
Satisfiability Solvers are Static Analysers?

Vijay D’Silva??, Leopold Haller, and Daniel Kroening

Department of Computer Science, Oxford University
firstname.surname@cs.ox.ac.uk

Abstract. This paper shows that several propositional satisfiability al-
gorithms compute approximations of fixed points using lattice-based ab-
stractions. The Boolean Constraint Propagation algorithm (bcp) is a
greatest fixed point computation over a lattice of partial assignments.
The original algorithm of Davis, Logemann and Loveland refines bcp
by computing a set of greatest fixed points. The Conflict Driven Clause
Learning algorithm alternates between overapproximate deduction with
bcp, and underapproximate abduction, with conflict analysis. Thus, in a
precise sense, satisfiability solvers are abstract interpreters. Our work is
the first step towards a uniform framework for the design and implemen-
tation of satisfiability algorithms, static analysers and their combination.

1 How I Learned to Stop SAT Solving and Love Abstract
Interpretation

The abstract interpretation approach to program analysis is to compute proper-
ties of programs using lattices, transformers and fixed points [5]. The satisfiability
approach is to encode programs as formulae that can be analysed with theorem
provers [17]. The satisfiability approach has gained popularity in recent years
due to dramatic improvements in the performance of propositional satisfiability
solvers. The goal of much current research is to combine techniques based on
abstract interpretation and based on satisfiability.

This paper shows that propositional satisfiability algorithms compute ap-
proximations of fixed points using lattices. Thus, analyses traditionally formu-
lated over lattices and those formulated in terms of satisfiability can both be
understood in terms of abstract interpretation. To appreciate the significance
of such understanding, consider the program below, where ϕ is a formula with
Boolean variables initialised to arbitrary values.

if (ϕ) { assert(false) }

If ϕ is unsatisfiable, a program verifier that uses a sat solver will conclude
that the assertion is not violated. In contrast, a static analysis like constant
propagation (or its conditional variant [26]) cannot always prove the absence of

? Supported by the Toyota Motor Corporation, EPSRC project EP/H017585/1 and
ERC project 280053.

?? Supported by a Microsoft Research European PhD Scholarship.

2

assertion violations if a formula is unsatisfiable. This result is surprising because
we show that all sat solvers derived from the dpll procedure use the same
lattice as constant propagation. The insight of sat algorithms is that we can use
imprecise abstract domains to gain efficiency, and techniques like decisions and
clause-learning to improve precision.

Contribution This paper demonstrates that a broad range of propositional
satisfiability algorithms have natural abstract interpretation descriptions. Our
contributions include the following characterisations.

1. Propositional satisfiability as a property of fixed points of transformers over
the lattice of truth assignments.

2. Boolean Constraint Propagation (bcp) as a greatest fixed point computation
over the same lattice as constant propagation.

3. The Davis Putnam Logemann and Loveland algorithm (dpll) as a refine-
ment of bcp that uses value-based trace partitioning.

4. The conflict driven clause learning algorithm (cdcl) as a combination of
overapproximate deduction with underapproximate abduction.

In separate work, we used the formalisation presented here to embed the interval
abstract domain inside cdcl and verify programs that are beyond the scope of
existing techniques [12]. This paper is organised as follows: We give fixed point
semantics to propositional formulae in § 2. To illustrate our approach on simple
examples, we formalise truth tables and resolution in § 3. The dpll algorithm
and cdcl are covered in § 4 and § 5.

2 Propositional Satisfiability via Transformers

This section contains a new characterisation of propositional satisfiability using
fixed points. We first recall background on propositional logic and lattices.

Propositional Logic. Fix a set Prop of propositional variables. A literal is a
variable or its negation. A clause is a disjunction of literals and a cube is a con-
junction of literals. A formula in conjunctive normal form (cnf) is a conjunction
of clauses, and a formula in disjunctive normal form (dnf) is a disjunction of
cubes. Note that the negation of a cube is a clause and vice versa.

The set of truth values is B =̂ {t, f}. An assignment σ : Prop → B maps
variables to truth values. An assignment σ is a model of ϕ, denoted σ |= ϕ, if σ
satisfies ϕ and is a countermodel of ϕ otherwise. A formula is satisfiable if it has
a model and is unsatisfiable otherwise.

Lattices A lattice (L,v,t,u) is a partially ordered set with a meet and a join.
Two functions f, g : Q→ L from a set Q to L can be ordered pointwise, denoted
f v g, if f(x) v g(x) holds for all x in Q. All functions over L can similarly be
lifted pointwise to Q → L. The least and greatest fixed points of a monotone
function F on a complete lattice will be denoted lfp(F) and gfp(F), respectively.

3

Let idS be the identity function. A Galois connection between posets (C,v)

and (A,4), written C −−−→←−−−α
γ

A, is a pair of monotone functions α : C → A and
γ : A→ C that satisfy the pointwise constraints α ◦ γ 4 idA and idC v γ ◦ α.

We identify a few lattices of particular interest. The lattice of truth values
(B,⇒,∨,∧) consists of truth values with the implication order f ⇒ t. Disjunction
is the join and conjunction is the meet of truth values. The powerset lattice over
a set X, written (P(S),⊆,∪,∩), consists of all subsets of S order by inclusion.
Let (S,v) be a poset. A set Q ⊆ S is downwards closed if for every x in Q and
y in S, y v x implies that y is in Q. A downwards closed set is called a downset.
The downset lattice over (S,v), written (D(S),⊆,∩,∪), is the set of downsets
of S ordered by inclusion. Downsets strictly generalise powersets because the
powerset lattice of S is the downset lattice of S with the identity relation.

