two generating effects in G . It is convenient to package this pair
up with a function f :: (A,B)→ C to combine the results from the two phases.
This packaging is known as the “co-Yoneda trick”, and it straightforwardly turns
Day F G into a functor:

instance Functor (Day f g)where
fmap g (Day f xs ys) = Day (g ◦ f ) xs ys

Moreover, Day F G is applicative when F ,G are applicative, with pointwise
combination:

instance (Applicative f ,Applicative g)⇒ Applicative (Day f g)where
unit = Day unitr unit unit
Day f xs ys ⊗Day g zs ws = Day (cross f g ◦ exch4 ) (xs ⊗ zs) (ys ⊗ ws)

where

cross :: (a → b)→ (c → d)→ (a, c)→ (b, d)
cross f g (x , y) = (f x , g y)

And there are two ways to inject a computation, one for each phase:

phase1 :: (Applicative f ,Applicative g)⇒ f a → Day f g a
phase1 xs = Day unitr xs unit

phase2 :: (Applicative f ,Applicative g)⇒ g a → Day f g a
phase2 xs = Day unitl unit xs

Crucially for us, computations in different phases commute:

phase1 xs ⊗ phase2 ys = fmap twist (phase2 ys ⊗ phase1 xs)

When the two phases share a class of effects, we can combine the two phases,
running one after the other and post-processing the results:

runDay :: Applicative f ⇒ Day f f a → f a
runDay (Day f xs ys) = fmap f (xs ⊗ ys)

For example, we can send a two-part greeting in separate phases:
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〉〉〉 runDay (phase1 (putStr "Hello ") ∗›
phase2 (putStr "World"))

Hello World

It doesn’t matter if we specify those two phases in the opposite order:

〉〉〉 runDay (phase2 (putStr "World") ∗›
phase1 (putStr "Hello "))

Hello World

We can even interleave the specification of fragments from different phases:

〉〉〉 runDay (phase1 (putStr "Hel") ∗›
phase2 (putStr "World") ∗›
phase1 (putStr "lo "))

Hello World

4.4 Repmin in two phases

Returning now to the repmin problem, we have first to formulate it as an effectful
computation. We could use the state monad, writing minimum values to the
state in the first phase then reading the replacement value from the state in
the second. But those two phases use the state in different ways: computing the
minimum writes to the state without reading from it, and replacing tree elements
reads from the state without writing to it. So a more precise expression of the
two-phase solution would use two different classes of effect, writing and reading.

We therefore use the Writer and Reader monads respectively. For a monoid
W , the writer monad Writer W is essentially pairing with the written value W :

runWriter :: Writer w a → (a,w)

and provides an operation

tell :: Monoid w ⇒Writer w ()

to ‘write’ a value. For arbitrary type R, the reader monad Reader R essentially
comprises functions from the read value R:

runReader :: Reader r a → (r → a)

and provides an operation

ask :: Reader r r

to ‘read’ a value. We will also use the wrapper type Min to construct the monoid
Min Int , with minimum as the binary operator and the least Int value as unit:
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Min :: Int → Min Int
getMin :: Min Int → Int

Therefore we work in Day (Writer (Min Int)) (Reader (Min Int)), the Day con-
volution of the two effects using a common value type. We introduce four abbre-
viations:

type WInt = Writer (Min Int)

tellMin :: Int →WInt ()
tellMin x = tell (Min x )

type RInt = Reader (Min Int)

askMin :: RInt Int
askMin = fmap getMin ask

The core of the computation is the following function:

repminAux :: Tree Int → Day WInt RInt (Tree Int)
repminAux t = phase1 (minAux t) ∗› phase2 (replaceAux t)

where the first phase writes each element in turn:

minAux :: Tree Int →WInt ()
minAux (Node x ts) = tellMin x ∗› mapM_ minAux ts

and the second phase reads a fixed replacement value for each element:

replaceAux :: Tree Int → RInt (Tree Int)
replaceAux (Node x ts) = Node ‹$› askMin ‹∗› (mapM replaceAux ts)

In fact, both phases are (depth-first) instances of traverse over trees—at least,
if we allow the result returned in the first phase, which we discard anyway, to be
a tree instead of void:

repminAux ′ :: Tree Int → Day WInt RInt (Tree Int)
repminAux ′ t = phase1 (minAux ′ t) ∗› phase2 (replaceAux ′ t)

minAux ′ :: Tree Int →WInt (Tree ())
minAux ′ = traverse (λx → tellMin x )

replaceAux ′ :: Tree Int → RInt (Tree Int)
replaceAux ′ = traverse (λx → askMin)

