
TypeCase: A Design Pattern for Type-Indexed Functions

Bruno C. d. S. Oliveira and Jeremy Gibbons
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{bruno,jg}@comlab.ox.ac.uk

Abstract
A type-indexed functionis a function that is defined for each
member of some family of types. Haskell’s type class mechan-
ism provides collections ofopen type-indexed functions, in which
the indexing family can be extended by defining a new type class
instance but the collection of functions is fixed. The purpose of this
paper is to presentTypeCase: a design pattern that allows the defin-
ition of closed type-indexed functions, in which the index family
is fixed but the collection of functions is extensible. It is inspired
by Cheney and Hinze’s work on lightweight approaches to gen-
eric programming. We generalise their techniques as adesign pat-
tern. Furthermore, we show thattype-indexed functionswith type-
indexed types, and consequentlygeneric functionswith generic
types, can also be encoded in a lightweight manner, thereby over-
coming one of the main limitations of the lightweight approaches.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords Generic programming, type classes, type-indexed func-
tions

1. Introduction
A type-indexed functionis a function that is defined for each mem-
ber of a family of types. One of the most popular mechanisms
implementing this notion is the Haskell [31]type classsystem. A
type class consists of a collection of related type-indexed functions;
the family of index types is the set of instances of the type class.
Type classes provide just one possible interpretation of the notion
of type-indexed functions. In particular, they assume anopen-world
perspective: the family of index types is extensible, by defining a
new type class instance for that type, but the collection of type-
indexed functions is fixed in the type class interface so needs to
be known in advance. For some applications — particularly when
providing a framework for generic programming — the family of
index types is fixed (albeit large) and the collection of type-indexed
functions is not known in advance, so a closed-world perspective
would make more sense.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

The original concept of adesign patternhas its origins in Chris-
topher Alexander’s work in architecture, but it has been picked up
with enthusiasm by the object-oriented programming community.
The idea of design patterns is to capture, abstract and record bene-
ficial recurring patterns in software design. Sometimes those pat-
terns can be captured formally, as programming language con-
structs or software library fragments. Often, however, the appro-
priate abstraction cannot be directly stated, either because of a lack
of expressiveness in the language, or because there is inherent am-
biguity in the pattern — Alexander describes a pattern as a solution
‘you can use [. . .] a million times over, without ever doing it the
same way twice’ [1]. In this case, one must resort to an informal
description. Even if the abstraction itself can be captured formally,
one might argue that a complete description of the pattern includes
necessarily informal information: a name, motivation, examples,
consequences, implementation trade-offs, and so on.

In this paper, we present a technique that allows the definition of
closed type-indexed functions, as opposed to the open type-indexed
functions provided by type classes; we do so in the format of a
design pattern. Our inspiration comes from previous research on
lightweight approaches to generic programming (LAGP). In partic-
ular, Hinze’s two papers “A Lightweight Implementation of Gener-
ics and Dynamics” [4] (LIGD, with James Cheney) and “Generics
for the Masses” [19] (GM) provide our motivation and basis.

Those two papers focus on the particular context of generic
programming, and provide a number of techniques that can be used
to encode first-class generic functions in Haskell. However, those
techniques have a wider applicability, not addressed by Hinze. We
propose a generalisation of the technique, and demonstrate its use
in a variety of applications. Our specific contributions are:
Generalisation of the lightweight approaches.We provide tem-

plates for designing closed type-indexed functions, abstracting
away from generic programming. The techniques in LIGD and
GM are instances of these templates.

A design pattern for type-indexed functions.We document this
generalisation as a design pattern.

Type-indexed functions with type-indexed types.We show that
with our more general interpretation of the design pattern, type-
indexed functions with type-indexed types are also instances of
the design pattern. As a consequence, generic functions with
generic types can also be encoded in a lightweight manner.
Thus, we remove one of the main limitations of the lightweight
approaches.

Other applications. We present two other interesting applications
of the pattern: PolyP in Haskell 98, and a very flexibleprintf
function.
The remainder of this paper is structured as follows. In Section 2

we review the lightweight approaches to generic programming. In
Section 3 we abstract the essence of the technique as a design pat-
tern. Section 4 presents two other small applications of the design

pattern, and Section 5 uses it to model type-indexed functions with
type-indexed types. Section 6 concludes.

2. Lightweight generic programming
We start by summarising the earlier work on lightweight ap-
proaches to generic programming underlying our generalisation.

2.1 “A Lightweight Implementation of Generics and
Dynamics”

Cheney and Hinze [4] show how to do a kind of generic program-
ming, using only the standard Hindley-Milner type system exten-
ded with existential types. The index family consists of hierarchical
sums and products of integers and characters. This family is enough
to represent a large subset of Haskell 98 datatypes (including mu-
tually recursive and nested datatypes).

data Sum a b= Inl a | Inr b
data Prod a b= Prod a b
data Unit = Unit
This style of generic programming requires a representation of

types as values in order to support typecase analysis. The key idea
of the LIGD paper is to use a parametrised type as the type rep-
resentation, ensuring that the type parameter reflects the type being
represented. Some Haskell implementations have recently been ex-
tended withgeneralised algebraic datatypes(GADTs) [32], which
can be used for this purpose; but LIGD predates that extension, and
depends only on existential quantification.

data Rep t=
RUnit (t ↔ Unit)
| RInt (t ↔ Int)
| RChar (t ↔ Char)
| ∀ a b. RSum(Rep a) (Rep b) (t ↔ (Sum a b))
| ∀ a b. RProd(Rep a) (Rep b) (t ↔ (Prod a b))

data a↔ b = EP{from:: a→ b, to:: b→ a}
(Note that the universal quantifications are in contravariant posi-
tions, so act existentially.)

The intention is that the equivalence typea↔ b represents em-
bedding/projection pairs witnessing to an isomorphism between
typesa andb, thereby enforcing a correspondence between typest
andRep t. Of course, within Haskell, it is not possible to automatic-
ally verify the isomorphisms (from◦ to = id andto◦ from= id), so
these laws should be externally checked. Furthermore, we follow
the convention of ignoring the ‘ugly fact’ of bottom values destroy-
ing the ‘beautiful theory’ of many such isomorphisms [8].

A common case is with the trivial embedding/projections.
self :: a↔ a
self = EP{ from= id, to = id}

Usingself, we can provide a set of smart constructors for theRep
type, yielding representations of types by themselves.

rUnit :: Rep Unit
rUnit = RUnit self

rInt :: Rep Int
rInt = RInt self

rChar :: Rep Char
rChar = RChar self

rSum:: Rep a→ Rep b→ Rep(Sum a b)
rSum ra rb= RSum ra rb self

rProd :: Rep a→ Rep b→ Rep(Prod a b)
rProd ra rb = RProd ra rb self

Using these smart constructors, we can build representations for
recursive datatypes, by making explicit the structure isomorphism
of the datatype. For instance, the isomorphism defining lists is
[a] ∼= 1+ a× [a], and so the corresponding type representation is
as follows.

rList ::∀ a. Rep a→ Rep[a]
rList ra = RSum rUnit(rProd ra (rList ra)) (EP from to)

where from [] = Inl Unit
from(x : xs) = Inr (Prod x xs)
to (Inl Unit) = []
to (Inr (Prod x xs)) = x : xs

Note that the representation of a recursive datatype is an infinite
value; but, because of laziness, this poses no problem.

Having constructed representation values for arbitrary types, the
final step is to define generic functions. Using the representation
as a basis for structural case analysis, it is possible to simulate a
typecase [16]. For example, here is a definition of generic equality:

eq::∀ t. Rep t→ t → t → Bool
eq(RInt ep) t1 t2 = from ep t1 from ep t2
eq(RChar ep) t1 t2 = from ep t1 from ep t2
eq(RUnit ep) = True
eq(RSum ra rb ep) t1 t2 = case(from ep t1, from ep t2) of

(Inl x, Inl y) → eq ra x y
(Inr x, Inr y)→ eq rb x y

→ False
eq(RProd ra rb ep) t1 t2 = case(from ep t1, from ep t2) of

(Prod x y,Prod x′ y′)→
eq ra x x′ ∧ eq rb y y′

Using Haskell type classes, it is possible to make the use of generic
functions even more convenient: the classTypeRepcan be used to
build values of typeRep timplicitly.

classTypeRep twhere
rep:: Rep t

instanceTypeRep Unitwhere
rep= rUnit

instanceTypeRep Intwhere
rep= rInt

instanceTypeRep Charwhere
rep= rChar

instance(TypeRep a,TypeRep b)⇒ TypeRep(Sum a b) where
rep= rSum rep rep

instance(TypeRep a,TypeRep b)⇒ TypeRep(Prod a b) where
rep= rProd rep rep

instanceTypeRep a⇒ TypeRep[a] where
rep= rList rep

For example, we can now express generic equality with an implicit
rather than explicit dependence on the representation.

ceq::∀ t. TypeRep t⇒ t → t → Bool
ceq t1 t2 = eq rep t1 t2

2.2 “Generics for the Masses”

Hinze’s later GM approach [19] has a very similar flavour to LIGD;
however, somewhat surprisingly, Hinze shows how to do generic
programming strictly within Haskell 98, which does not support
rank-n types or even existential types. Nevertheless, there is a close
relationship between type classes and polymorphic records (for
example, one possible translation of type classes into System F uses
polymorphic records), and these require something like existential
types for their encoding. Thus, type class instances can be seen
as implicitly-passed records. Hinze uses this observation to deliver
two implementations of generics.

