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Abstract

A type-indexed functionis a function that is defined for each
member of some family of types. Haskell's type class mechan-
ism provides collections afpen type-indexed functionis which

the indexing family can be extended by defining a new type class
instance but the collection of functions is fixed. The purpose of this
paper is to preseffiypeCasea design pattern that allows the defin-
ition of closed type-indexed functignis which the index family

is fixed but the collection of functions is extensible. It is inspired
by Cheney and Hinze's work on lightweight approaches to gen-
eric programming. We generalise their techniques dssign pat-
tern. Furthermore, we show thatpe-indexed functionsith type-
indexed typesand consequentlgeneric functionswith generic
types can also be encoded in a lightweight manner, thereby over-
coming one of the main limitations of the lightweight approaches.

Categories and Subject DescriptorsdD.3.3 [Programming Lan-
guage§ Language Constructs and Features

General Terms Languages

Keywords Generic programming, type classes, type-indexed func-
tions

1. Introduction

A type-indexed functiois a function that is defined for each mem-
ber of a family of types. One of the most popular mechanisms
implementing this notion is the Haskell [3fjpe classystem. A
type class consists of a collection of related type-indexed functions;
the family of index types is the set of instances of the type class.

The original concept of design patterras its origins in Chris-
topher Alexander’s work in architecture, but it has been picked up
with enthusiasm by the object-oriented programming community.
The idea of design patterns is to capture, abstract and record bene-
ficial recurring patterns in software design. Sometimes those pat-
terns can be captured formally, as programming language con-
structs or software library fragments. Often, however, the appro-
priate abstraction cannot be directly stated, either because of a lack
of expressiveness in the language, or because there is inherent am-
biguity in the pattern — Alexander describes a pattern as a solution
‘you can use [...] a million times over, without ever doing it the
same way twice’ [1]. In this case, one must resort to an informal
description. Even if the abstraction itself can be captured formally,
one might argue that a complete description of the pattern includes
necessarily informal information: a name, motivation, examples,
conseqguences, implementation trade-offs, and so on.

In this paper, we present a technique that allows the definition of
closed type-indexed functions, as opposed to the open type-indexed
functions provided by type classes; we do so in the format of a
design pattern. Our inspiration comes from previous research on
lightweight approaches to generic programming (LAGP). In partic-
ular, Hinze’s two papers “A Lightweight Implementation of Gener-
ics and Dynamics” [4] (LIGD, with James Cheney) and “Generics
for the Masses” [19] (GM) provide our motivation and basis.

Those two papers focus on the particular context of generic
programming, and provide a number of techniques that can be used
to encode first-class generic functions in Haskell. However, those
techniques have a wider applicability, not addressed by Hinze. We
propose a generalisation of the technique, and demonstrate its use
in a variety of applications. Our specific contributions are:

Type classes provide just one possible interpretation of the notion Generalisation of the lightweight approaches\We provide tem-

of type-indexed functions. In particular, they assumepen-world
perspective: the family of index types is extensible, by defining a
new type class instance for that type, but the collection of type-

plates for designing closed type-indexed functions, abstracting
away from generic programming. The techniques in LIGD and
GM are instances of these templates.

indexed functions is fixed in the type class interface so needs to A design pattern for type-indexed functions.We document this

be known in advance. For some applications — particularly when
providing a framework for generic programming — the family of
index types is fixed (albeit large) and the collection of type-indexed
functions is not known in advance, so a closed-world perspective
would make more sense.
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generalisation as a design pattern.

Type-indexed functions with type-indexed typesWe show that
with our more general interpretation of the design pattern, type-
indexed functions with type-indexed types are also instances of
the design pattern. As a consequence, generic functions with
generic types can also be encoded in a lightweight manner.
Thus, we remove one of the main limitations of the lightweight
approaches.

Other applications. We present two other interesting applications

of the pattern: PolyP in Haskell 98, and a very flexipkintf

function.

The remainder of this paper is structured as follows. In Section 2
we review the lightweight approaches to generic programming. In
Section 3 we abstract the essence of the technique as a design pat-
tern. Section 4 presents two other small applications of the design



pattern, and Section 5 uses it to model type-indexed functions with
type-indexed types. Section 6 concludes.

rList::V a. Rep a— Rep|a]
rList ra = RSum rUnit(rProd ra (rList ra)) (EP from tg

] ] ] ] wherefrom|] = Inl Unit
2. Lightweight generic programming from (x:xs) = Inr (Prod x X9
We start by summarising the earlier work on lightweight ap- to (InlUnit) = H.
proaches to generic programming underlying our generalisation. to  (Inr (Prod xx§) = x:xs

. . . _ Note that the representation of a recursive datatype is an infinite
“A ngh_twelght Implementation of Generics and value; but, because of laziness, this poses no problem.
Dynamics” Having constructed representation values for arbitrary types, the

Cheney and Hinze [4] show how to do a kind of generic program- final step is to define generic functions. Using the representation

ming, using only the standard Hindley-Milner type system exten- @S & basis for structural case analysis, it is possible to simulate a
ded with existential types. The index family consists of hierarchical tyPecase [16]. For example, here is a definition of generic equality:

2.1

sums and products of integers and characters. This family is enough
to represent a large subset of Haskell 98 datatypes (including mu-
tually recursive and nested datatypes).

dataSumab=Inla|Inrb

dataProd a b=Prod a b

dataUnit = Unit

This style of generic programming requires a representation of

types as values in order to support typecase analysis. The key idea

of the LIGD paper is to use a parametrised type as the type rep-

resentation, ensuring that the type parameter reflects the type being
represented. Some Haskell implementations have recently been ex-

tended withgeneralised algebraic datatypéSADTSs) [32], which

eq:Vt. Rept—t—t— Bool

eq(RIntep tyto=fromept == fromepp
eq(RChar ep titp=fromept == fromepp
eq(RUnitep _ _ =True

eq(RSumrarb ep t; tp = case(from ep §,from ep b) of

Inlx,Inly) —eqraxy
Inrx,Inry) —eqrbxy
_ — False
eq(RProd rarb ep t; t; = case(from ep §,from ep %) of
(Prod xy,Prod X y') —
eqraxxAneqrbyy
Using Haskell type classes, it is possible to make the use of generic

(
(
(

can be used for this purpose; but LIGD predates that extension, andfunctions even more convenient: the clgpeReman be used to

depends only on existential quantification.

dataRep t=
RUNit (t < Unit)
| RInt (t < Int)
| RChar (t < Char)
(

|Vab. RSum(Rep 3 (Repb (t — (Sumab)
| Vab. RProd(Rep 3 (Rep b (t — (Prod ab)

dataa < b=EP{from::a— b,to::b— a}

(Note that the universal quantifications are in contravariant posi-
tions, so act existentially.)

The intention is that the equivalence type- b represents em-
bedding/projection pairs witnessing to an isomorphism between
typesa andb, thereby enforcing a correspondence between types
andRep t Of course, within Haskell, it is not possible to automatic-
ally verify the isomorphismsfjomo to = id andtoo from = id), so
these laws should be externally checked. Furthermore, we follow
the convention of ignoring the ‘ugly fact’ of bottom values destroy-
ing the ‘beautiful theory’ of many such isomorphisms [8].

