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1. Background

• generic programming: parametrization

• datatype-generic programming: parametrization by datatype

• special-purpose languages and constructs: GH, SyB. . .

• lightweight embeddings in general-purpose languages
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1.1. Capturing properties

Linguistic approaches to modelling:

find new ways to express properties within programs.

Narrowing the semantic gap between

the programmer’s head and the program.

• type systems

• assertions and testing frameworks

(There are extra-linguistic modelling approaches too,

but we won’t discuss them here.)
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1.2. Dependently-typed programming

• types classify values

• dependent types classify values more precisely:

in particular, the way in which values depend on other values

• eg Vectorn Z, the type of n-vectors of integers

• more generally, dependent product type Σ n :: N. f (n) of pairs (n, x)

with n :: N and x :: f (n)

• play a central role in constructive logics

(‘propositions as types’, ‘Curry–Howard isomorphism’)
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1.3. Generalized algebraic datatypes

Slight generalization of algebraic datatypes, allowing result type of

constructor to be strictly more specific than declared datatype.

Allows use of types as indices, capturing program properties. A kind of

lightweight dependently-typed programming, by lifting some index values

to the type level.

Also known as first-class phantom types, guarded recursive datatypes,

indexed types, equality-constrained types. . . apparently a good idea!
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2. Generalizing algebraic datatypes

Standard algebraic datatypes, as in Haskell:

data Expr = N Int

| Add Expr Expr

| B Bool

| IsZ Expr

| If Expr Expr Expr

They can be polymorphic too, with type parameters:

data List a = Nil

| Cons a (List a)
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2.1. Definitions by pattern-matching

data Result = NR Int | BR Bool

eval :: Expr → Result

eval (N n) = NR n

eval (Add x y) = case (eval x, eval y) of

(NR m,NR n)→ NR (m+ n)

eval (B b) = BR b

eval (IsZ x) = case (eval x) of

NR n → NB (0 ≡ n)

eval (If x y z) = case (eval x) of

NB b → if b then eval y else eval z

Note the explicit tagging and untagging

(and the lack of error-checking for ill-formed expressions!).
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2.2. Extended syntax

New syntax, explicitly stating constructor types (and datatype kind):

data Expr ::∗ where

N :: Int → Expr

Add :: Expr → Expr → Expr

B :: Bool → Expr

IsZ :: Expr → Expr

If :: Expr → Expr → Expr → Expr

data List ::∗ → ∗ where

Nil :: List a

Cons :: a → List a → List a

Note that for ordinary polymorphic algebraic datatypes, all constructors

have the same (most general) result type.



Indexed Programming 9

2.3. GADT declaration

Make the datatype polymorphic, with a type parameter

(in this case, expressing the represented type).

data Expr ::∗ → ∗ where

N :: Int → Expr Int

Add :: Expr Int → Expr Int → Expr Int

B :: Bool → Expr Bool

IsZ :: Expr Int → Expr Bool

If :: Expr Bool → Expr Int → Expr Int → Expr Int

Now constructors may have more specialized return types.

Note that the type parameter is a phantom type:

a value of type Expr a need not contain elements of type a.
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2.4. GADT use

Specialized return types of constructors induce type constraints,

which are exploited in type-checking definitions.

eval :: Expr a → a

eval (N n) = n

eval (Add x y) = eval x + eval y

eval (B b) = b

eval (IsZ x) = 0 ≡ eval x

eval (If x y z) = if eval x then eval y else eval z

Note that all the tagging and untagging has gone,

and with it the possibility of run-time errors.

By explicitly stating a property formerly implicit in the code,

we have gained both in safety and in efficiency.
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3. Application: indexing by size

Empty datatypes as indices (so S (S Z) is a type).

data Z

data S n

Size-indexed type of vectors:

data Vector ::∗ → ∗ → ∗ where

VNil :: Vector a Z

VCons :: a → Vector a n → Vector a (S n)

Size constraint on vzip is captured in the type:

vzip :: Vector a n → Vector b n → Vector (a,b) n

vzip VNil VNil = VNil

vzip (VCons a x) (VCons b y) = VCons (a,b) (vzip x y)
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4. Application: indexing by shape

Red-black trees are binary search trees in which:

• every node is coloured either red or black

• every red node has a black parent

• every path from the root to a leaf contains

the same number of black nodes (enforcing approximate balance)

In RBTree a c n, type a is the element type, c the root colour, and n the

black height.

data R

data B

data RBTree ::∗ → ∗ → ∗ → ∗ where

Empty :: RBTree a B Z

Red :: RBTree a B n → a → RBTree a B n → RBTree a R n

Black :: RBTree a c n → a → RBTree a c′ n → RBTree a B (S n)
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5. Application: indexing by unit

Suppose dimensions of non-negative powers of metres and seconds:

data Dim ::∗ → ∗ → ∗ where

D :: Float → Dim m s

distance :: Dim (S Z) Z

distance = D 3.0

time :: Dim Z (S Z)

time = D 2.0

A dimensioned value is a Float with two type-level tags.

dadd :: Dim m s → Dim m s → Dim m s

dadd (D x) (D y) = D (x + y)

Now dadd time time is well-typed, but dadd distance time is ill-typed.

