Recursive Coalgebras from Comonads

Varmo Vene ${ }^{1}$

Department of Computer Science
University of Tartu

IFIP WG2.1 meeting
Namur, 11-15 Dec. 2006
${ }^{1}$ Joint work with T. Uustalu and V. Capretta

Motivation

- We want to program using (general) recursion, but when is this justified, i.e, in which situations can we be sure that the equation we want to employ has a unique solution?
- Approaches: inductive, coinductive types, structured recursion, corecursion schemes, guarded-by-destructors recursion, guarded-by-constructors corecursion; general totality/termination/productivity analysis methodologies.
- Not so well recognized: For guarded-by-destructors recursion, there does not have to be an inductive type around.
- This talk: recursive coalgebras (as opposed to initial algebras) as a framework to deal with guarded-by-destructors generically.

Recursive coalgebras: motivation

- Consider quicksort: Let Z be a set linearly ordered by \leq. One usually defines quicksort recursively.

$$
\begin{aligned}
& \text { qsort: List } Z \rightarrow \text { List } Z \\
& \text { qsort [] }=\text { [] } \\
& \text { qsort }(x: l)=\operatorname{qsort}\left(l_{\leq x}\right)+\left(x: \operatorname{qsort}\left(l_{>x}\right)\right)
\end{aligned}
$$

- Why does this recursive (a priori dubious) definition actually make sense as a definition, i.e., how do we know the underlying equation has a unique solution?

Recursive coalgebras: motivation

- The equation has the form

$$
\text { qsort }=\text { qmerge } \circ \mathrm{BT} \text { qsort } \circ \text { qsplit }
$$

where $\mathrm{BT}_{Z} X=1+Z \times X \times X$, and

$$
\begin{aligned}
& \text { qsplit: List } Z \rightarrow 1+Z \times \operatorname{List~} Z \times \operatorname{List} Z \\
& \begin{aligned}
\text { qsplit }[] & =\operatorname{inl}(*) \\
\text { qsplit }(x: l) & =\operatorname{inr}\left(\left\langle x, l_{\leq x}, l_{>x}\right\rangle\right)
\end{aligned} \\
& \begin{aligned}
\text { qmerge: } 1+Z \times \operatorname{List} Z & \times \operatorname{List} Z \rightarrow \operatorname{List} Z \\
\text { qmerge } \operatorname{inl}(*) & =[] \\
\text { qmerge } \operatorname{inr}\left(\left\langle x, l_{1}, l_{2}\right\rangle\right) & =l_{1}+\left(x: l_{2}\right)
\end{aligned}
\end{aligned}
$$

Recursive coalgebras: motivation

- So why does the equation make sense as a definition?

- Because qsplit sends a list to a container of strictly shorter lists.
- Note, the fact that the result type was List Z and that the assembling function was qmerge did not play any role, we can replace them with something else and the equation is still a definition.

Recursive coalgebras: definition

- Let (A, α) be a F-coalgebra and (C, φ) an F-algebra
- A morphism $f: A \rightarrow C$ is a coalgebra-to-algebra morphism, if

- A F-coalgebra (A, α) is recursive, if there is a unique coalgebra-to-algebra morphism from it into any F-algebra - Denote: $f=\operatorname{fix}_{F, \alpha}(\varphi)$
- (An F-algebra (C, φ) is corecursive, if there is a unique coalgebra-to-algebra morphism into it from any F-coalgebra)

Recursive coalgebras: examples

- Let $F: C \rightarrow C$ be a functor with an initial algebra, $\left(\mu F, \mathrm{in}_{F}\right)$.
- Iteration: $\left(\mu F, \mathrm{in}_{F}^{-1}\right)$ is a recursive F-coalgebra

- Primitive recursion: $\left(\mu F, F\left\langle\mathrm{id}_{\mu F}, \mathrm{id}_{\mu F}\right\rangle \circ \mathrm{in}_{F}^{-1}\right)$ is a recursive $F\left(\operatorname{ld} \times K_{\mu F}\right)$-coalgebra

Recursive coalgebras: examples

- Let $\mathcal{P}:$ Set \rightarrow Set be the covariant powerset function.
- A \mathcal{P}-coalgebra (A, α) is a binary relation (A, \prec) :

$$
\begin{aligned}
\alpha(a) & =\{x \in A \mid x \prec a\} \\
x \prec a & \text { iff } \quad x \in \alpha(a)
\end{aligned}
$$

- A \mathcal{P}-coalgebra-to-algebra morphism from (A, α) to (C, φ) is a function $f: A \rightarrow C$ such that $f=\varphi \circ \mathcal{P} f \circ \alpha$ i.e., such that, for any $a \in A$,

$$
f(a)=\varphi(\{f(x) \mid x \prec a\})
$$

Such a morphism exists uniquely for any (C, φ) iff \prec is wellfounded.
So: (A, α) is recursive iff (A, \prec) is wellfounded.