A common case is with the trivial embedding/projections.

self:a«—a

self = EP{from=id,to=id}

Usingself, we can provide a set of smart constructors forRep
type, yielding representations of types by themselves.

rUnit :: Rep Unit

rUnit = RUnit self

rint::Rep Int

rint = Rint self

rChar::Rep Char
rChar = RChar self

rSum: Rep a— Rep b— Rep(Sumab
rSum rarb= RSum ra rb self

rProd:: Rep a— Rep b— Rep(Prod a b

rProd ra rb = RProd ra rb self
Using these smart constructors, we can build representations for
recursive datatypes, by making explicit the structure isomorphism
of the datatype. For instance, the isomorphism defining lists is
[a] 2 1+ ax [a], and so the corresponding type representation is
as follows.

build values of typdRep timplicitly.
classTypeRep tvhere
rep::Rept
instanceTypeRep Unitvhere
rep= rUnit
instanceTypeRep Intvhere
rep=rint

instanceTypeRep Chawhere
rep= rChar

instance(TypeRep alypeRep b=- TypeRegSum a h where
rep=rSum rep rep

instance(TypeRep alypeRep b=- TypeReProd a b where
rep= rProd rep rep

instanceTypeRep &> TypeRefa] where
rep= rList rep
For example, we can now express generic equality with an implicit
rather than explicit dependence on the representation.
ceq:Vt. TypeRep &t —t — Bool
ceqiitr=eqrepity

2.2

Hinze's later GM approach [19] has a very similar flavour to LIGD;
however, somewhat surprisingly, Hinze shows how to do generic
programming strictly within Haskell 98, which does not support
rankn types or even existential types. Nevertheless, there is a close
relationship between type classes and polymorphic records (for
example, one possible translation of type classes into System F uses
polymorphic records), and these require something like existential
types for their encoding. Thus, type class instances can be seen
as implicitly-passed records. Hinze uses this observation to deliver
two implementations of generics.

“Generics for the Masses”

2.2.1 Generic functions on types

The first implementation of generics in GM (“GM1”, from now
on) can be seen as a direct descendent of LIGD. Instead of using a



datatype with an existential quantification, Hinze uses a type class
Generic
classGeneric gwhere

unit ::g Unit

sum  ::(TypeRep alypeRep b= g (Sumab
prod ::(TypeRep alypeRep b= g (Prod a b
datatype: TypeRep & (b—a) —gb

char  :gcChar

int mgint

The parameteg of the type class represents the generic function,

2.2.2 Generic functions on type constructors

The second implementation of generics in GM (“GM2") permits
parametrisation by type constructors rather than by types. For ex-
ample, whereas the generic functig8izeof the previous section
has typea — Int for all first-order types in the type clas3ypeRep
in this section we show a generic functig8izewith typef a— Int
for all type constructor§ in the constructor clagsunctorRep

Lifting in this fashion introduces the possibility of ambiguity:
a typeg (f a) may be considered a type constructpapplied
to a typef a, or the composition of constructogsandf applied

and each of the member functions of the type class encodes theto typea. Therefore we must explicitly pass type representations,

behaviour of that generic function for one structural case. Generic
functions over user-defined types can also be defined using the
datatypetype case. In this case, the isomorphism between the
datatype and its structural representation must be provided.

The type clasSypeReps used to select the appropriate beha-
viour of the generic function, based on the type structure of its ar-
gument. The role of this type class is somewhat analogous to the
synonymous one in Section 2.1. One contrast with LIGD is that
TypeRegor GM1 is not optional, because the type representations
are always implicitly passed.

classTypeRep avhere

typeRep: Genericg=g a
instanceTypeRep Unitvhere
typeRep= unit

instance(TypeRep alypeRep b=- TypeRegSum a h where
typeRep=sum

instance(TypeRep alypeRep b=- TypeRegProd a b where
typeRep= prod

instanceTypeRep Chawhere
typeRep= char

instanceTypeRep Intvhere
typeRep= int
For GM, the type clas3ypeRepdirectly selects the appropriate
behaviour for a particular structural case from the generic function.
In contrast, for LIGD, the corresponding type claypeRepbuilds
a value as a type representation for a particular structural case,

and this representation is then used by a generic function to select

the appropriate behaviour. The effect is the same, but GM is more
direct.

A new generic function is defined via an instanceG#neric
providing an implementation for each structural case. For instance,
the generic functiomSizethat counts all the elements of tyjmat
andChar in some structure could be encoded as follows.

newtypeGSize a= GSizg appGSize.a — Int}

instanceGeneric GSiz&vhere

unit = GSize(A_— 0)
sum = GSize(At — caset of
Inl x — gSize x
Inry — gSize y
prod = GSize(At — caset of
Prod x y— gSize x-gSize y
datatype isc= GSize(At — gSize(fromiso )
char =GSizeA_— 1)
int =GSizeA_— 1)
gSize: TypeRep & a— Int
gSize= appGSize typeRep

A record of typeGSize acontains a single functioappGSizeof
typea— Int, which can be used to compute the number of elements
in some structure of typa. The functiongSize which is the actual
generic function, simply extracts the sappGSizdield from a
record of the appropriate type, built automaticallytpgeRep

increasing flexibility but decreasing brevity. This is reflected in the

analogous type clagdeneric where the implicitly-passetiypeRep

contexts are now changed to explicitly-passed functions.
classGeneric gwhere

unit g Unit

sum :ga—gb—g(Sumab
prod :ga—gb—g(Prodab
datatype: (b—a) —ga—gb
char :gChar

int :glint

However, this modification of the type class restricts expressivity,
since the only generic function we can call is the one being defined,
recursively. Consequently, generic functions that perform calls to
other generic functions (as when defining generic membership in
terms of generic equality) become harder to define.

With the new Generic class it is also possible to build the
values for type representations automatically, using another type
classTypeRepJust as with LIGD, this class now becomes optional.
Alternatively, we can use a type claBsnctorRepto capture the
notion of unary type constructor éunctor.

classFunctorRep fwhere

functorRep: Genericg=ga— g (f a)
We have to define similar classes for each arity of type constructor.

Generic functions are defined in a very similar fashion to GM1.
For instance, the typ€ount abelow represents a generic function
that counts zero for each occurrence of a value of typer Char
in some structure of typa.
newtypeCount a= Count{ applyCount:a — Int}

instanceGeneric Counwvhere
unit = Count(A_-—0)
sumab = Count(Ax — casex of
Inll — applyCount al
Inrr — applyCount b §
prod ab = Count(A(Prod xy) —
applyCount a x-applyCount b y
datatype iso a= Count(Ax —
applyCount gfromiso %)
char = Count(A_—0)
int = Count(A_— 0)
While this function by itself approximatesonst0, it is the basis
for other more useful functions that really count the number of ele-
ments in some structure in some way, by overriding the behaviour
of the basic generic function for occurrences of the type parameter:
gSize: FunctorRep f= f a — Int

gSize= applyCount{functorReCount(A_ — 1)))

The payback of using-unctorRepis that we can define the
behaviour of the generic function for its parameters. For instance,
we could sum all the integers in some integer-parametrised datatype
by using the identity function to define the behaviour of the generic
function for the type parameter.

gSum: FunctorRep f= f Int — Int

gSum= applyCountfunctorRepCount id))



3. Closed type-indexed functions

In LIGD and GM, we are shown three methods for implementing
closed type-indexed functions. Those three variations give us dif- Collaborations:
ferent expressive power, and impose different constraints on the
type system. A choice of implementation techniques, together with
technical trade-offs making no one method superior in all circum-
stances, is characteristic of design patterns.

In this section, we introduce the TypeCase design pattern,
capturing the different techniques for implementing closed type-
indexed functions.

¢ Type-indexed functiomefining the type-indexed function using
an instance of theypecase

e The typecaseuses thestructural casesin order to create a
corresponding number of cases that can be used to define the
type-indexed function

e The dispatcheruses thestructural casesin order to create
a corresponding number of instances that will forward some
value of that family of structural cases into the corresponding
case in theypecaseomponent.

¢ Thetype-indexed functiofT IF) uses an instance of tiygecase
in order to implement the desired functionality for the type-
indexed function.