(More interesting to allow negative powers too, but for brevity. . . )
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5.1. Type-level functions

Proofs of properties about indices:

data Add ::∗ → ∗ → ∗ → ∗ where

AddZ :: Add Z n n

AddS :: Add m n p → Add (S m) n (S p)

Used to constrain the type of dimensioned multiplication:

dmult :: (Add m1 m2 m,Add s1 s2 s)→

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult ( , ) (D x) (D y) = D (x × y)

Thus, type-index of product is computed from indices of arguments.
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5.2. Inferring proofs of properties

Capture the proof as a type class (multi-parameter, with functional

dependency; essentially a function on types).

class Add m n p | m n → p

instance Add Z n n

instance Add m n p ⇒ Add (S m) n (S p)

Now the proof can be (type-)inferred rather than passed explicitly.

dmult :: (Add m1 m2 m,Add s1 s2 s)⇒

Dim m1 s1 → Dim m2 s2 → Dim m s

dmult (D x) (D y) = D (x × y)

Note that the type class has no methods, so corresponds to an empty

dictionary; it can be optimized away.
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6. Application: indexing by state

The ‘ketchup problem’:

opened closed

close

open
shake

data O

data C

data Edge ::∗ → ∗ → ∗ where

Open :: Edge O C

Close :: Edge C O

Shake :: Edge C C

data Path ::∗ → ∗ → ∗ where

Empty :: Path s s

PCons :: Edge x y → Path y z → Path x z

scenario :: Path O O

scenario = PCons Open (PCons Shake (PCons Close Empty))
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7. Application: indexing by type

Generic programming is about writing programs parametrized by

datatypes; for example, a generic data marshaller.

One implementation of generic programming manifests the parameters as

some family of type representations.

For example, C’s sprintf is generic over a family of format specifiers.

data Format ::∗ → ∗ where

I :: Format a → Format (Int → a)

B :: Format a → Format (Bool → a)

S :: String → Format a → Format a

F :: Format String

A term of type Format a is a representation of the type a, for various

types a appropriate for sprintf , such as Int → Bool → String.
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7.1. Type-indexed dispatching

The function sprintf interprets that representation.

sprintf :: Format a → a

sprintf fmt = aux id fmt where

aux :: (String → String)→ Format a → a

aux f (I fmt) = λn → aux (f ◦ (show n++)) fmt

aux f (B fmt) = λb → aux (f ◦ (show b++)) fmt

aux f (S s fmt) = aux (f ◦ (s++)) fmt

aux f (F) = f ""

For example, sprintf f 13 True = "Int is 13, bool is True.", where

f :: Format (Int → Bool → String)

f = S "Int is " (I (S ", bool is " (B (S "." F))))
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8. Adding weight

We have shown some examples in Haskell with small extensions.

This is a very lightweight approach to dependently-typed programming.

Lightweight approaches have low entry cost, but relatively high continued

cost: encoding via type classes etc is a bit painful.

Tim Sheard’s Ωmega is a cut-down version of Haskell with explicit

support for GADTs:

• kind declarations

• type-level functions

• statically-generated witnesses

Xi and Pfenning’s Dependent ML provides natural-number indices, and

incorporates decision procedures for discharging proof obligations.

These are more heavyweight approaches (such as McBride’s Epigram).
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8.1. Transfer to the mainstream

Kennedy and Russo (OOPSLA 2005) showed that Java and C#

‘can express GADT definitions, and a large class of

GADT-manipulating programs, through the use of generics,

subclassing and virtual dispatch’

(with a few casts, that they propose ways around).



Indexed Programming 21

9. The GIP project at Oxford

• EPSRC-funded, about £500k

• three and a half years, from November 2006

• Jeremy Gibbons, principal investigator

• Bruno Oliveira, postdoctoral researcher

• Meng Wang, doctoral student
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9.1. Workpackages

• capturing properties

case studies as benchmarks

• generics for GADTs

GADTs no longer sums of products: spine views, idioms

• extensible generic functions

expression problem, combining structural and nominal views

• design patterns as a library

GADTs in Scala, Java and C#

• type classes and GADTs

inferring proof objects

• impedence transformers

statically-checked metaprogramming; multi-tier


