
SYMBOLIC GENERATION OF OPTIMAL

DISCRETE CONTROL

Michel Sintzoff

Dept of Computing Science and Engineering

Université catholique de Louvain

michel.sintzoff@uclouvain.be

WG 2.1 Meeting, Namur

11-15 December 2006

I. PRELIMINARIES

- Problem

- Background

II. SYMBOLIC GENERATION

- Stratification

- Symbolic Iterative Terms

- Symbolic Semi-Algorithm

III. EVALUATION

- Illustration

- Complexity Analysis

- Discussion, Conclusion

1

I. PRELIMINARIES

I.1. Problem

Data

- (Symbolic) action system :

S = do A od

= do A0 [] · · · [] AN−1 od.

- Target predicate Q.

- Domain X of states.

- Index set I = {0, . . . , N − 1}.

- For i ∈ I, the action Ai is a guarded command

with an integer cost wi ≥ 1:

Bi(x) → x := fi(x) < wi > .

2

A policy C for S is a tuple (C0, · · · , CN−1) of

predicates such that Ci ⇒ Bi for each i.

A policy C′ refines a policy C

iff ∀i ∈ I : C′
i ⇒ Ci.

S↓C is S where each Bi is replaced by Ci.

A policy C is optimal for (S, Q) if Q is reached

using paths by S↓C with a minimum total cost.

Aim : Find the optimal policy for (S, Q).

3

II.2. Background

Basic Predicate Transformer :

It is a syntactical map pre.S such that

pre.(do A od).P ≡
∨

n∈N (pre.A)n.P

(pre.A)0.P ≡ P

(pre.A)n+1.P ≡ pre.A.((pre.A)n.P)

pre.([]i∈I Ai).P ≡
∨

i∈I pre.Ai.P

pre.(Bi → x :=e).P ≡ Bi ∧ Px
e

Graph : GS = (X, ES, w) where

ES = {(x, i, fi(x)) | Bi(x)}, w(i) = wi

Paths by S : x0 or x0 · · · ikxk · · ·
where x0 ∈ X, (xk−1, ik, xk) ∈ ES for k = 1 · · ·.

Paths(S) is the set of paths by S.

4

Paths(x, S): the paths by S beginning with x.

Paths(S, x): the finite paths by S ending on x.

Paths(S, Y)
.
=

⋃
x∈Y Paths(S, x).

Paths(x, S, Y)
.
= Paths(x, S) ∩ Paths(S, Y).

The concatenation p.p′ of p ∈ Paths(S, y) and

p′ ∈ Paths(y, S) is p followed by the result of

removing the initial y from p′.

Path Costs : for any finite path p ∈ Paths(S, X),

cost(x) = 0, cost(xiy) = w(i)

cost(p.(xiy)) = cost(p) + w(i)

5

Optimality Domain D : for all x ∈ X,

D(x) ≡ (Paths(x, S, Q) 6=∅) ≡ (pre.S.Q)(x)

Value Function V : X → N . If D(x) then

V (x) = min{cost(p) | p ∈ Paths(x, S, Q)}

OptPaths(x, S, Q)
.
= {p | p ∈ Paths(x, S, Q) ∧ cost(p) = V (x)}

The (weakest) optimal policy for (S, Q) is the

policy C for S such that, for all x ∈ X,

Paths(x, S↓C) = OptPaths(x, S, Q).

6

A Little Hierarchy of Predicate Transformers

(pre.S.Q)(x) ≡ D(x) ≡
(Paths(x, S, Q) 6= ∅) ≡ (OptPaths(x, S, Q) 6= ∅).

(wp.S.Q)(x)

≡ D(x) ∧ (Paths(x, S) = Paths(x, S, Q)).

(owp.S.Q)(x)

≡ D(x) ∧ (Paths(x, S)=OptPaths(x, S, Q)).

Read owp as ”weakest optimality precondition”.

So the weakest optimal policy C is the weakest

policy for S such that

owp.S↓C.Q ≡ pre.S.Q.

Clearly wp.S.P ⇒ pre.S.P , owp.S.P ⇒ wp.S.P

and D ≡ Q ∨
∨

i Ci.