The TypeCase design pattern

Intent:  Allowing the definition ofclosed type-indexed functians

Motivation: Thetypecaselesign pattern captures a closed-world
view of ad-hoc polymorphismin Haskell, the type class system |mplementation: Typically, atypecas&omponent is created us-

is a mechanism that supports ad-hoc polymorphism, but from an ing thestructural casesThere are three main variations for the im-
open-world point of view: they can be extended with cases for plementation of dypecasetwo of them are based on type classes
new datatypes, at the cost of a non-extensible set of functions.and the other one onsamart datatypeA smart datatype is a para-
Under the closed-world assumption, there is a fixed set of type- metrised type where the type parameters are dependent on the con-
structural cases but arbitrarily many type-indexed functions ranging structors. The idea of a smart datatype can be represented in various
over those cases. An example where the closed-world perpectiveforms: existentialdatatypes with an equivalence type (a la LIGD),
works better than the open-world onegeneric programmingin GADTs phantom typesamong others.

which we take a structural perspective on types as opposed to the The goal of this design pattern is to simulate a closed type-
more traditional nominal one. Using just a few operations on types, indexed function. In general, a type-indexed functiohas the

it is possible to represent the whole family of structural definitions following structure.

of interest. For instance, here is a possible definition for a generic
function that counts all the elements of some structure

gsizet::x) Dt—nt
gsiz€Unit) — =0
gsiz€lInt) _ =1
gsizéSuma B) (Inlx) = gsizéa) x
gsizdSuma B) (Inry) = gsizeB)y

gsizéProda B) (Prod x y) = gsiz€a) x+ gsizép) y

With an open-world perspective, we can present a fixed number
of type-indexed definitions that range over those few cases; but
we cannot easily introduce new definitions. This is clearly not
appropriate for generic programming. In fact, what we expect from
a generic programming facility is the ability to a introduce new
generic definition without affecting the surrounding context. This
is precisely what the closed-world perspective provides us.

Applicability: Use this pattern:

¢ to encode collections of definitions that dnelexed by some
fixed family of typeawhile allowing new definitions to be added
to the collection without affecting modularity;

¢ when a definition ivariadic, that is, it has a variable number of
arguments (see Section 4.2 for an example);

e to try to avoidtype-class trickerysuch as multiple-parameter

type classes, functional dependencies, overlapping instances or

even duplicate instances (just consider a direct encoding of the
examples presented in the paper into type classes [30]);

¢ to capture someshape invariantslike the ones captured by
some nested types or phantom types [29, 18].

Structure: See Figure 1.

Participants:
e Structural Casesa set of datatypes which represent the possible
structural cases for the type-indexed function;
¢ Typecaserepresenting the structure of a type-indexed function;

¢ Dispatcher a type class, containing a single function, that is
responsible for dispatching a value of one of the structural cases
into the corresponding branch of ttypecasebased on the type
of the value;

fltok|dp ... do) g
fti1ar...a)=AXq1 ... X1n — €1

ftmz ... Z) =AXm1 ... Xmn— €m

The type signature tells us thiikhas one type parameteand
optional type parameteds ... dx with the same structure and kind
ast. The typey of the TIF may depend onandd; ... d.

We should note that this is not the same as having a TIF with
multiple type arguments. There is no problem, in principle, in hav-
ing multiple-parameter type arguments, but it would lead to an ex-
plosion in the number of typecases. This would be a generalisation
of this design pattern. For simplicity, we will only consider type
parameters with the same structure. The usefulness of this simpler
case is reflected in applications suchgasieric mapwhere the in-
put and output structures of the generic map function are the same.

The body off contains (at leastin branches, providing the
behaviour of the TIF for each member of the family of tyges
(that is,ty a1 ... &,...,tm 21 ... ). This family of types cor-
responds to thestructural casesparticipant of the design pat-
tern. For each branch of the definition, we bind possible variables
X11 .- Xmi --- Xmn and define each typecase fofwith

e17 e 7&“'
We now discuss the three main variations of the design pattern.

1. Smart datatypes:This variation is inspired by the LIGD ap-
proach. Hindley-Milner typing extended with existential data-
types (supported in most Haskell compilers) is enough to en-
code it. However, with extensions such as GADTs (supported
by GHC 6.4) the encoding becomes much more direct. Unfortu-
nately, neither of those extensions conforms to Haskell 98. We
will present this version of the design pattern using a GADT
syntax for simplicity.

Using thestructural casegiven byt a; ... &,...,tm21 ... 3,
we can derive thaypecaseand dispatcherseen in Figure 1.
Since there aren structural cases in a standard instance of the
design pattern, one would createconstructorsy, , ..., ct,, and
alsominstances foRep-. TIFs can now be defined using those
components, by creating some functfothat takes a first argu-
ment of typeRe and returns a value of typp.



Smart Datatype

Implicit/Explicit Representations

datal tdy ... dg where
Ct, ::z(al...a) ~ (t]_a]_ a,-) di1 ... dik

classI (g::k*tT — x) where
case, 112<a1...a> ~ g(tra ... g)dgg ... dig

Typecase
Cn'2(z..z) > [ (tmZ1 ... Z) dm ... dmk Case, 1% ..z) ~ 9(tmz ... ) dm ... dmi
classRep td; ... dx where classRep tdj ... dg where
rep::Reptdy ... dg rep::Fg=gtdy ... dg
instanceQ g, . 4) = instanceQq, .. q) =
Rep (t1a1 ... @) dgy ... dix where Rep (t1a1 ... @) d11 ... dix where
Dispatcher rep=cy rep rep= case, {rep }

instanceQ ,, g =
Reg (tmz1 ... ) dny - .. dmkWwhere

instanceQ,, ) =
Rep (tmz1 ... 3) dml_... dmk Where

Type-indexed
function

f (Ct Tz - T3) =AXmt - Xmn— [[€m]
f':Regtdy ... k=
f'="frep

rep=c, rep rep=case,{rep }
fultd ... de — W nlevvtypeFtdl...dk:F{f::ljJ}
(0 Tay - Ta) =AXa1 ... Xan — [e] foRemtdy ... de=y

f'=frep
instanceRep F where
case {ra, ... ra } =Axq1 ... xan — [e1]

casg,{rz ...z} =AXmy --- Xmn— [[€m]

Figure 1. The structure of th@ypeCaselesign pattern.

Thedispatchercomponent is optional in this variation. The
TIFs created with this variation are fully closed to extension;
no customisation is possible. This means that if we want to add
extra functionality we need to modify the smart datatype (and
the dispatcher if we have one). However, TIFs that call other
TIFs are trivial to achieve; there is no need for tupling.

. Implicit representations: The implicit representation version
of the design pattern is inspired by GM1. Perhaps surprisingly,
some implementations of this instance require only Haskell 98.
However, if we need to have structurally-dependent variables,
then we also require multiple-parameter type classes.

Proceeding in a similar fashion to ttsenart datatypeap-
proach, we use thstructural caseso derive thetypecaseand
dispatcherseen in Figure 1. Again, because we havstruc-
tural cases, we creata functionscase,,...,case, andmin-
stances oRef.

The dispatcheris not an optional component: it always
needs to be defined in this variation. As with the smart datatype
variation, TIFs defined in this way are fully closed to extension,
and calls to other TIFs are trivial.

. Explicit representations:The explicit representation variation
of the design pattern is inspired by GM2. Like the implicit
approach, Haskell 98 is enough to handle the simpler forms
(one type parameter). However, if we discard the optialis
patcher then Haskell 98 can handle all forms.

