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I. PRELIMINARIES

I.1. Problem

Data

- (Symbolic) action system :

S = do A od

= do A0 [] · · · [] AN−1 od.

- Target predicate Q.

- Domain X of states.

- Index set I = {0, . . . , N − 1}.

- For i ∈ I, the action Ai is a guarded command

with an integer cost wi ≥ 1:

Bi(x) → x := fi(x) < wi > .
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A policy C for S is a tuple (C0, · · · , CN−1) of

predicates such that Ci ⇒ Bi for each i.

A policy C′ refines a policy C

iff ∀i ∈ I : C′
i ⇒ Ci.

S↓C is S where each Bi is replaced by Ci.

A policy C is optimal for (S, Q) if Q is reached

using paths by S↓C with a minimum total cost.

Aim : Find the optimal policy for (S, Q).
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II.2. Background

Basic Predicate Transformer :

It is a syntactical map pre.S such that

pre.(do A od).P ≡
∨

n∈N (pre.A)n.P

(pre.A)0.P ≡ P

(pre.A)n+1.P ≡ pre.A.((pre.A)n.P )

pre.([]i∈I Ai).P ≡
∨

i∈I pre.Ai.P

pre.(Bi → x :=e).P ≡ Bi ∧ Px
e

Graph : GS = (X, ES, w) where

ES = {(x, i, fi(x)) | Bi(x)}, w(i) = wi

Paths by S : x0 or x0 · · · ikxk · · ·
where x0 ∈ X, (xk−1, ik, xk) ∈ ES for k = 1 · · ·.

Paths(S) is the set of paths by S.
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Paths(x, S): the paths by S beginning with x.

Paths(S, x): the finite paths by S ending on x.

Paths(S, Y )
.
=

⋃
x∈Y Paths(S, x).

Paths(x, S, Y )
.
= Paths(x, S) ∩ Paths(S, Y ).

The concatenation p.p′ of p ∈ Paths(S, y) and

p′ ∈ Paths(y, S) is p followed by the result of

removing the initial y from p′.

Path Costs : for any finite path p ∈ Paths(S, X),

cost(x) = 0, cost(xiy) = w(i)

cost(p.(xiy)) = cost(p) + w(i)
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Optimality Domain D : for all x ∈ X,

D(x) ≡ (Paths(x, S, Q) 6=∅) ≡ (pre.S.Q)(x)

Value Function V : X → N . If D(x) then

V (x) = min{cost(p) | p ∈ Paths(x, S, Q)}

OptPaths(x, S, Q)
.
= {p | p ∈ Paths(x, S, Q) ∧ cost(p) = V (x)}

The (weakest) optimal policy for (S, Q) is the

policy C for S such that, for all x ∈ X,

Paths(x, S↓C) = OptPaths(x, S, Q).
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A Little Hierarchy of Predicate Transformers

(pre.S.Q)(x) ≡ D(x) ≡
(Paths(x, S, Q) 6= ∅) ≡ (OptPaths(x, S, Q) 6= ∅).

(wp.S.Q)(x)

≡ D(x) ∧ (Paths(x, S) = Paths(x, S, Q)).

(owp.S.Q)(x)

≡ D(x) ∧ (Paths(x, S)=OptPaths(x, S, Q)).

Read owp as ”weakest optimality precondition”.

So the weakest optimal policy C is the weakest

policy for S such that

owp.S↓C.Q ≡ pre.S.Q.

Clearly wp.S.P ⇒ pre.S.P , owp.S.P ⇒ wp.S.P

and D ≡ Q ∨
∨

i Ci.
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Classical, State-Based Method (e.g. Bellman):

(0) The domain X is assumed to be finite.

(1) Compute the value function V .

(2) The weakest optimal policy for (S, Q) is

C = (C0, . . . , CN−1) where, for all i and x,

Ci(x) ≡ Bi(x) ∧ (V (x)− V (fi(x)) = wi).