Now, phase1 and phase2 are applicative morphisms, so by the naturality
axiom of traversal we have

phase1 (traverse f ) = traverse (phase1 f )

and similarly for phase2 . Therefore we can move the phase coercions inside the
traversals:
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repminAux ′′ :: Tree Int → Day WInt RInt (Tree Int)
repminAux ′′ t = minAux ′′ t ∗› replaceAux ′′ t

minAux ′′ :: Tree Int → Day WInt RInt (Tree ())
minAux ′′ = traverse (λx → phase1 (tellMin x ))

replaceAux ′′ :: Tree Int → Day WInt RInt (Tree Int)
replaceAux ′′ = traverse (λx → phase2 askMin)

Finally, the two traversal bodies commute, because they are in different phases,
so we can fuse the two traversals into one:

repminAux ′′′ :: Tree Int → Day WInt RInt (Tree Int)
repminAux ′′′ = traverse (λx → phase1 (tellMin x ) ∗› phase2 askMin)

To summarize the development:

phase1 (traverse tellMin t) ∗› phase2 (traverse (λx → askMin) t)
= { naturality in applicative functor }

traverse (phase1 ◦ tellMin) t ∗› traverse (λx → phase2 askMin) t
= { fusion of traversals }

traverse (λx → phase1 (tellMin x ) ∗› phase2 askMin)

So repminAux ′′′ describes a one-pass traversal over the tree, generating a two-
phase computation for later execution.

Now we turn to the question of extracting the Tree Int → Tree Int outer
function from the above core. We can run a computation in the Day convolution
of Writer S and Reader S for the same type S by extracting the writer and
reader components in parallel, as follows:

parWR :: Day (Writer s) (Reader s) a → a
parWR (Day f xs ys) = let ((x , s), y) = (runWriter xs, runReader ys s)

in f (x , y)

Note that this is circular, with s appearing on both sides of the local declaration,
so the let must have letrec semantics. In particular,

repminWRRSB :: Tree Int → Tree Int
repminWRRSB t = parWR (repminAux ′′′ t)

is Bird’s circular, lazy solution to the repmin problem.
Conversely, we can extract the writer component then the reader component

sequentially:

seqWR :: Day (Writer s) (Reader s) a → a
seqWR (Day f xs ys) = let (x , s) = runWriter xs

y = runReader ys s
in f (x , y)

Now there is no circularity, and a plain non-recursive let suffices. In particular,
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repminWRADP :: Tree Int → Tree Int
repminWRADP t = seqWR (repminAux ′′′ t)

is Pettorossi’s non-circular, higher-order solution to the repmin problem. In a
lazy language, clearly parWR and seqWR are equal, and so too therefore are
repminWRRSB and repminWRADP.

Observe that in both the lazy and strict solutions the values xs and ys are
nested tuples of values: the values in xs are all the unit, and the values in ys are
all the minimum value. The function f picks the values out of ys and assembles
them into the resulting tree; xs is ignored. A biased version

data Day ′ f g a where
Day ′ :: f (b → a)→ g b → Day ′ f g a

of Day convolution would avoid constructing the nested structure for xs in the
first place.

5 Multiple phases

We now generalize from two-phase computations to multiple (zero or more) phases
[5]:

data Phases f a where
Pure :: a → Phases f a
Link :: ((a, b)→ c)→ f a → Phases f b → Phases f c

Here, Pure produces a chain with no effectful phases, and Link adds one more
effectful phase to the chain. It is basically a homogeneous iteration of Day
convolution (Link constructs the Day convolution of f with Phases f ), just as
lists are essentially a homogeneous iteration of pairing (with cons pairing a list
head with a tail). There is a single initial value as the base case; each additional
link in the chain adds a combining function and a collection of values; and the
types are all compatible “in the obvious way”. For example, for some given base
applicative functor F , we can link together components of types

z :: Char
ys :: F Float
g :: (Float ,Char)→ String
xs :: F Bool
f :: (Bool ,String)→ Int

to form a chain

example = Link f xs (Link g ys (Pure z )) :: Phases F Int

We will always have the f argument to Phases be at least a functor (justifying
the phrase “a collection of” above), in which case Phases f is also a functor:
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instance Functor f ⇒ Functor (Phases f )where
fmap g (Pure x ) = Pure (g x )
fmap g (Link f xs ys) = Link (g ◦ f ) xs ys

That is, example is a symbolic representation of a collection of Ints.