2.1 Concrete Semantics of Propositional Formulae

We present new, fixed point characterisations of the models and countermodels
of a formula. Satisfiability and validity are properties of such fixed points.

Let Asg =̂ Prop → B be the set of assignments. The concrete domain of as-
signments is (P(Asg),⊆,∪,∩). A formula ϕ defines four assignment transform-
ers. The name assignment transformers is used by analogy to state transformers
and predicate transformers. Let X be a set of assignments. The model trans-
former modϕ removes all countermodels of ϕ from X, the countermodel trans-
former cmodϕ removes all models of ϕ from X, the universal model transformer
umodϕ adds all models of ϕ to X, and the universal countermodel transformer
ucmodϕ adds all countermodels of ϕ to X.

modϕ(X) =̂ {σ ∈ X | σ |= ϕ} umodϕ(X) =̂ {σ ∈ Asg | σ |= ϕ or σ ∈ X}
cmodϕ(X) =̂ {σ ∈ X | σ 6|= ϕ} ucmodϕ(X) =̂ {σ ∈ Asg | σ 6|= ϕ or σ ∈ X}

Properties of a formula can be expressed with transformers. The set of models
of ϕ is modϕ(Asg), or equivalently, umodϕ(∅). The set of countermodels of ϕ
is cmodϕ(Asg), or equivalently, ucmodϕ(∅). Algebraic properties of assignment
transformers aid in deriving fixed point characterisations of satisfiability. The
De Morgan dual of a function f on P(Asg) is the function ¬ ◦ f ◦ ¬.

Theorem 1. The assignment transformers have the following properties.

1. The pairs (modϕ, ucmodϕ) and (cmodϕ, umodϕ) are De Morgan duals.
2. There are two Galois connections as below.

P(Asg) −−−−−−−→←−−−−−−−
modϕ

ucmodϕ

P(Asg) P(Asg) −−−−−−→←−−−−−−
cmodϕ

umodϕ

P(Asg)

Consider the statement assume(ϕ). The strongest postcondition is equivalent
to modϕ and the weakest liberal precondition is equivalent to ucmodϕ. Sound
approximations of these transformers are available in abstract domain libraries.
Since our characterisation use these transformers, the overhead of lifting satisfi-
ability algorithms to new domains is low. Theorem 2 provides several fixed point
characterisations of satisfiability.

4

Theorem 2. The following statements are equivalent.

1. A formula ϕ is unsatisfiable.
2. The set of assignments modϕ(Asg) is empty.
3. The set of assignments umodϕ(∅) is empty.
4. The set cmodϕ(Asg) contains all assignments.
5. The set ucmodϕ(∅) contains all assignments.
6. The greatest fixed point gfp(modϕ) contains no assignments.
7. The least fixed point lfp(umodϕ) contains no assignments.
8. The greatest fixed point gfp(cmodϕ) contains all assignments.
9. The least fixed point lfp(ucmodϕ) contains all assignments.

Proof. Due to space restrictions, we do not prove all cases.
(1 iff 2) The formula ϕ is unsatisfiable exactly if it has no models. An assign-

ment σ is in modϕ(Asg) exactly if σ is a model of ϕ. The set modϕ(Asg) is
empty exactly if ϕ is unsatisfiable.

(2 iff 5) Recall that ucmodϕ(X) is the De Morgan dual of modϕ. If modϕ(Asg)
is the emptyset, ucmodϕ(∅) equals ¬modϕ(¬∅), which equals Asg .

(2 iff 4) The function modϕ is idempotent, meaning that modϕ(X) is equal
to modϕ(modϕ(X)) for all X. Since modϕ is monotone, modϕ(Asg) equals
modϕ(modϕ(Asg)), so the greatest fixed point of modϕ is modϕ(Asg). Thus
modϕ(Asg) is empty exactly if gfp(modϕ) is empty.

The argument for the remaining equivalences is similar.

Since all the transformers are idempotent, the fixed points in Theorem 2
may seem superfluous. A sound abstraction of an idempotent function is not
necessarily idempotent, so iterating an abstract transformer can provide strictly
better results than applying it once. This intuition is formalised by the method
of locally decreasing iterations [13].

2.2 Abstract Satisfaction

We use the term abstract satisfaction for the application of abstract interpreta-
tion to design satisfiability algorithms. Abstract interpretation is typically used
to overapproximate a least fixed point (such as reachable states), or to underap-
proximate a greatest fixed point (such as the set of dead variables at a program lo-
cation). In contrast, we will overapproximate the greatest fixed point gfp(modϕ)
or underapproximate the least fixed point lfp(ucmodϕ). If an overapproximation
of gfp(modϕ) is the emptyset, ϕ is unsatisfiable. If an underapproximation of
lfp(ucmodϕ) contains all assignments, ϕ is unsatisfiable. Combining information
from different approximations yields better results than using either in isolation.

Abstract Interpretation. Assume a Galois connection C −−−→←−−−α
γ

A. The lattice C is
called the concrete domain and A is called the abstract domain. If C is a powerset
lattice, an abstract domain with respect to the subset order satisfies x ⊆ γ(α(x))

5

and is called an overapproximation. An abstract domain with respect to the
superset order satisfies x ⊇ γ(α(x)) and is called an underapproximation.

Functions on a concrete domain are called concrete transformers and those on
abstract domains are abstract transformers. The abstract transformer G soundly
approximates F if F ◦ γ v γ ◦G holds. The best abstract transformer α ◦ F ◦ γ
represents the maximum precision that can be derived from an abstraction.

