Calculating Circular Programs

ALBERTO PARDO Instituto de Computación, Universidad de la República, Uruguay

joint work with

JOÃO FERNANDES and JOÃO SARAIVA Departamento de Informática, Universidade do Minho, Portugal

IFIP WG 2.1, Namur

data $Tree = Leaf Int \mid Join Tree Tree$

transform :: Tree \rightarrow Tree transform t = replace t (tmin t)

 $\begin{array}{l} replace :: Tree \rightarrow Int \rightarrow Tree \\ replace (Leaf n) m = Leaf m \\ replace (Join l r) m = Join (replace l m) (replace r m) \end{array}$

 $\begin{array}{l} tmint :: \ Tree \to Int\\ tmint \ (Leaf \ n) = n\\ tmint \ (Join \ l \ r) = min \ (tmin \ l) \ (tmin \ r) \end{array}$

Derivation of single-pass definition

repmin
$$t m = (replace \ t \ m, tmin \ t)$$

$$\downarrow$$
repmin (Leaf n) $m = (Leaf \ m, n)$
repmin (Join l r) $m = (Join \ l' \ r', min \ ml \ mr)$
where $(l', ml) = repmin \ l \ m$
 $(r', mr) = repmin \ r \ m$
 \downarrow
transform $t = t'$

where $(t', m) = repmin \ t \ m$

Problem reformulation

data $Tree = Leaf Int \mid Join Tree Tree$

data $STree = SLeaf \mid SJoin \ STree \ STree$

transform :: Tree \rightarrow Tree transform t = replace (shapeMin t)

replace :: $STree \times Int \rightarrow Tree$ replace SLeaf m = Leaf mreplace $(SJoin \ l \ r) m = Join (replace \ l \ m) (replace \ r \ m)$

$$\begin{array}{l} shapeMin :: Tree \rightarrow STree \ \times \ Int \\ shapeMin \ (Leaf \ n) = (SLeaf, n) \\ shapeMin \ (Join \ l \ r) = (SJoin \ l' \ r', min \ ml \ mr) \\ \mathbf{where} \ (l', ml) = shapeMin \ l \\ (r', mr) = shapeMin \ r \end{array}$$

Our transformation

transform t = replace (shapeMin t)

shapeMin = g (SLeaf, SJoin)

$$\begin{array}{l} g::(a,a \rightarrow a \rightarrow a) \rightarrow Tree \rightarrow a \ \times \ Int\\ g \ (sleaf, sjoin) \ (Leaf \ n) = (sleaf, n)\\ g \ (sleaf, sjoin) \ (Join \ l \ r) = (sjoin \ l' \ r', min \ ml \ mr)\\ \mathbf{where} \ (l',ml) = g \ (sleaf, sjoin) \ l\\ (r',mr) = g \ (sleaf, sjoin) \ r\end{array}$$

transform
$$t = t'$$

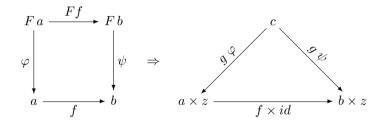
where $(t', m) = g$ (fleaf, fjoin) t
fleaf = Leaf m
fjoin $l r = Join l r$

transform
$$t = t'$$

where $(t', m) = repmin t$
 $repmin (Leaf n) = (Leaf m, n)$
 $repmin (Join l r) = (Join l' r', min ml mr)$
where $(l', ml) = repmin l$
 $(r', mr) = repmin r$

Free Theorem

$$g :: \forall a . (F a \rightarrow a) \rightarrow c \rightarrow a \times z$$



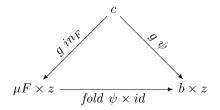
Free Theorem

Taking

$$\varphi = in_F : F\mu F \to \mu F$$
$$f = fold \ \psi : \mu F \to b$$

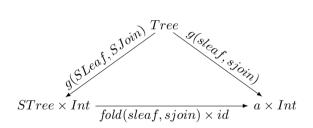
we obtain

$$(fold \ \psi \ \times \ id) \circ g \ in_F = g \ \psi$$



$$g :: \forall \ a \ . \ (a, a \to a \to a) \to \mathit{Tree} \to a \ \times \ \mathit{Int}$$

 $(fold (sleaf, sjoin) \times id) \circ g (SLeaf, SJoin) = g (sleaf, sjoin)$



 \Rightarrow

Fold and pfold for STree

$$\begin{array}{l} fold :: (a, a \rightarrow a \rightarrow a) \rightarrow STree \rightarrow a \\ fold \; (sleaf, sjoin) = f \\ \textbf{where} \; f \; SLeaf = sleaf \\ f \; (SJoin \; l \; r) = sjoin \; (f \; l) \; (f \; r) \end{array}$$

$$\begin{array}{l} pfold :: (z \to a, a \to a \to z \to a) \to STree \ \times \ z \to a \\ pfold \ (pleaf, pjoin) = f \\ \textbf{where} \ f \ (SLeaf, z) = pleaf \ z \\ f \ (SJoin \ l \ r, z) = pjoin \ (f \ (l, z)) \ (f \ (r, z)) \ z \end{array}$$

Our case

transform t = replace (shapeMin t)

shapeMin = g (SLeaf, SJoin)

$$g :: (a, a \to a \to a) \to \mathit{Tree} \to a \ \times \ \mathit{Int}$$

$$\begin{array}{l} replace :: STree \ \times \ Int \rightarrow \ Tree \\ replace = pfold \ (pleaf, pjoin) \\ \textbf{where} \ pleaf \ m = Leaf \ m \\ pjoin \ l \ r \ m = Join \ l \ r \end{array}$$

The rule

 $transform = pfold \; (pleaf, pjoin) \circ g \; (SLeaf, SJoin)$

 $\|$

transform
$$t = t'$$

where $(t', m) = g$ (fleaf, fjoin)
fleaf = pleaf m
fjoin l r = pjoin l r m

Proof

transform t = pfold (pleaf, pjoin) (g (SLeaf, SJoin) t)

transform $t = pfold \ (pleaf, pjoin) \circ$ $\langle \pi_1 \circ g \ (SLeaf, SJoin), \pi_2 \circ g \ (SLeaf, SJoin) \rangle \$ t$

$$transform \ t = fold \ (fleaf, fjoin) \circ \pi_1 \circ g \ (SLeaf, SJoin) \ \ t$$

where $m = \pi_2 \circ g \ (SLeaf, SJoin) \ \ t$
fleaf = pleaf m
fjoin l $r = pjoin \ l \ r \ m$

π_1 natural transformation

transform
$$t = \pi_1 \circ (fold \ (fleaf, fjoin) \times id) \circ g \ (SLeaf, SJoin) \ t$$

where $m = \pi_2 \circ g \ (SLeaf, SJoin) \ t$
 $fleaf = pleaf \ m$
 $fjoin \ l \ r = pjoin \ l \ r \ m$

transform
$$t = \pi_1 \circ g$$
 (fleaf, fjoin) \$ t
where $m = \pi_2 \circ g$ (SLeaf, SJoin) \$ t
fleaf = pleaf m
fjoin $l r = pjoin \ l r m$

 $\pi_2 \circ g \ (SLeaf, SJoin) = \pi_2 \circ g \ (fleaf, fjoin)$

transform
$$t = \pi_1 \circ g$$
 (fleaf, fjoin) \$ t
where $m = \pi_2 \circ g$ (fleaf, fjoin) \$ t
fleaf = pleaf m
fjoin l r = pjoin l r m

transform
$$t = t'$$

where $(t', m) = g$ (fleaf, fjoin) t
fleaf = pleaf m
fjoin $l r = pjoin \ l r m$