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Motivation

We want to program using (general) recursion, but when is
this justi�ed, i.e, in which situations can we be sure that
the equation we want to employ has a unique solution?

Approaches: inductive, coinductive types, structured
recursion, corecursion schemes, guarded-by-destructors
recursion, guarded-by-constructors corecursion; general
totality/termination/productivity analysis methodologies.

Not so well recognized: For guarded-by-destructors
recursion, there does not have to be an inductive type
around.

This talk: recursive coalgebras (as opposed to initial
algebras) as a framework to deal with
guarded-by-destructors generically.



Recursive coalgebras: motivation

Consider quicksort: Let Z be a set linearly ordered by �.
One usually de�nes quicksort recursively.

qsort : ListZ ! ListZ
qsort [ ] = [ ]
qsort (x : l) = qsort(l�x) ++ (x : qsort(l>x))

Why does this recursive (a priori dubious) de�nition
actually make sense as a de�nition, i.e., how do we know
the underlying equation has a unique solution?



Recursive coalgebras: motivation

The equation has the form

qsort = qmerge � BTqsort � qsplit

where BTZ X = 1 + Z �X �X, and

qsplit : ListZ ! 1 + Z � ListZ � ListZ
qsplit [ ] = inl(�)
qsplit (x : l) = inr(hx; l�x; l>xi)

qmerge : 1 + Z � ListZ � ListZ ! ListZ
qmerge inl(�) = [ ]
qmerge inr(hx; l1; l2i) = l1 ++ (x : l2)



Recursive coalgebras: motivation

So why does the equation make sense as a de�nition?

ListZ1 + Z � ListZ � ListZ

1 + Z � ListZ � ListZ ListZ

qsplit

qsortid + id � qsort � qsort

qmerge

Because qsplit sends a list to a container of strictly shorter
lists.

Note, the fact that the result type was ListZ and that the
assembling function was qmerge did not play any role, we
can replace them with something else and the equation is
still a de�nition.



Recursive coalgebras: de�nition

Let (A;�) be a F -coalgebra and (C;') an F -algebra

A morphism f : A! C is a coalgebra-to-algebra
morphism, if

AF A

F C C

�

fF f

'

A F -coalgebra (A;�) is recursive, if there is a unique
coalgebra-to-algebra morphism from it into any F -algebra

� Denote: f = fixF;�(')

(An F -algebra (C;') is corecursive, if there is a unique
coalgebra-to-algebra morphism into it from any
F -coalgebra)



Recursive coalgebras: examples

Let F : C ! C be a functor with an initial algebra,
(�F; inF ).

Iteration: (�F; in�1F ) is a recursive F -coalgebra

�FF�F

FC C

in�1F

fFf

'

Primitive recursion:(�F; F h id�F ; id�F i � in�1F ) is a recursive
F (Id�K�F )-coalgebra

�FF�FF (�F � �F )

F (C � �F ) C

in�1F

f

F h id�F ; id�F i

F (f � id�F )

'



Recursive coalgebras: examples

Let P : Set ! Set be the covariant powerset function.

A P-coalgebra (A;�) is a binary relation (A;�):

�(a) = fx 2 A j x � ag

x � a i� x 2 �(a)

A P-coalgebra-to-algebra morphism from (A;�) to (C;')
is a function f : A! C such that f = ' � Pf � � i.e., such
that, for any a 2 A,

f(a) = '(ff(x) j x � ag)

Such a morphism exists uniquely for any (C;') i� � is
wellfounded.
So: (A;�) is recursive i� (A;�) is wellfounded.



Recursive coalgebras: basic properties

Let F : C ! C be a functor with an initial algebra,
(�F; inF ).

Prop. (�F; in�1F ) is a �nal recursive F -coalgebra.

AF A

�FF�F

�FF�F

�

in�1F

fF f

inF



Recursive coalgebras: basic properties

Let F : C ! C be a functor with an initial algebra,
(�F; inF ).

Let (A;�) be a recursive F -coalgebra

Cor. Then, for any F -algebra (C;'), the unique
coalgebra-to-algebra morphism factorizes through the
initial algebra

fixF;�(') = fixF;in�1F
(') � fixF;�(inF )

AFA

�FF�F

CFC

�

fFf

gFg
in�1F

inF

'



Recursive coalgebras: basic properties

Let (A;�) be a recursive F -coalgebra

Then

h � ' =  � Fh ) h � fixF;�(') = fixF;�( )

AFA

CFC

DFD

�

fFf

hFh

'

 



Recursive coalgebras: basic properties

Let (A;�) and (B; �) be recursive F -coalgebras

Then

� � h = Fh � � ) fixF;�(') � h = fixF;�(')

AFA

BFB

CFC

�

hFh

fFf

�

'

Let F = P : Set ! Set, then, (B; �) is recursive and from
coalgebra (A;�) there is a homomorphism into it, then
(A;�) is recursive [Osius, Taylor]

Does not hold in general :-(



Recursive coalgebras: basic properties

Let (A;�) be a recursive F -coalgebra and (B; �) a
F -coalgebra

Let h : (A;�)! (B; �) and k : (B; �)! (FA;F�) be
homomorphisms s.t., � = Fh � k

Then (B; �) is recursive
BFB

AFAFFA

CFCFFC

�

�F�

hFh
kFk

fFfFFf

F' '

Prop. If (A;�) is recursive, then (FA;F�) is recursive



Recursive coalgebras: basic properties

Let (A;�) be a recursive F -coalgebra.