7

Classical, State-Based Method (e.g. Bellman):

(0) The domain X is assumed to be finite.

(1) Compute the value function V .

(2) The weakest optimal policy for (S, Q) is

C = (C0, . . . , CN−1) where, for all i and x,

Ci(x) ≡ Bi(x) ∧ (V (x)− V (fi(x)) = wi).

A termination policy is given by

Ci(x) ≡ Bi(x) ∧ (V (x)− V (fi(x)) > 0)

where V is a variant function.

8

Complexity of the State-Based Generation

If X is finite, the complexity of this method is

polynomial in #X, thanks to efficient shortest-

paths algorithms on finite graphs.

Challenges

(i) The number of states is exponential in the

number of variables.

(ii) Infinite domains can’t be handled.

9

II. SYMBOLIC GENERATION OF OPTIMAL

POLICIES

II.1. Stratification into Level-Sets

(Optimality) Levels belong to the set

XL
.
= {n | n ∈ N ∧ n < #Rng(V)}.

Optimality Radius : ρ
.
= supXL.

Level-to-Value Bijection VL : XL → Rng(V):

VL(0) = 0

VL(n + 1) = min
x∈X

{V (x) | V (x) > VL(n)}.

State-to-Level Function L : X → XL :

V (x) = VL(L(x))

i.e. L(x) = V −1
L (V (x)).

10

Sub-Domains : for n ∈ XL,

D(n)(x) ≡ D(x) ∧ L(x) ≤ n,

Sub-Guards :

C
(n)
i (x) ≡ Ci(x) ∧ L(x) ≤ n.

Domain Strata :

F (n)(x) ≡ D(x) ∧ L(x) = n.

Guard Strata :

F
(n)
i (x) ≡ Ci(x) ∧ L(x) = n.

Strata are fringes or fronts of growing subsets.

Aim : to compute the optimal control guards

Ci ≡ sup
n∈XL

{C(n)
i }

iteratively.

11

II.2. Symbolic Iterative Terms These terms

must not use computations on states.

Obvious Iterative Terms

D(0) ≡ F (0) ≡ Q, C
(0)
i ≡ F

(0)
i ≡ false,

D(n+1) C
(n+1)
i

≡ D(n) ∨ F (n+1), ≡ C
(n)
i ∨F

(n+1)
i ,

F (n+1) ≡
∨
i

F
(n+1)
i , Ci ≡ C

(ρ)
i

where n, n + 1 ∈ XL and i ∈ I.

12

Iterative Terms for Guard Strata

Informally,

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(m)

such that VL(n + 1)− VL(m) = wi, if feasible.

Let opti : XL → Bool, gi : XL → XL such that

opti(n) ≡ VL(n)−wi ∈ Rng(VL),

opti(n) ⇒ VL(n)−VL(gi(n)) = wi.

So opti(n) implies gi(n)=V −1
L (VL(n)−wi) = m.

Hence

F
(n+1)
i ≡ ¬D(n)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1)).

13

Additional Iterative Terms :

VL(n + 1)

= min
i,m:m≤n

{
wi + VL(m)

| ¬D(n) ∧ pre.Ai.F
(m) 6≡ false

}

opti(n + 1)

≡
∨

m:m≤n

VL(n + 1)− VL(m) = wi

If opti(n + 1) holds then

gi(n + 1)

= min
m:m≤n

{m | VL(n + 1)− VL(m) = wi}

14

Reduction of Symbolic Iterative Terms

A term is subsidiary if it is
- a predicate transformation,
- a satisfiability expression,
- a disjunction of equalities between costs,
- a minimization, or
- a supremum,
and does not occur in S or Q.

To reduce E is to replace each subsidiary sub-
term E′ in E by a symbolic expression of the
result of evaluating E′.

Additional simplifications are welcome. In par-
ticular, if id ≡ e has been derived where e is
reduced then e may replace id in a reduced
term.

In the semi-algorithm hereafter, all subsidiary
sub-terms must be reduced. Thus id ≡ E

means id identifies reduce(E).