Using thestructural casedo derive thetypecaseand dis-
patcherseen in Figure 1, we would obtain a very similar struc-
ture to the implicit representation version. The most noticeable
difference is that, with the explicit representation, the definition
of rep needs to provide the correspondicgsefunction with
the representations for each of its type parameters. The second
difference is that, which corresponds to the representations
of the type parameters, reflects the fact that we are providing
explicit representations. Thug, corresponds in this instance

to explicit arguments of the function, while with the implicit
representation it corresponds to (implicitly passed) type class
constraints. The dispatcher is an optional component.

Variations of this instance of the design pattern can also be
found in the literature [10, 37], as described in Section 4.2. TIFs
defined in this fashion are not fully closed to extension: itis pos-
sible to override default behaviour. However, the extra flexibil-
ity comes at a cost: recursive calls to other TIFs are not possible.
One common solution for this problem istigpletogether into
a record the mutually-dependent functions. Another possibility
would be to have a notion of dependencies: if a Tlfequires
calls to another TIF, then the record that definésas a field
that is an instance @. Although this work is quite tedious, Léh
[26] shows how a type system can lighten the burden.

An associated problem for TIFs in this setting is the issue
of composability If two TIFs are defined using different in-
stances (this is, they are not tupled together), then we cannot, in
a straightforward manner, use the same representation to com-
pose them. To illustrate the problem, consider:

newtypeF vy ... vp = F{f::a}

newtypeG v ... vy =G{g::B}

instanceGeneric Fwhere ...

instanceGeneric Gwhere ...

Now let us suppose that we defindype-indexed abstraction
(that is, a function that uses one or more TIFs and is not defined
over the structure of types):

hrep=...frep...grep...

The interpretation of this definition as a type-indexed function
could be thought of ai(a) = ... f(a)... g(a).... While this
is a perfectly reasonable interpretation, in practicequires
inconsistent type§ vy ... v andG v ... v, for rep: F and
G are two different type constructors, so in a Hindley-Milner
type system, unification obviously fails. Howevét,and G
do have something in common. In particular, they are both



instances ofGeneric So, in Haskell extended with higher-
order polymorphism, we can capture this relation with a rank-
2 type, thus providing a possible solution for the problem of
composability.
h::(Vg. Genericg=gw ... vy) = U
hrep=...frep...grep...

inL  (Inr (Prod (Par x) (Rec x$)) = x: xs
outL [] = Inl Empty
outL (x:xs) = Inr (Prod (Par x) (Rec x$)
In PolyP no generic customisation is allowed, thus we can use
an implicit representation version of the design pattern and con-
sequently, itis possible for one generic function to use other generic

We should note that even though we have presented three mainfunctions in its definition. Théypecaseomponent corresponds to:

variations of the design pattern, the concept of a design pattern is,
by itself, quite informal and thus prone to different interpretations.
For instance, as we will see later, applications of the pattern (such

as GM) can have more type cases than there are datatype variants,
because some cases overlap. It is important to note that, depending

on the context of a problem, a design pattern can be adapted to
better fit that problem.

4. Applications

We present two applications of the design pattern. In Section 4.1,
still within the context of generic programming, we show how
one can build a library inspired by PolyP [21, 22] but working in
Haskell 98. In Section 4.2, we present a very flexible version of a
C-styleprintf function.

4.1 Light PolyP

It probably comes as no surprise to the reader that the technique
introduced in GM and LIGD can be applied to other generic pro-
gramming approaches as wéblyPwas one of the first attempts to
produce a generic programming language. It is a simpler language
than Generic Haskell, working in a much more restricted family
of datatypes, namely one-parameter regular types. But this restric-
tion allows stronger properties to be stated: its simplicity and strong
theoretical background make it an appropriate language for teach-
ing both the theory [3] and practice of generic programming. Our
proposalLight PolyP encourages this, because no external PolyP
compiler is required (although one might still be desirable, for a

classGeneric fwhere
empty ::f Empty

plus  ::(RepgReph=f (Plusgh
prod ::(RepgReph=f (Prodgh

par = f Par

rec f Rec

comp ::(FunctordReph=f (Compdh

constant:f (Const?
Thedispatchersimply selects the corresponding case based on
the type of the argument of the generic functgn
classRep gwhere
rep:: Genericf=-f g
instanceRep Emptyvhere
rep=empty
instance(Rep gRep ) = Rep(Plus g h where
rep= plus
instance(Rep gRep l) = Rep(Prod g h) where
rep = prod
instanceRep Parwhere
rep= par
instanceRep Reavhere
rep=rec
instance(Functor d Rep I) = Rep(Comp d Iy where
rep=comp
instanceRep(Const ) where
rep= constant
Like GM, defining a generic function is a matter of declaring

more convenient syntax). a record with a single field, a function of the appropriate type. As
NoreII.[SO] shpws how to use the Haskell type clasg system (ex- gn example, we could defirfimap2 the map operation for binary
tended with multiple-parameter type classes and functional depend-fnctors. as follows.

encies) to obtain first-class PolyP generic functions in Haskell. In
this section, we will present a “lighter” version of PolyP, requir-
ing only Haskell 98 (without extensions such as multiple-parameter

type classes and functional dependencies) but with the same ex-

pressive power.
Instead of using sums of products like LAGP or Generic
Haskell, PolyP uses liftegattern functorsasstructural casesThe
pattern functor&mpty PlusandProd have counterparts in LAGP.
The pattern functorRepandPar correspond respectively to the re-
cursive argument and the parameter of the unary regular datatype
The pattern functo€onst tfor some type represents the constant
functor, andComphandles the composition of functors required
for regular types.
dataEmpty pr
dataPlusghpr
dataProdghpr

= Empty
=Inl(gpr)|Inr(hpr)
=Prod(gpr) (hpr)
newtypePar p r = Par{unPar::p}
newtypeRecpr = Red unRec:r}
newtypeComp d h p r=CompunComp:d (hpr)}
newtypeConsttpr = ConsfunConst:t}
The equivalence type is used to establish the isomorphism
between a regular datatype and its top-level structure. The em-
bedding/projection functions are traditionally calied andout

newtypeFMap2 ab ¢ d f= FMap2{
appFMap2:(a—c) — (b—d)—fab—fcd}

instanceGeneric(FMap2 a b ¢ d where
empty =FMap2(A__ _— Empty

plus  =FMap2(Af gt— caset of
Inlx  —Inl (fmap2f gy
Inry  —Inr (fmap2fgy)
prod =FMap2(Af gt— caset of
. Prod x y— Prod (fmap2 f g % (fmap2f gy)
par = FMap2(Af g (Par t) — Par (f t))
rec = FMap2(Af g (Rec) — Rec(gt))
comp =FMap2(Afg(Comp)—

Comp(fmap(fmap2f g t))
constant= FMap2(A_ _ (Const ) — (Const})

fmap2:Repf=(a—c)— (b—d)—-fab—fcd

fmap2= appFMap2 rep

With fmap2it is now possible to define several widely-applicable
recursion operators [28, 14] using PolyP. For example ctita-
morphismoperator could be defined as:

cata iso f=f ofmap2 id(cata iso f) o out iso

Note that one must give explicitly the isomorphism that con-

verts between the datatype and its representation. This contrasts
with the original PolyP approach, in which that translation is in-
ferred. This is the common trade-off of brevity for flexibility; being
forced to state the isomorphism allows the programmer to choose a
different one, giving something analogous to Wadler’s ideas about

datalso a b=Iso{inn::a— b,out::b— a}

listlso= Iso inL outL
where
inL (Inl Empty)



views[34]. We might say that this style of generic programming is
isomorphism-parametriseidstead ofdatatype-parametrised

In the original PolyP, thpolytypicconstruct provides a conveni-
ent syntax for encoding generic functions. Furthermore, combinat-
ors for pointfree programming may be provided, making generic
definitions even more compact. These combinators are just normal
Haskell functions, and so there is no problem in implementing them
in pure Haskell; but to keep the example short, we have stuck with
pointwise definitions.