Abstract Interpretation of Satisfiability This section presents new, fixed
point approximations of satisfiability.

Let (O,v,t,u) be an overapproximation of the domain of assignments and
(U,4,g,f) be underapproximation. The approximation is formalised by the
Galois connections below. The orders v and 4 both refine the subset order on
assignments. That is, a v b implies γ(a) ⊆ γ(b), and x 4 y implies γ(x) ⊆ γ(y).

(P(Asg),⊆) −−−−→←−−−−
αO

γO
(O,v) (P(Asg),⊇) −−−−→←−−−−

αU

γU
(U,<)

Abstract transformers can be defined for over- or underapproximating abstrac-
tions. We use an overapproximation of the model transformer and underap-
proximations of the countermodel and universal countermodel transformers. An
abstract model transformer amodOϕ : O → O, an abstract countermodel trans-

former acmodUϕ : U → U , and an abstract universal countermodel transformer

aucmodUϕ : U → U are monotone functions satisfying the constraints below.

modϕ ◦ γO ⊆ γO ◦ amodOϕ ucmodϕ ◦ γU ⊇ γU ◦ aucmodUϕ

cmodϕ ◦ γU ⊇ γU ◦ acmodUϕ

Theorem 3 provides sound and possibly incomplete characterisations of unsatis-
fiability. In contrast to concrete fixed points, the characterisations below are not
equivalent because the domains and transformers may have different precision.

Theorem 3. A propositional formula ϕ is unsatisfiable if at least one of the
conditions below hold.

1. The set γO(gfp(amodOϕ)) is empty.

2. The set γU (lfp(aucmodUϕ)) contains all assignments.

3. The set γO(x) ∩ ¬γU (y) is empty in (x, y) = γOU (gfp(amcOUϕ)).

Theorem 3 follows from the soundness of abstract interpretation. The rest of the
paper shows that satisfiability algorithms compute these abstract fixed points.

3 Sound and Complete Abstractions

In this section, we formalise the construction of truth tables and resolution proofs
in the abstract satisfaction framework. Truth table construction is abstract trans-
former application and the resolution rule is a sound abstract transformer. Re-
peated application of the resolution rule is abstract transformer iteration.

6

Truth Tables A truth table is an enumeration that represents whether each
truth assignment satisfies a formula. In abstract satisfaction, truth tables are
a representation of the domain of assignments and truth table construction is
application of the best abstract transformer for a formula. Binary Decision Di-
agrams are semantically equivalent but have a more efficient representation.

Example 1. This example illustrates the order on truth tables. Consider the
formula ϕ = p ∧ ¬q. The set of assignments {p, q} → B is shown in gray below.
The truth tables for the formulae p and ¬q are shown below.

p q

f f

f t

t f

t t

p

f
f
t
t

¬q
t
f
t
f

p ∧ ¬q
f
f
t
f

u =

If the implication order on B is lifted to truth tables, the truth table for p ∧ ¬q
is the pointwise meet of the truth tables for p and ¬q. C

A truth table is a function in Table =̂ Asg → B. The domain of truth tables
(Table,v,t,u) is ordered by pointwise lifting of the implication order on truth
values. Specifically, T1 v T2 if T1(σ) ⇒ T2(σ) for every assignment σ. A set of
assignments X abstracts to the truth table T that maps assignments in X to
t and all other assignments to f. The functions α and γ below form a Galois
connection, are bijections and satisfy that γ ◦α and α ◦ γ are identity functions.
That is, the Galois connection is a Galois isomorphism, meaning that truth
tables do not abstract information.

α(X) =̂ {σ 7→ t | σ ∈ X} ∪ {σ 7→ f | σ /∈ X} γ(T) =̂ {σ | T (σ) = t}

Consider the best abstract transformer for modϕ, denoted amodϕ. Observe
that amodϕ(>) represents the truth table for ϕ. Thus, truth table construc-
tion can be viewed as transformer application. The completeness of truth-table
construction is expressed as modϕ ◦ γ = γ ◦ amodϕ.

Resolution The resolution principle states that an assignment satisfying the
clauses C ∨ p and ¬p ∨ D also satisfies C ∨ D [21]. The variable p is the pivot
and C ∨D is the resolvent. Resolution is sound but is not complete for deriving
arbitrary implications. For example, the formula p ∧ q implies p ∨ ¬q, but this
implication cannot be derived by resolution. Resolution is refutation complete: a
formula is unsatisfiable exactly if the empty clause can be derived by resolution.

In abstract satisfaction, cnf formulae, with the superset order, are an ab-
stract domain, and resolution defines an abstract transformer. The abstract
transformer is a sound but incomplete abstraction.

Let Lit be the set of literals over the propositional variables Prop, and
Clause =̂ P(Lit) be the set of clauses. The cnf domain CNF =̂ P(Clause)
contains sets of clauses with the superset order (CNF ,⊇,∩,∪). The superset
order underapproximates implication because ϕ ⊇ ψ entails ϕ ⇒ ψ but the

7

converse is not true. The functions below are related by the Galois connection

(P(Asg),⊆) −−−→←−−−α
γ

(CNF ,⊇).