15

II.3. Symbolic Semi-Algorithm GenOpt

begin

VL(0) = 0; F (0) ≡ Q; D(0) ≡ F (0);

for each i : F
(0)
i ≡ false; C

(0)
i ≡ F

(0)
i ;

for n from 0 while ¬D(n) ∧ pre.A.D(n) 6≡ false :

for each i :
F

(n+1)
i ≡ ¬D(n)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1));

C
(n+1)
i ≡ C

(n)
i ∨ F

(n+1)
i ;

F (n+1) ≡
∨
i

F
(n+1)
i ;

D(n+1) ≡ D(n) ∨ F (n+1);

for each i : Ci ≡ C
(supDom(VL))
i

end

The iterative terms for VL(n + 1), opti(n + 1)

and gi(n + 1) have been given.

16

Correctness

By construction, if GenOpt terminates then the

resulting policy (C0, · · · , CN−1) is the weakest

optimal policy for (S, Q).

The semi-algorithm GenOpt terminates iff

- the optimality radius ρ is finite, and

- the reductions terminate.

17

III. EVALUATION OF THE APPROACH

III.1. Illustration

S = do A0 : x ≥ 0 → x := 4x <26 >

[] A1 : x ≥ 0 → x := x + 1 <13 >

od

X = R, Q ≡ 8 ≤ x ≤ 10.

The iterates for n = 0,1 are

VL(0) = 0

F
(0)
0 ≡ F

(0)
1 ≡ false, C

(0)
0 ≡ C

(0)
1 ≡ false

F (0) ≡ 8 ≤ x ≤ 10, D(0) ≡ 8 ≤ x ≤ 10

VL(1) = 13

F
(1)
0 ≡ false, C

(1)
0 ≡ false,

F
(1)
1 ≡ 7 ≤ x < 8, C

(1)
1 ≡ 7 ≤ x < 8

F (1) ≡ 7 ≤ x < 8, D(1) ≡ 7 ≤ x ≤ 10

18

For n = 2 :

VL(2) = 26

F
(2)
0 ≡ 2 ≤ x ≤ 2.5, C

(2)
0 ≡ 2 ≤ x ≤ 2.5,

F
(2)
1 ≡ 6 ≤ x < 7, C

(2)
1 ≡ 6 ≤ x < 8,

F (2) ≡ 2 ≤ x ≤ 2.5

∨6 ≤ x < 7

D(2) ≡ 2 ≤ x ≤ 2.5

∨6 ≤ x ≤ 10

... and so on until n = ρ = 6.

Then VL(6) = 78.

19

The optimal guards C0 ≡ C
(6)
0 , C1 ≡ C

(6)
1 are

C0 ≡ 0.5 ≤ x ≤ 0.625 ∨ 1.5 < x ≤ 2.5

C1 ≡ 0 ≤ x ≤ 0.5

∨0.625 < x ≤ 1.5 ∨ 2.5 < x < 8.

Notes

- D ≡ 0 ≤ x ≤ 10 ≡ C0 ∨ C1 ∨Q.

- The intervals in C0 and C1 are interleaved.

- Non-determinism is possible; e.g. x = 0.5.

- To guess optimal policies is not easy.

- The domain is not denumerable.

20

III.2. Complexity of GenOpt

Notations

- T (G) is the complexity of G.

- Tsat(G) is the complexity of satisfiability ex-

pressions and predicate transformations in G.

- f ∈ Poly(h) stands for f ∈ O(hk).

Complexity of GenOpt

If ρ is finite then

T (GenOpt) ∈ Poly(ρ + N + Tsat(GenOpt)).

21

Efficiency of GenOpt when ρ is finite

Since

T (GenOpt) ∈ Poly(ρ + N + Tsat(GenOpt)),

two good cases are defined as follows.

(i) X is finite

and ρ + N + Tsat(GenOpt) ∈ Poly(log#X) :

Then T (GenOpt) ∈ Poly(log#X).

(ii) X is infinite

and N + Tsat(GenOpt) ∈ Poly(ρ) :

Then T (GenOpt) ∈ Poly(ρ).

22

III.3. Complexity for Reachability Domains

Reachability Domains, Levels, Radius and Strata

Reachability domain :

D(x) ≡ (Paths(x, S, Q)) ≡ (pre.S.Q)(x).