The advantages of this translation when compared with the one
proposed in [30] are that it requires only Haskell 98, and that the
types of the generic functions are much closer to what one would
expect. In Norell's translation, the type class constraints posed
some problems because both the two-parameter ElasstorOf

and the classes for the generic functions propagated throughout

the code. With the Light PolyP approach, only instancefkep
propagate, leading usually to just one type class constraint.

4.2 Printf

The C-styleprintf function, which takes a variable number of
parameters, has always been a challenge for programmers usin
strongly and statically typed languages. The problem withtf is

that, in its true essence, it requires dependent types. This happen
because the value of the format string determines the type of the
function. However, it has been shown by Danvy [10] that by chan-
ging the representation of the control string it is possible to encode
printf in any language supporting a standard Hindley-Milner type
system.

4.2.1 A solution using explicit representations

In this section, we will demonstrate that Danvy’s solution is another
instance of the TypeCase design pattern, using an explicit repres
entation. Furthermore, we will show a new use of phiatf func-
tion by making use of the fact that we can (in some cases) infer the
format string.

Danvy'’s original solution had the following combinators:

lit :: String— (String— a) — String— a

litxks =k (s+x)

eol i1 (String— a) — String— a

eolks =k (s+"\n")

int ;1 (String— a) — String— Int — a

intk s x=k (s-+Hshow %

str i1 (String— a) — String— String— a

strk s x=k (s++Xx)

eod : String— String

eod =id

If we capture all the occurrences of the foBtring— t with a
newtypePrintf, and modify the definitions in order to reflect this
newtype, we obtain the following code.

newtypePrintf t = Printf { printfApp:: String— t}

lit ;1 String— Printf a — Printf a

lit x k = Printf (As— printfApp K(s-+ X))

eol :: Printf a— Printf a

eol k = Printf (As— printfApp k(s-H "\n"))

int  :: Printf a— Printf (Int — a)
intk = Printf (As x— printfApp k(s++ show %)

str :: Printf a— Printf (String— a)

str k = Printf (As x— printfApp k(s++x))

eod :: Printf String

eod = Printf id

Taking one step further, we can now abstract dventf and
create a type class that replaces it with some furfctor

classFormat f where
lit ::String—fr—fr
eol :fr—fr
int 2fr—f (Int—r)
str ::f r —f (String—r)
eod: f String
With this last transformation, we can start seeing an instance of the
TypeCase design pattern. Thiuctural caseparticipant consists
of functions of the formint — r or String— r, or a String— lit
and eol are overlapping cases. The cldssmat constitutes the
typecasearticipant. Because ttdispatcheris optional in explicit
versions of the design pattern, there is no obligation to define it.
Now, using the newtypBrintf, we can define an instancefdrmat
that implements the functionality @fintf.
instanceFormat Printf where
lit x k = Printf (As — printfApp k(s++Xx))
eol k = Printf (As— printfApp k(s-H "\n"))
intk = Printf (As x— printfApp k(s++ show %)
strk = Printf (As x— printfApp k(s++Xx))
eod = Printf id

%he final touch is provided by the definition pfintf in terms of

rintfApp Theprintf function is expected to receive the formatting

rgument of typePrintf t as its first parameter. The parameter
defines the type gbrintf, which can involve a variable number of
arguments. Analysing the type pfintfApp, we see that the first
parameter is the formatting argument, the resulting type is the type
that we expect foprintf, and there is a second argument which is a
String Now, what does th&tringrepresent? Danvy’s solution uses
a continuation-passing style and the second argumeamimfApp
corresponds to the value fed to the initial continuation. Thus using
the string"" for that argument does the trick.

printf  :: Printf t —t

printf p = printfApp p""

We have shown, informally, that Danvy’s solution is indeed an
instance of the TypeCase design pattern. However, some questions
might be asked at this point. Do we really need to create a class in
order to implemenprintf ? What other instances of the class would
we be able to provide? In fact there are not many other uses for the
type classprintf seems to be the only natural instance. Perhaps we
could considescanf, another C function that uses the same format
string; but the derived type fascanf would be different, and so
it is not possible to reuse the same type class. Another possibility
would be considering other versionsmintf, such as one for the
10 monad. However, if we think thatrintf is really the only useful
instance of the type class, why not get rid of the type class all
together?

A design pattern is a flexible design, and depending on the con-
text of the problem, it can be adapted to fit the problem. If a type-
indexed function is used afist one type indext is reasonable to
simplify the pattern anéliminate the type clas3he result would
be the specialised solution using the newtipiaitf t presented be-
fore. We could go even further and argue that Danvy’s original solu-
tion is already an instance of the design pattern, corresponding to
one further simplification of the design pattern, namely getting rid
of the newtype.

4.2.2 An alternative solution using smart datatypes

In the previous section, we have argued that Danvy’s version of
printf is an instance of the TypeCase design pattern. However,
Danvy’s solution and explanation farintf is not, perhaps, very
intuitive to understand. In this section, we take a different perpect-
ive and will look at the formatting parameter pfintf as a spe-

cial kind of list. This perpective corresponds to an instance of the
design pattern using smart datatypeThe datatype (th&/pecase
participant) encodes a list, which has an empty case that corres-



ponds to the combinat@od and a number of recursive cases that
correspond tdit, eol, int andstr.
data Printf t where
Lit ::String— Printf t — Printf t
Eol :: Printf t — Printf t
Int ::Printf t — Printf (Int — t)
Str :: Printf t — Printf (String— t)
Eod:: Printf String
Informally speaking, we have reused the types from the newtype
solution and lifted the functions to constructors. However, using
a datatype instead of a number of functions makes it easier to
view the format parameter gfrintf as a list. For instance, tHet
constructor takes the literal string that we wish to print and also the
list corresponding to the rest of the format parameteoruftf .
The printfApp from the previous section would, in this setting,

correspond to a dependently-typed function (in the sense that the

it is not possible to infer all possible representations. Consider, for
instance, the end of line casel::f r — f r, which takes an existing
format with some type, adds a newline and returns a format of the
same type. Clearly, there is no way to deduce that there is an occur-
rence ofeol based on the type alone. Similarly, tlitecase has no
effect on the type. Nevertheless, the other, more type-informative,
cases oprintf can be inferred.

classRep twhere

rep::Formatf=ft

instanceRep Stringvhere
rep=eod

instanceRep r=- Rep(Int — r) where
rep=intrep

instanceRep r= Rep(String— r) where
rep= strrep

types of its branches are determined by the constructors used toWe should note that these instance declarations are outside the

perform pattern matching).

printfApp 22 Printf t — String—t

printfApp (Lit x k) s= printfApp k(s++-x)

printfApp(Eol k) s = printfApp k(s++"\n")

printfApp(Intk) s = (Ax — printfApp k(s++ show %)

printfApp(Strk) s = (Ax — printfApp k(s++X))

printfAppEod s=s
The final step is to definprintf. Little effort is required; we just
need to copy the definition g@irintf from the previous section. The
only apparent difference between the two versions is that, where
the first version uses functions lik#é and int, this version uses
constructors like.it andInt. However, despite the similarity of the

scope of Haskell 98 — types are used where type variables should
occur. However, this is a quite mild extension, and is supported by
most Haskell compilers.

