

Tarmo Uustalu joint work with Ichiro Hasuo, Bart Jacobs

IFIP WG 2.1 meeting, Namur, 10-15 Dec. 2006

THREE TYPES OF BOTTOM-UP TREE TRANSDUCERS / THREE TRIANGLES

- Three types of bottom-up tree transducers, ordered by generality:
 - relabelling (branching-preserving) = purely synthesized attribute grammars
 - rebranching (layering-preserving)
 - 1-n relayering (= the classical notion)
- For each type, we have a triangular picture: transducers (modulo bisimilarity) are the same as (co/bi)-Kleisli maps of a comonad/distributive law and a subclass of tree functions

RELABELLING BOTTOM-UP TREE TRANSDUCERS: THE TRIANGLE

- F a fixed endofunctor on the base category A, B, C typical objects of the base category
- $LTree\ A =_{df} \mu Z.A \times FZ$ A-labelled F-branching trees
- $DA =_{df} LTree\ A$ "subtrees"; D is a comonad on the base category!

realizations

relabelling BU tree trans-s (mod bisim)

$$(X, d: A \times FX \to B \times X)$$

co-Kleisli behaviors

co-Kleisli maps of D

 $k: DA \to B$,

i.e. $k: LTree\ A \rightarrow B$

tree function behaviors

→ relabelling BU tree fun-s

 $f: LTree\ A \rightarrow LTree\ B$

- We have three different constructed categories on the objects of the base category.
- The three categories are equivalent: the maps are in a 1-1 correspondence, and typing, the identities and composition agree.
- Moreover, for each of the three categories, we have an identity-on-objects inclusion functor from the base category, which preserves products (i.e., an "arrow" and more).
- The "arrows" are equivalent too: the inclusion functors agree as well.

RELABELLING BOTTOM-UP TREE TRANSDUCERS

- Relabelling bottom-up tree transducers for a fixed branching type F are pairs $(X, d: A \times FX \to B \times X)$ (X state space, d transition function)
- Identity on *A*:

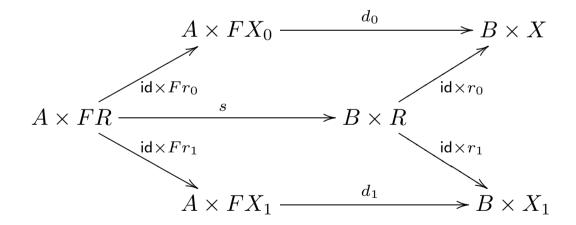
$$(1, A \times F1 \longrightarrow A \longrightarrow A \times 1)$$

• Composition of $(X, d: A \times FX \to B \times X)$ and $(X', e: B \times FX' \to C \times X')$:

$$(X \times X', A \times F(X \times X') \rightarrow A \times FX \times FX' \rightarrow B \times X \times FX' \rightarrow C \times (X \times X')$$

BISIMILARITY OF RELABELLING BU TREE TRANS-S

• $(X_0, d_0: A \times FX_0 \to B \times X_1)$ and $(X_1, d_1: A \times FX_1 \to B \times X_1)$ are defined to be bisimilar, if there exist a span (R, r_0, r_1) (a bisimulation) and a map $s: A \times FR \to B \times R$ (its bisimulationhood witness) such that



CO-KLEISLI BEHAVIORS OF RELABELLING BU TREE TRANS-S

- The comonad for relabelling BU tree trans-s is (D, ε, δ) where
 - $DA =_{\mathrm{df}} LTree\ A =_{\mathrm{df}} \mu Z.A \times FZ$ (sub)trees
 - $\varepsilon_A =_{\mathrm{df}} DA \xrightarrow{\cong} A \times F(DA) \xrightarrow{\mathrm{fst}} A$ extraction of the root label
 - $\delta_A =_{\mathrm{df}} DA \xrightarrow{\delta_A'} DA \times D(DA) \xrightarrow{\mathrm{snd}} D(DA)$ replacement of the label with the subtree at every node
- The map $\delta'_A = \langle id, \delta_A \rangle$ is given by initiality:

$$DA \xrightarrow{\delta'_A} DA \times D(DA)$$

$$|\cong|$$

$$DA \times DA \times F(D(DA))$$

$$|\cong|$$

$$DA \times F(D(DA))$$

$$|\cong|$$

$$A \times F(DA) \times F(D(DA))$$

$$|\cong|$$

$$A \times F(DA) \times F(D(DA))$$

$$|\cong|$$

$$A \times F(DA) \times F(D(DA))$$

• Co-Kleisli maps are maps $k: DA \rightarrow B$, the identity on A is

$$DA \xrightarrow{\varepsilon_A} A$$

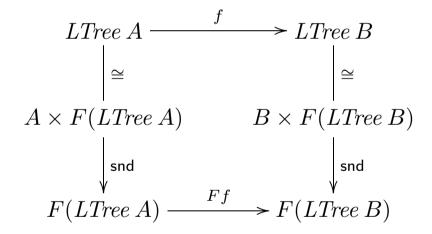
the composition of $k: DA \rightarrow B$, $\ell: DB \rightarrow C$ is

$$DA \xrightarrow{\delta_A} D(DA) \xrightarrow{Dk} DB \xrightarrow{\ell} C$$

(by the general definition of a co-Kleisli category of a comonad)

RELABELLING BU TREE FUNCTIONS

- Tree functions are maps $f: LTree\ A \to LTree\ B$, the identity and composition are taken from the base category.
- A tree function *f* is defined to be bottom-up relabelling if



• The identity tree functions are BU relabelling and the composition of two BU relabelling tree functions is BU relabelling.

