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At the center of computer science

two major concerns of study:

what to compute

how to compute efficiently

problem solving:

from clear specifications for "what”

to efficient implementations for " how”



From clear specifications to efficient
iImplementations

challenge:

develop a method that is both general and systematic

conflict between clarity and efficiency:

clear specifications usually correspond to straightforward im-
plementations, not at all efficient.

efficient implementations are usually difficult to understand,
not at all clear.



A general and systematic method

iterate: determine a minimum step to take repeatedly, itera-
tively.

incrementalize: make expensive operations incremental in each
step by using and maintaining useful additional values.

implement: design appropriate data structures for efficiently
storing and accessing the values maintained.

general and systematic:
loops: incrementalize
sets: incrementalize, implement
recursion: iterate, incrementalize
rules: iterate, incrementalize, implement
objects: incrementalize across components




Loops — a simple example

eliminating multiplications:

i:=1 in grid with a columns and b rows
while i <= b:

L.akxi. .. access last element of each row

i:=1i+1

strength reduction: an oldest opt, for array access.
Difference Engine, ENIAC: tabulating polynomials.

need to use language semantics and cost model
exploit algebraic properties: a*(i+1) = a*i+4a
store, update, initialize value of a*i: where? how?



Loops — incrementalize

incrementalize

maintain invariant: c=a*i, use and update

i:=1 i:=1; c:=a;
while 1 <= b:

..a*icoo DDQCC'.

1:=1+1 i:=i+1; c:=c+a;

exploit algebraic properties

maintain additional information

iterate and implement: too little or too much to do



Loops — more examples

hardware design: non-restoring binary integer square root.

n := input()
m := 27(1-1)
for i := 1-2 downto O:
p :=n-m2
if p >
m :=
elseif
m :=
output (m)
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image processing: blurring.

need higher-level abstraction

goal: a few +- and shifts per bit.

goal: a few operations per pixel.



Sets — a simple example

graph reachability: edges, source vertices — reachable vertices

read(e,s)
r := S

while exists x in el[r]-r:

r :=r U {x}
print (r)
need to

handle composite set expressions: x[y], x-y

design representations of interrelated sets: e,s,r



Sets — incrementalize and implement

incrementalize: retrieve/add/del element, test membership
two invariants for e[r]-r: t = e[r], w = t-r
chain rule: maintain t and then w.
derive rules for maintaining simple and complex invariants.

implement: s, domain e, range e, r, t, w
based representations: records for all elements of related sets;
a set retrieved from is a linked list of pointers to the records;
a set tested against is a field in the records.

iterate: directly from min r: ssubset r, r U e[r] =



Sets — more examples

query processing: join optimization
r := {[x,yl: xins, yin t | £(x) = g(y)}

iterate:
r := {}
for x in s: previous algorithm:
r :=r U {lx,y]l: y in t | £(x)=g(y)} finverse := {}
incrementalize: maintain for x in s:
ginverse = {[g(y),y]l: y in t} finverse := finverse U {[f(x),x]}
derived: ginverse := {}
for y in t:
ginverse := {} if g(y) in domain(finverse):
for y in t: ginverse := ginverse U {[g(y),yl}
ginverse = ginverse U {[g(y),yl} r := {}
r := {} for z in domain(ginverse):
for x in s: for x in finverse{z}:
for y in ginverse{f(x)} for y in ginverse{z}:
r :=r U {[x,yl} r :=r U {[x,yl}
compare:

same asymptotic time: O(s+t+r); fewer loops and ops;
less space: O(t) or O(min(s,t)), not O(s+t); simpler and shorter; derived!

role-based access control (RBACQC)

core RBAC: 16 expensive queries, 9 kinds, updated in many places.
125 lines python — hundreds of lines. CheckAccess: constant time.
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Recursion — a simple example

longest common subsequence: sequences X and y — length

lcs(i,j)

= if i=0 or j=0: O
elseif x[il=y[jl: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),1lcs(i-1,j))

need to
determine how to iterate: recursion to iteration

determine what and how to cache: dynamic programming
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Recursion — iterate and incrementalize

les(i, j)

= if i=0 or j=0: O
elseif x[il=y[jl: lcs(i-1,j-1)+1
else: max(lcs(i,j-1),1lcs(i-1,j))

iterate: minimum increment from arguments of recursive calls
i,j —> i+1,j

incrementalize: cache and use

lcs(i+1,3) use r = lcs(i,j) -> 1lcs’(i,j,r)
= if i+1=0 lor j=0: O
elseif x[i+1]=y[j]: lcs(i,j-1)+1 wuse lcs(i,j-1), cache
else: max(lcs(i+1,j-1),1cs(i,j)) wuse lcs(i,j-1)
-> 1lcs’(i,j-1,1cs(i,j-1))
recursively

implement: directly map to recursive or indexed data structures
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Recursion — more examples

sequence processing: editing distance, paragraph formatting,
matrix chain multiplications, ...