α(X) =̂ {C | X ⊆ modC(Asg)} γ(ϕ) =̂ modϕ(Asg)

We formalise resolution with a transformer. The resolvents derived from ϕ
with pivot x are denoted res(x, ϕ). The resolution transformer Resϕ : CNF →
CNF adds all possible resolvents to a set of clauses.

res(x, ϕ) =̂ {C ∨D | x ∨ C and ¬x ∨D are in ϕ}

Resϕ(ψ) =̂ ϕ ∪ ψ ∪
⋃

x∈Prop

res(x, ϕ)

We express properties of resolution next. Logical soundness stating that every
clause derived by resolution is implied by ϕ becomes the condition α ◦modϕ ⊇
Resϕ◦α. Resϕ is not idempotent, so multiple applications of resolution yield more
resolvents than a single application. The set of clauses derived by resolution is
the fixed point gfp(Resϕ). Resolution is not complete for arbitrary implications,
so in general, α(gfp(modϕ)) is a strict superset of gfp(Resϕ). The refutation
completeness of resolution becomes the condition that γ(gfp(Resϕ)) is the empty
set exactly if gfp(Resϕ) contains the empty clause.

4 Fixed Point Refinement

In this section, we formalise the classic dpll procedure. We first characterise
Boolean Constraint Propagation as abstract fixed point iteration.

4.1 Boolean Constraint Propagation

The workhorse of all solvers based on dpll is the Boolean Constraint Propa-
gation (bcp) routine. bcp repeatedly applies a transformation called the unit
rule to a data structure called a partial assignment. In abstract satisfaction,
partial assignments are an abstract domain, the unit rule is the best abstract
transformer for a clause, and bcp computes a greatest fixed point.

Example 2. We illustrate bcp with the formula below.

ϕ =̂ p ∧ (¬p ∨ ¬q) ∧ (q ∨ r ∨ ¬s) ∧ (q ∨ r ∨ s)

Initially, nothing is known about the formula, encoded by the empty set. Then,
bcp concludes that p must be true in every satisfying assignment. Since p must
be true, bcp concludes that q must be false to satisfy the clause ¬p ∨ ¬q.

π0 =̂ > π1 =̂ 〈p:t〉 π2 =̂ 〈p:t, q:f〉

All the remaining clauses have more than one literal unassigned, so bcp termi-
nates. bcp is a sound but incomplete deduction procedure. bcp need not begin

8

P ∪Q P ∪Q P ∪Q P ∪Q

P P ⊕Q Q Q P ⊕Q P

P ∩Q P ∩Q P ∩Q P ∩Q

Vars → B

∅

p:t q:t q:f p:f

p:t, q:t p:t, q:f p:f, q:t p:f, q:f

>

⊥

t,> >, t >, f f,>

t, t t, f f, t f, f

t,⊥ f,⊥ ⊥, t ⊥, f

>,>

⊥,⊥

Fig. 1. Domains for assignments over p and q. The concrete domain P(Asg) is on the
left. The set P contains assignments that map p to true. Partial assignments are on the
right. The shaded elements of P(Asg) cannot be represented as partial assignments.

with π0 as above. We can begin by assuming p is true, q is false, and r is false,
written π =̂ 〈p:t, q:f, r:f〉. Given π, bcp concludes, from (q∨ r∨¬s), that s must
be false and from (q ∨ r ∨ s) that s must be true. This situation, denoted ⊥, is
a conflict. No assignment extending π satisfies ϕ. C

We show that partial assignments are an abstract domain. A partial assign-
ment is a partial function in Prop → B. Consider the set {t, f,>} with the
information order t v > and f v >. We model a partial assignment as a to-
tal function π : Prop → {t, f,>}, where for each variable p, π(x) is > if π is
undefined on p. The domain of partial assignments (PAsg ,v) contains a set
PAsg =̂ (Prop → {t, f,>}) ∪ {⊥}, of partial assignments extended with a least
element ⊥, called a conflict. The order between non-⊥ elements is the pointwise
lifting of the information order. A partial assignment in which p is t and other
variables map to > is written 〈p:t〉. Figure 1 depicts partial assignments over
two variables.

A variant of the partial assignments domain is used for constant propaga-
tion [16] and is equivalent to the Cartesian abstraction [4]. In abstract inter-
pretation parlance, partial assignments as presented here are a reduction of the
Cartesian abstraction domain in which the empty set has a unique representa-
tion. The abstraction and concretisation functions αPAsg : P(Asg)→ PAsg and
γPAsg : PAsg → P(Asg) below are standard and are known to form a Galois
connection.

αPAsg(∅) =̂ ⊥ αPAsg(S) =̂
{
x 7→

⊔
{σ(x) | σ ∈ S} | x ∈ Prop

}
, for S 6= ∅

γPAsg(⊥) =̂ ∅ γPAsg(π) =̂ {σ ∈ Asg | for all x in Prop, σ(x) v π(x)}

We formalise the unit rule. The unit rule states that if all but one literals in
a clause are false under a partial assignment, the remaining literal must be true.
It is defined by a function unit : Clause×PAsg → PAsg . The image of a clause θ

9

under a partial assignment π is false if π and makes all literals in θ false.

unit(θ, π) =̂


⊥ if π(θ) is f

π ∪ {p 7→ t} if θ is ψ ∨ p and π(ψ) = f

π ∪ {p 7→ f} if θ is ψ ∨ ¬p and π(ψ) = f

π otherwise

Example 3. We illustrate the unit rule with ϕ =̂ ¬p∧ (p∨¬q). Assume we have
best abstract transformers for literals. The abstract transformer for ϕ is derived
by replacing conjunction and disjunction by pointwise meet and join.

amodϕ =̂ amod¬p u (amodp t amod¬q)

We compute a greatest fixed point in the partial assignments domain.