REBRANCHING BOTTOM-UP TREE TRANSDUCERS: THE TRIANGLE

- G, H, K typical endofunctors on the base category
- $Tree\ G =_{df} \mu Z.GZ G$ -branching trees
- $G^{\sharp}Y =_{\mathrm{df}} G(Y \times Tree\ G)$ "child-position aware subtrees"; $(-)^{\sharp}$ is a comonad on the endofunctor category!

realizations

rebranching BU tree trans-s (mod bisim)

$$(X,(d_Y:G(Y\times X)\to HY\times X)_Y)$$

co-Kleisli behaviors

co-Kleisli maps of ()[‡]

$$k: G^{\sharp} \to H$$
,

i.e., $(k_Y: G(Y \times Tree\ G) \rightarrow HY)_Y$

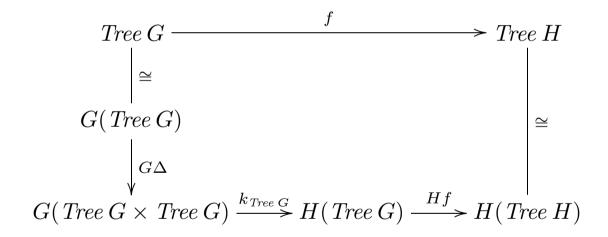
tree function behaviors

→ rebranching BU tree fun-s

 $f: Tree G \rightarrow Tree H$

REBRANCHING BU TREE FUNCTIONS

- Tree functions are maps $f: Tree \ G \to Tree \ H$, the identity and composition are taken from the base category.
- A tree function f as above is defined to be rebranching BU if there is a nat transf $(k_Y : G(Y \times Tree\ G) \to HY)_Y$ (its rebranching BU witness) such that



- k determines f.
- The identity tree functions are relabelling BU and the composition of two relabelling BU tree functions is relabelling BU.

CLASSICAL (1-N RELAYERING) BOTTOM-UP TREE TRANSDUCERS: THE TRIANGLE

- G, H, K typical endofunctors on the base category $Tree\ G =_{df} \mu Z.GZ$ — G-branching trees
- $G^{\sharp}Y =_{\mathrm{df}} G(Y \times \mathit{Tree}\, G)$ "child-position aware subtrees"; $(-)^{\sharp}$ is a comonad on the endofunctor category!
- $G^*Y =_{df} \mu Z.Y + GZ G$ -branching trees with Y-leaves; G^*Y is a monad on the base category (the free monad of G); $(-)^*$ is a monad on the endofunctor category!
- Tree $G \cong G^{\sharp}0$
- The comonad $(-)^{\sharp}$ distributes over the monad $()^{*}!$

realizations

BU tree trans-s (mod bisim)

$$(X,(d_Y:G(Y\times X)\to H^{\star}Y\times X)_Y)$$

bi-Kleisli behaviors

bi-Kleisli maps of $(-)^{\sharp}$, $(-)^{\star}$

 $k:G^{\sharp}\to H^{\star},$

i.e., $(k_Y: G(Y \times \mathit{Tree}\ G) \to H^{\star}Y)_Y$

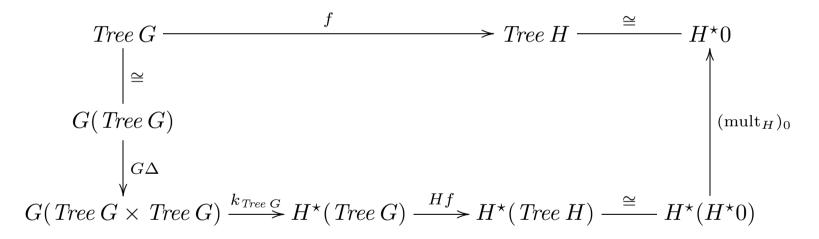
tree function behaviors

BU tree fun-s

 $f: Tree G \rightarrow Tree H$

1-N RELAYERING BU TREE FUNCTIONS

- As before, tree functions are maps $f: Tree G \to Tree H$, the identity and composition are taken from the base category.
- A tree function f as above is defined to be 1-n relayering BU if there is a nat transf $(k_Y : G(Y \times Tree\ G) \to H^*Y)_Y$ (its rebranching BU witness) such that



- k determines f.
- The identity tree functions are 1-n relayering BU and the composition of two 1-n relayering BU tree functions is 1-n relayering BU.

VARIATIONS: TOP-DOWN TREE TRANSDUCERS

- The same types of tree transducers are possible, to represent top-down tree functions of these types.
 - relabelling TD TTs:

$$(X, q_I: 1 \to X, d: A \times X \to B \times (F'1 \Rightarrow X))$$

 $(F'1 \Rightarrow X$ — assignments of a state to every child of the current node in the input tree)

- rebranching TD TTs:

$$(X, q_I: 1 \to X, (d_Y: GY \times X \to H(Y \times X))_Y)$$

- 1-n relayering TD TTs:

$$(X, q_I: 1 \to X, (d_Y: GY \times X \to H^*(Y \times X))_Y)$$

VARIATIONS: RELABELLING TREE TRANSDUCERS WITH LOOKAHEAD

- Relabelling transducers can be augmented with lookahead, so they can represent functions using information from both below and above any given node.
 - relabelling BU TTs with lookahead:

$$(X, d: A \times (\mu Z.1 + A \times F'1) \times FX \rightarrow B \times X)$$

- relabelling TD TTs with lookahead:

$$(X, q_I: 1 \to X, d: LTree\ A \times X \to B \times (F'1 \Rightarrow X))$$