
1

Algorithmic Problem Solving

Roland Backhouse

January 29, 2004

2

Outline

Goal Introduce principles of algorithm construction

Vehicle Fun problems (games, puzzles)

3

Chocolate-bar Problem

How many cuts are needed to cut a chocolate bar into all its
individual pieces?

4

Assignment and Invariants

Let p be the number of pieces, and c be the number of cuts.

The process of cutting the bar is modelled by:

p , c := p+1 , c+1 .

We observe that (p−c) is an invariant. That is,

(p−c)[p , c := p+1 , c+1] = (p+1)− (c+1) = p−c

Initially, p−c is 1. So, number of cuts is always one less than the
number of pieces.

5

Hoare Triples

Eg. Jealous couples:

• Three couples Aa, Bb and Cc.

• One boat which can carry at most two people.

• Wives (a, b and c) may not be with a man (A, B and C) unless
their husband is present.

Construct a sequence of actions S0 satisfying

{ AaBbCc | } S0 { |AaBbCc } .

6

Problem Decomposition

• Exploit symmetry!

Decompose into

{ AaBbCc | }

S1

; { ABC |abc }

S2

; { abc |ABC }

S3

{ |AaBbCc }

7

(Impartial, Two-Person) Games

• Assume number of positions is finite.

• Assume game is guaranteed to terminate no matter how the
players choose their moves.

• Game is lost when a player cannot move.

• A position is losing if every move is to a winning position.

• A position is winning if there is a move to a losing position.

Winning strategy is to maintain the invariant that one’s opponent is
always left in a losing position.

8

Winning Strategy

Maintain the invariant that one’s opponent is always left in a losing
position.

{ losing position, and not an end position }

make an arbitrary (legal) move

; { winning position, i.e. not a losing position }

apply winning strategy

{ losing position }

9

Example Winning Strategy

One pile of matches.

Move: remove one or two matches.

Winning strategy is to maintain the invariant that one’s opponent is
always left in a position where the number of matches is a multiple of
3.

{ n is a multiple of 3, and n 6= 0 }

if 1≤n → n := n−1 2 2≤n → n := n−2 fi

; { n is not a multiple of 3 }

n := n−(nmod3)

{ n is a multiple of 3 }

10

Sum Games

Given two games, each with its own rules for making a move, the
sum of the games is the game described as follows.

For clarity, we call the two games the left and the right game.

A position in the sum game is the combination of a position in the
left game, and a position in the right game.

A move in the sum game is a move in one of the games.

11

Sum Games (cont)

Define two functions L and R, say, on left and right positions,
respectively, in such a way that a position (l,r) is a losing position
exactly when L.l=R.r.

How do we specify the functions L and R?

12

Sum Games (Cont)

First: L and R have equal values on end positions.

Second:

{ L.l = R.r ∧ (l is not an end position ∨ r is not an end position) }

if l is not an end position → change l

2 r is not an end position → change r

fi

{ L.l 6= R.r }

Third,

{ L.l 6= R.r }

apply winning strategy

{ L.l = R.r }

13

Sum Games (cont)

Satisfying the first two requirements:

• For end positions l and r of the respective games, L.l= 0=R.r.

• For every l ′ such that there is a move from l to l ′ in the left
game, L.l 6=L.l ′. Similarly, for every r ′ such that there is a
move from r to r ′ in the right game, R.r 6=R.r ′.

14

Winning strategy (third requirement):

{ L.l 6= R.r }

if L.l < R.r → change r

2 R.r < L.l → change l

fi

{ L.l = R.r } .

15

Winning strategy (third requirement):

{ L.l 6= R.r }

if L.l < R.r → change r

2 R.r < L.l → change l

fi

{ L.l = R.r } .

• For any number m less than R.r, it is possible to move from r

to a position r ′ such that R.r ′ =m. (Similarly, for left game.)

16

Summary of Requirements

Satisfying the first two requirements:

• For end positions l and r of the respective games, L.l= 0=R.r.

• For every l ′ such that there is a move from l to l ′ in the left
game, L.l 6=L.l ′. Similarly, for every r ′ such that there is a
move from r to r ′ in the right game, R.r 6=R.r ′.

• For any number m less than R.r, it is possible to move from r

to a position r ′ such that R.r ′ =m. (Similarly, for left game.)

17

MEX Function

Let p be a position in a game G. The mex value of p, denoted
mexG.p, is defined to be the smallest natural number, n, such that

• There is no legal move in the game G from p to a position q

satisfying mexG.q=n.

• For every natural number m less than n, there is a legal move
in the game G from p to a position q satisfying mexG.q=m.

18

Characterising Features

• Non-mathematical, easily explained problems (requiring
mathematical solution)

• Minimal notation.

• Challenging problems.

• Simultaneous introduction of programming constructs and
principles of program construction.

