From Clear Specifications To

Efficient Implementations

Y. Annie Liu

Computer Science Department
State University of New York at Stony Brook

At the center of computer science

two major concerns of study:

what to compute

how to compute efficiently

problem solving:

from clear specifications for "what”

to efficient implementations for " how”

From clear specifications to efficient
iImplementations

challenge:

develop a method that is both general and systematic

conflict between clarity and efficiency:

clear specifications usually correspond to straightforward im-
plementations, not at all efficient.

efficient implementations are usually difficult to understand,
not at all clear.

A general and systematic method

iterate: determine a minimum step to take repeatedly, itera-
tively.

incrementalize: make expensive operations incremental in each
step by using and maintaining useful additional values.

implement: design appropriate data structures for efficiently
storing and accessing the values maintained.

general and systematic:
loops: incrementalize
sets: incrementalize, implement
recursion: iterate, incrementalize
rules: iterate, incrementalize, implement
objects: incrementalize across components

Loops — a simple example

eliminating multiplications:

i:=1 in grid with a columns and b rows
while i <= b:

L.akxi. .. access last element of each row

i:=1i+1

strength reduction: an oldest opt, for array access.
Difference Engine, ENIAC: tabulating polynomials.

need to use language semantics and cost model
exploit algebraic properties: a*(i+1) = a*i+4a
store, update, initialize value of a*i: where? how?

Loops — incrementalize

incrementalize

maintain invariant: c=a*i, use and update

i:=1 i:=1; c:=a;
while 1 <= b:

..a*icoo DDQCC'.

1:=1+1 i:=i+1; c:=c+a;

exploit algebraic properties

maintain additional information

iterate and implement: too little or too much to do

Loops — more examples

hardware design: non-restoring binary integer square root.

n := input()
m := 27(1-1)
for i := 1-2 downto O:
p :=n-m2
if p >
m :=
elseif
m :=
output (m)

B0 B O
A+
N O N
H- .

image processing: blurring.

need higher-level abstraction

goal: a few +- and shifts per bit.

goal: a few operations per pixel.

Sets — a simple example

graph reachability: edges, source vertices — reachable vertices

read(e,s)
r := S

while exists x in el[r]-r:

r :=r U {x}
print (r)
need to

handle composite set expressions: x[y], x-y

design representations of interrelated sets: e,s,r

Sets — incrementalize and implement

incrementalize: retrieve/add/del element, test membership
two invariants for e[r]-r: t = e[r], w = t-r
chain rule: maintain t and then w.
derive rules for maintaining simple and complex invariants.

implement: s, domain e, range e, r, t, w
based representations: records for all elements of related sets;
a set retrieved from is a linked list of pointers to the records;
a set tested against is a field in the records.

iterate: directly from min r: ssubset r, r U e[r] =

Sets — more examples

query processing: join optimization
r := {[x,yl: xins, yin t | £(x) = g(y)}

iterate:
r := {}
for x in s: previous algorithm:
r :=r U {lx,y]l: y in t | £(x)=g(y)} finverse := {}
incrementalize: maintain for x in s:
ginverse = {[g(y),y]l: y in t} finverse := finverse U {[f(x),x]}
derived: ginverse := {}
for y in t:
ginverse := {} if g(y) in domain(finverse):
for y in t: ginverse := ginverse U {[g(y),yl}
ginverse = ginverse U {[g(y),yl} r := {}
r := {} for z in domain(ginverse):
for x in s: for x in finverse{z}:
for y in ginverse{f(x)} for y in ginverse{z}:
r :=r U {[x,yl} r :=r U {[x,yl}
compare:

same asymptotic time: O(s+t+r); fewer loops and ops;
less space: O(t) or O(min(s,t)), not O(s+t); simpler and shorter; derived!

role-based access control (RBACQC)

core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python — hundreds of lines. CheckAccess: constant time.

10

Recursion — a simple example

longest common subsequence: sequences X and y — length

lcs(i,j)

= if i=0 or j=0: O
elseif x[il=y[jl: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),1lcs(i-1,j))

need to
determine how to iterate: recursion to iteration

determine what and how to cache: dynamic programming

11

Recursion — iterate and incrementalize

les(i, j)

= if i=0 or j=0: O
elseif x[il=y[jl: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),1lcs(i-1,j))

iterate: minimum increment from arguments of recursive calls
i,j —> i+1,j

incrementalize: cache and use

lcs(i+1,3) use r = lcs(i,j) -> 1lcs’(i,j,r)
= if i+1=0 lor j=0: O
elseif x[i+1]=y[j]: lcs(i,j-1)+1 wuse lcs(i,j-1), cache
else: max(lcs(i+1,j-1),1cs(i,j)) wuse lcs(i,j-1)
-> 1lcs’(i,j-1,1cs(i,j-1))
recursively

implement: directly map to recursive or indexed data structures

12

Recursion — more examples

sequence processing: editing distance, paragraph formatting,
matrix chain multiplications, ...