Reachability level of x, for x such that D(x) :

LR(x)
.
= min{nbedges(p) | p ∈ Paths(x, S, Q)}

where nbedges(p) is the number of occurrences

of edge labels in a path p.

Reachability radius : ρR
.
= supRng(LR).

Reachability sub-domains and strata :

for n ∈ Rng(LR),

D(n)(x) ≡ D(x) ∧ LR(x) ≤ n,

F (n)(x) ≡ D(x) ∧ LR(x) = n.

23

Symbolic Semi-Algorithm GenReach :

begin

F (0) ≡ Q; D(0) ≡ F (0);

for n from 0 while ¬D(n) ∧ pre.A.F (n) 6≡ false :

F (n+1) ≡ ¬D(n) ∧ pre.A.F (n);

D(n+1) ≡ D(n) ∨ F (n+1);

D ≡ D(ρR)

end

Complexity of GenReach : If ρR is finite then

T (GenReach) ∈ Poly(ρR+N+Tsat(GenReach)).

Two efficiency conditions for GenReach are de-

termined, as in the case of GenOpt.

24

III.4. Complexity of Optimality vs. Reach-

ability

Let Mw = maxi∈I{wi}. For any p ∈ Paths(S, Q),

nbedges(p) ≤ cost(p) ≤ nbedges(p)×Mw.

Thus

LR(x) ≤ L(x) ≤ LR(x)×Mw,

and, given ρR = supRng(LR), ρ = supRng(L),

ρR ≤ ρ ≤ ρR ×Mw.

Hence ρR is finite implies ρ ∈ Poly(ρR + Mw).

Hence

T (GenOpt)

∈ Poly(ρR + Mw + N + Tsat(GenOpt)).

25

Case ρR and X are finite :

(A) If ρR+Mw+N+Tsat(GenOpt) ∈ Poly(log#X)

then T (GenOpt) ∈ Poly(log#X)

and GenOpt is efficient.

(B) If ρR+N +Tsat(GenReach) ∈ Poly(log#X)

then T (GenReach) ∈ Poly(log#X)

and GenReach is efficient.

Condition (A) for GenOpt holds if

- Condition (B) for GenReach holds,

- Mw ∈ Poly(ρR),

- Tsat(GenOpt) ∈ Poly(Tsat(GenReach)).

Case ρR is finite and X is infinite : same con-

clusion.

26

III.5. Discussion

State-Based and Symbolic Greedy Algorithms

In Dijkstra’s algorithm for shortest-path lengths,

each iteration step

- computes the next optimal value, if needed,

- generates one new state with the considered

optimal value.

In GenOpt, the iteration step for level n + 1

- computes the optimal value VL(n + 1),

- generates the set F (n+1) of all states having

this optimal value.

27

Termination

In restricted families of symbolic transition sys-

tems, the termination of GenReach is guaran-

teed (Henzinger, Majumdar, Raskin 05). Sim-

ilar families could thus ensure the termination

of GenOpt.

Efficiency

In case ρR is finite, GenOpt is efficient provided

- GenReach is efficient,

- Mw ∈ Poly(ρR),

- Tsat(GenOpt) ∈ Poly(Tsat(GenReach)).

The efficiency of GenReach is improved by

- simplification, e.g. abstraction,

- optimization, e.g. incrementalization,

- economical data structures.

Likewise for the efficiency of GenOpt.

28

From Value Functions to Optimal Policies

Usual approach: optimal policies are extracted

from value functions, to be computed first.

Case of discrete-time finite-state systems : The

value functions are produced using shortest-

paths algorithms for finite graphs.

Case of timed automata :

The value functions are generated by algo-

rithms which are symbolic wrt. clocks, thanks

to the linearity of the considered continuous

dynamics (Asarin, Maler 99; LaTorre et al.

02). But the extraction of optimal policies may

be hard (Bouyer et al. 05).

29

From Optimal Policies to Value Functions

Optimal policies are generated by GenOpt di-

rectly, without computing the value function.