π0 =̂ 〈p:>, q:>〉 π1 =̂ 〈p:f, q:>〉 π2 =̂ 〈p:f, q:f〉 π3 =̂ 〈p:f, q:f〉

Applying the unit rule generates the same sequence. C

Lemma 1. For a fixed clause θ, the unit rule is equivalent to the best abstract
transformer: unit(θ, π) = αPAsg ◦modθ ◦ γPAsg(π).

Proof. Consider a partial assignment π and the best abstract transformer amodθ =̂
αPAsg ◦modθ ◦ γPAsg . We distinguish the cases in the definition of unit.
(π(θ) is f) If π makes every literal in θ false, unit(θ, π) = ⊥. No assignment

in γPAsg(π) will θ, so modθ(γPAsg(π)) is the empty set and by definition of
αPAsg , from amodθ(π) = ⊥.

(θ = ψ ∨ p and π(ψ) = f) Here, unit(θ, π) = π ∪ {p 7→ t}. Since p is unassigned,
π(p) = >, and γ(π) contains assignments in which every p is true and false
and all in ϕ are false. The set modθ(γπ(π)) only includes assignments that
satisfy p because no other literal is satisfied. All other variables are unaffected.
Thus, αPAsg(modθ(γπ(π))) equals π ∪ {p 7→ t}.

(π undefined for multiple variables in θ) The unit rule leaves π unchanged. At
least two literals in θ are undefined in π, so modθ(γPAsg(π)) contains an
assignment that makes one true and the other false and vice-versa. Conse-
quently, the variables for both literals map to > in αPAsg(modθ(γPAsg(π)))
and π is unchanged, as required.

bcp maps a formula ϕ and a partial assignment π representing an assumption
to the result of applying the unit rule repeatedly with all clauses till no changes
are observed. Formally, bcp is a function bcp : CNF × PAsg → PAsg .

Let ϕ be a formula, θ represent a clause, and amodθ be the best abstract
transformer for modθ. We model the effect of concrete deduction from a partial
assignment ∆ with the concrete transformer modϕ,∆.

modϕ : PAsg ×P(Asg)→P(Asg) modϕ,∆(x) =̂ modϕ(x ∩ γ(∆))

10

The abstract deduction transformer below overapproximates modϕ,∆.

dedϕ : PAsg × PAsg → PAsg dedϕ,∆(π) =̂
l
{amodθ(π u∆) | θ is in ϕ}

The soundness constraint modϕ,∆ ◦ γPAsg ⊆ γPAsg ◦ dedϕ,∆ implies that all
conclusions derived by dedϕ,∆ are satisfied by all models of ϕ in ∆. Example 4
shows that the deduction transformer is not complete.

Example 4. The formula ϕ =̂ (¬p∨q)∧(p∨¬q)∧(¬p∨¬q)∧(p∨q) is unsatisfiable.
The best abstract transformer satisfies αPAsg(modϕ,>(γPAsg(>))) = ⊥ whereas
the deduction transformer satisfies αPAsg(modϕ,>(γPAsg(>))) = >. Thus, the
abstract deduction transformer is incomplete. C

Theorem 4. The result of Boolean Constraint Propagation bcp(ϕ,∆) is equiv-
alent to the greatest fixed point gfp(dedϕ,∆).

In abstract interpretation terms, bcp is bottom-up abstract interpretation of
Boolean expressions with locally decreasing iterations [13, 4].

4.2 The Classic DPLL Algorithm

We say classic dpll, or dpll, for the algorithm of Davis, Logemann, and Love-
land [10]. The dpll algorithm simplifies the algorithm of Davis and Putnam [11]
by eliminating the resolution and pure literal rules. If bcp is viewed as a static
analysis, dpll can be understood as running bcp on the sequence of programs
below. In abstract satisfaction terms, dpll dynamically restricts the range of
values a variable can take to improve precision. It is a procedure to dynamically
discover value-based trace partitions [20].

P0 =̂
if(ϕ)
assert(f)

P1 =̂
if(p) P0
else P0

P2 =̂
if(q) P1
else P1

Example 5. Revisit the formula ϕ =̂ (¬p∨q)∧(p∨¬q)∧(¬p∨¬q)∧(p∨q) which
could not be refuted by bcp. Since gfp(dedϕ,>) is >, dpll concludes that pre-
cision was lost and computes two fixed points gfp(dedϕ,〈p:t〉) and gfp(dedϕ,〈p:f〉).
Both fixed points are ⊥, so dpll concludes that ϕ is unsatisfiable. C

dpll operates in two phases, using two abstract domains. One phase con-
sists of deduction under assumptions and uses bcp. The other phase refines
assumptions and is formalised next. dpll only considers assumptions that can
be represented by partial assignments, but such a restriction is not necessary.

Example 6. Figure 2 illustrates partitions of two variable assignments. An ele-
ment · · · /f, f represents a partition in which one block contains the assignment
{p 7→ f, q 7→ f} and the other block contains all other assignments. dpll can be
run using the assignments in each partition as assumptions. The partition lattice
is large, with the size given by the Bell number.

11

· · · /f, f · · · /f, t · · · /t, f · · · /t, t

· · · /t, f/f, f · · · /t, f/f, t t, t/ · · · /f, f t, t/ · · · /f, t

Asg

t, t/t, f/f, t/f, f

t,>/f,> >, t/>, f

>,>

t, t/t, f/f, t/f, f

Fig. 2. The concrete domain for case-based reasoning is the lattice of partitions over
assignments. The abstract domain only contains partitions that can be expressed as
partial assignments.