2.2.1 Generic functions on types

The first implementation of generics in GM (“GM1”, from now
on) can be seen as a direct descendent of LIGD. Instead of using a

datatype with an existential quantification, Hinze uses a type class
Generic.

classGeneric gwhere
unit :: g Unit
sum :: (TypeRep a,TypeRep b)⇒ g (Sum a b)
prod :: (TypeRep a,TypeRep b)⇒ g (Prod a b)
datatype:: TypeRep a⇒ (b↔ a)→ g b
char :: g Char
int :: g Int

The parameterg of the type class represents the generic function,
and each of the member functions of the type class encodes the
behaviour of that generic function for one structural case. Generic
functions over user-defined types can also be defined using the
datatype type case. In this case, the isomorphism between the
datatype and its structural representation must be provided.

The type classTypeRepis used to select the appropriate beha-
viour of the generic function, based on the type structure of its ar-
gument. The role of this type class is somewhat analogous to the
synonymous one in Section 2.1. One contrast with LIGD is that
TypeRepfor GM1 is not optional, because the type representations
are always implicitly passed.

classTypeRep awhere
typeRep:: Generic g⇒ g a

instanceTypeRep Unitwhere
typeRep= unit

instance(TypeRep a,TypeRep b)⇒ TypeRep(Sum a b) where
typeRep= sum

instance(TypeRep a,TypeRep b)⇒ TypeRep(Prod a b) where
typeRep= prod

instanceTypeRep Charwhere
typeRep= char

instanceTypeRep Intwhere
typeRep= int

For GM, the type classTypeRepdirectly selects the appropriate
behaviour for a particular structural case from the generic function.
In contrast, for LIGD, the corresponding type classTypeRepbuilds
a value as a type representation for a particular structural case,
and this representation is then used by a generic function to select
the appropriate behaviour. The effect is the same, but GM is more
direct.

A new generic function is defined via an instance ofGeneric,
providing an implementation for each structural case. For instance,
the generic functiongSizethat counts all the elements of typeInt
andChar in some structure could be encoded as follows.

newtypeGSize a= GSize{appGSize:: a→ Int}
instanceGeneric GSizewhere

unit = GSize(λ → 0)
sum = GSize(λt → caset of

Inl x → gSize x
Inr y → gSize y)

prod = GSize(λt → caset of
Prod x y→ gSize x+gSize y)

datatype iso= GSize(λt → gSize(from iso t))
char = GSize(λ → 1)
int = GSize(λ → 1)

gSize:: TypeRep a⇒ a→ Int
gSize= appGSize typeRep

A record of typeGSize acontains a single functionappGSizeof
typea→ Int, which can be used to compute the number of elements
in some structure of typea. The functiongSize, which is the actual
generic function, simply extracts the soleappGSizefield from a
record of the appropriate type, built automatically bytypeRep.

2.2.2 Generic functions on type constructors

The second implementation of generics in GM (“GM2”) permits
parametrisation by type constructors rather than by types. For ex-
ample, whereas the generic functiongSizeof the previous section
has typea→ Int for all first-order typesa in the type classTypeRep,
in this section we show a generic functiongSizewith typef a→ Int
for all type constructorsf in the constructor classFunctorRep.

Lifting in this fashion introduces the possibility of ambiguity:
a type g (f a) may be considered a type constructorg applied
to a typef a, or the composition of constructorsg and f applied
to typea. Therefore we must explicitly pass type representations,
increasing flexibility but decreasing brevity. This is reflected in the
analogous type classGeneric, where the implicitly-passedTypeRep
contexts are now changed to explicitly-passed functions.

classGeneric gwhere
unit :: g Unit
sum :: g a→ g b→ g (Sum a b)
prod :: g a→ g b→ g (Prod a b)
datatype:: (b↔ a)→ g a→ g b
char :: g Char
int :: g Int

However, this modification of the type class restricts expressivity,
since the only generic function we can call is the one being defined,
recursively. Consequently, generic functions that perform calls to
other generic functions (as when defining generic membership in
terms of generic equality) become harder to define.

With the newGeneric class it is also possible to build the
values for type representations automatically, using another type
classTypeRep. Just as with LIGD, this class now becomes optional.
Alternatively, we can use a type classFunctorRepto capture the
notion of unary type constructor orfunctor.

classFunctorRep fwhere
functorRep:: Generic g⇒ g a→ g (f a)

We have to define similar classes for each arity of type constructor.
Generic functions are defined in a very similar fashion to GM1.

For instance, the typeCount abelow represents a generic function
that counts zero for each occurrence of a value of typeInt or Char
in some structure of typea.

newtypeCount a= Count{applyCount:: a→ Int}
instanceGeneric Countwhere

unit = Count(λ → 0)
sum a b = Count(λx→ casex of

Inl l → applyCount a l
Inr r → applyCount b r)

prod a b = Count(λ(Prod x y)→
applyCount a x+applyCount b y)

datatype iso a= Count(λx→
applyCount a(from iso x))

char = Count(λ → 0)
int = Count(λ → 0)

While this function by itself approximatesconst0, it is the basis
for other more useful functions that really count the number of ele-
ments in some structure in some way, by overriding the behaviour
of the basic generic function for occurrences of the type parameter:

gSize:: FunctorRep f⇒ f a→ Int
gSize= applyCount(functorRep(Count(λ → 1)))
The payback of usingFunctorRepis that we can define the

behaviour of the generic function for its parameters. For instance,
we could sum all the integers in some integer-parametrised datatype
by using the identity function to define the behaviour of the generic
function for the type parameter.

gSum:: FunctorRep f⇒ f Int → Int
gSum= applyCount(functorRep(Count id))

3. Closed type-indexed functions
In LIGD and GM, we are shown three methods for implementing
closed type-indexed functions. Those three variations give us dif-
ferent expressive power, and impose different constraints on the
type system. A choice of implementation techniques, together with
technical trade-offs making no one method superior in all circum-
stances, is characteristic of design patterns.

In this section, we introduce the TypeCase design pattern,
capturing the different techniques for implementing closed type-
indexed functions.

The TypeCase design pattern

Intent: Allowing the definition ofclosed type-indexed functions.

Motivation: Thetypecasedesign pattern captures a closed-world
view of ad-hoc polymorphism. In Haskell, the type class system
is a mechanism that supports ad-hoc polymorphism, but from an
open-world point of view: they can be extended with cases for
new datatypes, at the cost of a non-extensible set of functions.
Under the closed-world assumption, there is a fixed set of type-
structural cases but arbitrarily many type-indexed functions ranging
over those cases. An example where the closed-world perpective
works better than the open-world one isgeneric programming, in
which we take a structural perspective on types as opposed to the
more traditional nominal one. Using just a few operations on types,
it is possible to represent the whole family of structural definitions
of interest. For instance, here is a possible definition for a generic
function that counts all the elements of some structuret:

gsize〈t ::?〉 :: t → Int
gsize〈Unit〉 = 0
gsize〈Int〉 = 1
gsize〈Sumα β〉 (Inl x) = gsize〈α〉 x
gsize〈Sumα β〉 (Inr y) = gsize〈β〉 y
gsize〈Prod α β〉 (Prod x y) = gsize〈α〉 x+gsize〈β〉 y

With an open-world perspective, we can present a fixed number
of type-indexed definitions that range over those few cases; but
we cannot easily introduce new definitions. This is clearly not
appropriate for generic programming. In fact, what we expect from
a generic programming facility is the ability to a introduce new
generic definition without affecting the surrounding context. This
is precisely what the closed-world perspective provides us.