Optimal costs may be obtained using the pred-

icate (opre.S.Q)(x, y) ≡ (D(x)∧y=V (x)). This

predicate is computed by adding the following

iterative terms in GenOpt:

W (0) ≡ F (0) ∧ y=0

W (n+1) ≡ W (n) ∨ F (n+1) ∧ y=VL(n+1)

opre.S.Q ≡ W (ρ).

If VL(n) reduces to vn then (opre.S.Q)(x, y) re-

duces to ∨
n∈XL

F (n)(x) ∧ y=vn.

30

Thus, for a finite XL, the guarded conditional

[]n∈XL
F (n)(x) → y := vn

implements y=V (x) if D(x).

This allows to compute shortest path-lengths

for the following graphs, finite or not:

- the graphs are defined by action systems,

- the reachability radiuses are finite,

- the symbolic reductions terminate.

31

Value Functions vs Optimality Policies

As observed by Bellman, optimal policies and

value functions f are dual to each other. He

adds:

The purpose of our investigation is not so much

to determine f(x), which is really a by-product,

but more importantly, to determine the struc-

ture of the optimal policy.

32

Verification of Optimality

To prove S is optimal from P to Q, one may

prove P ⇒ owp.S.Q. Recall

(owp.S.Q)(x)

≡ (pre.S.Q)(x)

∧(Paths(x, S) = OptPaths(x, S, Q)).

The predicate owp.S.Q can be generated itera-

tively. For n, n + 1 ∈ XL,

K(0) ≡ Q, H(0) ≡ K(0)

K(n+1) ≡ (
∨
i∈I

Bi) ∧
∧
i∈I

(Bi ⇒ opti(n + 1) ∧

pre.Ai.K
(gi(n+1)))

H(n+1) ≡ H(n) ∨K(n+1)

owp.S.Q ≡ H(ρ).

33

III.6. Further Work

Issues related to the proposed technique :

- improvement, implementation and applica-

tion of GenOpt;

- problem classes for which the efficiency of

GenOpt is guaranteed;

- symbolic generation of reachability policies.

Other possible areas where optimal policies could

be generated symbolically :

- games,

- probabilistic systems,

- continuous dynamics.

34

III.7. Conclusion

The procedures GenReach and GenOpt respec-
tively generate reachability domains and opti-
mal policies. GenOpt refines GenReach by tak-
ing action costs into account.

The synchronous iteration steps in GenReach

become asynchronous in GenOpt: optimal guard-
strata for an action with a higher cost use do-
main strata with lower levels.

The efficiency of GenOpt is guaranteed if
- GenReach is efficient,
- the maximum action cost is polynomial in the
reachability radius, and
- the complexity of reductions in GenOpt is
polynomial in that of reductions in GenReach.

∗ ∗

∗
35

A1. Synchronous vs. Asynchronous Itera-

tions

The iterative term for F
(n+1)
i defines an asyn-

chronous iteration. Indeed

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(m)

where m, if defined, may verify m < n.

If ∀i : wi = 1 then gi(n + 1) = m = n and the

iteration is synchronous:

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(n)

(vanLamsweerde, Sintzoff 1979).

36

A2. A Proof

F
(n+1)
i (x)

≡ { defn of F
(n)
i }

L(x) = n + 1 ∧ Ci(x)
≡ { props of Ci }

L(x) = n + 1 ∧ Ci(x) ∧ opti(n + 1)
∧D(fi(x)) ∧ L(fi(x)) = gi(n + 1)

≡ { gen. of Ci using V ; defn of gi }
L(x) = n + 1 ∧Bi(x) ∧ opti(n + 1)
∧D(fi(x)) ∧ L(fi(x)) = gi(n + 1)

≡ { defn of F (n) }
L(x) = n+1 ∧Bi(x) ∧ opti(n + 1)

∧F (gi(n+1))(fi(x))
≡ { defn of pre }

L(x) = n + 1

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1))(x)

≡ { defn of D(n) }
¬D(n)(x)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1))(x)

37

A3. Control Policies as Relations

Ci(x) ≡ π(x, i) ≡ i ∈ κ(x)

where π ⊆ X × I and κ : X → 2I.

Non-deterministic (resp. deterministic) actions

represent recurrence inclusions (resp. recur-

rence equations).

38

