Algorithmic Problem Solving

Roland Backhouse
January 29, 2004

Outline

Goal Introduce principles of algorithm construction
Vehicle Fun problems (games, puzzles)

Chocolate-bar Problem

How many cuts are needed to cut a chocolate bar into all its individual pieces?

Assignment and Invariants

Let p be the number of pieces, and c be the number of cuts.

The process of cutting the bar is modelled by:

$$
p, c:=p+1, c+1
$$

We observe that $(p-c)$ is an invariant. That is,

$$
(p-c)[p, c:=p+1, c+1]=(p+1)-(c+1)=p-c
$$

Initially, $p-c$ is 1 . So, number of cuts is always one less than the number of pieces.

Hoare Triples

Eg. Jealous couples:

- Three couples Aa, Bb and Cc.
- One boat which can carry at most two people.
- Wives (a, b and c) may not be with a man (A, B and C) unless their husband is present.

Construct a sequence of actions S_{0} satisfying
$\{A a B b C c \mid\} \quad S_{0} \quad\{\mid A a B b C c\}$.

Problem Decomposition

- Exploit symmetry!

Decompose into
$\{$ AaBbCc| \}
S_{1}
; $\{A B C \mid a b c\}$
S_{2}
; $\{a b c \mid A B C$ \}
S_{3}
\{ $\mid \mathrm{AaBbCc}\}$

(Impartial, Two-Person) Games

- Assume number of positions is finite.
- Assume game is guaranteed to terminate no matter how the players choose their moves.
- Game is lost when a player cannot move.
- A position is losing if every move is to a winning position.
- A position is winning if there is a move to a losing position.

Winning strategy is to maintain the invariant that one's opponent is always left in a losing position.

Winning Strategy

Maintain the invariant that one's opponent is always left in a losing position.
\{ losing position, and not an end position \}
make an arbitrary (legal) move
; \{ winning position, i.e. not a losing position \}
apply winning strategy
\{ losing position \}

Example Winning Strategy

One pile of matches.
Move: remove one or two matches.
Winning strategy is to maintain the invariant that one's opponent is always left in a position where the number of matches is a multiple of 3.
$\{n$ is a multiple of 3 , and $n \neq 0\}$

$$
\text { if } 1 \leq \mathfrak{n} \rightarrow \mathfrak{n}:=\mathfrak{n}-1 \quad \square \quad 2 \leq \mathfrak{n} \rightarrow \mathrm{n}:=\mathrm{n}-2 \mathrm{fi}
$$

$\{\mathrm{n}$ is not a multiple of 3 \}
$n:=n-(n \bmod 3)$
$\{n$ is a multiple of 3 \}

Sum Games

Given two games, each with its own rules for making a move, the sum of the games is the game described as follows.

For clarity, we call the two games the left and the right game.
A position in the sum game is the combination of a position in the left game, and a position in the right game.

A move in the sum game is a move in one of the games.

Sum Games (cont)

Define two functions L and R, say, on left and right positions, respectively, in such a way that a position (l, r) is a losing position exactly when L.l=R.r.
How do we specify the functions L and R ?

Sum Games (Cont)

First: L and R have equal values on end positions.
Second:
\{ L.l $=$ R. $r \wedge(l$ is not an end position $\vee r$ is not an end position $)$ \}
if l is not an end position \rightarrow change l
$\square r$ is not an end position \rightarrow change r
fi
\{ L.l \neq R.r \}
Third,
\{ L.l \neq R.r \}
apply winning strategy
\{ L.l = R.r \}

Sum Games (cont)

Satisfying the first two requirements:

- For end positions l and r of the respective games, L.l $=0=$ R.r.
- For every l^{\prime} such that there is a move from l to l^{\prime} in the left game, L.l \neq L. l^{\prime}. Similarly, for every r^{\prime} such that there is a move from r to r^{\prime} in the right game, R. $r \neq$ R. r^{\prime}.

Winning strategy (third requirement):
\{ L.l \neq R.r \}
if L.l $<$ R.r \rightarrow change r
\square R.r $<$ L.l \rightarrow change l
fi
\{ L.l = R.r $\}.$

Winning strategy (third requirement):

$$
\begin{aligned}
& \{\text { L.l } \neq \text { R.r }\} \\
& \text { if } \text { L.l }<\text { R.r } \rightarrow \text { change } r \\
& \square \text { R.r }<\text { L.l } \rightarrow \text { change l } \\
& \text { fi } \\
& \{\text { L.l }=\text { R.r }\} .
\end{aligned}
$$

- For any number m less than R.r, it is possible to move from r to a position r^{\prime} such that R. $r^{\prime}=m$. (Similarly, for left game.)

Summary of Requirements

Satisfying the first two requirements:

- For end positions l and r of the respective games, L.l $=0=$ R.r.
- For every l^{\prime} such that there is a move from l to l^{\prime} in the left game, L. $l \neq$ L. l^{\prime}. Similarly, for every r^{\prime} such that there is a move from r to r^{\prime} in the right game, R. $r \neq$ R. r^{\prime}.
- For any number m less than R.r, it is possible to move from r to a position r^{\prime} such that R. $r^{\prime}=m$. (Similarly, for left game.)

MEX Function

Let p be a position in a game G. The mex value of p, denoted mex $_{G} \cdot p$, is defined to be the smallest natural number, n, such that

- There is no legal move in the game G from p to a position q satisfying mex $_{G} \cdot q=n$.
- For every natural number m less than n, there is a legal move in the game G from p to a position q satisfying $\operatorname{mex}_{G} \cdot q=m$.

Characterising Features

- Non-mathematical, easily explained problems (requiring mathematical solution)
- Minimal notation.
- Challenging problems.
- Simultaneous introduction of programming constructs and principles of program construction.