Applicability: Use this pattern:

• to encode collections of definitions that areindexed by some
fixed family of types, while allowing new definitions to be added
to the collection without affecting modularity;

• when a definition isvariadic, that is, it has a variable number of
arguments (see Section 4.2 for an example);

• to try to avoidtype-class trickery, such as multiple-parameter
type classes, functional dependencies, overlapping instances or
even duplicate instances (just consider a direct encoding of the
examples presented in the paper into type classes [30]);

• to capture someshape invariants, like the ones captured by
some nested types or phantom types [29, 18].

Structure: See Figure 1.

Participants:

• Structural Cases: a set of datatypes which represent the possible
structural cases for the type-indexed function;

• Typecase: representing the structure of a type-indexed function;
• Dispatcher: a type class, containing a single function, that is

responsible for dispatching a value of one of the structural cases
into the corresponding branch of thetypecase, based on the type
of the value;

• Type-indexed function: defining the type-indexed function using
an instance of thetypecase.

Collaborations:

• The typecaseuses thestructural casesin order to create a
corresponding number of cases that can be used to define the
type-indexed function.

• The dispatcheruses thestructural casesin order to create
a corresponding number of instances that will forward some
value of that family of structural cases into the corresponding
case in thetypecasecomponent.

• Thetype-indexed function(TIF) uses an instance of thetypecase
in order to implement the desired functionality for the type-
indexed function.

Implementation: Typically, atypecasecomponent is created us-
ing thestructural cases. There are three main variations for the im-
plementation of atypecase: two of them are based on type classes
and the other one on asmart datatype. A smart datatype is a para-
metrised type where the type parameters are dependent on the con-
structors. The idea of a smart datatype can be represented in various
forms:existentialdatatypes with an equivalence type (à la LIGD),
GADTs, phantom types, among others.

The goal of this design pattern is to simulate a closed type-
indexed function. In general, a type-indexed functionf has the
following structure.

f 〈t :: κ | d1 . . . dk〉 :: ψ
f 〈t1 a1 . . . ai〉= λ x11 . . . x1n → e1

...
f 〈tm z1 . . . zj〉 = λ xm1 . . . xmn→ em
The type signature tells us thatf has one type parametert and

optional type parametersd1 . . . dk with the same structure and kind
ast. The typeψ of the TIF may depend ont andd1 . . . dk.

We should note that this is not the same as having a TIF with
multiple type arguments. There is no problem, in principle, in hav-
ing multiple-parameter type arguments, but it would lead to an ex-
plosion in the number of typecases. This would be a generalisation
of this design pattern. For simplicity, we will only consider type
parameters with the same structure. The usefulness of this simpler
case is reflected in applications such asgeneric mapwhere the in-
put and output structures of the generic map function are the same.

The body of f contains (at least)m branches, providing the
behaviour of the TIF for each member of the family of typest
(that is, t1 a1 . . . ai , . . . , tm z1 . . . zj). This family of types cor-
responds to thestructural casesparticipant of the design pat-
tern. For each branch of the definition, we bind possible variables
x11 . . . x1n, . . . ,xm1 . . . xmn and define each typecase off with
e1, . . . ,em.

We now discuss the three main variations of the design pattern.

1. Smart datatypes:This variation is inspired by the LIGD ap-
proach. Hindley-Milner typing extended with existential data-
types (supported in most Haskell compilers) is enough to en-
code it. However, with extensions such as GADTs (supported
by GHC 6.4) the encoding becomes much more direct. Unfortu-
nately, neither of those extensions conforms to Haskell 98. We
will present this version of the design pattern using a GADT
syntax for simplicity.

Using thestructural casesgiven byt1 a1 . . . ai , . . . , tm z1 . . . zj ,
we can derive thetypecaseand dispatcherseen in Figure 1.
Since there arem structural cases in a standard instance of the
design pattern, one would createm constructorsct1, . . . ,ctm and
alsom instances forRepΓ. TIFs can now be defined using those
components, by creating some functionf that takes a first argu-
ment of typeRepΓ and returns a value of typeψ.

Smart Datatype Implicit/Explicit Representations

Typecase

data Γ t d1 . . . dk where
ct1 :: Σ(a1 ... ai) Γ (t1 a1 . . . ai) d11 . . . d1k

...
ctm :: Σ(z1 ... zj) Γ (tm z1 . . . zj) dm1 . . . dmk

classΓ (g:: κk+1 → ?) where
caset1 :: Σ(a1 ... ai) g (t1 a1 . . . ai) d11 . . . d1k

...
casetm :: Σ(z1 ... zj) g (tm z1 . . . zj) dm1 . . . dmk

Dispatcher

classRepΓ t d1 . . . dk where
rep:: RepΓ t d1 . . . dk

instanceΩ(a1 ... ai) ⇒
RepΓ (t1 a1 . . . ai) d11 . . . d1k where

rep= ct1 repi

...
instanceΩ(z1 ... zj) ⇒

RepΓ (tm z1 . . . zj) dm1 . . . dmk where
rep= ctm repj

classRepΓ t d1 . . . dk where
rep:: Γ g⇒ g t d1 . . . dk

instanceΩ(a1 ... ai) ⇒
RepΓ (t1 a1 . . . ai) d11 . . . d1k where

rep= caset1{repi }
...

instanceΩ(z1 ... zj) ⇒
RepΓ (tm z1 . . . zj) dm1 . . . dmk where

rep= casetm{repj }

Type-indexed
function

f :: Γ t d1 . . . dk → ψ
f (ct1 ra1 . . . rai) = λ x11 . . . x1n → [[e1]]

...
f (ctm rz1 . . . rzj) = λ xm1 . . . xmn→ [[em]]

f ′ :: RepΓ t d1 . . . dk ⇒ ψ
f ′ = f rep

newtypeF t d1 . . . dk = F{f :: ψ}
f ′ :: RepΓ t d1 . . . dk ⇒ ψ
f ′ = f rep
instanceRepΓ F where

caset1 {ra1 . . . rai }= λ x11 . . . x1n → [[e1]]
...

casetm{rz1 . . . rzj } = λ xm1 . . . xmn→ [[em]]

Figure 1. The structure of theTypeCasedesign pattern.

Thedispatchercomponent is optional in this variation. The
TIFs created with this variation are fully closed to extension;
no customisation is possible. This means that if we want to add
extra functionality we need to modify the smart datatype (and
the dispatcher if we have one). However, TIFs that call other
TIFs are trivial to achieve; there is no need for tupling.

2. Implicit representations: The implicit representation version
of the design pattern is inspired by GM1. Perhaps surprisingly,
some implementations of this instance require only Haskell 98.
However, if we need to have structurally-dependent variables,
then we also require multiple-parameter type classes.

Proceeding in a similar fashion to thesmart datatypeap-
proach, we use thestructural casesto derive thetypecaseand
dispatcherseen in Figure 1. Again, because we havem struc-
tural cases, we createm functionscaset1, . . . ,casetm andm in-
stances ofRepΓ.

The dispatcher is not an optional component: it always
needs to be defined in this variation. As with the smart datatype
variation, TIFs defined in this way are fully closed to extension,
and calls to other TIFs are trivial.

3. Explicit representations:The explicit representation variation
of the design pattern is inspired by GM2. Like the implicit
approach, Haskell 98 is enough to handle the simpler forms
(one type parameter). However, if we discard the optionaldis-
patcher, then Haskell 98 can handle all forms.

Using thestructural casesto derive thetypecaseand dis-
patcherseen in Figure 1, we would obtain a very similar struc-
ture to the implicit representation version. The most noticeable
difference is that, with the explicit representation, the definition
of rep needs to provide the correspondingcasefunction with
the representations for each of its type parameters. The second
difference is thatΣ, which corresponds to the representations
of the type parameters, reflects the fact that we are providing
explicit representations. Thus,Σ corresponds in this instance

to explicit arguments of the function, while with the implicit
representation it corresponds to (implicitly passed) type class
constraints. The dispatcher is an optional component.

Variations of this instance of the design pattern can also be
found in the literature [10, 37], as described in Section 4.2. TIFs
defined in this fashion are not fully closed to extension: it is pos-
sible to override default behaviour. However, the extra flexibil-
ity comes at a cost: recursive calls to other TIFs are not possible.
One common solution for this problem is totuple together into
a record the mutually-dependent functions. Another possibility
would be to have a notion of dependencies: if a TIFf requires
calls to another TIFg, then the record that definesf has a field
that is an instance ofg. Although this work is quite tedious, Löh
[26] shows how a type system can lighten the burden.