Recursive coalgebras: basic properties

- Let $F: \mathcal{C} \rightarrow \mathcal{C}$ be a functor with an initial algebra, $\left(\mu F, \mathrm{in}_{F}\right)$.
- Prop. $\left(\mu F, \mathrm{in}_{F}^{-1}\right)$ is a final recursive F-coalgebra.

Recursive coalgebras: basic properties

- Let $F: C \rightarrow C$ be a functor with an initial algebra, $\left(\mu F, \mathrm{in}_{F}\right)$.
- Let (A, α) be a recursive F-coalgebra
- Cor. Then, for any F-algebra (C, φ), the unique coalgebra-to-algebra morphism factorizes through the initial algebra

$$
\operatorname{fix}_{F, \alpha}(\varphi)=\operatorname{fix}_{F, \mathrm{in}_{F}^{-1}}(\varphi) \circ \mathrm{fix}_{F, \alpha}\left(\mathrm{in}_{F}\right)
$$

Recursive coalgebras: basic properties

- Let (A, α) be a recursive F-coalgebra
- Then

$$
h \circ \varphi=\psi \circ F h \quad \Rightarrow \quad h \circ \operatorname{fix}_{F, \alpha}(\varphi)=\operatorname{fix}_{F, \alpha}(\psi)
$$

Recursive coalgebras: basic properties

- Let (A, α) and (B, β) be recursive F-coalgebras
- Then

$$
\beta \circ h=F h \circ \alpha \quad \Rightarrow \quad \operatorname{fix}_{F, \beta}(\varphi) \circ h=\operatorname{fix}_{F, \alpha}(\varphi)
$$

- Let $F=\mathcal{P}:$ Set \rightarrow Set, then, (B, β) is recursive and from coalgebra (A, α) there is a homomorphism into it, then (A, α) is recursive [Osius, Taylor]
- Does not hold in general :-(

Recursive coalgebras: basic properties

- Let (A, α) be a recursive F-coalgebra and (B, β) a F-coalgebra
- Let $h:(A, \alpha) \rightarrow(B, \beta)$ and $k:(B, \beta) \rightarrow(F A, F \alpha)$ be homomorphisms s.t., $\beta=F h \circ k$
- Then (B, β) is recursive

- Prop. If (A, α) is recursive, then $(F A, F \alpha)$ is recursive

Recursive coalgebras: basic properties

- Let (A, α) be a recursive F-coalgebra.
- (a) If α is iso, then $\left(A, \alpha^{-1}\right)$ is an initial F-algebra.
- (b) If (A, α) is a final recursive F-coalgebra, then α is iso (both as a morphism and as a coalgebra morphism) (and hence $\left(A, \alpha^{-1}\right)$ is an initial F-algebra).

(b) $\quad F A \longleftarrow \alpha$

Recursive coalgebras: basic properties

- Let (A, α) be a recursive F-coalgebra
- Then $(A, F \alpha \circ \alpha)$ is a recursive F^{2}-coalgebra

- Holds also more generally: for any $n \geq 0$, the following is recursive

$$
F^{n+1} A \leftarrow F^{n} \alpha F^{n} A \longleftarrow \cdots \longleftarrow F^{2} A \longleftarrow \stackrel{F \alpha}{\longleftarrow} F A \longleftarrow \alpha
$$

Transposition properties

- Let $F, G: C \rightarrow C$ be functors.
- Let $\tau: F \rightarrow G$ be a natural transformation.
- Let (A, α) be a recursive F-coalgebra.
- Then $\left(A, \tau_{A} \circ \alpha\right)$ is a recursive G-coalgebra.

Transposition properties

- Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be functors.
- Let (A, α) be a recursive $G F$-coalgebra.
- Then $(F A, F \alpha)$ is a recursive $F G$-coalgebra.

Transposition properties

- Let $F: \mathcal{C} \rightarrow C, G: \mathcal{D} \rightarrow \mathcal{D}$ be functors.
- Let $L: C \rightarrow \mathcal{D}$ be a functor with a right adjoint.
- Let $\tau: L F \rightarrow G L$ be a natural transformation.
- Let (A, α) be a recursive F-coalgebra.
- Then $\left(L A, \tau_{A} \circ L \alpha\right)$ is a recursive G-coalgebra.