5.1 Free applicatives

Capriotti and Kaposi [3] show that the datatype Phases constructs the free
applicative functor on a given functor argument. We won’t dwell on what “free”
means here; we will observe simply that Phases f can be given applicative
structure when f is a functor:

instance Functor f ⇒ Applicative (Phases f )where -- not used
unit = Pure ()
Pure x ⊗ ys = fmap (x , ) ys
Link f xs ys ⊗ zs = Link (λ(x , (y , z ))→ (f (x , y), z )) xs (ys ⊗ zs)

Informally, this defines ⊗ to concatenate two of these chains. Indeed, if we define
the ‘length’ of such a chain to be the number of Link constructors:

chlen :: Phases f a → Int
chlen (Pure x ) = 0
chlen (Link f xs ys) = 1 + chlen ys

then chlen (xs ⊗ ys) = chlen xs + chlen ys.
However, this canonical applicative structure on chains is not helpful when

considering multiple-phase computations. Concatenation of chains amounts to
a sequential scheduling of effects: xs ⊗ ys schedules all the phases of xs first,
followed by all the phases of ys. It is more useful to schedule phases in parallel:
xs ⊗ ys should mean “in phase 1, execute phase 1 of xs and then phase 1 of ys,
in phase 2, execute phase 2 of xs and phase 2 of ys,” and so on.

The corresponding product operation with these parallel semantics should ‘zip’
together two chains; and this should be a ‘long zip’, returning a chain as long as
its longer argument—as we already used for breadth-first enumeration. In order
to combine elements of the chain pointwise, we need the stronger assumption
that the f argument is itself applicative and not merely a functor [12]:

instance Applicative f ⇒ Applicative (Phases f )where
unit = Pure ()
Pure x ⊗ ys = fmap (x , ) ys
xs ⊗ Pure y = fmap (, y) xs
Link f xs ys ⊗ Link g zs ws = Link (cross f g ◦ exch4 ) (xs ⊗ zs) (ys ⊗ ws)

Now we have chlen (xs ⊗ ys) = max (chlen xs) (chlen ys).
Given that the chain is homogeneous and the functor argument is applicative,

we can run each of the phases in a chain in turn to extract the collection of
elements it represents:
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runPhases :: Applicative f ⇒ Phases f a → f a
runPhases (Pure x ) = pure x
runPhases (Link f xs ys) = fmap f (xs ⊗ runPhases ys)

Thus, runPhases example consists of values f (x , g (y , z )) where x , y are drawn
pointwise from xs, ys (each of the first elements of xs, ys combined, then each
of the second elements, and so on). In contrast, if we know no more about the
functor argument, the only expansion we can give is to a nested collection of
results: we could run the phases of example to yield an F (F Int), containing
values f (x , g (y , z )) where x , y are drawn from the cartesian product of xs, ys.
On the other hand, if we knew further that the applicative argument were a
monad, we could flatten the nesting to a single level.

5.2 Two phases, more or less

By design, Phases f is a generalization of the homogeneous Day convolution
Day f f . So of course we can inject the latter into the former:

inject :: Applicative f ⇒ Day f f a → Phases f a
inject (Day f xs ys) = Link f xs (Link unitr ys (Pure ()))

And of course, chlen (inject xs) = 2 for any two-phase computation xs.
Analogous to phase1 and phase2 , we define one function that embeds a

computation into an arbitrary phase:

phase :: Applicative f ⇒ Int → f a → Phases f a
phase 1 = now
phase i = later ◦ phase (i − 1)

where now embeds at phase one:

now :: Applicative f ⇒ f a → Phases f a
now xs = Link unitr xs (Pure ())

and later shifts everything one phase later:

later :: Applicative f ⇒ Phases f a → Phases f a
later xs = Link unitl unit xs

Note that we count phases from one, so that chlen (phase i xs) = i . Moreover,
inject ◦ phase1 corresponds to phase 1. They are not quite equal as values of type
Phases (the chain length of the former is two, and of the latter is one), but we
do have

runPhases ◦ inject ◦ phase1 = runPhases ◦ phase 1 = id
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5.3 The ‘sort-tree’ problem

A related problem to repmin is the ‘sort-tree’ problem [2,16], which extracts the
elements of a tree as a list, sorts that list into ascending order, then relabels
the tree with the sorted list—but again does so in a single pass. (Bird called it
‘sort-tips’, because in his tree datatype the elements were all at the tips.)