An associated problem for TIFs in this setting is the issue
of composability. If two TIFs are defined using different in-
stances (this is, they are not tupled together), then we cannot, in
a straightforward manner, use the same representation to com-
pose them. To illustrate the problem, consider:

newtypeF v1 . . . vn = F{f :: α}
newtypeG v1 . . . vn = G{g:: β}
instanceGeneric Fwhere . . .
instanceGeneric Gwhere . . .

Now let us suppose that we define atype-indexed abstraction
(that is, a function that uses one or more TIFs and is not defined
over the structure of types):

h rep= . . . f rep . . . g rep . . .
The interpretation of this definition as a type-indexed function
could be thought of as:h〈a〉 = . . . f 〈a〉 . . . g〈a〉 While this
is a perfectly reasonable interpretation, in practicef requires
inconsistent typesF v1 . . . vn andG v1 . . . vn for rep: F and
G are two different type constructors, so in a Hindley-Milner
type system, unification obviously fails. However,F and G
do have something in common. In particular, they are both

instances ofGeneric. So, in Haskell extended with higher-
order polymorphism, we can capture this relation with a rank-
2 type, thus providing a possible solution for the problem of
composability.

h:: (∀ g. Generic g⇒ g v1 . . . vn)→ ψ
h rep= . . . f rep . . . g rep . . .

We should note that even though we have presented three main
variations of the design pattern, the concept of a design pattern is,
by itself, quite informal and thus prone to different interpretations.
For instance, as we will see later, applications of the pattern (such
as GM) can have more type cases than there are datatype variants,
because some cases overlap. It is important to note that, depending
on the context of a problem, a design pattern can be adapted to
better fit that problem.

4. Applications
We present two applications of the design pattern. In Section 4.1,
still within the context of generic programming, we show how
one can build a library inspired by PolyP [21, 22] but working in
Haskell 98. In Section 4.2, we present a very flexible version of a
C-styleprintf function.

4.1 Light PolyP

It probably comes as no surprise to the reader that the technique
introduced in GM and LIGD can be applied to other generic pro-
gramming approaches as well.PolyPwas one of the first attempts to
produce a generic programming language. It is a simpler language
than Generic Haskell, working in a much more restricted family
of datatypes, namely one-parameter regular types. But this restric-
tion allows stronger properties to be stated: its simplicity and strong
theoretical background make it an appropriate language for teach-
ing both the theory [3] and practice of generic programming. Our
proposalLight PolyPencourages this, because no external PolyP
compiler is required (although one might still be desirable, for a
more convenient syntax).

Norell [30] shows how to use the Haskell type class system (ex-
tended with multiple-parameter type classes and functional depend-
encies) to obtain first-class PolyP generic functions in Haskell. In
this section, we will present a “lighter” version of PolyP, requir-
ing only Haskell 98 (without extensions such as multiple-parameter
type classes and functional dependencies) but with the same ex-
pressive power.

Instead of using sums of products like LAGP or Generic
Haskell, PolyP uses liftedpattern functorsasstructural cases. The
pattern functorsEmpty, PlusandProd have counterparts in LAGP.
The pattern functorsRepandPar correspond respectively to the re-
cursive argument and the parameter of the unary regular datatype.
The pattern functorConst tfor some typet represents the constant
functor, andComphandles the composition of functors required
for regular types.

data Empty p r = Empty
data Plus g h p r = Inl (g p r) | Inr (h p r)
data Prod g h p r = Prod (g p r) (h p r)
newtypePar p r = Par{unPar:: p}
newtypeRec p r = Rec{unRec:: r }
newtypeComp d h p r= Comp{unComp:: d (h p r)}
newtypeConst t p r = Const{unConst:: t}
The equivalence type is used to establish the isomorphism

between a regular datatype and its top-level structure. The em-
bedding/projection functions are traditionally calledinn andout.

data Iso a b= Iso{ inn:: a→ b,out:: b→ a}
listIso= Iso inL outL

where
inL (Inl Empty) = []

inL (Inr (Prod (Par x) (Rec xs))) = x : xs
outL [] = Inl Empty
outL(x : xs) = Inr (Prod (Par x) (Rec xs))

In PolyP no generic customisation is allowed, thus we can use
an implicit representation version of the design pattern and con-
sequently, it is possible for one generic function to use other generic
functions in its definition. Thetypecasecomponent corresponds to:

classGeneric fwhere
empty :: f Empty
plus :: (Rep g,Rep h)⇒ f (Plus g h)
prod :: (Rep g,Rep h)⇒ f (Prod g h)
par :: f Par
rec :: f Rec
comp :: (Functor d,Rep h)⇒ f (Comp d h)
constant:: f (Const t)

Thedispatchersimply selects the corresponding case based on
the type of the argument of the generic functiong.

classRep gwhere
rep:: Generic f⇒ f g

instanceRep Emptywhere
rep= empty

instance(Rep g,Rep h)⇒ Rep(Plus g h) where
rep= plus

instance(Rep g,Rep h)⇒ Rep(Prod g h) where
rep= prod

instanceRep Parwhere
rep= par

instanceRep Recwhere
rep= rec

instance(Functor d,Rep h)⇒ Rep(Comp d h) where
rep= comp

instanceRep(Const t) where
rep= constant

Like GM, defining a generic function is a matter of declaring
a record with a single field, a function of the appropriate type. As
an example, we could definefmap2, the map operation for binary
functors, as follows.

newtypeFMap2 a b c d f= FMap2{
appFMap2:: (a→ c)→ (b→ d)→ f a b→ f c d}

instanceGeneric(FMap2 a b c d) where
empty = FMap2(λ → Empty)
plus = FMap2(λf g t→ caset of

Inl x → Inl (fmap2 f g x)
Inr y → Inr (fmap2 f g y))

prod = FMap2(λf g t→ caset of
Prod x y→ Prod (fmap2 f g x) (fmap2 f g y))

par = FMap2(λf g (Par t)→ Par (f t))
rec = FMap2(λf g (Rec t)→ Rec(g t))
comp = FMap2(λf g (Comp t)→

Comp(fmap(fmap2 f g) t))
constant= FMap2(λ (Const t)→ (Const t))

fmap2:: Rep f⇒ (a→ c)→ (b→ d)→ f a b→ f c d
fmap2= appFMap2 rep
With fmap2it is now possible to define several widely-applicable

recursion operators [28, 14] using PolyP. For example, thecata-
morphismoperator could be defined as:

cata iso f= f ◦ fmap2 id(cata iso f)◦out iso
Note that one must give explicitly the isomorphism that con-

verts between the datatype and its representation. This contrasts
with the original PolyP approach, in which that translation is in-
ferred. This is the common trade-off of brevity for flexibility; being
forced to state the isomorphism allows the programmer to choose a
different one, giving something analogous to Wadler’s ideas about

views[34]. We might say that this style of generic programming is
isomorphism-parametrisedinstead ofdatatype-parametrised.

In the original PolyP, thepolytypicconstruct provides a conveni-
ent syntax for encoding generic functions. Furthermore, combinat-
ors for pointfree programming may be provided, making generic
definitions even more compact. These combinators are just normal
Haskell functions, and so there is no problem in implementing them
in pure Haskell; but to keep the example short, we have stuck with
pointwise definitions.

The advantages of this translation when compared with the one
proposed in [30] are that it requires only Haskell 98, and that the
types of the generic functions are much closer to what one would
expect. In Norell’s translation, the type class constraints posed
some problems because both the two-parameter classFunctorOf
and the classes for the generic functions propagated throughout
the code. With the Light PolyP approach, only instances ofRep
propagate, leading usually to just one type class constraint.

4.2 Printf

The C-styleprintf function, which takes a variable number of
parameters, has always been a challenge for programmers using
strongly and statically typed languages. The problem withprintf is
that, in its true essence, it requires dependent types. This happens
because the value of the format string determines the type of the
function. However, it has been shown by Danvy [10] that by chan-
ging the representation of the control string it is possible to encode
printf in any language supporting a standard Hindley-Milner type
system.

4.2.1 A solution using explicit representations

In this section, we will demonstrate that Danvy’s solution is another
instance of the TypeCase design pattern, using an explicit repres-
entation. Furthermore, we will show a new use of theprintf func-
tion by making use of the fact that we can (in some cases) infer the
format string.

