
From Clear Specifications To

Efficient Implementations

Y. Annie Liu

Computer Science Department
State University of New York at Stony Brook

1

At the center of computer science

two major concerns of study:

what to compute

how to compute efficiently

problem solving:

from clear specifications for ”what”

to efficient implementations for ”how”

2

From clear specifications to efficient
implementations

challenge:

develop a method that is both general and systematic

conflict between clarity and efficiency:

clear specifications usually correspond to straightforward im-

plementations, not at all efficient.

efficient implementations are usually difficult to understand,

not at all clear.

3

A general and systematic method

iterate: determine a minimum step to take repeatedly, itera-

tively.

incrementalize: make expensive operations incremental in each

step by using and maintaining useful additional values.

implement: design appropriate data structures for efficiently

storing and accessing the values maintained.

general and systematic:

loops: incrementalize

sets: incrementalize, implement

recursion: iterate, incrementalize

rules: iterate, incrementalize, implement

objects: incrementalize across components

4

Loops — a simple example

eliminating multiplications:

i:=1 in grid with a columns and b rows

while i <= b:

:

...a*i... access last element of each row

:

i:=i+1

strength reduction: an oldest opt, for array access.

Difference Engine, ENIAC: tabulating polynomials.

need to use language semantics and cost model

exploit algebraic properties: a*(i+1) = a*i+a

store, update, initialize value of a*i: where? how?

5

Loops — incrementalize

incrementalize

maintain invariant: c=a*i, use and update

i:=1 i:=1; c:=a;

while i <= b:

:

...a*i... ...c...

:

i:=i+1 i:=i+1; c:=c+a;

exploit algebraic properties

maintain additional information

iterate and implement: too little or too much to do

6

Loops — more examples

hardware design: non-restoring binary integer square root.

n := input()
m := 2^(l-1)
for i := l-2 downto 0:

p := n - m^2
if p > 0:

m := m + 2^i
elseif p < 0:

m := m - 2^i
output(m) goal: a few +- and shifts per bit.

image processing: blurring.

| ______ |

goal: a few operations per pixel.

need higher-level abstraction

7

Sets — a simple example

graph reachability: edges, source vertices → reachable vertices

read(e,s)

r := s

while exists x in e[r]-r:

r := r U {x}

print(r)

need to

handle composite set expressions: x[y], x-y

design representations of interrelated sets: e,s,r

8

Sets — incrementalize and implement

incrementalize: retrieve/add/del element, test membership

two invariants for e[r]-r: t = e[r], w = t-r

chain rule: maintain t and then w.

derive rules for maintaining simple and complex invariants.

implement: s, domain e, range e, r, t, w

based representations: records for all elements of related sets;

a set retrieved from is a linked list of pointers to the records;

a set tested against is a field in the records.

iterate: directly from min r: s subset r, r U e[r] = r

9

Sets — more examples

query processing: join optimization

r := {[x,y]: x in s, y in t | f(x) = g(y)}
iterate:
r := {}
for x in s:

r := r U {[x,y]: y in t | f(x)=g(y)}

incrementalize: maintain
ginverse = {[g(y),y]: y in t}

derived:

ginverse := {}
for y in t:

ginverse = ginverse U {[g(y),y]}
r := {}
for x in s:

for y in ginverse{f(x)}
r := r U {[x,y]}

previous algorithm:

finverse := {}
for x in s:

finverse := finverse U {[f(x),x]}
ginverse := {}
for y in t:

if g(y) in domain(finverse):
ginverse := ginverse U {[g(y),y]}

r := {}
for z in domain(ginverse):

for x in finverse{z}:
for y in ginverse{z}:

r := r U {[x,y]}

compare:
same asymptotic time: O(s+t+r); fewer loops and ops;
less space: O(t) or O(min(s,t)), not O(s+t); simpler and shorter; derived!

role-based access control (RBAC)

core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python → hundreds of lines. CheckAccess: constant time.

10

Recursion — a simple example

longest common subsequence: sequences x and y → length

lcs(i,j)

= if i=0 or j=0: 0

elseif x[i]=y[j]: lcs(i-1,j-1)+1

else: max(lcs(i,j-1),lcs(i-1,j))

need to

determine how to iterate: recursion to iteration

determine what and how to cache: dynamic programming

11

Recursion — iterate and incrementalize

lcs(i,j)

= if i=0 or j=0: 0

elseif x[i]=y[j]: lcs(i-1,j-1)+1

else: max(lcs(i,j-1),lcs(i-1,j))

iterate: minimum increment from arguments of recursive calls

i,j -> i+1,j

incrementalize: cache and use

lcs(i+1,j) use r = lcs(i,j) -> lcs’(i,j,r)

= if i+1=0 lor j=0: 0

elseif x[i+1]=y[j]: lcs(i,j-1)+1 use lcs(i,j-1), cache

else: max(lcs(i+1,j-1),lcs(i,j)) use lcs(i,j-1)

-> lcs’(i,j-1,lcs(i,j-1))

recursively

implement: directly map to recursive or indexed data structures

12

Recursion — more examples

sequence processing: editing distance, paragraph formatting,

matrix chain multiplications, ...