We start with three phases, although only the first and last phase involve
traversing the tree:

sortTree :: Ord a ⇒ Tree a → Tree a
sortTree t = evalState (runPhases (sortTreeAux t)) [ ]

sortTreeAux :: Ord a ⇒ Tree a → Phases (State [a ]) (Tree a)
sortTreeAux t = phase 1 (traverse push t) ∗›

phase 2 (modify sort) ∗›
phase 3 (traverse (λx → pop) t)

The computation uses the state monad, where the state is a list of elements. We
use the following operations provided by the state monad:

get :: State s s
put :: s → State s ()
modify :: (s → s)→ State s ()

The auxilliary function constructs a three-phase computation in that monad.
The main function initializes the state to the empty list, runs the three phases,
discards the final state (which will again be the empty list), and returns the final
tree. The first phase of the auxilliary function traverses the tree, pushing the
elements one by one onto the stored list:

push :: a → State [a ] ()
push x = modify (x :)

The second phase doesn’t touch the tree; it just sorts the stored list. The third
phase traverses the tree again, popping elements one by one off the stored list:

pop :: State [a ] a
pop = do {x : xs ← get ; put xs; return x }

Note that the first phase pushes the tree elements from left to right, so the
resulting list is in reverse order; but that is irrelevant as input to sorting.

As before, the specification of the three phases can be rearranged:

sortTreeAux ′ t = phase 2 (modify sort) ∗›
phase 1 (traverse push t) ∗›
phase 3 (traverse (λx → pop) t)

and traversal commutes with staging:
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sortTreeAux ′′ t = phase 2 (modify sort) ∗›
traverse (λx → phase 1 (push x )) t ∗›
traverse (λx → phase 3 pop) t

and consecutive traversals with bodies in different phases fuse:

sortTreeAux ′′′ t = phase 2 (modify sort) ∗›
traverse (λx → phase 1 (push x ) ∗› phase 3 pop) t

Using sortTreeAux ′′′ in place of sortTreeAux in sortTree solves the sort-tree
problem with—clearly!—a single traversal over the tree.

6 Breadth-first traversal in stages

Finally, let us return to breadth-first traversal. The key insight is that we can
specify such a traversal compositionally, by constructing a multi-stage compu-
tation with one phase per level of the tree. This is achieved by the auxilliary
function bftAux :

bftAux :: Applicative f ⇒ (a → f b)→ Tree a → Phases f (Tree b)
bftAux f (Node x ts)

= Node ‹$› now (f x ) ‹∗› later (traverse (bftAux f ) ts)

Informally, the root label x is processed ‘now’, in phase one. A multi-stage
computation is constructed for each child in ts, zipped together by levels using
traverse for the list of children, then postponed until one phase ‘later’. Finally,
the resulting tree is assembled by applying the constructor Node to the results of
processing the root now and the children later. Then bft is obtained by collapsing
the chain of phases into a single computation:

bft :: Applicative f ⇒ (a → f b)→ Tree a → f (Tree b)
bft f = runPhases ◦ bftAux f

It is instructive to compare bftAux above with the depth-first instance of traverse
for trees that we had in Section 2.2—essentially:

dft :: Applicative f ⇒ (a → f b)→ Tree a → f (Tree b)
dft f (Node x ts) = Node ‹$› f x ‹∗› traverse (dft f ) ts

which is recovered simply by deleting the staging annotations from bftAux .
In particular, we can relabel a tree in breadth-first order, without needing

either queues [13] or cyclicity and laziness [11]:

bfl :: Tree a → [b ]→ Tree b
bfl t xs = evalState (bft (λx → pop) t) xs

where pop is as defined for the sort-tree problem in Section 5.3.
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7 Discussion

We have presented a novel approach to multi-phase or staged computation.
By this term, we mean computations split into separate phases, in order that
intermediate phases may be extended; this is related to but distinct from the
notion of staging as run-time code generation [19].