Danvy’s original solution had the following combinators:
lit :: String→ (String→ a)→ String→ a
lit x k s = k (s++x)
eol :: (String→ a)→ String→ a
eol k s = k (s++"\n")
int :: (String→ a)→ String→ Int → a
int k s x= k (s++show x)
str :: (String→ a)→ String→ String→ a
str k s x= k (s++x)
eod :: String→ String
eod = id
If we capture all the occurrences of the formString→ t with a

newtypePrintf , and modify the definitions in order to reflect this
newtype, we obtain the following code.

newtypePrintf t = Printf{printfApp:: String→ t}
lit :: String→ Printf a→ Printf a
lit x k = Printf (λs→ printfApp k(s++x))
eol :: Printf a→ Printf a
eol k = Printf (λs→ printfApp k(s++"\n"))
int :: Printf a→ Printf (Int → a)
int k = Printf (λs x→ printfApp k(s++show x))
str :: Printf a→ Printf (String→ a)
str k = Printf (λs x→ printfApp k(s++x))
eod :: Printf String
eod = Printf id
Taking one step further, we can now abstract overPrintf and

create a type class that replaces it with some functorf .

classFormat f where
lit :: String→ f r → f r
eol :: f r → f r
int :: f r → f (Int → r)
str :: f r → f (String→ r)
eod:: f String

With this last transformation, we can start seeing an instance of the
TypeCase design pattern. Thestructural casesparticipant consists
of functions of the formInt → r or String→ r, or aString — lit
and eol are overlapping cases. The classFormat constitutes the
typecaseparticipant. Because thedispatcheris optional in explicit
versions of the design pattern, there is no obligation to define it.
Now, using the newtypePrintf , we can define an instance ofFormat
that implements the functionality ofprintf .

instanceFormat Printf where
lit x k = Printf (λs→ printfApp k(s++x))
eol k = Printf (λs→ printfApp k(s++"\n"))
int k = Printf (λs x→ printfApp k(s++show x))
str k = Printf (λs x→ printfApp k(s++x))
eod = Printf id

The final touch is provided by the definition ofprintf in terms of
printfApp. Theprintf function is expected to receive the formatting
argument of typePrintf t as its first parameter. The parametert
defines the type ofprintf , which can involve a variable number of
arguments. Analysing the type ofprintfApp, we see that the first
parameter is the formatting argument, the resulting type is the type
that we expect forprintf , and there is a second argument which is a
String. Now, what does thatStringrepresent? Danvy’s solution uses
a continuation-passing style and the second argument ofprintfApp
corresponds to the value fed to the initial continuation. Thus using
the string"" for that argument does the trick.

printf :: Printf t → t
printf p = printfApp p""
We have shown, informally, that Danvy’s solution is indeed an

instance of the TypeCase design pattern. However, some questions
might be asked at this point. Do we really need to create a class in
order to implementprintf ? What other instances of the class would
we be able to provide? In fact there are not many other uses for the
type class;printf seems to be the only natural instance. Perhaps we
could considerscanf, another C function that uses the same format
string; but the derived type forscanf would be different, and so
it is not possible to reuse the same type class. Another possibility
would be considering other versions ofprintf , such as one for the
IO monad. However, if we think thatprintf is really the only useful
instance of the type class, why not get rid of the type class all
together?

A design pattern is a flexible design, and depending on the con-
text of the problem, it can be adapted to fit the problem. If a type-
indexed function is used atjust one type index, it is reasonable to
simplify the pattern andeliminate the type class. The result would
be the specialised solution using the newtypePrintf t presented be-
fore. We could go even further and argue that Danvy’s original solu-
tion is already an instance of the design pattern, corresponding to
one further simplification of the design pattern, namely getting rid
of the newtype.

4.2.2 An alternative solution using smart datatypes

In the previous section, we have argued that Danvy’s version of
printf is an instance of the TypeCase design pattern. However,
Danvy’s solution and explanation forprintf is not, perhaps, very
intuitive to understand. In this section, we take a different perpect-
ive and will look at the formatting parameter ofprintf as a spe-
cial kind of list. This perpective corresponds to an instance of the
design pattern using asmart datatype. The datatype (thetypecase
participant) encodes a list, which has an empty case that corres-

ponds to the combinatoreod, and a number of recursive cases that
correspond tolit , eol, int andstr.

data Printf t where
Lit :: String→ Printf t → Printf t
Eol :: Printf t → Printf t
Int :: Printf t → Printf (Int → t)
Str :: Printf t → Printf (String→ t)
Eod:: Printf String

Informally speaking, we have reused the types from the newtype
solution and lifted the functions to constructors. However, using
a datatype instead of a number of functions makes it easier to
view the format parameter ofprintf as a list. For instance, theLit
constructor takes the literal string that we wish to print and also the
list corresponding to the rest of the format parameter ofprintf .

TheprintfApp from the previous section would, in this setting,
correspond to a dependently-typed function (in the sense that the
types of its branches are determined by the constructors used to
perform pattern matching).

printfApp :: Printf t → String→ t
printfApp(Lit x k) s= printfApp k(s++x)
printfApp(Eol k) s = printfApp k(s++"\n")
printfApp(Int k) s = (λx→ printfApp k(s++show x))
printfApp(Str k) s = (λx→ printfApp k(s++x))
printfApp Eod s = s

The final step is to defineprintf . Little effort is required; we just
need to copy the definition ofprintf from the previous section. The
only apparent difference between the two versions is that, where
the first version uses functions likelit and int, this version uses
constructors likeLit andInt. However, despite the similarity of the
two solutions, their expressive power is not the same. The smart
datatype solution in this section is fully closed to extension. That
is, in order to add another case in the formatting list, such as a
constructorChr that handles characters, we would need to modify
the GADT itself. On the other hand, the solution in the previous
section using the explicit version of the design pattern allows some
form of extensibility. Adding a new case forprintf that handles
characters corresponds to adding a new function, which could even
be in a different module.

4.2.3 Making use of a dispatcher

The two solutions that we presented did not make any use of a
dispatcher. In this section we will show how the dispatcher can
be useful. The version of the dispatcher presented here is for the
explicit representation solution in Section 4.2.1, but could be easily
adapted to the smart datatype solution in Section 4.2.2.

Suppose that we want to define a function that prints a pair of
integers. Equipped withprintf , we could try to encode that with
either one of the following two functions.

printPair x y= printf fmt"(" x ", " y ")"
where

fmt= str$ int str int streod

printPair2 x y= printf fmt x y
where

fmt= lit "("$ int $ lit ", "$ int $ lit ")"$eod
The functionprintPair tackles the problem using aprintf that takes
a format argument expecting five arguments: three strings and two
integers. The functionprintPair2, on the other hand, makes use of
the fact that the string arguments are constants, and useslit instead.
Thus, in this case,printf takes the format argument and two integer
arguments. Although relatively compact, the format argument is not
as convenient to use as it would be in C, where one would write
something like"(%d, %d)".

The role of the dispatcher is to infer automatically the corres-
ponding type representation for some typet. In the case ofprintf ,

it is not possible to infer all possible representations. Consider, for
instance, the end of line caseeol:: f r → f r, which takes an existing
format with some typer, adds a newline and returns a format of the
same type. Clearly, there is no way to deduce that there is an occur-
rence ofeol based on the type alone. Similarly, thelit case has no
effect on the type. Nevertheless, the other, more type-informative,
cases ofprintf can be inferred.

classRep twhere
rep:: Format f⇒ f t

instanceRep Stringwhere
rep= eod

instanceRep r⇒ Rep(Int → r) where
rep= int rep

instanceRep r⇒ Rep(String→ r) where
rep= str rep

We should note that these instance declarations are outside the
scope of Haskell 98 — types are used where type variables should
occur. However, this is a quite mild extension, and is supported by
most Haskell compilers.

Making use of the fact that now we can infer some cases of the
string format, we could define:

printPair :: Int → Int → String
printPair x y= printf rep"(" x ", " y ")"
printTrio :: Int → Int → Int → String
printTrio x y z= printf rep"(" x ", " y ", " z")"

The functionprintPair does the same as before. However, with
this new definition, the format directive is automatically inferred.
The functionprintTrio is doing the same asprintPair, except that
it does it for triples. We should emphasise that the occurrences of
printf in those two functions use different numbers of arguments.
We should also mention that, in some situations, we will need to
provide explicit types, otherwise the type checker would not be able
to infer the correct instances of the type classRep.

This use ofprintf seems to be practical, and for this simple
version of it we might even argue that everything that we could
do with a manually-provided parameter could be done with an
automatically-inferred one. We simply do not needlit and eol,
because those can be simulated usingstr (with, of course, extra
String arguments). Nevertheless, if we decided to go for a more
powerful version ofprintf , this might not be the case. Consider, for
instance, the formatting directive"%2d". In this case the number 2
is specifying the minimum width of the string that represents that
number. If we wanted to allow this kind of behaviour, we could
add an extra parameter of typeInt to the int case. However, the
problem now is to choose a value for that parameter when we
automatically build the format directive. In this case we need to
use some default value (for instance 1). However we are no longer
able, for all possible cases, to simulate the functionality ofprintf
with manual format strings using only automatically-built ones.