An abstract lattice of partitions reduces the cases that must be considered.
Figure 2 depicts partitions that can be expressed as partial assignments. The
partition consisting of the two sets represented by p ⇐⇒ q and p ⇐⇒ ¬q
cannot be expressed with partial assignments but the partition consisting of
p ⇐⇒ f and p ⇐⇒ t can. C

An abstract partition is a set χ ⊆ A of elements from an abstract domain
satisfying that {γ(a) | a ∈ χ} is a partition. Given two abstract partitions, χ1

refines χ2, denoted χ1 4 χ2, if for every a2 in χ2, there is an a1 in χ1 such
that a1 v a2. An abstract partition represents cases used in deduction. Let
(Cases(PAsg),4) be the set of abstract partitions over partial assignments or-
dered by refinement.

Let χ be an abstract partition. The case deduction transformer models the
effect of using each block of a partition as an assumption.

acaseϕ : χ→ PAsg acaseϕ =̂ {∆ 7→ gfp(dedϕ,∆) | ∆ ∈ χ}

In the refinement step, a variable that is currently undefined is used to refine
a block of the partition. We model selection of an unassigned variable with a
function pick : PAsg → Prop that maps a partial assignment π to a variable p
for which π(p) = >. The case split function split : PAsg →P(PAsg) formalises
refinement of a partition based on deduction.

split(π) =̂ {π u 〈p:t〉, π u 〈p:f〉 | p = pick(gfp(dedϕ,π))}

dpll runs until the formula is shown to be unsatisfiable or a satisfying assign-
ment is found. Satisfying assignments are formalised using covering. An element
a in a lattice covers ⊥ if there is no distinct a′ satisfying ⊥ v a′ v a. Elements of
PAsg covering ⊥ are assignments. If deduction under every block of a partition
yields ⊥, the formula is unsatisfiable.

Algorithm 1 presents an abstract interpretation perspective of dpll. Since
every function acaseϕ represents a trace partition [20], dpll can be understood
as a procedure to dynamically discover a trace partition.

12

Abstract-DPLL(ϕ, χ)
Compute acaseϕ

if acaseϕ(∆) = ⊥ for all ∆ in χ then return UNSAT
if acaseϕ(∆) covers ⊥ for some ∆ in χ then return SAT
else

χ← (χ \ {∆}) ∪ split(∆)

Abstract-DPLL(ϕ, χ)

Algorithm 1: dpll as fixed point computation with dynamic refinement

5 Conflict Driven Clause Learning

This section formalises the Conflict Driven Clause Learning (cdcl) algorithm.
Though cdcl historically derives from dpll, dpll can naturally be viewed as a
recursive search procedure, while the search pattern of cdcl is more intricate.
dpll uses case based reasoning to refine an analysis. cdcl uses clause learning
to refine the transformers used to compute a fixed point. In terms of programs,
every iteration of cdcl generates and analyses a program of the form below.

P0 =̂ if(ϕ) assert(f) P1 =̂ if(θ1) P0 P2 =̂ if(θ2) P1

Example 7. This example illustrates a run of cdcl on a formula ϕ.

ϕ =̂ { {¬u, v, w} , {¬w,¬x} , {¬w, y} , {x,¬y, z} , {x,¬z} , {x, y} , {¬y,¬x} }

cdcl initially proceeds like dpll and alternates bcp and decisions. The steps
in bcp are recorded by an implication graph shown below. A directed edge from
u to w and from ¬v to w indicates that bcp deduced that w is true if u is true
and v is false. A cut in the graph represents a conjunction of literals. A cut that
separates u and ¬v from ⊥ represents a sufficient condition for a conflict. The
disjunction of formulae represented by a set of cuts is also sufficient for a conflict.

u

v w x

y
z ⊥

cut x ∧ ycut w

Implication graph Choices

uvwxyz

w

xy . . .

xy

The first step of conflict analysis is to heuristically choose a cut. A single cut is
used rather than a set to save space. Suppose the solver chooses the cut ¬x∧ y.

The second step is to generalise the cut. Observe that if ¬x holds, the unit
rule and the clause {x, y} imply y. Similarly, the solver can use y and {¬x,¬y}
to deduce ¬x. The conflict can be generalised to either or ¬x or y. If ¬x is
sufficient for a conflict, its negation x must be satisfied by all models of ϕ. The
solver learns the clause {x} and continues with model search. C

We view cdcl as operating in two phases. In the model search phase, cdcl
uses bcp to draw conclusions about all models of ϕ. Since ϕ ⇒ ψ if all models

13

Model Search Conflict Analysis

gfp(amodϕ)

Dual widen

lfp(aucmodϕ)

Dual narrow

SAT UNSAT

Conflict

Clause

Fig. 3. Abstract Interpretation view of CDCL

of ϕ satisfy ψ, we say that bcp overapproximates deduction. The incompleteness
of bcp translates into imprecision in an abstract transformer. cdcl uses deci-
sions to gain precision. That is, cdcl makes assumptions (that we write as a
formula ∆) until it finds a satisfying assignment, or until ϕ ∧∆ ⇒ f. Unlike in
dpll, only one assumption is made, so the use of assumptions is unsound.

After a conflict is found, cdcl enters the conflict analysis phase. The goal
of conflict analysis is to derive a formula θ such that ϕ ∧ θ implies f. Given
formulae ϕ and ψ, the task of deriving θ such that ϕ∧θ ⇒ ψ is called abduction.
Conflict analysis only derives those θ that can be expressed as a cube, so this
step underapproximates abduction. The abstract interpretation view of cdcl is
illustrated in Figure 3 and formalised next.