A termination policy is given by

Ci(x) ≡ Bi(x) ∧ (V (x)− V (fi(x)) > 0)

where V is a variant function.
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Complexity of the State-Based Generation

If X is finite, the complexity of this method is

polynomial in #X, thanks to efficient shortest-

paths algorithms on finite graphs.

Challenges

(i) The number of states is exponential in the

number of variables.

(ii) Infinite domains can’t be handled.
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II. SYMBOLIC GENERATION OF OPTIMAL

POLICIES

II.1. Stratification into Level-Sets

(Optimality) Levels belong to the set

XL
.
= {n | n ∈ N ∧ n < #Rng(V )}.

Optimality Radius : ρ
.
= supXL.

Level-to-Value Bijection VL : XL → Rng(V ):

VL(0) = 0

VL(n + 1) = min
x∈X

{V (x) | V (x) > VL(n)}.

State-to-Level Function L : X → XL :

V (x) = VL(L(x))

i.e. L(x) = V −1
L (V (x)).
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Sub-Domains : for n ∈ XL,

D(n)(x) ≡ D(x) ∧ L(x) ≤ n,

Sub-Guards :

C
(n)
i (x) ≡ Ci(x) ∧ L(x) ≤ n.

Domain Strata :

F (n)(x) ≡ D(x) ∧ L(x) = n.

Guard Strata :

F
(n)
i (x) ≡ Ci(x) ∧ L(x) = n.

Strata are fringes or fronts of growing subsets.

Aim : to compute the optimal control guards

Ci ≡ sup
n∈XL

{C(n)
i }

iteratively.
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II.2. Symbolic Iterative Terms These terms

must not use computations on states.

Obvious Iterative Terms

D(0) ≡ F (0) ≡ Q, C
(0)
i ≡ F

(0)
i ≡ false,

D(n+1) C
(n+1)
i

≡ D(n) ∨ F (n+1), ≡ C
(n)
i ∨F

(n+1)
i ,

F (n+1) ≡
∨
i

F
(n+1)
i , Ci ≡ C

(ρ)
i

where n, n + 1 ∈ XL and i ∈ I.
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Iterative Terms for Guard Strata

Informally,

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(m)

such that VL(n + 1)− VL(m) = wi, if feasible.

Let opti : XL → Bool, gi : XL → XL such that

opti(n) ≡ VL(n)−wi ∈ Rng(VL),

opti(n) ⇒ VL(n)−VL( gi(n)) = wi.

So opti(n) implies gi(n)=V −1
L (VL(n)−wi) = m.

Hence

F
(n+1)
i ≡ ¬D(n)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1)).
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Additional Iterative Terms :

VL(n + 1)

= min
i,m:m≤n

{
wi + VL(m)

| ¬D(n) ∧ pre.Ai.F
(m) 6≡ false

}

opti(n + 1)

≡
∨

m:m≤n

VL(n + 1)− VL(m) = wi

If opti(n + 1) holds then

gi(n + 1)

= min
m:m≤n

{m | VL(n + 1)− VL(m) = wi}
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Reduction of Symbolic Iterative Terms

A term is subsidiary if it is
- a predicate transformation,
- a satisfiability expression,
- a disjunction of equalities between costs,
- a minimization, or
- a supremum,
and does not occur in S or Q.

To reduce E is to replace each subsidiary sub-
term E′ in E by a symbolic expression of the
result of evaluating E′.

Additional simplifications are welcome. In par-
ticular, if id ≡ e has been derived where e is
reduced then e may replace id in a reduced
term.

In the semi-algorithm hereafter, all subsidiary
sub-terms must be reduced. Thus id ≡ E

means id identifies reduce(E).
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II.3. Symbolic Semi-Algorithm GenOpt

begin

VL(0) = 0; F (0) ≡ Q; D(0) ≡ F (0);

for each i : F
(0)
i ≡ false; C

(0)
i ≡ F

(0)
i ;

for n from 0 while ¬D(n) ∧ pre.A.D(n) 6≡ false :

for each i :
F

(n+1)
i ≡ ¬D(n)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1));

C
(n+1)
i ≡ C

(n)
i ∨ F

(n+1)
i ;

F (n+1) ≡
∨
i

F
(n+1)
i ;

D(n+1) ≡ D(n) ∨ F (n+1);

for each i : Ci ≡ C
(supDom(VL))
i

end

The iterative terms for VL(n + 1), opti(n + 1)

and gi(n + 1) have been given.
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Correctness

By construction, if GenOpt terminates then the

resulting policy (C0, · · · , CN−1) is the weakest

optimal policy for (S, Q).