We have shown how multi-phase computation can be expressed using a
construction related to free applicative functors, but combining structures by
‘zipping’ instead of ‘concatenating’ them. Two-phase computation is captured
by Day convolution, which Rivas and Jaskelioff [17] showed to be the natural
monoidal structure underlying applicative functors. Multi-stage computation is
captured by iterated Day convolution, which is the same datatype as for free
applicative functors [3] but with a different applicative instance. Among other
examples, we have used these constructions to clarify Bird’s and Pettorossi’s
solutions to the ‘repmin’ problem, doing away with the laziness inherent in Bird’s
solution; and to provide an implementation of breadth-first effectful traversal
that avoids a clumsy factorization into shape and contents.

That implementation of breadth-first effectful traversal can be used in par-
ticular to implement breadth-first relabelling of a tree with a stream of fresh
labels. Our multi-stage solution to that problem avoids the circular definition
and inherent laziness in our earlier program [11]. Okasaki [13] discusses the same
problem, providing a solution that requires a more sophisticated queue datatype
in order to achieve linear-time execution. Okasaki states that “lazy evaluation is
required. Without lazy evaluation, you [. . . ] would need [. . . ] a separate pass”;
we have shown that neither a fancy queue datatype nor laziness are needed in
order to avoid multiple passes. One might even say that Okasaki’s queues are a
form of staging too, postponing actions for later execution.

To be fair, one might argue about the extent to which any of these solutions
to the repmin problem and its ilk have “eliminated multiple traversals”. It is clear
that the original input data structure is traversed only once; but there is a case
to be made that a copy is created in the first pass and traversed in the second
pass. Pettorossi’s solution repminADP explicitly constructs a lambda abstraction
that encodes a copy of the structure of the input tree, and then applies this
function to the replacement value. One might say that Bird’s solution repminRSB
constructs that same copy implicitly.

Anyway, we make no claims that these transformations improve running time
or space usage. More broadly, we have not concerned ourselves with making these
traversals take linear time; for example, bf in Section 3 is not linear, because of
repeated concatenations of lists. This issue can be addressed by using difference
lists, and more generally by Cayley representations [12], but is orthogonal to our
main argument.

Day convolution as defined in Section 4 is heterogeneous: the two phases
can use different classes of effect, which will of course entail different methods
of ‘running’. In contrast, the multi-stage computations defined as iterated Day
convolution in Section 5 are homogeneous: all phases must use the same class
of effects, which can then be combined using the applicative multiplication.
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This is analogous to situation with lists: ordinary pairs are heterogeneous, but
lists (iterated pairs) are homogeneous. However, with suitably expressive typing
facilities, one can define a datatype of heterogeneous lists, perhaps indexed by
a type-level list of types; and in the same way, one could define heterogeneous
multi-stage computations, indexed by a type-level list of applicative functors.
But we know of no use for such a construction; nor is it clear how in general one
would ‘run’ the heterogeneous collection of phases.

A minor point to note is that, while pure Day f f computations have only one
representation, those of Phases f have infinitely many, one for each chain length:
pure x , phase 1 (pure x ), phase 2 (pure x ), . . . This representational difference is
not significant, and thus we consider Phases f computations equal up to a pure
“tail”. In fact, phases i is only an applicative morphism for this notion of equality.
In case f is a unital applicative functor the representation could be normalised
to eliminate pure tails. Following the notion of unital monads [18], a unital
applicative functor is one for which it is possible to determine whether a given
computation is in the image of pure.
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We will use the following gadgets for products of pure functions:

cross :: (a → b)→ (c → d)→ (a, c)→ (b, d)
cross f g (x , y) = (f x , g y)

fork :: (a → b)→ (a → c)→ a → (b, c)
fork f g x = cross f g (x , x )

and their applicative counterparts for effectful functions:

crossA :: Applicative f ⇒ (a → f c)→ (b → f d)→ (a, b)→ f (c, d)
crossA f g (x , y) = f x ⊗ g y

forkA :: Applicative f ⇒ (a → f b)→ (a → f c)→ a → f (b, c)
forkA f g x = crossA f g (x , x )

The key property is for two effectful functions to commute, that is, for their
effects not to interfere with each other:

Definition 1. Given f :: A→ F B and g :: C → F D , say “f commutes with g”
if

g y ⊗ f x = fmap twist (f x ⊗ g y)

for all x :: A, y :: C .