Making use of the fact that now we can infer some cases of the
string format, we could define:

printPair :: Int — Int — String

printPair x y= printf rep" (" x", "y")"

printTrio:: Int — Int — Int — String

printTrio xy z= printf rep" (" x", "y", "z")"
The functionprintPair does the same as before. However, with
this new definition, the format directive is automatically inferred.
The functionprintTrio is doing the same gxintPair, except that

two solutions, their expressive power is not the same. The smartit does it for triples. We should emphasise that the occurrences of
datatype solution in this section is fully closed to extension. That printf in those two functions use different numbers of arguments.
is, in order to add another case in the formaitting list, such as aWe should also mention that, in some situations, we will need to
constructorChr that handles characters, we would need to modify provide explicit types, otherwise the type checker would not be able
the GADT itself. On the other hand, the solution in the previous to infer the correct instances of the type cl&&p

section using the explicit version of the design pattern allows some
form of extensibility. Adding a new case farintf that handles

This use ofprintf seems to be practical, and for this simple
version of it we might even argue that everything that we could

characters corresponds to adding a new function, which could evendo with a manually-provided parameter could be done with an

be in a different module.

4.2.3 Making use of a dispatcher

The two solutions that we presented did not make any use of
dispatcher In this section we will show how the dispatcher can

be useful. The version of the dispatcher presented here is for the

explicit representation solution in Section 4.2.1, but could be easily
adapted to the smart datatype solution in Section 4.2.2.

Suppose that we want to define a function that prints a pair of
integers. Equipped witlprintf, we could try to encode that with
either one of the following two functions.

printPair x y= printf fmt" (" x", "y")"

where
fmt= str$int$str$int $str$eod

printPair2 x y= printf fmtxy
where
fmt=Ilit "("$int$lit ", "$int$lit ") " $eod
The functionprintPair tackles the problem usingmintf that takes

automatically-inferred one. We simply do not nektdand eol,
because those can be simulated usstrg(with, of course, extra
String arguments). Nevertheless, if we decided to go for a more

a powerful version oprintf, this might not be the case. Consider, for

instance, the formatting directivé,2d". In this case the number 2

is specifying the minimum width of the string that represents that
number. If we wanted to allow this kind of behaviour, we could
add an extra parameter of typet to theint case. However, the
problem now is to choose a value for that parameter when we
automatically build the format directive. In this case we need to
use some default value (for instance 1). However we are no longer
able, for all possible cases, to simulate the functionalitprirfitf

with manual format strings using only automatically-built ones.

5. Type-indexed types
Until now we have been discussirgpe-indexed functionghat

a format argument expecting five arguments: three strings and twois, families of functions indexed by types. We turn nowtype-

integers. The functioprintPair2, on the other hand, makes use of
the fact that the string arguments are constants, anditgestead.
Thus, in this caseyrintf takes the format argument and two integer
arguments. Although relatively compact, the format argument is not
as convenient to use as it would be in C, where one would write
something like"' (%d, %d)".

The role of the dispatcher is to infer automatically the corres-
ponding type representation for some typén the case oprintf,

indexed typesthat is, families of types indexed by types. In the
context of generic programming, we call thegmeric typesGen-
eric functions with generic types are functions that have different
result types for each structural case.

In this section, we will show how to implement type-indexed
types as another variation of tfigpeCasalesign pattern. We do
this by translating a standard example of Generic Haskell [20],
namely generic tries [17], into our approach.



5.1 Encoding type-indexed types

Section 3 presents templates for encoding type-indexed functions.

In this section, we show how to translate a type-indexed type into
an instance of the TypeCase design pattern.
In general, a type-indexed type has the form

M{t:K) T
MNtia;...a)=Ady1 ... din —v1

whereT is the type-level function that defines the type-indexed
type;tis the family of types (or type constructof$j a; ... &),...,
(tmz ... ) of kind k that corresponds to thetructural cases

of the design pattern; and, finally,is the kind of[I (t:: k). For
each type that is member of that family, we have a corresponding
branch forl". The type-level lambda abstraction on the right side of

each branch is optional, and corresponds to possible parametricallyrepresentations for the typeas ..

polymorphic variablesl; ... dy that the type-indexed type might
depend on. Finally; ... vy corresponds to the family of types (or
type constructors) that defines the type-indexed type.

5.1.1 Type class translation

instanceQ(zl Lz =
Reg (tmzz ... %) dny ... dmnvm Where
rep=case,{rep }
The type clasRe has at least two type argumentsandv. If
there are parametric types thadepends on, then the type class
also needs to account for those typas (.. dy). The class contains
just one member functionep, used to build representations for
. The functionrep has a type class constraint ensuring that
is an instance of . There are, at leasi instances oRep-, and
those instances defimep with the correspondingase, function.
If we are implementing an implicit version of the design pattern,
then the definition ofep is complete; otherwise, for an explicit
version, we need to applyase, to a numberi of rep functions
(wherei is the number of type parameterstgj. The constraints
Qg ..a)-+Q(z ...z) are very similar to the constrainks and in
fact for implicit representations they coincide: they correspond to

5.1.2 Smart datatype translations

Encoding type-indexed functions witmart datatypeproceeds
in a similar fashion to the encoding with type classes. We will
demonstrate how to do this translation using a GADT syntax (as

We can now derive an instance of the TypeCase design patternfound in the new GHC 6.4 Haskell compiler).

to capture type-indexed functions with type-indexed types. The

typecasearticipant, for instances of the design pattern using either
implicit or explicit representations, could be defined as follows.
classl” (g::k — T’ — x) where

case 2 ..a) ~ 9(t1ag ...

gj) dig ... dinv1

case, 12z . z) ~> 9(tmz ... Z) dma ... dmnVm
We reuse the namé€ for the name of the type class that en-
codes thetypecasecomponent. The parametgris a type con-
structor with kindk — T — %, where 1’ is the literal occur-
rence of 1 (if we were to uset instead of its literal occur-
rence, we would obtain the wrong kind). There andfunctions
case,...,case, that correspond to the typecases for each type
(tra ... &),...,(tmz1 ... 7). Each case of the typecase func-
tion is defined by providing the type constructpwith the corre-
ponding types. FinallyZ s, . ay.---,Z(z ... z) corresponds to the
representations for the typeés, ... &),...,(z1 ... 7).

The only difference between epr|C|t and |mpI|C|t versions of the
design pattern for the typecase component is that in the explicit ver-
sion the occurrences &f are expanded into explicitly-passed rep-
resentations of the form a ..., whereas with the implicit repres-

entations those occurrences are replaced by type class constraints

of the formRep & ...

Thedispatchercan also be derived; but to do so requires exten-
sions to Haskell 98 — specifically, multiple-parameter type classes
with functional dependencies. The problem is that, even in its
simplest form, a type-indexed type requires at least two type ar-
guments: the first one corresponding to the index type, and the
second one that is the resulting type-indexed type for that index,
and thus depending on the index. This problem is not too serious if

A type-indexed type generates a smart datatype of the following
form.

datal td; ... dyvwhere
Cy " Z(a..q) ~ [(trar...&)di1 ... din V1
Ctm::z(Zlmzj) ~ [ (tmz1 ... ) dm ... dmnVm

Instead of being parametrised by a “function” (like the type class
approach), a smart datatype is parametrised by all the types on
which it depends. Another difference from the type class approach
is that the functions that represent each case are now replaced
by constructorsy,, ..., ¢, that can just be pattern matched (in a
dependent manner) by functions defined over those datatypes. A
final difference is tha):<al .a)» -+ 2(z ... z) Need to reflect the fact
that we are now using a smart datatype.