The semi-algorithm GenOpt terminates iff

- the optimality radius ρ is finite, and

- the reductions terminate.
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III. EVALUATION OF THE APPROACH

III.1. Illustration

S = do A0 : x ≥ 0 → x := 4x <26 >

[] A1 : x ≥ 0 → x := x + 1 <13 >

od

X = R, Q ≡ 8 ≤ x ≤ 10.

The iterates for n = 0,1 are

VL(0) = 0

F
(0)
0 ≡ F

(0)
1 ≡ false, C

(0)
0 ≡ C

(0)
1 ≡ false

F (0) ≡ 8 ≤ x ≤ 10, D(0) ≡ 8 ≤ x ≤ 10

VL(1) = 13

F
(1)
0 ≡ false, C

(1)
0 ≡ false,

F
(1)
1 ≡ 7 ≤ x < 8, C

(1)
1 ≡ 7 ≤ x < 8

F (1) ≡ 7 ≤ x < 8, D(1) ≡ 7 ≤ x ≤ 10
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For n = 2 :

VL(2) = 26

F
(2)
0 ≡ 2 ≤ x ≤ 2.5, C

(2)
0 ≡ 2 ≤ x ≤ 2.5,

F
(2)
1 ≡ 6 ≤ x < 7, C

(2)
1 ≡ 6 ≤ x < 8,

F (2) ≡ 2 ≤ x ≤ 2.5

∨6 ≤ x < 7

D(2) ≡ 2 ≤ x ≤ 2.5

∨6 ≤ x ≤ 10

... and so on until n = ρ = 6.

Then VL(6) = 78.
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The optimal guards C0 ≡ C
(6)
0 , C1 ≡ C

(6)
1 are

C0 ≡ 0.5 ≤ x ≤ 0.625 ∨ 1.5 < x ≤ 2.5

C1 ≡ 0 ≤ x ≤ 0.5

∨0.625 < x ≤ 1.5 ∨ 2.5 < x < 8.

Notes

- D ≡ 0 ≤ x ≤ 10 ≡ C0 ∨ C1 ∨Q.

- The intervals in C0 and C1 are interleaved.

- Non-determinism is possible; e.g. x = 0.5.

- To guess optimal policies is not easy.

- The domain is not denumerable.
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III.2. Complexity of GenOpt

Notations

- T (G) is the complexity of G.

- Tsat(G) is the complexity of satisfiability ex-

pressions and predicate transformations in G.

- f ∈ Poly(h) stands for f ∈ O(hk).

Complexity of GenOpt

If ρ is finite then

T (GenOpt) ∈ Poly(ρ + N + Tsat(GenOpt)).
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Efficiency of GenOpt when ρ is finite

Since

T (GenOpt) ∈ Poly(ρ + N + Tsat(GenOpt)),

two good cases are defined as follows.

(i) X is finite

and ρ + N + Tsat(GenOpt) ∈ Poly(log#X) :

Then T (GenOpt) ∈ Poly(log#X).

(ii) X is infinite

and N + Tsat(GenOpt) ∈ Poly(ρ) :

Then T (GenOpt) ∈ Poly(ρ).
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III.3. Complexity for Reachability Domains

Reachability Domains, Levels, Radius and Strata

Reachability domain :

D(x) ≡ (Paths(x, S, Q)) ≡ (pre.S.Q)(x).

Reachability level of x, for x such that D(x) :

LR(x)
.
= min{nbedges(p) | p ∈ Paths(x, S, Q)}

where nbedges(p) is the number of occurrences

of edge labels in a path p.

Reachability radius : ρR
.
= supRng(LR).