(a) If � is iso, then (A;��1) is an initial F -algebra.

(b) If (A;�) is a �nal recursive F -coalgebra, then � is iso
(both as a morphism and as a coalgebra morphism) (and
hence (A;��1) is an initial F -algebra).

(a) (b)AFA

CFC

�

��1

fFf

'

AFA

FAF 2A

AFA

�

�F�

F�

hFh

�



Recursive coalgebras: basic properties

Let (A;�) be a recursive F -coalgebra

Then (A;F� � �) is a recursive F 2-coalgebra

AFAFFA

C � FCF (C � FC)FF (C � FC)

CFFC

�F�

gFgFFg

fstFF fst

F h' � F snd; F fst i h' � F snd; F fst i

F snd

'

Holds also more generally: for any n � 0, the following is
recursive

AFAF 2A� � �FnAFn+1A
�F�Fn�



Transposition properties

Let F;G : C ! C be functors.

Let � : F
:
! G be a natural transformation.

Let (A;�) be a recursive F -coalgebra.

Then (A; �A � �) is a recursive G-coalgebra.

AFAGA

FC

CGC

�

f

�A

Ff

Gf

�C

'



Transposition properties

Let F : C ! D and G : D ! C be functors.

Let (A;�) be a recursive GF -coalgebra.

Then (FA;F�) is a recursive FG-coalgebra.

FAFGFA

CFGC

AGFA

GCGFGC

F�

Ff
gFGg

'

�

fGFf

G'



Transposition properties

Let F : C ! C, G : D ! D be functors.

Let L : C ! D be a functor with a right adjoint.

Let � : LF
:
! GL be a natural transformation.

Let (A;�) be a recursive F -coalgebra.

Then (LA; �A � L�) is a recursive G-coalgebra.



Variations of recursiveness

Let C be cartesian and F : C ! C a functor with a strength
�.

An F -coalgebra (A;�) is strongly recursive i�, for any
object � of C and F -algebra (C;'), there is a unique
morphism f : �� A! C satisfying

�� A�� FAF (�� A)

C FC

id� � ���;A

fFf

'

i.e., i�, for any object �, the F -coalgebra
(�� A; ��;A � (id� � �)) is recursive.

A strongly recursive F -coalgebra (A;�) is also a recursive
F -coalgebra.

For the converse, it is su�cient that C is cartesian closed.



Variations of recursiveness

Let C be cartesian and F : C ! C a functor.

An F -coalgebra (A;�) is parametrically recursive i�, for
any (KA � F )-algebra (C;'), there is a unique morphism
f : A! C satisfying

AA� FA

CA� FC

h idA; � i

fidA � Ff

'

i.e., i� the (KA � F )-coalgebra (A; h idA; � i) is recursive.

A parametrically recursive F -coalgebra (A;�) is necessarily
recursive, but the converse does not hold in general.



Comonads and coalgebras

A comonad is a triple N = (N; "; �), where N is a
endofunctor, " : N

:
! Id and � : N

:
! NN are natural

transformations, s.t.:

NNANA

NANNA

�A

"NA�A

N"A

NNANA

NNNANNA

�A

�NA�A

N�A

A comonadic coalgebra is a N -coalgebra (A; i), s.t.:

A

ANA

i

"A

NAA

NNANA

i

�Ai

N i



Distributive comonads

Let F be an endofunctor and N = (N; "; �) a comonad

Distributivity is a natural transformation � : FN
:
! NF ,

st.:

NFAFNA

FAFA

�A

"FAF"A

NFAFNA

NNFANFNAFNNA

�A

�FAF�A

N�A�NA

Let f : FNA! B be a morphism, then it's extension
fz : FNA! NB is de�ned as:

FNA

B

f

FNNAFNA

NFNANB

F�A

�NAfz

Nf



Generalized comonadic recursion

Let (A;�) be a recursive F -coalgebra

Let N = (N; "; �; �) be a distributive comonad

Let i : A! NA be a comonadic N -coalgebra, s.t:
AFA

NANFAFNA

�

iF i

N��A

Then (A;F i � �) is a recursive FN -coalgebra

AFAFNA

CNCFNCFNC

�

g

F i

fFfFNg

'z "C

'



Comonadic recursion

Let the recursive F -coalgebra (A;�) be (�F; in�1F ).

Let N = (N; "; �; �) be a distributive comonad.

Then i = (jN inF � ��F j) : �F ! N�F is a comonadic
N -coalgebra

�FF�F

N�FNF�FFN�F

inF

iF i

N inF��F

For any FN -algebra (C;'), there is a unique morphism
f : �F ! C s.t.,

f � inF = ' � F (Nf � i) � f = "C � (j'
z j)

�FF�F

CFNC

inF

fF (Nf � i)

'

�FF�F

CNCFNC

inF

gFg

'z "C



Comonadic recursion

Primitive recursion as an instance:

NA = A� �F

Nf = f � id�F
"A = fst
�A = h idA��F ; snd i
�A = hF fst; inF � F snd i

Course-of-values iteration as an instance:

NA = StrFA
Nf = genF (f � hdFA; tl

F
A)

"A = hdFA
�A = genF (idStrFA; tl

F
A)

�A = genF (FhdFA; F tlFA)



Conclusions and future work

Done: An elegant framework, a generalization of results
known for initial algebras and modularization of proofs.

To do: Develop further methods for checking a coalgebra
for recursiveness.

Relation between recursiveness and wellfoundedness (Paul
Taylor's work).
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