Variations of recursiveness

- Let \mathcal{C} be cartesian and $F: \mathcal{C} \rightarrow C$ a functor with a strength σ.
- An F-coalgebra (A, α) is strongly recursive iff, for any object Γ of C and F-algebra (C, φ), there is a unique morphism $f: \Gamma \times A \rightarrow C$ satisfying

i.e., iff, for any object Γ, the F-coalgebra
$\left(\Gamma \times A, \sigma_{\Gamma, A} \circ\left(\mathrm{id}_{\Gamma} \times \alpha\right)\right.$) is recursive.
- A strongly recursive F-coalgebra (A, α) is also a recursive F-coalgebra.
- For the converse, it is sufficient that \mathcal{C} is cartesian closed.

Variations of recursiveness

- Let \mathcal{C} be cartesian and $F: \mathcal{C} \rightarrow \mathcal{C}$ a functor.
- An F-coalgebra (A, α) is parametrically recursive iff, for any $\left(K_{A} \times F\right)$-algebra (C, φ), there is a unique morphism $f: A \rightarrow C$ satisfying

i.e., iff the $\left(K_{A} \times F\right)$-coalgebra $\left(A,\left\langle\mathrm{id}_{A}, \alpha\right\rangle\right)$ is recursive.
- A parametrically recursive F-coalgebra (A, α) is necessarily recursive, but the converse does not hold in general.

Comonads and coalgebras

- A comonad is a triple $N=(N, \varepsilon, \delta)$, where N is a endofunctor, $\varepsilon: N \rightarrow \mathrm{Id}$ and $\delta: N \rightarrow N N$ are natural transformations, s.t.:

- A comonadic coalgebra is a N-coalgebra (A, i), s.t.:

Distributive comonads

- Let F be an endofunctor and $N=(N, \varepsilon, \delta)$ a comonad
- Distributivity is a natural transformation $\kappa: F N \rightarrow N F$, st.:

- Let $f: F N A \rightarrow B$ be a morphism, then it's extension $f^{\ddagger}: F N A \rightarrow N B$ is defined as:

Generalized comonadic recursion

- Let (A, α) be a recursive F-coalgebra
- Let $N=(N, \varepsilon, \delta, \kappa)$ be a distributive comonad
- Let i : $A \rightarrow N A$ be a comonadic N-coalgebra, s.t:

- Then $(A, F i \circ \alpha)$ is a recursive $F N$-coalgebra

Comonadic recursion

- Let the recursive F-coalgebra (A, α) be $\left(\mu F, \mathrm{in}_{F}^{-1}\right)$.
- Let $N=(N, \varepsilon, \delta, \kappa)$ be a distributive comonad.
- Then $\mathrm{i}=\left(N \mathrm{in}_{F} \circ \kappa_{\mu F}\right): \mu F \rightarrow N \mu F$ is a comonadic N-coalgebra ${ }_{F \mu F}$ in $_{F} \mu F$

- For any $F N$-algebra (C, φ), there is a unique morphism $f: \mu F \rightarrow C$ s.t.,

$$
f \circ \mathrm{in}_{F}=\varphi \circ F(N f \circ \mathrm{i}) \equiv f=\varepsilon_{C} \circ\left(\varphi^{\ddagger}\right)
$$

$$
F \mu F \xrightarrow{\mathrm{in}_{F}} \mu F \quad \quad F \mu F \xrightarrow{\mathrm{in}_{F}} \mu F
$$

Comonadic recursion

- Primitive recursion as an instance:

$$
\begin{aligned}
& N A=A \times \mu F \\
& N f=f \times \mathrm{id}_{\mu F} \\
& \varepsilon_{A}=\mathrm{fst} \\
& \delta_{A}=\left\langle\mathrm{id}_{A \times \mu F}, \text { snd }\right\rangle \\
& \kappa_{A}=\left\langle F \mathrm{fst}=\mathrm{in}_{F} \circ F \mathrm{snd}\right\rangle
\end{aligned}
$$

- Course-of-values iteration as an instance:

$$
\begin{aligned}
N A & =\operatorname{Str}^{F} A \\
N f & =\operatorname{gen}^{F}\left(f \circ \operatorname{hd}_{A}^{F}, \mathrm{tl}_{A}^{F}\right) \\
\varepsilon_{A} & =\operatorname{hd}_{A}^{F} \\
\delta_{A} & =\operatorname{gen}^{F}\left(\operatorname{id}_{\operatorname{Str}^{F} A}, \mathrm{tl}_{A}^{F}\right) \\
\kappa_{A} & =\operatorname{gen}^{F}\left(F \mathrm{hd}_{A}^{F}, F \mathrm{tt}_{A}^{F}\right)
\end{aligned}
$$

Conclusions and future work

- Done: An elegant framework, a generalization of results known for initial algebras and modularization of proofs.
- To do: Develop further methods for checking a coalgebra for recursiveness.
- Relation between recursiveness and wellfoundedness (Paul Taylor's work).