Reachability sub-domains and strata :

for n ∈ Rng(LR),

D(n)(x) ≡ D(x) ∧ LR(x) ≤ n,

F (n)(x) ≡ D(x) ∧ LR(x) = n.
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Symbolic Semi-Algorithm GenReach :

begin

F (0) ≡ Q; D(0) ≡ F (0);

for n from 0 while ¬D(n) ∧ pre.A.F (n) 6≡ false :

F (n+1) ≡ ¬D(n) ∧ pre.A.F (n);

D(n+1) ≡ D(n) ∨ F (n+1);

D ≡ D(ρR)

end

Complexity of GenReach : If ρR is finite then

T (GenReach) ∈ Poly(ρR+N+Tsat(GenReach)).

Two efficiency conditions for GenReach are de-

termined, as in the case of GenOpt.
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III.4. Complexity of Optimality vs. Reach-

ability

Let Mw = maxi∈I{wi}. For any p ∈ Paths(S, Q),

nbedges(p) ≤ cost(p) ≤ nbedges(p)×Mw.

Thus

LR(x) ≤ L(x) ≤ LR(x)×Mw,

and, given ρR = supRng(LR), ρ = supRng(L),

ρR ≤ ρ ≤ ρR ×Mw.

Hence ρR is finite implies ρ ∈ Poly(ρR + Mw).

Hence

T (GenOpt)

∈ Poly(ρR + Mw + N + Tsat(GenOpt)).
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Case ρR and X are finite :

(A) If ρR+Mw+N+Tsat(GenOpt) ∈ Poly(log#X)

then T (GenOpt) ∈ Poly(log#X)

and GenOpt is efficient.

(B) If ρR+N +Tsat(GenReach) ∈ Poly(log#X)

then T (GenReach) ∈ Poly(log#X)

and GenReach is efficient.

Condition (A) for GenOpt holds if

- Condition (B) for GenReach holds,

- Mw ∈ Poly(ρR),

- Tsat(GenOpt) ∈ Poly(Tsat(GenReach)).

Case ρR is finite and X is infinite : same con-

clusion.
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III.5. Discussion

State-Based and Symbolic Greedy Algorithms

In Dijkstra’s algorithm for shortest-path lengths,

each iteration step

- computes the next optimal value, if needed,

- generates one new state with the considered

optimal value.

In GenOpt, the iteration step for level n + 1

- computes the optimal value VL(n + 1),

- generates the set F (n+1) of all states having

this optimal value.
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Termination

In restricted families of symbolic transition sys-

tems, the termination of GenReach is guaran-

teed (Henzinger, Majumdar, Raskin 05). Sim-

ilar families could thus ensure the termination

of GenOpt.

Efficiency

In case ρR is finite, GenOpt is efficient provided

- GenReach is efficient,

- Mw ∈ Poly(ρR),

- Tsat(GenOpt) ∈ Poly(Tsat(GenReach)).

The efficiency of GenReach is improved by

- simplification, e.g. abstraction,

- optimization, e.g. incrementalization,

- economical data structures.

Likewise for the efficiency of GenOpt.
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From Value Functions to Optimal Policies

Usual approach: optimal policies are extracted

from value functions, to be computed first.

Case of discrete-time finite-state systems : The

value functions are produced using shortest-

paths algorithms for finite graphs.

Case of timed automata :

The value functions are generated by algo-

rithms which are symbolic wrt. clocks, thanks

to the linearity of the considered continuous

dynamics (Asarin, Maler 99; LaTorre et al.

02). But the extraction of optimal policies may

be hard (Bouyer et al. 05).
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From Optimal Policies to Value Functions

Optimal policies are generated by GenOpt di-

rectly, without computing the value function.

Optimal costs may be obtained using the pred-

icate (opre.S.Q)(x, y) ≡ (D(x)∧y=V (x)). This

predicate is computed by adding the following

iterative terms in GenOpt:

W (0) ≡ F (0) ∧ y=0

W (n+1) ≡ W (n) ∨ F (n+1) ∧ y=VL(n+1)

opre.S.Q ≡ W (ρ).