Now for two consecutive traversals of the same data structure, if the two
bodies commute with each other, then the two traversals can be fused into one:

Theorem 2 (Fusion rule for traversals). If f :: A → F B commutes with
g :: A→ F C , then

forkA (traverse f ) (traverse g) = fmap unzip ◦ traverse (forkA f g)

The rest of this appendix proves Theorem 2.

A.1 Length-indexed vectors

We can make the statement of the Representation Theorem more precise than
was possible in Haskell at the time the theorem was published [1], by using
dependent types to be explicit about the size of a data structure. But the results
still hold without the size indexing.

The traditional datatype definition of Peano naturals

data Nat = Z | S Nat

introduces a new type Nat with new value inhabitants Z ,S N ; but it also
introduces a new kind Nat with new type inhabitants Z , S N . For example, here
is a new type Four of kind Nat , serving as a type-level representation of the
number four:
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type Four = S (S (S (S Z )))

We can use these type-level numbers to specify the size of a data structure. Here
are length-indexed vectors:

data Vec :: Nat → ∗ → ∗where
VNil :: Vec Z a
VCons :: (a,Vec n a)→ Vec (S n) a

(the uncurried VCons is for later convenience). Vectors are of course traversable,
as lists are:

instance Traversable (Vec n)where
traverse f VNil = pure VNil
traverse f (VCons (x , xs)) = fmap VCons (f x ⊗ traverse f xs)

A.2 Size-indexed trees

In the same way, we can define size-indexed trees and forests:

data TreeI :: Nat → ∗ → ∗where
NodeI :: (a,ForestI n a)→ TreeI (S n) a

data ForestI :: Nat → ∗ → ∗where
FNil :: ForestI Z a
FCons :: (TreeI m a,ForestI n a)→ ForestI (Plus m n) a

Naturally, the size of a non-empty forest FCons (t , ts) is the sum of the sizes of
t and ts, so we need type-level addition:

type family Plus (n :: Nat) (m :: Nat) :: Nat
type instance Plus Z n = n
type instance Plus (S m) n = S (Plus m n)

And of course, trees are traversable too—in various ways. Here is the definition
of depth-first traversal:

instance Traversable (TreeI n)where
traverse f (NodeI (x , ts)) = fmap NodeI (f x ⊗ traverseF f ts)where

traverseF :: Applicative f ⇒ (a → f b)→ ForestI n a → f (ForestI n b)
traverseF f FNil = pure FNil
traverseF f (FCons (t , ts)) = fmap FCons (traverse f t ⊗ traverseF f ts)
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A.3 Make functions

Definition 3. Define

type Make t n a = Vec n a → t n a

Then, for a given size-indexed traversable datatype T with corresponding traversal
function traverse, a make function for T is a polymorphic function

make :: Make T n a

that constructs a data structure from its contents, preserving those contents:

contents ◦make = contents

Here, contents returns the contents of a data structure as a list, in their order
of traversal:

contents :: Traversable t ⇒ t a → [a ]
contents = getConst ◦ traverse (λx → Const [x ])

A.4 Representation Theorem

Note that what constitutes a make function for T depends on the corresponding
traverse function, and in particular depends on the traversal order chosen for T .
For example, given that we have defined traversal of trees to be depth-first, here
is a make function of arity four for trees:

makeDF :: Make TreeI Four a
makeDF (VCons (w , (VCons (x ,VCons (y ,VCons (z ,VNil)))))) =

NodeI (w ,FCons (NodeI (x ,FCons (NodeI (y ,FNil),FNil)),
FCons (NodeI (z ,FNil),FNil)))

Diagrammatically,

〈w , x , y , z 〉  w x y

z

If we had defined traversal for trees instead to be breadth-first, this would not
be a valid make function, because it would not preserve the order of elements.

The key insight is: for a given size-indexed traversable datatype and given
definition of traversal, there is a unique corresponding make function, which
uniquely relates data structures to the underlying vector of their contents, and
traversal on the datatype to traversal on the underlying vector.
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Theorem 4 (Representation Theorem). For size-indexed traversable type
T and data structure t :: T N A, there exists a unique make function m :: (∀a .
Make T N a) and unique xs :: Vec N A such that t = m xs and contents t =
contents xs. Moreover, for any f :: B → F C and ys :: Vec N B ,

traverse f (m ys) = fmap m (traverse f ys)

where the traverse on the right-hand side is on vectors.

