# From Clear Specifications To Efficient Implementations 

## Y. Annie Liu

Computer Science Department State University of New York at Stony Brook

## At the center of computer science

two major concerns of study:
what to compute
how to compute efficiently
problem solving:
from clear specifications for "what"
to efficient implementations for "how"

## From clear specifications to efficient implementations

challenge:
develop a method that is both general and systematic
conflict between clarity and efficiency:
clear specifications usually correspond to straightforward implementations, not at all efficient.
efficient implementations are usually difficult to understand, not at all clear.

## A general and systematic method

iterate: determine a minimum step to take repeatedly, iteratively.
incrementalize: make expensive operations incremental in each step by using and maintaining useful additional values.
implement: design appropriate data structures for efficiently storing and accessing the values maintained.
general and systematic:
loops: incrementalize
sets: incrementalize, implement
recursion: iterate, incrementalize
rules: iterate, incrementalize, implement objects: incrementalize across components

## Loops - a simple example

eliminating multiplications:

```
i:=1 in grid with a columns and b rows
while i <= b:
    :
    ...a*i... access last element of each row
    :
    i:=i+1
```

strength reduction: an oldest opt, for array access.
Difference Engine, ENIAC: tabulating polynomials.
need to use language semantics and cost model
exploit algebraic properties: $a *(i+1)=a * i+a$
store, update, initialize value of $a * i:$ where? how?

## Loops - incrementalize

incrementalize
maintain invariant: $c=a * i$, use and update

```
i:=1 i:=1; c:=a;
while i <= b:
    :
    ...a*i... ...c...
    :
    i:=i+1 i:=i+1; c:=c+a;
```

exploit algebraic properties
maintain additional information
iterate and implement: too little or too much to do

## Loops - more examples

hardware design: non-restoring binary integer square root.

```
n := input()
\(\mathrm{m}:=2^{\text {- ( }}\) (1-1)
for i := l-2 downto 0:
    \(\mathrm{p}:=\mathrm{n}-\mathrm{m}^{\wedge} 2\)
    if \(p\) > 0:
        m := m + 2^i
        elseif p < 0:
            m := m - 2^i
output(m)
```

goal: a few +- and shifts per bit.
image processing: blurring.

goal: a few operations per pixel.
need higher-Ievel abstraction

## Sets - a simple example

graph reachability: edges, source vertices $\rightarrow$ reachable vertices

```
read(e,s)
r := s
while exists x in e[r]-r:
    r := r U {x}
print(r)
```

need to
handle composite set expressions: $x[y], x-y$
design representations of interrelated sets: e,s,r

## Sets - incrementalize and implement

incrementalize: retrieve/add/del element, test membership two invariants for $e[r]-r$ : $t=e[r], w=t-r$ chain rule: maintain $t$ and then $w$. derive rules for maintaining simple and complex invariants.
implement: s, domain e, range e, r, t, w based representations: records for all elements of related sets; a set retrieved from is a linked list of pointers to the records; a set tested against is a field in the records.
iterate: directly from min $r$ : $s$ subset $r, r \operatorname{l} e[r]=r$

## Sets - more examples

query processing: join optimization

$$
r:=\{[x, y]: x \text { in } s, y \text { in } t \mid f(x)=g(y)\}
$$

iterate:

```
r := {}
for x in s:
            r := r U {[x,y]: y in t | f(x)=g(y)}
```

    incrementalize: maintain
    ginverse \(=\{[g(y), y]: y\) in \(t\}\)
    derived:
    ginverse := \{\}
for $y$ in $t$ :
ginverse $=$ ginverse $U\{[g(y), y]\}$
r : $=\{ \}$
for x in s :
for $y$ in ginverse $\{f(x)\}$
$r:=r \operatorname{U}\{[x, y]\}$

```
previous algorithm:
```

    finverse := {}
    ```
    finverse := {}
    for x in s:
    for x in s:
        finverse := finverse U {[f(x),x]}
        finverse := finverse U {[f(x),x]}
    ginverse := {}
    ginverse := {}
    for y in t:
    for y in t:
        if g(y) in domain(finverse):
        if g(y) in domain(finverse):
            ginverse := ginverse U {[g(y),y]}
            ginverse := ginverse U {[g(y),y]}
    r := {}
    r := {}
    for z in domain(ginverse):
    for z in domain(ginverse):
        for x in finverse{z}:
        for x in finverse{z}:
            for y in ginverse{z}:
            for y in ginverse{z}:
            r := r U {[x,y]}
```

```
            r := r U {[x,y]}
```

```
compare:
same asymptotic time: \(O(s+t+r)\); fewer loops and ops;
less space: \(O(t)\) or \(\bigcirc(\min (s, t))\), not \(\bigcirc(s+t)\); simpler and shorter; derived!
role-based access control (RBAC)
core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python \(\rightarrow\) hundreds of lines. CheckAccess: constant time.