If VL(n) reduces to vn then (opre.S.Q)(x, y) re-

duces to ∨
n∈XL

F (n)(x) ∧ y=vn.
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Thus, for a finite XL, the guarded conditional

[]n∈XL
F (n)(x) → y := vn

implements y=V (x) if D(x).

This allows to compute shortest path-lengths

for the following graphs, finite or not:

- the graphs are defined by action systems,

- the reachability radiuses are finite,

- the symbolic reductions terminate.
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Value Functions vs Optimality Policies

As observed by Bellman, optimal policies and

value functions f are dual to each other. He

adds:

The purpose of our investigation is not so much

to determine f(x), which is really a by-product,

but more importantly, to determine the struc-

ture of the optimal policy.
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Verification of Optimality

To prove S is optimal from P to Q, one may

prove P ⇒ owp.S.Q. Recall

(owp.S.Q)(x)

≡ (pre.S.Q)(x)

∧(Paths(x, S) = OptPaths(x, S, Q)).

The predicate owp.S.Q can be generated itera-

tively. For n, n + 1 ∈ XL,

K(0) ≡ Q, H(0) ≡ K(0)

K(n+1) ≡ (
∨
i∈I

Bi) ∧
∧
i∈I

(Bi ⇒ opti(n + 1) ∧

pre.Ai.K
(gi(n+1)))

H(n+1) ≡ H(n) ∨K(n+1)

owp.S.Q ≡ H(ρ).
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III.6. Further Work

Issues related to the proposed technique :

- improvement, implementation and applica-

tion of GenOpt;

- problem classes for which the efficiency of

GenOpt is guaranteed;

- symbolic generation of reachability policies.

Other possible areas where optimal policies could

be generated symbolically :

- games,

- probabilistic systems,

- continuous dynamics.
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III.7. Conclusion

The procedures GenReach and GenOpt respec-
tively generate reachability domains and opti-
mal policies. GenOpt refines GenReach by tak-
ing action costs into account.

The synchronous iteration steps in GenReach

become asynchronous in GenOpt: optimal guard-
strata for an action with a higher cost use do-
main strata with lower levels.

The efficiency of GenOpt is guaranteed if
- GenReach is efficient,
- the maximum action cost is polynomial in the
reachability radius, and
- the complexity of reductions in GenOpt is
polynomial in that of reductions in GenReach.

∗ ∗

∗
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A1. Synchronous vs. Asynchronous Itera-

tions

The iterative term for F
(n+1)
i defines an asyn-

chronous iteration. Indeed

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(m)

where m, if defined, may verify m < n.

If ∀i : wi = 1 then gi(n + 1) = m = n and the

iteration is synchronous:

F
(n+1)
i ≡ ¬D(n) ∧ pre.Ai.F

(n)

(vanLamsweerde, Sintzoff 1979).
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A2. A Proof

F
(n+1)
i (x)

≡ { defn of F
(n)
i }

L(x) = n + 1 ∧ Ci(x)
≡ { props of Ci }

L(x) = n + 1 ∧ Ci(x) ∧ opti(n + 1)
∧D(fi(x)) ∧ L(fi(x)) = gi(n + 1)

≡ { gen. of Ci using V ; defn of gi }
L(x) = n + 1 ∧Bi(x) ∧ opti(n + 1)
∧D(fi(x)) ∧ L(fi(x)) = gi(n + 1)

≡ { defn of F (n) }
L(x) = n+1 ∧Bi(x) ∧ opti(n + 1)

∧F ( gi(n+1))(fi(x))
≡ { defn of pre }

L(x) = n + 1

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1))(x)

≡ { defn of D(n) }
¬D(n)(x)

∧opti(n + 1) ∧ pre.Ai.F
(gi(n+1))(x)
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A3. Control Policies as Relations

Ci(x) ≡ π(x, i) ≡ i ∈ κ(x)

where π ⊆ X × I and κ : X → 2I.

Non-deterministic (resp. deterministic) actions

represent recurrence inclusions (resp. recur-

rence equations).
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