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Bird’s repmin

data Tree = Leaf Int | Join Tree Tree

transform :: Tree → Tree
transform t = replace t (tmin t)

replace :: Tree → Int → Tree
replace (Leaf n) m = Leaf m
replace (Join l r) m = Join (replace l m) (replace r m)

tmint :: Tree → Int
tmint (Leaf n) = n
tmint (Join l r) = min (tmin l) (tmin r)
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Derivation of single-pass definition

repmin t m = (replace t m, tmin t)

�ww
repmin (Leaf n) m = (Leaf m,n)
repmin (Join l r) m = (Join l ′ r ′,min ml mr)

where (l ′,ml) = repmin l m
(r ′,mr) = repmin r m

�ww
transform t = t ′

where (t ′,m) = repmin t m

IFIP WG 2.1 2



Problem reformulation

data Tree = Leaf Int | Join Tree Tree

data STree = SLeaf | SJoin STree STree

transform :: Tree → Tree
transform t = replace (shapeMin t)

replace :: STree × Int → Tree
replace SLeaf m = Leaf m
replace (SJoin l r) m = Join (replace l m) (replace r m)

shapeMin :: Tree → STree × Int
shapeMin (Leaf n) = (SLeaf ,n)
shapeMin (Join l r) = (SJoin l ′ r ′,min ml mr)

where (l ′,ml) = shapeMin l
(r ′,mr) = shapeMin r
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Our transformation

transform t = replace (shapeMin t)

�ww
shapeMin = g (SLeaf ,SJoin)

g :: (a, a → a → a) → Tree → a × Int
g (sleaf , sjoin) (Leaf n) = (sleaf ,n)
g (sleaf , sjoin) (Join l r) = (sjoin l ′ r ′,min ml mr)

where (l ′,ml) = g (sleaf , sjoin) l
(r ′,mr) = g (sleaf , sjoin) r

�ww
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transform t = t ′

where (t ′,m) = g (fleaf , fjoin) t
fleaf = Leaf m
fjoin l r = Join l r

�ww
transform t = t ′

where (t ′,m) = repmin t
repmin (Leaf n) = (Leaf m,n)
repmin (Join l r) = (Join l ′ r ′,min ml mr)

where (l ′,ml) = repmin l
(r ′,mr) = repmin r
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Free Theorem

g :: ∀ a . (F a → a) → c → a × z

F a
Ff - F b c

⇒
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a× z
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g
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-
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Free Theorem

Taking

ϕ = inF : FµF → µF

f = fold ψ : µF → b

we obtain

(fold ψ × id) ◦ g inF = g ψ

c

µF × z
fold ψ × id

-
�

g
in

F

b× z

g
ψ

-
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Free Theorem for our g

g :: ∀ a . (a, a → a → a) → Tree → a × Int
⇒

(fold (sleaf , sjoin) × id) ◦ g (SLeaf ,SJoin) = g (sleaf , sjoin)

Tree

STree× Int
fold(sleaf, sjoin)× id

-
�
g(S
Le
af
, S
Jo
in

)

a× Int

g(sleaf, sjoin)
-
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Fold and pfold for STree

fold :: (a, a → a → a) → STree → a
fold (sleaf , sjoin) = f

where f SLeaf = sleaf
f (SJoin l r) = sjoin (f l) (f r)

pfold :: (z → a, a → a → z → a) → STree × z → a
pfold (pleaf , pjoin) = f

where f (SLeaf , z ) = pleaf z
f (SJoin l r , z ) = pjoin (f (l , z )) (f (r , z )) z
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Our case

transform t = replace (shapeMin t)

�ww
shapeMin = g (SLeaf ,SJoin)

g :: (a, a → a → a) → Tree → a × Int

replace :: STree × Int → Tree
replace = pfold (pleaf , pjoin)

where pleaf m = Leaf m
pjoin l r m = Join l r

IFIP WG 2.1 10



The rule

transform = pfold (pleaf , pjoin) ◦ g (SLeaf ,SJoin)

�ww
transform t = t ′

where (t ′,m) = g (fleaf , fjoin)
fleaf = pleaf m
fjoin l r = pjoin l r m
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Proof

transform t = pfold (pleaf , pjoin) (g (SLeaf ,SJoin) t)

�ww
transform t = pfold (pleaf , pjoin)◦

〈π1 ◦ g (SLeaf ,SJoin), π2 ◦ g (SLeaf ,SJoin)〉 $ t

�ww
transform t = fold (fleaf , fjoin) ◦ π1 ◦ g (SLeaf ,SJoin) $ t

where m = π2 ◦ g (SLeaf ,SJoin) $ t
fleaf = pleaf m
fjoin l r = pjoin l r m
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π1 natural transformation�ww
transform t = π1 ◦ (fold (fleaf , fjoin) × id) ◦ g (SLeaf ,SJoin) $ t

where m = π2 ◦ g (SLeaf ,SJoin) $ t
fleaf = pleaf m
fjoin l r = pjoin l r m

free theorem�ww
transform t = π1 ◦ g (fleaf , fjoin) $ t

where m = π2 ◦ g (SLeaf ,SJoin) $ t
fleaf = pleaf m
fjoin l r = pjoin l r m

π2 ◦ g (SLeaf ,SJoin) = π2 ◦ g (fleaf , fjoin)�ww
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transform t = π1 ◦ g (fleaf , fjoin) $ t
where m = π2 ◦ g (fleaf , fjoin) $ t

fleaf = pleaf m
fjoin l r = pjoin l r m

�ww
transform t = t ′

where (t ′,m) = g (fleaf , fjoin) t
fleaf = pleaf m
fjoin l r = pjoin l r m

IFIP WG 2.1 14


