
Indexed Programming 1

Generic and Indexed Programming

Jeremy Gibbons

University of Oxford

WG2.1#62, December 2006

Indexed Programming 2

1. Background

• generic programming: parametrization

• datatype-generic programming: parametrization by datatype

• special-purpose languages and constructs: GH, SyB. . .

• lightweight embeddings in general-purpose languages

Indexed Programming 3

1.1. Capturing properties

Linguistic approaches to modelling:

find new ways to express properties within programs.

Narrowing the semantic gap between

the programmer’s head and the program.

• type systems

• assertions and testing frameworks

(There are extra-linguistic modelling approaches too,

but we won’t discuss them here.)

Indexed Programming 4

1.2. Dependently-typed programming

• types classify values

• dependent types classify values more precisely:

in particular, the way in which values depend on other values

• eg Vectorn Z, the type of n-vectors of integers

• more generally, dependent product type Σ n :: N. f (n) of pairs (n, x)

with n :: N and x :: f (n)

• play a central role in constructive logics

(‘propositions as types’, ‘Curry–Howard isomorphism’)

Indexed Programming 5

1.3. Generalized algebraic datatypes

Slight generalization of algebraic datatypes, allowing result type of

constructor to be strictly more specific than declared datatype.

Allows use of types as indices, capturing program properties. A kind of

lightweight dependently-typed programming, by lifting some index values

to the type level.

Also known as first-class phantom types, guarded recursive datatypes,

indexed types, equality-constrained types. . . apparently a good idea!

Indexed Programming 6

2. Generalizing algebraic datatypes

Standard algebraic datatypes, as in Haskell:

data Expr = N Int

| Add Expr Expr

| B Bool

| IsZ Expr

| If Expr Expr Expr

They can be polymorphic too, with type parameters:

data List a = Nil

| Cons a (List a)

Indexed Programming 7

2.1. Definitions by pattern-matching

data Result = NR Int | BR Bool

eval :: Expr → Result

eval (N n) = NR n

eval (Add x y) = case (eval x, eval y) of

(NR m,NR n)→ NR (m+ n)

eval (B b) = BR b

eval (IsZ x) = case (eval x) of

NR n → NB (0 ≡ n)

eval (If x y z) = case (eval x) of

NB b → if b then eval y else eval z

Note the explicit tagging and untagging

(and the lack of error-checking for ill-formed expressions!).

Indexed Programming 8

2.2. Extended syntax

New syntax, explicitly stating constructor types (and datatype kind):

data Expr ::∗ where

N :: Int → Expr

Add :: Expr → Expr → Expr

B :: Bool → Expr

IsZ :: Expr → Expr

If :: Expr → Expr → Expr → Expr

data List ::∗ → ∗ where

Nil :: List a

Cons :: a → List a → List a

Note that for ordinary polymorphic algebraic datatypes, all constructors

have the same (most general) result type.

Indexed Programming 9

2.3. GADT declaration

Make the datatype polymorphic, with a type parameter

(in this case, expressing the represented type).

data Expr ::∗ → ∗ where

N :: Int → Expr Int

Add :: Expr Int → Expr Int → Expr Int

B :: Bool → Expr Bool

IsZ :: Expr Int → Expr Bool

If :: Expr Bool → Expr Int → Expr Int → Expr Int

Now constructors may have more specialized return types.

Note that the type parameter is a phantom type:

a value of type Expr a need not contain elements of type a.

Indexed Programming 10

2.4. GADT use

Specialized return types of constructors induce type constraints,

which are exploited in type-checking definitions.

eval :: Expr a → a

eval (N n) = n

eval (Add x y) = eval x + eval y

eval (B b) = b

eval (IsZ x) = 0 ≡ eval x

eval (If x y z) = if eval x then eval y else eval z

Note that all the tagging and untagging has gone,

and with it the possibility of run-time errors.

By explicitly stating a property formerly implicit in the code,

we have gained both in safety and in efficiency.

Indexed Programming 11

3. Application: indexing by size

Empty datatypes as indices (so S (S Z) is a type).

data Z

data S n

Size-indexed type of vectors:

data Vector ::∗ → ∗ → ∗ where

VNil :: Vector a Z

VCons :: a → Vector a n → Vector a (S n)

Size constraint on vzip is captured in the type:

vzip :: Vector a n → Vector b n → Vector (a,b) n

vzip VNil VNil = VNil

vzip (VCons a x) (VCons b y) = VCons (a,b) (vzip x y)

Indexed Programming 12

4. Application: indexing by shape

Red-black trees are binary search trees in which:

• every node is coloured either red or black

• every red node has a black parent

• every path from the root to a leaf contains

the same number of black nodes (enforcing approximate balance)

In RBTree a c n, type a is the element type, c the root colour, and n the

black height.

data R

data B

data RBTree ::∗ → ∗ → ∗ → ∗ where

Empty :: RBTree a B Z

Red :: RBTree a B n → a → RBTree a B n → RBTree a R n

Black :: RBTree a c n → a → RBTree a c′ n → RBTree a B (S n)

Indexed Programming 13

5. Application: indexing by unit

Suppose dimensions of non-negative powers of metres and seconds:

data Dim ::∗ → ∗ → ∗ where

D :: Float → Dim m s

distance :: Dim (S Z) Z

distance = D 3.0

time :: Dim Z (S Z)

time = D 2.0

A dimensioned value is a Float with two type-level tags.

dadd :: Dim m s → Dim m s → Dim m s

dadd (D x) (D y) = D (x + y)

Now dadd time time is well-typed, but dadd distance time is ill-typed.