The changes t®eg are minimal; the only change to the type
class version is that in the definition ofp we now use the con-

structorscy, , .. ., Ct,, instead of the functionsasg, , ..., case,,.
classRegtdy ... dpv|tdy ... dy — v where
rep::lFtdy ... dpv
instanceQq, .. ) =
Rep (t1a; ... &) d11 ... din v1 Where
rep= c, rep
instanceQ;, 5y =
Reg (tmz ... ) dm - .. dmnVm where
rep=c, rep

we use the explicit representations variant of the pattern, since the5.2 Tries

dispatcher is optional, but using implicit representations forces us
outside Haskell 98.
classRep-td; ... dyv|tds ..
rep::Fg=gtdy ... dpv
instanceQq, .. ) =
Rep (t1a1 ... @) di1 ... d1n v1 where
rep= case, {rep }

. dn — v where

Tries or digital search treesare a traditional example of a gen-
eric type. Tries make use of the structure of search keys in order
to organise information, which can then be efficiently queried. In
this section we will show how to implement generic tries using a
variation of the LAGP type representations. For a more theoret-
ical presentation of tries, see [20, 17]; the implementation of tries
presented here follows closely the implementations found in those
papers.

In [20], the generic type for tries is given as follows.



FMap(t:: x) ok Kk representation for lists. The definition is nearly the same as the
FMap(Unit) v= Maybe v equivalent for GM, but it takes an extra isomorphism describing
FMap(Int) v= Maplntv the mapping between the structural representation of a list trie and
FMap(Plus t, tp) v = OptPair (FMap(t;) v) (FMap(ty) v) a_newtypeFLis_t c ythat !s !ntroduc_ed to represent the resulting list
FMap(Prod t; t;) v=FMap(t;) (FMap(ty) v) trie. The functionlistEP is just the isomorphisma] =~ 1+ax [a].

It is clear that the type-indexed functidfMap takes a type This means thdistEP can be shared with other versions of generics
parametet :: x and another type of kind and returns another type  that use the same structural cases. HowdigtrandFList c vstill
of kind ». Only the shape of parameteris analysed; the other ~ have to be introduced for each type-indexed datatype. Nevertheless,
parametew needs to be used in the definition because the resulting that is boilerplate code, and, with compiler support, it is should be

type is parametrically polymorphic in relationvo possible to avoid writing it. _
We encode this characterisationfé¥lap as follows. Having set up the main components of the design pattern, we
classFMap gwhere can now move on to define our first function over tries. The function
unit ::g Unit v Maybe emptycreates a new empty trie and can be defined as follows.
plus::gavc— gbvd— g(Plusab v (PlusCase c newtypeEmptyTrie a v t= EmptyTrig empty.: t v}
prod::ga(dv)c—gbvd— g (Prod ab v (ProdCase c g instanceFMap EmptyTrievhere
data::gavc— Isoba—Iso(dv) (cv) —gbvd unit = EmptyTrie Nothing
int :gIntvMapint int = EmptyTr!e(MapInt [N
This class forms thgypecaseparticipant of an explicit representa- plusrarb = EmptyTrie(PlusCase Null
tion variant of the TypeCase pattern. The clBMapis a variation prodrarb = EmptyTrie(ProdCaselempty r3)
of the Genericclass from Section 2.2.2. The functr x — « — data ra iso iso2= EmptyTrie(to iso2(empty rg)

(x — %) — * takes the necessary information to rebuild the type- This function is very simple but, nonetheless, it has a type-indexed
indexed type. The three parameters of the functor correspond, re-type: theunit case returndlothing theint case returns a value of
spectively, to the type parameterthe second parameter and the a user-defined type for integer tries; the casespfod and plus
resulting type ofFMap. (The kind of the resulting type is now  return, respectively, values for the previously defiReddCaseand

* — +. We could have used kindas inFMap, but we believe this ~ PlusCaseypes; finally, thedatareturns a value of the newtype used
version is slightly more readable.) The functiamitjust reflects the ~ to represent the trie of some user-defined datatype.

change of the functay and adds the information for the parametric Another function that we will probably want to have in a library
typev and the functoMaybethat is used to define the trie for the ~ for tries is thelookUp function which, given a key, returns the
Unit case. The cases fptusandprod have explicit arguments that ~ corresponding value stored in the trie.

correspond to the recursive calls of the function; and the functors ~ newtypeLUp avt= LUp{lookUp::a — tv— Maybe

PlusCase ¢ candProdCase ¢ ccorrespond to the respective cases instanceFMap LUpwhere
of the type-indexed type. Thaata function handles user-defined unit =LUp (A—fm— fm)
datatypes, having a recursive case and two isomorphisms: the first int = LUp (Ai fm — lookUplInt i fm)
between the structural cases and a second between the tries corres-  plusrarb =LUp (Atfm—
ponding to those cases. Finally, we could also define some extra case(unPlus fm of
base cases to handle primitive types sucmaandChar. Null — Nothing
The auxiliary definitions for the newtypddusCase a b and (Pair fma fmb — caset of
ProdCase a b are defined as follows. (Inl) — lookUp ra | fma
data OptPair a b= Null | Pair a b (Inr r) — lookUp rb r fmb
newtypePlusCase a b v . prodrarb = LUp (At (ProdCase fma—
PlusCas¢unPlus: OptPair (av) (bv)} caset of
newtypeProdCase a b v= (Prod xy) — (lookUp ra xclookUp rb y) fma)
ProdCaséunProd::a (bv) } data ra iso iso2=
The introduction oOptPair a bis for efficiency reasons [20]. LUp (Atr — lookUp ra(fromiso §) (from iso2 1))

In order to use a user-defined type (or a built-in type that does (The operator represents monadic composition.) The functions
not have a special case for it), we need to do much the same workemptyandlookUp have definitions that only have generic function
as for GM2 in Section 2.2.2. As an example, we show what to do calls to themselves. However, that is not the case for all generic

for Haskell's built-in lists. functions. One such function is the generic function that creates a
list::FMap g=- g a(FListcv) c — g[a] v (FList c) trie containing a single element; a possible definition makes use of
list ra = data(plus unit(prod ra(list ra))) listEP the generic functiommpty We discussed in Section 3 that, using

(Iso unFList FLis} an explicit version of the design pattern, there are some issues with
listEP::1so[a] (Plus Unit(Prod a[a])) generic functions calling generic functions other than themselves.
listEP = Iso fromList toList One solution for this problem is using tupling. Just as one does

where with a type class, we would choose a fixed set of functions and
fromList[] — Inl Unit group them together in a record. For instance, in the case of tries,
fromList (x: xs) = Inr (Prod x x9 we could have the following.
toList (Inl Unit) =] data Tries a v t= Tries{
toList (Inr (Prod x x§) = x:xs empty :tv,
newtypeFList ¢ v= FList{ isempty:tv — Bool,
unFList:: (PlusCase MaybéProdCase ¢FList c))) v} single ma—v—ty,

The functionlist defines the encoding for the representatiolists. lookup ::a — tv— Maybe v