5. Type-indexed types
Until now we have been discussingtype-indexed functions, that
is, families of functions indexed by types. We turn now totype-
indexed types, that is, families of types indexed by types. In the
context of generic programming, we call thesegeneric types. Gen-
eric functions with generic types are functions that have different
result types for each structural case.

In this section, we will show how to implement type-indexed
types as another variation of theTypeCasedesign pattern. We do
this by translating a standard example of Generic Haskell [20],
namely generic tries [17], into our approach.

5.1 Encoding type-indexed types

Section 3 presents templates for encoding type-indexed functions.
In this section, we show how to translate a type-indexed type into
an instance of the TypeCase design pattern.

In general, a type-indexed type has the form
Γ〈t :: κ〉 :: τ
Γ〈t1 a1 . . . ai〉= Λ d11 . . . d1n → ν1

...
Γ〈tm z1 . . . zj〉 = Λ dm1 . . . dmn→ νm

whereΓ is the type-level function that defines the type-indexed
type;t is the family of types (or type constructors)(t1 a1 . . . ai), . . . ,
(tm z1 . . . zj) of kind κ that corresponds to thestructural cases
of the design pattern; and, finally,τ is the kind ofΓ〈t :: κ〉. For
each type that is member of that family, we have a corresponding
branch forΓ. The type-level lambda abstraction on the right side of
each branch is optional, and corresponds to possible parametrically
polymorphic variablesd1 . . . dn that the type-indexed type might
depend on. Finally,ν1 . . . νm corresponds to the family of types (or
type constructors) that defines the type-indexed type.

5.1.1 Type class translation

We can now derive an instance of the TypeCase design pattern
to capture type-indexed functions with type-indexed types. The
typecaseparticipant, for instances of the design pattern using either
implicit or explicit representations, could be defined as follows.

classΓ (g:: κ → τ′ → ?) where
caset1 :: Σ(a1 ... ai) g (t1 a1 . . . ai) d11 . . . d1n ν1

...
casetm :: Σ(z1 ... zj) g (tm z1 . . . zj) dm1 . . . dmn νm

We reuse the nameΓ for the name of the type class that en-
codes thetypecasecomponent. The parameterg is a type con-
structor with kind κ → τ′ → ?, where τ′ is the literal occur-
rence of τ (if we were to useτ instead of its literal occur-
rence, we would obtain the wrong kind). There arem functions
caset1, . . . ,casetm that correspond to the typecases for each type
(t1 a1 . . . ai), . . . ,(tm z1 . . . zj). Each case of the typecase func-
tion is defined by providing the type constructorg with the corre-
ponding types. Finally,Σ(a1 ... ai), . . . ,Σ(z1 ... zj) corresponds to the
representations for the types(a1 . . . ai), . . . ,(z1 . . . zj).

The only difference between explicit and implicit versions of the
design pattern for the typecase component is that in the explicit ver-
sion the occurrences ofΣ are expanded into explicitly-passed rep-
resentations of the formg aκ . . ., whereas with the implicit repres-
entations those occurrences are replaced by type class constraints
of the formRepΓ aκ

Thedispatchercan also be derived; but to do so requires exten-
sions to Haskell 98 — specifically, multiple-parameter type classes
with functional dependencies. The problem is that, even in its
simplest form, a type-indexed type requires at least two type ar-
guments: the first one corresponding to the index type, and the
second one that is the resulting type-indexed type for that index,
and thus depending on the index. This problem is not too serious if
we use the explicit representations variant of the pattern, since the
dispatcher is optional, but using implicit representations forces us
outside Haskell 98.

classRepΓ t d1 . . . dn ν | t d1 . . . dn → ν where
rep:: Γ g⇒ g t d1 . . . dn ν

instanceΩ(a1 ... ai) ⇒
RepΓ (t1 a1 . . . ai) d11 . . . d1n ν1 where

rep= caset1{repi }
...

instanceΩ(z1 ... zj) ⇒
RepΓ (tm z1 . . . zj) dm1 . . . dmn νm where

rep= casetm{repj }
The type classRepΓ has at least two type arguments:t and ν. If
there are parametric types thatν depends on, then the type class
also needs to account for those types (d1 . . . dn). The class contains
just one member function,rep, used to build representations for
Γ. The functionrep has a type class constraint ensuring thatg
is an instance ofΓ. There are, at least,m instances ofRepΓ, and
those instances definerep with the correspondingcasetκ function.
If we are implementing an implicit version of the design pattern,
then the definition ofrep is complete; otherwise, for an explicit
version, we need to applycasetκ to a numberi of rep functions
(wherei is the number of type parameters oftκ). The constraints
Ω(a1 ... ai), . . . ,Ω(z1 ... zj) are very similar to the constraintsΣ, and in
fact for implicit representations they coincide: they correspond to
representations for the typesa1 . . . ai , . . . ,z1 . . . zn.

5.1.2 Smart datatype translations

Encoding type-indexed functions withsmart datatypesproceeds
in a similar fashion to the encoding with type classes. We will
demonstrate how to do this translation using a GADT syntax (as
found in the new GHC 6.4 Haskell compiler).

A type-indexed type generates a smart datatype of the following
form.

data Γ t d1 . . . dn ν where
ct1 :: Σ(a1 ... ai) Γ (t1 a1 . . . ai) d11 . . . d1n ν1
...
ctm :: Σ(z1 ... zj) Γ (tm z1 . . . zj) dm1 . . . dmn νm

Instead of being parametrised by a “function” (like the type class
approach), a smart datatype is parametrised by all the types on
which it depends. Another difference from the type class approach
is that the functions that represent each case are now replaced
by constructorsct1, . . . ,ctm that can just be pattern matched (in a
dependent manner) by functions defined over those datatypes. A
final difference is thatΣ(a1 ... ai), . . . ,Σ(z1 ... zj) need to reflect the fact
that we are now using a smart datatype.

The changes toRepΓ are minimal; the only change to the type
class version is that in the definition ofrep we now use the con-
structorsct1, . . . ,ctm instead of the functionscaset1, . . . ,casetm.

classRepΓ t d1 . . . dn ν | t d1 . . . dn → ν where
rep:: Γ t d1 . . . dn ν

instanceΩ(a1 ... ai) ⇒
RepΓ (t1 a1 . . . ai) d11 . . . d1n ν1 where

rep= ct1 repi

...
instanceΩ(z1 ... zj) ⇒

RepΓ (tm z1 . . . zj) dm1 . . . dmn νm where
rep= ctm repj

5.2 Tries

Tries or digital search treesare a traditional example of a gen-
eric type. Tries make use of the structure of search keys in order
to organise information, which can then be efficiently queried. In
this section we will show how to implement generic tries using a
variation of the LAGP type representations. For a more theoret-
ical presentation of tries, see [20, 17]; the implementation of tries
presented here follows closely the implementations found in those
papers.

In [20], the generic type for tries is given as follows.

FMap〈t ::?〉 :: ?→ ?
FMap〈Unit〉 v = Maybe v
FMap〈Int〉 v = MapInt v
FMap〈Plus t1 t2〉 v = OptPair (FMap〈t1〉 v) (FMap〈t2〉 v)
FMap〈Prod t1 t2〉 v = FMap〈t1〉 (FMap〈t2〉 v)
It is clear that the type-indexed functionFMap takes a type

parametert ::? and another type of kind? and returns another type
of kind ?. Only the shape of parametert is analysed; the other
parameterv needs to be used in the definition because the resulting
type is parametrically polymorphic in relation tov.

We encode this characterisation ofFMapas follows.
classFMap gwhere

unit :: g Unit v Maybe
plus :: g a v c→ g b v d→ g (Plus a b) v (PlusCase c d)
prod:: g a(d v) c→ g b v d→ g (Prod a b) v (ProdCase c d)
data:: g a v c→ Iso b a→ Iso(d v) (c v)→ g b v d
int :: g Int v MapInt

This class forms thetypecaseparticipant of an explicit representa-
tion variant of the TypeCase pattern. The classFMap is a variation
of theGenericclass from Section 2.2.2. The functorg :: ? → ? →
(? → ?) → ? takes the necessary information to rebuild the type-
indexed type. The three parameters of the functor correspond, re-
spectively, to the type parametert, the second parameter and the
resulting type ofFMap. (The kind of the resulting type is now
?→ ?. We could have used kind? as inFMap, but we believe this
version is slightly more readable.) The functionunit just reflects the
change of the functorg and adds the information for the parametric
typev and the functorMaybethat is used to define the trie for the
Unit case. The cases forplusandprod have explicit arguments that
correspond to the recursive calls of the function; and the functors
PlusCase c dandProdCase c dcorrespond to the respective cases
of the type-indexed type. Thedata function handles user-defined
datatypes, having a recursive case and two isomorphisms: the first
between the structural cases and a second between the tries corres-
ponding to those cases. Finally, we could also define some extra
base cases to handle primitive types such asInt andChar.