Model Search and Extrapolation As before, bcp is a greatest fixed point
computation with the abstract transformer amodϕ. Decisions are used to in-
crease precision by iterating below the greatest fixed point gfp(dedϕ,>). Recall
that widening operators are used to ascend up a lattice in a least fixed point
computation. Decisions underapproximate the greatest fixed point computed by
bcp and are dual widening operators [8]. Widening is typically used to enforce
convergence. The goal of decisions is not convergence, so we use the term ex-
trapolation, suggested in [8] for a weakening of widening without a convergence
requirement.

A downwards extrapolation on a lattice is a function f : L → L satisfying
f(a) v a for all a. Such a function is usually called reductive or decreasing,
but we prefer extrapolation to emphasise the connection to widening. We model
decisions with the downwards extrapolation function below.

ext� : PAsg → PAsg

ext�(π) =̂ π u 〈p:b〉 where p = pick(π) and b ∈ B

The model search phase of cdcl computes π = gfp(dedϕ,>). If π is ⊥, the for-
mula is unsatisfiable. If π covers ⊥, the formula is satisfiable. In other cases,
extrapolation is used to derive a partial assignment ∆ = ext�(π). This par-
tial assignment represents the new assumptions that will be used. Model search

14

continues by computing gfp(dedϕ,∆). Extrapolation is typically used to acceler-
ate convergence of a fixed point computation by losing precision while preserv-
ing soundness. The application of extrapolation to gain precision at the cost of
soundness in cdcl is unusual.

Conflict Analysis and Interpolation If model search with extrapolation dis-
covers an element ∆ such that gfp(dedϕ,∆) is ⊥, cdcl enters the conflict analysis
phase. The goal of conflict analysis is to generalise the reason for the conflict. In
terms of concrete transformers, we have that modϕ(γ(∆)) is empty and wish to
compute the set of countermodels ucmodϕ(γ(∆)). This set is underapproximated
using an underapproximate domain and transformer.

Example 8. This example illustrates the domain and transformers used for con-
flict analysis. Revisit the implication graph in Example 7. Every cut in the graph
that separates the vertices u and ¬v from ⊥ is a reason for a conflict. Such cuts
can be computed by traversing the graph starting from ⊥.

C0 = {{⊥}} C1 = {{⊥} , {¬x, z}} C2 = {{⊥} , {¬x, z} , {¬x, y}}

Note that a graph cut is a set of vertices, so the set of graph cuts is a set of
sets of vertices. Unlike breadth-first reachability, which only maintains a set of
vertices, the iteration above maintains a set of sets of vertices. C

We formalise the domain and transformer for conflict analysis. A cut in the
implication graph represents a conjunction of literals, so every cut c can be rep-
resented by a partial assignment πc. A set of cuts is a set of partial assignments.
If c is a set of vertices representing a cut, every set of vertices d that contains
c also represents a cut. If c is contained in d, the corresponding partial assign-
ments satisfy πd v πc. The domain for conflict analysis is downwards closed sets
(downsets) of partial assignments.

Let (D(PAsg),⊆) be the family of downsets of partial assignments. We make
the standard assumption that downsets are represented by their maximal ele-
ments. The lattice of downsets is an underapproximating abstract domain with
the following abstraction and concretisation functions [7].

αD(X) =
⋃
{π� | γPAsg(π) ⊆ X} γD(Y) = {γPAsg(π) | π ∈ Y }

Since every set of assignments is also a set of partial assignments, this abstract
domain can represent all sets of assignments. We also note that the downset
lattice is called the disjunctive completion of an abstract domain.

We model concrete abduction with the transformer below.

ucmodϕ : PAsg ×P(Asg)→P(Asg) ucmodϕ,∆(x) =̂ ucmodϕ(x ∪ γPAsg(∆))

An abstract abduction transformer abdϕ : PAsg × D(PAsg) → D(PAsg) under-
approximates concrete abduction and maps a partial assignment ∆ and set Q
to a set of partial assignments derived from Q.

15

We describe an instance of abduction which formalises clause minimisa-
tion [23]. In general, other techniques such as cutting a conflict graph [22] may
also be used.

minimiseϕ,∆(P) =̂ {π ∈ PAsg | ∃θ ∈ Form. amodθ(π) v π′, π′ ∈ P ∪ {∆}}

The conflict minimisation transformer minimiseϕ,∆ finds all partial assignments
from which a known conflict can be deduced with the unit rule. Applying ab-
duction may produce a set of partial assignments. Conflict analysis is expensive,
so solvers heuristically choose a single partial assignment and return to model
search.

In a dual manner to deduction, underapproximating the set of reasons for a
conflict can be viewed as a least fixed point computation. Recall that narrow-
ing operators are used to overapproximate the limit of a decreasing iteration
sequence [8]. A dual narrowing operator can be used to underapproximate the
limit of an increasing iteration sequence. Choosing a reason for a conflict can be
viewed as dual narrowing. For similar reasons to our use of extrapolation, the
term interpolation is more appropriate because convergence is not an issue. The
use of the term interpolation should not be confused with Craig interpolants.

An upwards interpolation on a lattice is a function f : L× L→ L satisfying
that a v b ⇒ a v f(a, b) v b for all a, b. We model heuristic choice among
candidates as the upwards interpolation function below.

int� : D(PAsg)×D(PAsg)→ D(PAsg)

For P ⊆ Q, int�(P,Q) =̂ {choose(p,Q) | p is maximal in P}

The statement choose(p,Q) above is defined when p is an element of Q and
returns a maximal element q of Q with p v q.