Because lists are a parametrised datatype with one type parameter, insert 1 (v—v—v)—a—votvoty,

listis a function that takes one argument; this argument corresponds merge (V- V—V) > tv—tv—ty,

to the representation of the list type argument, ksidreturns the delete a—tv—tv}



With our definition we could, for any function in the record, make many other works, ranging from type-directed partial evaluation
mutual generic calls. [37, 9, 12], through embedded interpreters [2], to a generalisation
Whilst we could have used a multiple-parameter type class of families of functions likezipWith[13] — these are all possible
with functional dependencies in order to implement this library of applications of the TypeCase design pattern. Our paper revises that
functions over tries, there would be one important disadvantage in technique and shows how slightly richer type systems can be used

doing so (apart from the fact that we need to leave Haskell 98): to improve it. In particular, the use ofd@ispatchermakes it pos-

we can only have functions on types of kindWith type classes, sible to automatically built the values encoding types. Moreover,
contexts are implicitly passed, and there is no way to redefine thosethe issue otomposabilityidentified by Yang), while still a prob-
implicit behaviours. In other words, type classes have the samelem, can benefit from stronger type systems: the use of rank-two
limitation as implicit representations as a version of the TypeCase types combined with type classes provides a good solution.
design pattern, in that they can only work on types. On the other = The work onextensional polymorphisifil] presents an ap-
hand, derived from the fact that we use external representations,proach that allows functions to implicitly bind the types of their
with this implementation we can define generic functions over type arguments in a modified version of ML. Furthermore, using a

constructors. typecaseconstruct it is possible to support generic programming.
Tupling is not the only option to solve the problem of generic Harper and Morrisett's work ornntensional type analysi§l6]
function calls. Another possibility is to have the notiondefpend- presents an intermediate language where run-time type analysis is

encies instead of tupling all functions together, we can, for each permitted, usingypecaseand Typecaseonstructs to define type-
generic function that we need to use, include one instance of thatindexed functions and type-indexed types, respectively. However,

function. Here is a possible definition sihgleusing this strategy. approaches based on run-time type analysis have important draw-
data Single a v t= Single{ backs; for instance, they cannot support abstract datatypes, and
emptyT.: EmptyTriea v { they do not respect the parametricity theorem [35, 33]. Subsequent
single ::a—v—tv} approaches to intensional type analysis by Crary and others [7, 6]
instanceFMap Singlewhere use a type-erasure semantics that does not suffer from those prob-
unit = Single unitA_v — Just ) Iems. Still, those apprqaphes were limited to first-ordgr typg ana-
int = Single int(Ai v — MapInt[(i,v)]) lysis. More recently, Weirich [36] proposed a version of intensional
plus ra rb = Single(plus (emptyT r3 (emptyT rb) type analysis covering higher-order types with a type-erasure se-

mantics. Furthermore, she presented an implementation in Haskell
(augmented with rank-two types). This work inspired Hinze’s im-
plementation of GM, which shows, in essence, how to avoid rank-

()\I V —
casel of

Il — PlusCasePair Ezlr?wf)ltil(?nlw\gtyT ) two types by using Haskgll’s class system. Our work makes use
| PlusCasd Pai X T of those results and explains how to simulgteecaseconstructs.
nrr — PlusCasgPair (empty(emptyT rg) Furthermore, we show that the limitation of GM that generic func-
, (single rbrv))) tions with generic types cannot be defined can be lifted with our
prod_ra rb= Single(prod (emptyT rg (emptyT rh) more general interpretation.
()"V—{ Generic programming (or perhaps datatype-generic program-
casei of _ ) ming [15]) is about defining functions and types that depend on
Prod x y— ProdCase(single ra x(single rb y v)) the structure of other types. One of the first attempts to produce
data ra iso iso2= Single(data(emptyT ra iso iso2 a generic programming language was PolyP [21]. This language
(ANiv — toiso2(single ra(fromiso i) v)) allowed the definition of generic functions over regular datatypes

The idea of dependencies is motivated by Dependency-Style Gen-with one type parameter. In Section 4.1 we show that, using our
eric Haskell [26, 27]. In this version of Generic Haskell, the type design pattern, it is possible to define PolyP-like generic functions
system reflects the uses of generic functions in the definitions by just using Haskell 98. A previous attempt [30] to define first-class
keeping track of constraints that identify such uses. With this defin- PolyP functions in Haskell required extensions to the language.
ition, we have to manually introduce those dependencies by adding The Generic Haskell [26, 5] project is more ambitious than PolyP,
extra fields to the record that keep track of all the functions on and aims at defining generic functions for nearly all types defin-
which the definition depends. That change is also reflected in the able in Haskell 98. Furthermore, Generic Haskell features generic
instance that defines the generic function, where we need to providetypes and generic function customisation (which were not present
values for the extra fields; the values for those fields just reconstructin PolyP). Dependency-Style Generic Haskell [26, 27] introduces

the dependent functions with their values for those fields. a rather complex type system that keeps track of dependencies on
generic function calls. The need for this sophisticated type system
6. Discussion and conclusions is a consequence of a model for generic programming that allows

generic function customisation. The approach presented in [24] is
another kind of lightweight approach to generic programming, re-
lying on a run-time type-safe cast operator. With that operator it is
possible to define a number of traversals that allow a very interest-
ing model of generic programming based on nominal typing. Our
design pattern can be used to encode many of the generic defini-
tions that these generic programming techniques allow. However,
it can be less practical than approaches providing a special-purpose
compiler. Nevertheless, the advantage of our technique is that we
6.1 Related work do not need to commit in advance to a model of generic program-
ming: we have the freedom to choose our own model of generic
programming.

Design patterns in the object-oriented programming community
ave been given a great deal of attention. Whilst amongst the

The goal of design patterns is not to come up with a miraculous

solution for a problem. Instead, design patterns capture good tech-
niques that appear in the literature or in practice, in a variety of

contexts, and document them to make them easier to identify and
implement. In this paper we have generalised the technique found
in LIGD and GM to a design pattern, and presented a number of
applications of the pattern. Furthermore, we have identified other
occurrences of the design pattern in the literature.

The technique used by Danvy [10] and generalised by Yang [37]
allows us to encodg/pe-indexed valueis a Hindley-Milner type
system. This encoding is directly related to the explicit represent- h
ation version of the TypeCase pattern. This technique influenced



functional programming community there has been some work [10] O. Danvy. Functional unparsinglournal of Functional Program-

on — or, at least, involving the concept of — design patterns

ming, 8(6):621-625, 1998.

[24, 23, 25], the concept is still much less popular than in the object- [11] C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism. In

oriented community. Moreover, most of this work presents patterns

Principles of Programming Languaggsages 118-129, 1995.

that are really more like algorithmic patterns rather than design [12] P. Dybjer and A. Filinski. Normalization and partial evaluation. In

patterns. Perhaps the reason why this happens is that functional

LNCS 2395: Applied Semantjgsages 137-192. Springer, 2002.

languages are very expressive, and often natural features of those[13] D. Fridlender and M. Indrika. Do we need dependent typks#nal

languages, such as laziness or higher-order functions, can be used

of Functional Programmingl0(4):409-415, 2000.

to remove the need for complex designs. Nevertheless, we believe[14] J. Gibbons. Calculating functional programs. Afgebraic and

that our design pattern is more related to the OO concept of a design
pattern with type classes/datatypes taking the role of OO interfaces

Coalgebraic Methods in the Mathematics of Program Construction
pages 149-202, 2000.

and class instances taking the role of OO concrete classes. One[15] J. Gibbons. Patterns in datatype-generic programmingetiarative

difficulty found in this work had to do with the fact that, unlike

OO design patterns which are documented using informal notations [16] R. Harper and G. Morrisett.

such as UML, we do not have a notation to “talk” about the design

of Haskell programs. The notation that we used is quite ad-hoc and

it can be difficult to read.

6.2 Future work

We mentioned that this design pattern seems to be very similar to

OO0 design patterns. It would be interesting to explore the applic-
ability of this design pattern in an OO environment.

Design patterns are useful to overcome the lack of certain fea-
tures in programming languages. In our case, we overcome the

lack of atypecaseonstruct. The work on intensional type analysis
investigates the possibility of languages supportygecasecon-

structs directly in the language. Combining these results in order to

extend Haskell with a more natural support fgpecaserogram-
ming is something we would like to try in the future.

Problems that use multiple instances of the design pattern are
not composable. For instance, in a generic programming context,

we could have a clasGenericthat allowed us to define generic

functions with one type parameter; and we could also have a class

FMapfor working with tries. Although, those classes are structured
in a similar way, they require two distinct representations of types,

one for each of the classes; we hope to address this impracticality.
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