math puzzles: Hanoi tower, find solution in linear time

h(n,a,b,c) move n disks from a to b using c

= if n<=0 then skip

else h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)

iterate: n,a,b,c -> n+1,a,c,b

cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>

hExt(n+1,a,c,b) use rExt=hExt(n,a,b,c) -> hExt’(n,a,b,c,

= if n+1 <=0 then <skip,skip,skip> rExt)

else 1st(rExt)::move(a,c)::2nd(rExt),

3rd(rExt)::move(c,b)::1st(rExt),

2nd(rExt)::move(b,a)::3rd(rExt)>

simpler than others: maintain 2 additional values, not 5

13

Rules — a simple example

transitive closure:

edge(u,v) -> path(u,v)

edge(u,w) /\ path(w,v) -> path(u,v)

need to

find a way to proceed

determine what and how to maintain

design representations of different kinds of facts

additional question

can we give time and space complexity guarantees?

14

Rules — iterate, incrementalize, implement

iterate: add one fact at a time until fixed point is reached

incrementalize: maintain maps indexed by shared arguments

implement: design nested linked lists and arrays of records

time and space guarantees:

edge(u,v) -> path(u,v)

edge(u,w) /\ path(w,v) -> path(u,v)

time: # of combinations of hypotheses — optimal

O(min(#edge*#path.2/1, #path*#edge.1/2))

edges vertices output indegree

space: O(#edge), for storing inverse map of edge

15

Rules — more examples

program analysis: dependence analysis, pointer analysis, infor-

mation flow analysis, ...

trust management: SPKI/SDSI authorization

auth(k1,[k2],TRUE,a1,v1), auth(k2,s2,d2,a2,v2)

-> auth(k1,s2,d2,PInt(a1,a2),VInt(v1,v2))

auth(k1,[k2 [n2 ns3]],d,a,v1), name(k2,n2,[k3],v2)

-> auth(k1,[k3 ns3],d,a,VInt(v1,v2))

name(k1,n1,[k2 [n2 ns3]],v1), name(k2,n2,[k3],v2)

-> name(k1,n1,[k3 ns3],VInt(v1,v2))

find authorized keys: O(in*kp*kn), better than O(in*k*k).

16

Objects — a simple example

the “what” of a software component:

queries: compute information using data w/o changing data.

updates: change data.

example:

class LinkedList in Java has many methods:

size(), 11 add or remove, several other queries.

17

Objects — incrementalize

how to implement the queries and updates: varies significantly

straightforward:

queries compute requested information.

updates change base data.

example: size() contains a loop that computes the size.

observe:

queries are often repeated, many are easily expensive;

updates can be frequent, they are usually small.

sophisticated — incrementalized:

store derived information; queries return stored information.

updates also update stored information.

example: maintain size in a field, and update it in 11 places.

18

Objects — more examples

examples: wireless protocols, electronic health records, virtual

reality, games, ...

findStrongSignals(): return {s in signals | s.getStrength() > threshold}
class Protocol

signals: set(Signal)
threshold: float

+ strongSignals: set(Signal)
...
addSignal(signal): signals.add(signal)

+ signal.takeProtocol(this)
+ if signal.getStrength() > threshold
+ strongSignals.add(signal)
* findStrongSignals(): return strongSignals
+ updateSignal(signal):
+ if signals.contains(signal)
+ if strongSignals.contains(signal)
+ if not signal.getStrength()>threshold
+ strongSingals.remove(signal)
+ else
+ if signal.getStrength()>threshold
+ strongSingals.add(signal)

...

class Signal
strength: float

+ protocols: set(Protocol)
...

+ takeProtocol(protocol):
+ protocols.add(protocol)

setStrength(v):
strength = v

+ for protocol in protocols
+ protocol.updateSignal(this)

getStrength(): return strength
...

...

original lines
* changed lines
+ added lines

findStrongSignal: O(|signals|) → O(1). setStrength: O(1) → O(|protocols|).

19

Iterate, Incrementalize, and Implement

iterate at a minimum increment step; incrementalize expensive

computations; implement on efficient data structures.

loops iter, inc, impl

maintaining invariants, algebraic properties, additional values

sets iter, inc, impl

chain rule, deriving maintenance rules; based representations

recursion iter, inc, impl

recursion to iteration; dynamic programming

rules iter, inc, impl

all, giving time and space complexity guarantees

objects

all, across components

connect theory w/ practice. like differentiation & integration.

20

References

loops [Liu-IFIP97, LS-ICCL98a/LSLR-TOPLAS05]

sets [PK-TOPLAS82, LWGRCZZ-PEPM06]

recursion [LS-ESOP99/LS-HOSC03, LS-PEPM00, LS-PEPM02a/LS-TR06a]

rules [LS-PPDP03/LS-TR06b]

objects [LSGRL-OOPSLA95, RL-TR06c]

21

Ongoing projects

• generating incremental implementations of queries over ob-

jects and sets

• generating programs for answering rule-based queries on de-

mand

• an invariant-driven transformation framework: InvTL/InvTS,

for Python and C

• security applications: access control, information flow anal-

ysis, trust management, policy analysis

22