math puzzles: Hanoi tower, find solution in linear time

h(n,a,b,c) move n disks from a to b using c
= if n<=0 then skip
else h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)

iterate: n,a,b,c -> n+l,a,c,b
cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>

hExt (n+1,a,c,b) use rExt=hExt(n,a,b,c) -> hExt’(n,a,b,c,
= if n+1 <=0 then <skip,skip,skip> rExt)
else 1st(rExt)::move(a,c)::2nd(rExt),
3rd(rExt) : :move(c,b) : :1st (rExt),
2nd (rExt) : :move(b,a) : : 3rd (rExt)>

simpler than others: maintain 2 additional values, not 5

13

Rules — a simple example

transitive closure:

edge(u,v) -> path(u,v)
edge(u,w) /\ path(w,v) -> path(u,v)

need to

find a way to proceed
determine what and how to maintain
design representations of different kinds of facts

additional question

can we give time and space complexity guarantees?

14

Rules — iterate, incrementalize, implement

iterate: add one fact at a time until fixed point is reached
incrementalize: maintain maps indexed by shared arguments
implement: design nested linked lists and arrays of records

time and space guarantees:

edge(u,v) —-> path(u,v)
edge(u,w) /\ path(w,v) -> path(u,v)

time: # of combinations of hypotheses — optimal
O0(min (#edge*#path.2/1, #pathx*#edge.1/2))
edges vertices output indegree
space: 0(#edge), for storing inverse map of edge

15

Rules — more examples

program analysis: dependence analysis, pointer analysis, infor-
mation flow analysis, ...

trust management: SPKI/SDSI authorization

auth(k1, [k2] ,TRUE,al,v1l), auth(k2,s2,d2,a2,v2)
-> auth(kl,s2,d2,PInt(al,a2),Vint(vli,v2))

auth(kl, [k2 [n2 ns3]],d,a,vl), name(k2,n2, [k3],v2)
-> auth(kl, [k3 ns3],d,a,VInt(vl,v2))

name (k1,n1, [k2 [n2 ns3]],v1l), name(k2,n2, [k3],v2)
-> name(k1l,n1, [k3 ns3],VInt(vl,v2))

find authorized keys: O(in*kp*kn), better than O(in*k*k).

16

Objects — a simple example

the “what” of a software component:
queries: compute information using data w/o changing data.

updates: change data.

example:
class LinkedList in Java has many methods:

size(), 11 add or remove, several other queries.

17

Objects — incrementalize

how to implement the queries and updates: varies significantly

straightforward:
queries compute requested information.
updates change base data.

example: size() contains a loop that computes the size.

observe:
queries are often repeated, many are easily expensive;
updates can be frequent, they are usually small.

sophisticated — incrementalized:
store derived information; queries return stored information.
updates also update stored information.

example: maintain size in a field, and update it in 11 places.

18

Objects — more examples

examples: wireless protocols, electronic health records, virtual
reality, games,

findStrongSignals(): return {s in signals | s.getStrength() > threshold}

class Protocol
signals: set(Signal)
threshold: float
+ strongSignals: set(Signal)

class Signal
strength: float
+ protocols: set(Protocol)

takeProtocol (protocol):

+
add$1gnal(51gnal). 51gna}s.add(s1gnal) N protocols.add (protocol)
signal.takeProtocol(this)
. . setStrength(v) :
if signal.getStrength() > threshold
strongSignals.add(signal) strength = v
E°18) & + for protocol in protocols

findStrongSignals(): return strongSignals
updateSignal(signal):
if signals.contains(signal)
if strongSignals.contains(signal)
if not signal.getStrength()>threshold
strongSingals.remove(signal) - .
else original lines
if signal.getStrength()>threshold * changed lines
. . + added lines
strongSingals.add(signal)

+ protocol.updateSignal (this)
getStrength(): return strength

+ 4+ + ++ + 4+ + %+ + +

findStrongSignal: O(|signals|) — O(1). setStrength: O(1) — O(|protocols]|).
19

Iterate, Incrementalize, and Implement

iterate at a minimum increment step; incrementalize expensive
computations; implement on efficient data structures.

loops iter, inc, impl
maintaining invariants, algebraic properties, additional values

sets iter, inc, impl
chain rule, deriving maintenance rules; based representations

recursion iter, inc, impl
recursion to iteration; dynamic programming

rules iter, inc, impl
all, giving time and space complexity guarantees

objects
all, across components

connect theory w/ practice. like differentiation & integration.

20

References

loops [Liu-IFIP97, LS-ICCL98a/LSLR-TOPLASO5]

sets [PK-TOPLAS82, LWGRCZZ-PEPMO06]

recursion [LS-ESOP99/LS-HOSCO03, LS-PEPMO0O0, LS-PEPMO02a/LS-TR06a]

rules [LS-PPDP03/LS-TRO06b]

objects [LSGRL-OOPSLA95, RL-TRO06c]

21

Ongoing projects

e generating incremental implementations of queries over ob-
jects and sets

e generating programs for answering rule-based queries on de-
mand

e an invariant-driven transformation framework: InvTL/InvTS,
for Python and C

e Security applications: access control, information flow anal-
ysis, trust management, policy analysis

22