The earlier statement and proof of this theorem [1] was rigorous but not
formal, relying on ellipsis (“make x1 ... xn ”) for referring to the arity; we have
made it more formal by using size-indexed datatypes. But the adapted proof is
essentially the same, so we do not repeat it here.

A.5 Commutativity

Obviously, the notion of “commuting with” is symmetric, because twist is an
involution. Moreover, pairing preserves commutability:

Lemma 5. If f commutes with g and with h, then f commutes with crossA g h.

Proof. We have:

crossA g h (y , z )⊗ f x
= { crossA }
(g y ⊗ h z )⊗ f x

= { associativity }
fmap assoc (g y ⊗ (h z ⊗ f x ))

= { f commutes with h }
fmap assoc (g y ⊗ (fmap twist (f x ⊗ h z )))

= { naturality of ⊗ }
fmap assoc (fmap (cross id twist) (g y ⊗ (f x ⊗ h z )))

= { associativity }
fmap assoc (fmap (cross id twist) (fmap assoc−1 ((g y ⊗ f x )⊗ h z )))

= { assoc ◦ cross id twist ◦ assoc−1 = twist ◦ assoc−1 ◦ cross twist id }
fmap twist (fmap assoc−1 (fmap (cross twist id) ((g y ⊗ f x )⊗ h z )))

= { naturality of ⊗ }
fmap twist (fmap assoc−1 (fmap twist (g y ⊗ f x )⊗ h z ))

= { f commutes with g }
fmap twist (fmap assoc−1 ((f x ⊗ g y)⊗ h z ))

= { associativity }
fmap twist (f x ⊗ (g y ⊗ h z ))

= { crossA }
fmap twist (f x ⊗ crossA g h (y , z ))

(The step in the middle

assoc ◦ cross id twist ◦ assoc−1 = twist ◦ assoc−1 ◦ cross twist id

holds because both are the unique total function of type ((a, c), b)→ ((a, b), c).
This proof would perhaps be clearer with appropriate string diagrams.)
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Then traversal preserves commutability too:

Lemma 6. If f commutes with g, then also traverse f commutes with g (and f
commutes with traverse g, by symmetry of commutability).

Proof. We prove that if f commutes with g then

g y ⊗ traverse f xs = fmap twist (traverse f xs ⊗ g y)

for xs :: Vec N A, y :: B , f :: A→ F C , g :: B → F D , by induction on N . For the
base case, we have:

g y ⊗ traverse f VNil
= { definition of traverse on Vec }

g y ⊗ pure VNil
= { applicative interchange law: us ⊗ pure v = fmap (, v) us }

fmap (,VNil) (g y)
= { twist }

fmap twist (fmap (VNil , ) (g y))
= { fmap (u, ) vs = pure u ⊗ vs }

fmap twist (pure VNil ⊗ g y)
= { definition of traverse on Vec }

fmap twist (traverse f VNil ⊗ g y)

and for the inductive step:

g y ⊗ traverse f (VCons (x , xs))
= { definition of traverse on Vec }

g y ⊗ (fmap VCons (f x ⊗ traverse f xs))
= { naturality of ⊗ }

fmap (cross id VCons) (g y ⊗ (f x ⊗ traverse f xs))
= { f and (by induction) traverse f commute with g }

fmap (cross id VCons ◦ twist) ((f x ⊗ traverse f xs)⊗ g y)
= { cross and twist }

fmap (twist ◦ cross VCons id) ((f x ⊗ traverse f xs)⊗ g y)
= { naturality of ⊗ }

fmap twist (fmap VCons (f x ⊗ traverse f xs)⊗ g y)
= { definition of traverse on Vec }

fmap twist (traverse f (VCons (x , xs))⊗ g y)

Therefore, two traversals with bodies that commute will fuse:

Lemma 7. If f commutes with g, then traverse f fuses with traverse g on vec-
tors:

forkA (traverse f ) (traverse g) xs = fmap unzip (traverse (forkA f g) xs)

for all xs :: Vec N A.
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Proof. Proof by induction on N . For the base case:

forkA (traverse f ) (traverse g) VNil
= { definition of forkA }

traverse f VNil ⊗ traverse g VNil
= { definition of traverse on Vec }

pure VNil ⊗ pure VNil
= { applicative law }

pure (VNil ,VNil)
= { definition of unzip }

pure (unzip VNil)
= { naturality of pure }

fmap unzip (pure VNil)
= { definition of traverse on Vec }

fmap unzip (traverse (forkA f g) VNil)