\section*{Recursion - a simple example}
longest common subsequence: sequences x and \(\mathrm{y} \rightarrow\) length
```

lcs(i,j)
= if i=0 or j=0: 0
elseif x[i]=y[j]: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),lcs(i-1,j))

```
need to
determine how to iterate: recursion to iteration determine what and how to cache: dynamic programming

\section*{Recursion - iterate and incrementalize}
```

lcs(i,j)
= if i=0 or j=0: 0
elseif x[i]=y[j]: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),lcs(i-1,j))

```
iterate: minimum increment from arguments of recursive calls i,j -> i+1,j
incrementalize: cache and use
```

lcs(i+1,j) use r = lcs(i,j) -> lcs'(i,j,r)
= if i+1=0 lor j=0: 0
elseif x[i+1]=y[j]: lcs(i,j-1)+1 use lcs(i,j-1), cache
else: max(lcs(i+1,j-1),lcs(i,j)) use lcs(i,j-1)
-> lcs'(i,j-1,lcs(i,j-1))
recursively

```
implement: directly map to recursive or indexed data structures

\section*{Recursion - more examples}
sequence processing: editing distance, paragraph formatting, matrix chain multiplications, ...
math puzzles: Hanoi tower, find solution in linear time
```

h(n,a,b,c) move n disks from a to b using c
= if n<=0 then skip
else h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)
iterate: n,a,b,c -> n+1,a,c,b
cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>
hExt(n+1,a,c,b) use rExt=hExt(n,a,b,c) -> hExt'(n,a,b,c,
= if n+1 <=0 then <skip,skip,skip> rExt)
else 1st(rExt)::move(a,c)::2nd(rExt),
3rd(rExt)::move(c,b)::1st(rExt),
2nd(rExt)::move(b,a)::3rd(rExt)>

```
simpler than others: maintain 2 additional values, not 5

\section*{Rules - a simple example}
transitive closure:
```

edge(u,v) -> path(u,v)
edge(u,w) /

```
need to
find a way to proceed
determine what and how to maintain design representations of different kinds of facts
additional question
can we give time and space complexity guarantees?

\section*{Rules - iterate, incrementalize, implement}
iterate: add one fact at a time until fixed point is reached incrementalize: maintain maps indexed by shared arguments implement: design nested linked lists and arrays of records time and space guarantees:
```

edge(u,v) -> path(u,v)
edge(u,w) /\ path(w,v) -> path(u,v)

```
time: \# of combinations of hypotheses - optimal
```

0(min(\#edge*\#path.2/1, \#path*\#edge.1/2))

```
    edges vertices output indegree
space: 0(\#edge), for storing inverse map of edge

\section*{Rules - more examples}
program analysis: dependence analysis, pointer analysis, information flow analysis, ...
trust management: SPKI/SDSI authorization
```

auth(k1,[k2],TRUE,a1,v1), auth(k2,s2,d2,a2,v2)
-> auth(k1,s2,d2,PInt(a1,a2),VInt(v1,v2))
auth(k1,[k2 [n2 ns3]],d,a,v1), name(k2,n2,[k3],v2)
-> auth(k1,[k3 ns3],d,a,VInt(v1,v2))
name(k1,n1,[k2 [n2 ns3]],v1), name(k2,n2,[k3],v2)
-> name(k1,n1,[k3 ns3],VInt(v1,v2))

```
find authorized keys: \(O(i n * k p * k n)\), better than \(O(i n * k * k)\).

\section*{Objects - a simple example}
the "what" of a software component: queries: compute information using data w/o changing data. updates: change data.
example:
class LinkedList in Java has many methods:
size(), 11 add or remove, several other queries.

\section*{Objects - incrementalize}
how to implement the queries and updates: varies significantly
straightforward:
queries compute requested information.
updates change base data.
example: size() contains a loop that computes the size.
observe:
queries are often repeated, many are easily expensive; updates can be frequent, they are usually small.
sophisticated - incrementalized:
store derived information; queries return stored information. updates also update stored information.
example: maintain size in a field, and update it in 11 places.

\section*{Objects - more examples}
examples: wireless protocols, electronic health records, virtual reality, games, ...
```

findStrongSignals(): return {s in signals | s.getStrength() > threshold}
class Protocol
signals: set(Signal)
threshold: float

+ strongSignals: set(Signal)
addSignal(signal): signals.add(signal)
+ signal.takeProtocol(this)
+ if signal.getStrength() > threshold
+ strongSignals.add(signal)
* findStrongSignals(): return strongSignals
+ updateSignal(signal):
+ if signals.contains(signal)
+ if strongSignals.contains(signal)
+ if not signal.getStrength()>threshold
+ strongSingals.remove(signal)
+ else
+ if signal.getStrength()>threshold
+ strongSingals.add(signal)
class Signal
strength: float
+ protocols: set(Protocol)
+ takeProtocol(protocol):
+ protocols.add(protocol)
setStrength(v):
strength = v
+ for protocol in protocols
+ protocol.updateSignal(this)
getStrength(): return strength
...
findStrongSignal: }O(|\mathrm{ signals|) }->O(1). setStrength: O(1) ->O(|protocols|)

```

\section*{Iterate, Incrementalize, and Implement}
iterate at a minimum increment step; incrementalize expensive computations; implement on efficient data structures.
loops
iter, inc, impl
maintaining invariants, algebraic properties, additional values
sets
iter, inc, impl
chain rule, deriving maintenance rules; based representations
recursion iter, inc, impl
recursion to iteration; dynamic programming
rules iter, inc, impl
all, giving time and space complexity guarantees
objects
all, across components
connect theory w/ practice. like differentiation \& integration.

\section*{References}
loops [Liu-IFIP97, LS-ICCL98a/LSLR-TOPLAS05]
sets [PK-TOPLAS82, LWGRCZZ-PEPM06]
recursion [LS-ESOP99/LS-HOSC03, LS-PEPM00, LS-PEPM02a/LS-TR06a]
rules [LS-PPDP03/LS-TR06b]
objects [LSGRL-OOPSLA95, RL-TR06c]

\section*{Ongoing projects}
- generating incremental implementations of queries over objects and sets
- generating programs for answering rule-based queries on demand
- an invariant-driven transformation framework: InvTL/InvTS, for Python and C
- security applications: access control, information flow analysis, trust management, policy analysis```