math puzzles: Hanoi tower, find solution in linear time

h(n,a,b,c) move n disks from a to b using c
= if n<=0 then skip
else h(n-1,a,c,b)::move(a,b)::h(n-1,c,b,a)

iterate: n,a,b,c -> n+l,a,c,b
cache: hExt(n,a,b,c) = <h(n,a,b,c), h(n,b,c,a), h(n,c,a,b)>

hExt (n+1,a,c,b) use rExt=hExt(n,a,b,c) -> hExt’(n,a,b,c,
= if n+1 <=0 then <skip,skip,skip> rExt)
else 1st(rExt)::move(a,c)::2nd(rExt),
3rd(rExt) : :move(c,b) : :1st (rExt),
2nd (rExt) : :move(b,a) : : 3rd (rExt)>

simpler than others: maintain 2 additional values, not 5
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Rules — a simple example

transitive closure:

edge(u,v) -> path(u,v)
edge(u,w) /\ path(w,v) -> path(u,v)

need to

find a way to proceed
determine what and how to maintain
design representations of different kinds of facts

additional question

can we give time and space complexity guarantees?
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Rules — iterate, incrementalize, implement

iterate: add one fact at a time until fixed point is reached
incrementalize: maintain maps indexed by shared arguments
implement: design nested linked lists and arrays of records

time and space guarantees:

edge(u,v) —-> path(u,v)
edge(u,w) /\ path(w,v) -> path(u,v)

time: # of combinations of hypotheses — optimal
O0(min (#edge*#path.2/1, #pathx*#edge.1/2))
edges vertices output indegree
space: 0(#edge), for storing inverse map of edge
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Rules — more examples

program analysis: dependence analysis, pointer analysis, infor-
mation flow analysis, ...

trust management: SPKI/SDSI authorization

auth(k1, [k2] ,TRUE,al,v1l), auth(k2,s2,d2,a2,v2)
-> auth(kl,s2,d2,PInt(al,a2),Vint(vli,v2))

auth(kl, [k2 [n2 ns3]],d,a,vl), name(k2,n2, [k3],v2)
-> auth(kl, [k3 ns3],d,a,VInt(vl,v2))

name (k1,n1, [k2 [n2 ns3]],v1l), name(k2,n2, [k3],v2)
-> name(k1l,n1, [k3 ns3],VInt(vl,v2))

find authorized keys: O(in*kp*kn), better than O(in*k*k).
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Objects — a simple example

the “what” of a software component:
queries: compute information using data w/o changing data.

updates: change data.

example:
class LinkedList in Java has many methods:

size(), 11 add or remove, several other queries.
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Objects — incrementalize

how to implement the queries and updates: varies significantly

straightforward:
queries compute requested information.
updates change base data.

example: size() contains a loop that computes the size.

observe:
queries are often repeated, many are easily expensive;
updates can be frequent, they are usually small.

sophisticated — incrementalized:
store derived information; queries return stored information.
updates also update stored information.

example: maintain size in a field, and update it in 11 places.
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Objects — more examples

examples: wireless protocols, electronic health records, virtual
reality, games,

findStrongSignals(): return {s in signals | s.getStrength() > threshold}

class Protocol
signals: set(Signal)
threshold: float
+ strongSignals: set(Signal)

class Signal
strength: float
+ protocols: set(Protocol)

takeProtocol (protocol):

+
add$1gnal(51gnal). 51gna}s.add(s1gnal) N protocols.add (protocol)
signal.takeProtocol(this)
. . setStrength(v) :
if signal.getStrength() > threshold
strongSignals.add(signal) strength = v
E°18 ) & + for protocol in protocols

findStrongSignals(): return strongSignals
updateSignal(signal):
if signals.contains(signal)
if strongSignals.contains(signal)
if not signal.getStrength()>threshold
strongSingals.remove(signal) - .
else original lines
if signal.getStrength()>threshold *  changed lines
. . + added lines
strongSingals.add(signal)

+ protocol.updateSignal (this)
getStrength(): return strength

+ 4+ + ++ + 4+ + %+ + +

findStrongSignal: O(|signals|) — O(1). setStrength: O(1) — O(|protocols]|).
19



Iterate, Incrementalize, and Implement

iterate at a minimum increment step; incrementalize expensive
computations; implement on efficient data structures.

loops iter, inc, impl
maintaining invariants, algebraic properties, additional values

sets iter, inc, impl
chain rule, deriving maintenance rules; based representations

recursion iter, inc, impl
recursion to iteration; dynamic programming

rules iter, inc, impl
all, giving time and space complexity guarantees

objects
all, across components

connect theory w/ practice. like differentiation & integration.
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Ongoing projects

e generating incremental implementations of queries over ob-
jects and sets

e generating programs for answering rule-based queries on de-
mand

e an invariant-driven transformation framework: InvTL/InvTS,
for Python and C

e Security applications: access control, information flow anal-
ysis, trust management, policy analysis
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