The auxiliary definitions for the newtypesPlusCase a b vand
ProdCase a b vare defined as follows.

data OptPair a b= Null | Pair a b
newtypePlusCase a b v=

PlusCase{unPlus:: OptPair (a v) (b v)}
newtypeProdCase a b v=

ProdCase{unProd:: a (b v)}
The introduction ofOptPair a bis for efficiency reasons [20].

In order to use a user-defined type (or a built-in type that does
not have a special case for it), we need to do much the same work
as for GM2 in Section 2.2.2. As an example, we show what to do
for Haskell’s built-in lists.

list :: FMap g⇒ g a(FList c v) c→ g [a] v (FList c)
list ra = data(plus unit(prod ra(list ra))) listEP

(Iso unFList FList)
listEP:: Iso [a] (Plus Unit(Prod a[a]))
listEP= Iso fromList toList

where
fromList[] = Inl Unit
fromList(x : xs) = Inr (Prod x xs)
toList (Inl Unit) = []
toList (Inr (Prod x xs)) = x : xs

newtypeFList c v= FList{
unFList:: (PlusCase Maybe(ProdCase c(FList c))) v}

The functionlist defines the encoding for the representation oflists.
Because lists are a parametrised datatype with one type parameter,
list is a function that takes one argument; this argument corresponds
to the representation of the list type argument, andlist returns the

representation for lists. The definition is nearly the same as the
equivalent for GM, but it takes an extra isomorphism describing
the mapping between the structural representation of a list trie and
a newtypeFList c v that is introduced to represent the resulting list
trie. The functionlistEP is just the isomorphism[a]∼= 1+a× [a].
This means thatlistEPcan be shared with other versions of generics
that use the same structural cases. However,list andFList c vstill
have to be introduced for each type-indexed datatype. Nevertheless,
that is boilerplate code, and, with compiler support, it is should be
possible to avoid writing it.

Having set up the main components of the design pattern, we
can now move on to define our first function over tries. The function
emptycreates a new empty trie and can be defined as follows.

newtypeEmptyTrie a v t= EmptyTrie{empty:: t v}
instanceFMap EmptyTriewhere

unit = EmptyTrie Nothing
int = EmptyTrie(MapInt [])
plus ra rb = EmptyTrie(PlusCase Null)
prod ra rb = EmptyTrie(ProdCase(empty ra))
data ra iso iso2= EmptyTrie(to iso2(empty ra))

This function is very simple but, nonetheless, it has a type-indexed
type: theunit case returnsNothing; the int case returns a value of
a user-defined type for integer tries; the cases forprod and plus
return, respectively, values for the previously definedProdCaseand
PlusCasetypes; finally, thedatareturns a value of the newtype used
to represent the trie of some user-defined datatype.

Another function that we will probably want to have in a library
for tries is thelookUp function which, given a key, returns the
corresponding value stored in the trie.

newtypeLUp a v t= LUp{ lookUp:: a→ t v→ Maybe v}
instanceFMap LUpwhere

unit = LUp (λ fm→ fm)
int = LUp (λi fm→ lookUpInt i fm)
plus ra rb = LUp (λt fm→

case(unPlus fm) of
Null → Nothing
(Pair fma fmb)→ caset of

(Inl l)→ lookUp ra l fma
(Inr r)→ lookUp rb r fmb)

prod ra rb = LUp (λt (ProdCase fma)→
caset of

(Prod x y)→ (lookUp ra x� lookUp rb y) fma)
data ra iso iso2=

LUp (λt r → lookUp ra(from iso t) (from iso2 r))
(The operator� represents monadic composition.) The functions
emptyandlookUphave definitions that only have generic function
calls to themselves. However, that is not the case for all generic
functions. One such function is the generic function that creates a
trie containing a single element; a possible definition makes use of
the generic functionempty. We discussed in Section 3 that, using
an explicit version of the design pattern, there are some issues with
generic functions calling generic functions other than themselves.
One solution for this problem is using tupling. Just as one does
with a type class, we would choose a fixed set of functions and
group them together in a record. For instance, in the case of tries,
we could have the following.

data Tries a v t= Tries{
empty :: t v,
isempty:: t v→ Bool,
single :: a→ v→ t v,
lookup :: a→ t v→ Maybe v,
insert :: (v→ v→ v)→ a→ v→ t v→ t v,
merge :: (v→ v→ v)→ t v→ t v→ t v,
delete :: a→ t v→ t v}

With our definition we could, for any function in the record, make
mutual generic calls.

Whilst we could have used a multiple-parameter type class
with functional dependencies in order to implement this library of
functions over tries, there would be one important disadvantage in
doing so (apart from the fact that we need to leave Haskell 98):
we can only have functions on types of kind?. With type classes,
contexts are implicitly passed, and there is no way to redefine those
implicit behaviours. In other words, type classes have the same
limitation as implicit representations as a version of the TypeCase
design pattern, in that they can only work on types. On the other
hand, derived from the fact that we use external representations,
with this implementation we can define generic functions over type
constructors.

Tupling is not the only option to solve the problem of generic
function calls. Another possibility is to have the notion ofdepend-
encies: instead of tupling all functions together, we can, for each
generic function that we need to use, include one instance of that
function. Here is a possible definition ofsingleusing this strategy.

data Single a v t= Single{
emptyT:: EmptyTrie a v t,
single :: a→ v→ t v}

instanceFMap Singlewhere
unit = Single unit(λ v→ Just v)
int = Single int(λi v → MapInt [(i,v)])
plus ra rb = Single(plus(emptyT ra) (emptyT rb))

(λi v →
casei of

Inl l → PlusCase(Pair (single ra l v)
(empty(emptyT rb)))

Inr r → PlusCase(Pair (empty(emptyT ra))
(single rb r v)))

prod ra rb= Single(prod (emptyT ra) (emptyT rb))
(λi v →

casei of
Prod x y→ ProdCase(single ra x(single rb y v)))

data ra iso iso2= Single(data(emptyT ra) iso iso2)
(λi v → to iso2(single ra(from iso i) v))

The idea of dependencies is motivated by Dependency-Style Gen-
eric Haskell [26, 27]. In this version of Generic Haskell, the type
system reflects the uses of generic functions in the definitions by
keeping track of constraints that identify such uses. With this defin-
ition, we have to manually introduce those dependencies by adding
extra fields to the record that keep track of all the functions on
which the definition depends. That change is also reflected in the
instance that defines the generic function, where we need to provide
values for the extra fields; the values for those fields just reconstruct
the dependent functions with their values for those fields.

6. Discussion and conclusions
The goal of design patterns is not to come up with a miraculous
solution for a problem. Instead, design patterns capture good tech-
niques that appear in the literature or in practice, in a variety of
contexts, and document them to make them easier to identify and
implement. In this paper we have generalised the technique found
in LIGD and GM to a design pattern, and presented a number of
applications of the pattern. Furthermore, we have identified other
occurrences of the design pattern in the literature.

6.1 Related work

The technique used by Danvy [10] and generalised by Yang [37]
allows us to encodetype-indexed valuesin a Hindley-Milner type
system. This encoding is directly related to the explicit represent-
ation version of the TypeCase pattern. This technique influenced

many other works, ranging from type-directed partial evaluation
[37, 9, 12], through embedded interpreters [2], to a generalisation
of families of functions likezipWith[13] — these are all possible
applications of the TypeCase design pattern. Our paper revises that
technique and shows how slightly richer type systems can be used
to improve it. In particular, the use of adispatchermakes it pos-
sible to automatically built the values encoding types. Moreover,
the issue ofcomposability(identified by Yang), while still a prob-
lem, can benefit from stronger type systems: the use of rank-two
types combined with type classes provides a good solution.