For the inductive step, we use some abbreviations:

assoc4 :: (a, ((b, c), d))→ ((a, b), (c, d))
assoc4 = assoc ◦ cross id assoc−1

unassoc4 :: ((a, b), (c, d))→ (a, ((b, c), d))
unassoc4 = cross id assoc ◦ assoc−1

twist4 :: (a, ((b, c), d))→ (a, ((c, b), d))
twist4 = cross id (cross twist id)

exch4 :: ((a, b), (c, d))→ ((a, c), (b, d))
exch4 = assoc4 ◦ twist4 ◦ unassoc4

Then:

forkA (traverse f ) (traverse g) (VCons (x , xs))
= { definition of forkA }

traverse f (VCons (x , xs))⊗ traverse g (VCons (x , xs))
= { definition of traverse on Vec }

fmap VCons (f x ⊗ traverse f xs)⊗ fmap VCons (g x ⊗ traverse g xs)
= { naturality of ⊗ }

fmap (cross VCons VCons)
((f x ⊗ traverse f xs)⊗ (g x ⊗ traverse g xs))

= { associativity, twice }
fmap (cross VCons VCons ◦ assoc4 )

(f x ⊗ ((traverse f xs ⊗ g x )⊗ traverse g xs))
= { f commutes with g , so traverse f commutes with g }

fmap (cross VCons VCons ◦ assoc4 ◦ twist4 )
(f x ⊗ ((g x ⊗ traverse f xs)⊗ traverse g xs))

= { associativity, twice }
fmap (cross VCons VCons ◦ assoc4 ◦ twist4 ◦ unassoc4 )

((f x ⊗ g x )⊗ (traverse f xs ⊗ traverse g xs))
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= { exch4 }
fmap (cross VCons VCons ◦ exch4 )

((f x ⊗ g x )⊗ (traverse f xs ⊗ traverse g xs))
= { definition of forkA, induction }

fmap (cross VCons VCons ◦ exch4 )
(forkA f g x ⊗ fmap unzip (traverse (forkA f g) xs))

= { naturality of ⊗ }
fmap (cross VCons VCons ◦ exch4 ◦ cross id unzip)

(forkA f g x ⊗ traverse (forkA f g) xs)
= { unzip (see below) }

fmap (unzip ◦VCons) (forkA f g x ⊗ traverse (forkA f g) xs)
= { definition of traverse on Vec }

fmap unzip (traverse (forkA f g) (VCons (x , xs)))

The penultimate step

unzip ◦VCons = cross VCons VCons ◦ exch4 ◦ cross id unzip

is basically the definition of unzip on a VCons, where both sides have type

((a, b),Vec n (a, b))→ (Vec (S n) a,Vec (S n) b)

Now Theorem 2 reduces to Lemma 7, by the Representation Theorem (Theo-
rem 4).

Proof (of Theorem 2). We have t :: T N A for size-indexed traversable type T
and arity N , a make function m :: ∀a . Make T N a and contents xs :: Vec N A
such that t = m xs, and traversal bodies f :: A → F B and g :: A → F C that
commute. Then:

forkA (traverse f ) (traverse g) t
= { Representation Theorem }

forkA (fmap m ◦ traverse f ) (fmap m ◦ traverse g) xs
= { naturality of forkA }

fmap (cross m m) (forkA (traverse f ) (traverse g) xs)
= { traverse fusion on vectors }

fmap (cross m m ◦ unzip) (traverse (forkA f g) xs)
= { cross m m ◦ unzip = unzip ◦m (see below) }

fmap (unzip ◦m) (traverse (forkA f g) xs)
= { Representation Theorem }

fmap unzip (traverse (forkA f g) t)

where the penultimate step

cross m m ◦ unzip = unzip ◦m

is discharged as follows:
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cross m m ◦ unzip
= { definition of unzip }

cross m m ◦ fork (fmap fst) (fmap snd)
= { fusing cross and fork }

fork (m ◦ fmap fst) (m ◦ fmap snd)
= { naturality of m }

fork (fmap fst ◦m) (fmap snd ◦m)
= { fork fusion }

fork (fmap fst) (fmap snd) ◦m
= { definition of unzip }

unzip ◦m
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