Example 9. In Example 8, the initial conflict is p = 〈u : t, v : f, w : t, x : f, y : t, z :
f〉. The two graph cuts produce the set of candidates Q = {〈w : t〉, 〈x : f, y : t〉}.
The second element of the set is chosen. This corresponds to the application of
upwards interpolation int�({p}, Q) = {〈x : f, y : t〉}. C

6 Related Work and Discussion

Standard static analysis is, of necessity, incomplete and computes approxima-
tions. A surprising insight of our work is that satisfiability procedures operate
over imprecise abstractions but obtain sound and complete results. The main
reason is that sat solvers use techniques to refine the precision of an analysis.

The verification literature contains numerous examples of domain refinement,
originating in [6]. A very popular refinement technique at present is Counterex-
ample Guided Abstraction Refinement (cegar) [3]. We believe the refinement
in sat solvers is very different from cegar. Each iteration of the cegar loop
requires constructing a new abstraction and new transformers. In stark contrast,
sat solvers never change the domain. This immutability is crucial for efficiency

16

as abstract domain implementations can be highly optimised. In fact, sat al-
gorithms can be understood as a portfolio of techniques for refinement without
domain manipulation.

The refinement in bcp is to compute a fixed point instead of applying a trans-
former. bcp uses locally decreasing iterations [13] to refine conditional constant
propagation [26], which in turn refines constant propagation [16]. The refine-
ment in dpll is to compute a set of fixed points instead of a single fixed point.
A run of dpll can be understood as a search for a sufficiently precise set of
fixed points or as a search for a trace partition [15, 20]. cdcl uses two types
of refinements. Decisions refine the starting element for fixed point iteration to
eliminate precision loss. Conflict analysis refines the input constraints.

We are not aware of existing program analysis techniques that generalise
cdcl in a strict mathematical sense but there are several tantalizing similarities
that deserve closer study. Transformer refinement in predicate abstraction [1]
achieves a similar effect to clause learning. Counterexample dags in [14] play a
similar role to implication graphs, while the combination of testing with weakest
preconditions in Yogi [2] and with interpolants in lazy annotation [18] resembles
the interplay between decisions and conflict analysis.

The breadth and diversity of the satisfiability literature made it infeasi-
ble to cover all but a few propositional satisfiability procedures in this paper.
St̊almarck’s method is not covered in this paper but can naturally be under-
stood as an extension of bcp that combines case-based refinement with joins.
Thakur and Reps [24, 25] have recently applied abstract interpretation to gen-
eralise St̊almarck’s method and shown that this generalisation has applications
beyond sat solving.

We conjecture that algorithms for solving satisfiability in a theory (smt)
have abstract interpretation characterisations and may independently exist in
the static analysis literature. The analysis of a formula based on its proposi-
tional structure in DPLL(T) [19] is remarkably similar to the program analysis
using control flow paths. The Nelson-Oppen combination procedure was recently
shown to be an instance of the iterative reduced product [9]. We believe that
these are but a few directions that must be explored en route to an exciting uni-
fication of the theory and practice of decision procedures and static analysers.

Acknowledgements We are deeply indebted to the French static analysis com-
munity, and Patrick and Radhia Cousot in particular, for their encouragement
and support.

References

1. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI, pages 203–213. ACM Press, 2001.

2. N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from
tests. In Proc. of Software Testing and Analysis, pages 3–14. ACM Press, 2008.

3. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. JACM, 50:752–794, 2003.

17

4. P. Cousot. Abstract interpretation. MIT course 16.399, Feb.–May 2005.
5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM Press, 1977.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282. ACM Press, 1979.

7. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

8. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, Aug. 1992.

9. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains
and the combination of decision procedures. In FoSSaCS, pages 456–472, 2011.

10. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. CACM, 5:394–397, July 1962.

11. M. Davis and H. Putnam. A computing procedure for quantification theory. JACM,
7:201–215, July 1960.

12. V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig. Numeric bounds analysis
with conflict-driven learning. In TACAS, pages 48–63. Springer, 2012.

13. P. Granger. Improving the results of static analyses programs by local decreasing
iteration. pages 68–79, 1992.

14. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. In TACAS, volume 4963 of LNCS, pages 443–458.
Springer, 2008.

15. L. H. Holley and B. K. Rosen. Qualified data flow problems. In POPL, pages
68–82, New York, NY, USA, 1980. ACM Press.

16. G. A. Kildall. A unified approach to global program optimization. In POPL, pages
194–206, New York, NY, USA, 1973. ACM.

17. J. C. King. A Program Verifier. PhD thesis, 1969.
18. K. L. McMillan. Lazy annotation for program testing and verification. In CAV,

pages 104–118, 2010.
19. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
JACM, 53:937–977, 2006.

20. X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,
29(5):26, 2007.

21. J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM,
12(1):23–41, Jan. 1965.

22. J. a. P. M. Silva and K. A. Sakallah. GRASP – a new search algorithm for satisfi-
ability. In ICCAD, pages 220–227, 1996.

23. N. Sörensson and A. Biere. Minimizing learned clauses. In SAT, pages 237–243,
2009.

24. A. Thakur and T. Reps. A Generalization of St̊almarck’s Method. In SAS. Springer,
2012.

25. A. Thakur and T. Reps. A method for symbolic computation of abstract opera-
tions. In CAV. Springer, 2012.

26. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches.
TOPLAS, 13:181–210, April 1991.