The work onextensional polymorphism[11] presents an ap-
proach that allows functions to implicitly bind the types of their
arguments in a modified version of ML. Furthermore, using a
typecaseconstruct it is possible to support generic programming.
Harper and Morrisett’s work onintensional type analysis[16]
presents an intermediate language where run-time type analysis is
permitted, usingtypecaseandTypecaseconstructs to define type-
indexed functions and type-indexed types, respectively. However,
approaches based on run-time type analysis have important draw-
backs; for instance, they cannot support abstract datatypes, and
they do not respect the parametricity theorem [35, 33]. Subsequent
approaches to intensional type analysis by Crary and others [7, 6]
use a type-erasure semantics that does not suffer from those prob-
lems. Still, those approaches were limited to first-order type ana-
lysis. More recently, Weirich [36] proposed a version of intensional
type analysis covering higher-order types with a type-erasure se-
mantics. Furthermore, she presented an implementation in Haskell
(augmented with rank-two types). This work inspired Hinze’s im-
plementation of GM, which shows, in essence, how to avoid rank-
two types by using Haskell’s class system. Our work makes use
of those results and explains how to simulatetypecaseconstructs.
Furthermore, we show that the limitation of GM that generic func-
tions with generic types cannot be defined can be lifted with our
more general interpretation.

Generic programming (or perhaps datatype-generic program-
ming [15]) is about defining functions and types that depend on
the structure of other types. One of the first attempts to produce
a generic programming language was PolyP [21]. This language
allowed the definition of generic functions over regular datatypes
with one type parameter. In Section 4.1 we show that, using our
design pattern, it is possible to define PolyP-like generic functions
just using Haskell 98. A previous attempt [30] to define first-class
PolyP functions in Haskell required extensions to the language.
The Generic Haskell [26, 5] project is more ambitious than PolyP,
and aims at defining generic functions for nearly all types defin-
able in Haskell 98. Furthermore, Generic Haskell features generic
types and generic function customisation (which were not present
in PolyP). Dependency-Style Generic Haskell [26, 27] introduces
a rather complex type system that keeps track of dependencies on
generic function calls. The need for this sophisticated type system
is a consequence of a model for generic programming that allows
generic function customisation. The approach presented in [24] is
another kind of lightweight approach to generic programming, re-
lying on a run-time type-safe cast operator. With that operator it is
possible to define a number of traversals that allow a very interest-
ing model of generic programming based on nominal typing. Our
design pattern can be used to encode many of the generic defini-
tions that these generic programming techniques allow. However,
it can be less practical than approaches providing a special-purpose
compiler. Nevertheless, the advantage of our technique is that we
do not need to commit in advance to a model of generic program-
ming: we have the freedom to choose our own model of generic
programming.

Design patterns in the object-oriented programming community
have been given a great deal of attention. Whilst amongst the

functional programming community there has been some work
on — or, at least, involving the concept of — design patterns
[24, 23, 25], the concept is still much less popular than in the object-
oriented community. Moreover, most of this work presents patterns
that are really more like algorithmic patterns rather than design
patterns. Perhaps the reason why this happens is that functional
languages are very expressive, and often natural features of those
languages, such as laziness or higher-order functions, can be used
to remove the need for complex designs. Nevertheless, we believe
that our design pattern is more related to the OO concept of a design
pattern with type classes/datatypes taking the role of OO interfaces
and class instances taking the role of OO concrete classes. One
difficulty found in this work had to do with the fact that, unlike
OO design patterns which are documented using informal notations
such as UML, we do not have a notation to “talk” about the design
of Haskell programs. The notation that we used is quite ad-hoc and
it can be difficult to read.

6.2 Future work

We mentioned that this design pattern seems to be very similar to
OO design patterns. It would be interesting to explore the applic-
ability of this design pattern in an OO environment.

Design patterns are useful to overcome the lack of certain fea-
tures in programming languages. In our case, we overcome the
lack of atypecaseconstruct. The work on intensional type analysis
investigates the possibility of languages supportingtypecasecon-
structs directly in the language. Combining these results in order to
extend Haskell with a more natural support fortypecaseprogram-
ming is something we would like to try in the future.

Problems that use multiple instances of the design pattern are
not composable. For instance, in a generic programming context,
we could have a classGeneric that allowed us to define generic
functions with one type parameter; and we could also have a class
FMap for working with tries. Although, those classes are structured
in a similar way, they require two distinct representations of types,
one for each of the classes; we hope to address this impracticality.

Acknowledgements

We would like to thank Ralf Hinze for the discussion that inspired
this paper. Stefan Holdermans, the anonymous referees and the
members of theAlgebra of Programminggroup at Oxford and
the EPSRC-fundedDatatype-Generic Programmingproject made
a number of helpful suggestions.

References
[1] C. Alexander.A Pattern Language. Oxford University Press, 1977.
[2] N. Benton. Embedded interpreters. Microsoft Research, Cambridge,

Jan. 2005.
[3] R. Bird and O. de Moor.Algebra of Programming. International

Series in Computer Science. Prentice Hall, 1997.
[4] J. Cheney and R. Hinze. A lightweight implementation of generics

and dynamics. InHaskell Workshop, pages 90–104, 2002.
[5] D. Clarke and A. Löh. Generic Haskell, specifically. InGeneric

Programming, pages 21–47. Kluwer, B.V., 2003.
[6] K. Crary and S. Weirich. Flexible type analysis. InInternational

Conference on Functional Programming, pages 233–248, 1999.
[7] K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism

in type-erasure semantics. InInternational Conference on Functional
Programming, pages 301–312, 1998.

[8] N. A. Danielsson and P. Jansson. Chasing bottoms: A case study in
program verification in the presence of partial and infinite values. In
D. Kozen, editor,LNCS 3125: Mathematics of Program Construction,
pages 85–109. Springer-Verlag, 2004.

[9] O. Danvy. Type-directed partial evaluation. InPrinciples of
Programming Languages, 1996.

[10] O. Danvy. Functional unparsing.Journal of Functional Program-
ming, 8(6):621–625, 1998.

[11] C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism. In
Principles of Programming Languages, pages 118–129, 1995.

[12] P. Dybjer and A. Filinski. Normalization and partial evaluation. In
LNCS 2395: Applied Semantics, pages 137–192. Springer, 2002.

[13] D. Fridlender and M. Indrika. Do we need dependent types?Journal
of Functional Programming, 10(4):409–415, 2000.

[14] J. Gibbons. Calculating functional programs. InAlgebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
pages 149–202, 2000.

[15] J. Gibbons. Patterns in datatype-generic programming. InDeclarative
Programming in the Context of Object-Oriented Languages, 2003.

[16] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. InPrinciples of Programming Languages,
pages 130–141, San Francisco, California, 1995.

[17] R. Hinze. Generalizing generalized tries.Journal of Functional
Programming, 10(4):327–351, 2000.

[18] R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor,
editors,The Fun of Programming, pages 245–262. Palgrave, 2003.

[19] R. Hinze. Generics for the masses. InInternational Conference on
Functional Programming, pages 236–243. ACM Press, 2004.

[20] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types.Science
of Computer Programming, 51(1-2):117–151, 2004.

[21] P. Jansson.Functional Polytypic Programming. PhD thesis, Chalmers
University of Technology, May 2000.

[22] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard, editors,LNCS 1129: Advanced Functional
Programming, pages 68–114. Springer-Verlag, 1996.

[23] T. Kühne. A Functional Pattern System for Object-Oriented Design.
Verlag Dr. Kovǎc, ISBN 3-86064-770-9, Hamburg, Germany, 1999.

[24] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. InTypes in Language Design
and Implementation, 2003.

[25] R. Lämmel and J. Visser. Design patterns for functional strategic
programming. InWorkshop on Rule-Based Programming, 2002.

[26] A. Löh. Exploring Generic Haskell. PhD thesis, Utrecht University,
2004.

[27] A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell.
In International Conference on Functional Programming, pages 141–
152, 2003.

[28] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. InLNCS 523:
Functional Programming Languages and Computer Architecture,
pages 124–144. Springer-Verlag, 1991.

[29] D. Menendez. Fixed-length vectors in Haskell.http://www.
haskell.org/pipermail/haskell/2005-May/015815.html.

[30] U. Norell and P. Jansson. Polytypic programming in Haskell. In
Implementing Functional Languages, 2003.

[31] S. Peyton Jones, editor.Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[32] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: Type
inference for generalised algebraic data types. Microsoft Research,
Cambridge, 2004.

[33] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier, 1983.

[34] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction. InPrinciples of Programming Languages, pages 307–
313. ACM Press, 1987.

[35] P. Wadler. Theorems for free! InFunctional Programming and
Computer Architecture, 1989.

[36] S. Weirich. Higher-order intensional type analysis in type-erasure
semantics.http://www.cis.upenn.edu/~sweirich/papers/
erasure/erasure-paper-july03.pdf, 2003.

[37] Z. Yang. Encoding types in ML-like languages. InInternational
Conference on Functional Programming, pages 289–300, 1998.