(More interesting to allow negative powers too, but for brevity. . .)

Indexed Programming 14

5.1. Type-level functions

Proofs of properties about indices:

data Add ::∗ → ∗ → ∗ → ∗ where

AddZ :: Add Z n n

AddS :: Add m n p → Add (S m) n (S p)

Used to constrain the type of dimensioned multiplication:

dmult :: (Add m1 m2 m,Add s1 s2 s)→

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult (,) (D x) (D y) = D (x × y)

Thus, type-index of product is computed from indices of arguments.

Indexed Programming 15

5.2. Inferring proofs of properties

Capture the proof as a type class (multi-parameter, with functional

dependency; essentially a function on types).

class Add m n p | m n → p

instance Add Z n n

instance Add m n p ⇒ Add (S m) n (S p)

Now the proof can be (type-)inferred rather than passed explicitly.

dmult :: (Add m1 m2 m,Add s1 s2 s)⇒

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult (D x) (D y) = D (x × y)

Note that the type class has no methods, so corresponds to an empty

dictionary; it can be optimized away.

Indexed Programming 16

6. Application: indexing by state

The ‘ketchup problem’:

opened closed

close

open
shake

data O

data C

data Edge ::∗ → ∗ → ∗ where

Open :: Edge O C

Close :: Edge C O

Shake :: Edge C C

data Path ::∗ → ∗ → ∗ where

Empty :: Path s s

PCons :: Edge x y → Path y z → Path x z

scenario :: Path O O

scenario = PCons Open (PCons Shake (PCons Close Empty))

Indexed Programming 17

7. Application: indexing by type

Generic programming is about writing programs parametrized by

datatypes; for example, a generic data marshaller.

One implementation of generic programming manifests the parameters as

some family of type representations.

For example, C’s sprintf is generic over a family of format specifiers.

data Format ::∗ → ∗ where

I :: Format a → Format (Int → a)

B :: Format a → Format (Bool → a)

S :: String → Format a → Format a

F :: Format String

A term of type Format a is a representation of the type a, for various

types a appropriate for sprintf , such as Int → Bool → String.

Indexed Programming 18

7.1. Type-indexed dispatching

The function sprintf interprets that representation.

sprintf :: Format a → a

sprintf fmt = aux id fmt where

aux :: (String → String)→ Format a → a

aux f (I fmt) = λn → aux (f ◦ (show n++)) fmt

aux f (B fmt) = λb → aux (f ◦ (show b++)) fmt

aux f (S s fmt) = aux (f ◦ (s++)) fmt

aux f (F) = f ""

For example, sprintf f 13 True = "Int is 13, bool is True.", where

f :: Format (Int → Bool → String)

f = S "Int is " (I (S ", bool is " (B (S "." F))))

Indexed Programming 19

8. Adding weight

We have shown some examples in Haskell with small extensions.

This is a very lightweight approach to dependently-typed programming.

Lightweight approaches have low entry cost, but relatively high continued

cost: encoding via type classes etc is a bit painful.

Tim Sheard’s Ωmega is a cut-down version of Haskell with explicit

support for GADTs:

• kind declarations

• type-level functions

• statically-generated witnesses

Xi and Pfenning’s Dependent ML provides natural-number indices, and

incorporates decision procedures for discharging proof obligations.

These are more heavyweight approaches (such as McBride’s Epigram).

Indexed Programming 20

8.1. Transfer to the mainstream

Kennedy and Russo (OOPSLA 2005) showed that Java and C#

‘can express GADT definitions, and a large class of

GADT-manipulating programs, through the use of generics,

subclassing and virtual dispatch’

(with a few casts, that they propose ways around).

Indexed Programming 21

9. The GIP project at Oxford

• EPSRC-funded, about £500k

• three and a half years, from November 2006

• Jeremy Gibbons, principal investigator

• Bruno Oliveira, postdoctoral researcher

• Meng Wang, doctoral student

Indexed Programming 22

9.1. Workpackages

• capturing properties

case studies as benchmarks

• generics for GADTs

GADTs no longer sums of products: spine views, idioms

• extensible generic functions

expression problem, combining structural and nominal views

• design patterns as a library

GADTs in Scala, Java and C#

• type classes and GADTs

inferring proof objects

• impedence transformers

statically-checked metaprogramming; multi-tier

