
Numeric Bounds Analysis with
Conflict-Driven Learning?

Vijay D’Silva??, Leopold Haller, Daniel Kroening, and Michael Tautschnig

Computer Science Department, University of Oxford
name.surname@cs.ox.ac.uk

Abstract. This paper presents a sound and complete analysis for deter-
mining the range of floating-point variables in control software. Existing
approaches to bounds analysis either use convex abstract domains and
are efficient but imprecise, or use floating-point decision procedures, and
are precise but do not scale. We present a new analysis that elevates
the architecture of a modern SAT solver to operate over floating-point
intervals. In experiments, our analyser is consistently more precise than
a state-of-the-art static analyser and significantly outperforms floating-
point decision procedures.

1 Introduction

Automotive and avionic control software has a special structure. Few program-
ming language constructs are used, pointers are avoided and loop iterations are
often bounded by constants. Nonetheless, such software performs complex tasks,
computing vehicle trajectories and approximating non-linear functions. Control
software verification involves proving that IEEE 754 floating-point operations
in programs are free of overflows and approximation errors. We present a new,
sound and complete analysis for this problem, and demonstrate empirically that
the analysis is more efficient and precise than the state of the art.

Bounds checking is the problem of determining if the value of a numeric vari-
able lies in a given range. Interval analysis, a classic approach to bounds checking,
propagates intervals through a program. Intervals analysis is extremely fast but
woefully imprecise, producing proofs on only 17 of 33 of our safe benchmarks
(see § 5). Another shortcoming of interval analysis is that imprecision cannot
be distinguished from errors. An alternative approach to bounds checking is
bounded model checking (bmc) with an IEEE 754 decision procedure. bmc is
precise but does not scale: of 57 benchmarks, only 23 can be solved by bmc
within a minute, whereas interval analysis usually requires less than a second.
Another problem is that unbounded loops cannot be handled directly.

We present Conflict Driven Fixed Point Learning (cdfl), a new program
analysis that embeds an abstract domain inside the Conflict Driven Clause

? Supported by the Toyota Motor Corporation, EPSRC project EP/H017585/1 and
ERC project 280053.

?? Supported by a Microsoft Research European PhD Scholarship.

2

Learning (cdcl) algorithm of modern sat solvers. A sat solver uses constraint
propagation, decisions, backtracking, a conflict graph, and clause learning to
decide satisfiability. We develop abstract domain analogues of these ideas: Con-
straint propagation uses fixed point iteration, decisions restrict the range of
intervals, the conflict graph is labelled with intervals, and learning generates
program analysis constraints in place of propositional clauses.

cdfl is both a static analyser and a decision procedure. From a static analysis
perspective, cdfl is an abstract interpreter that uses decisions and learning to
increase transformer precision. From a decision procedure perspective, cdfl is
a sat solver for program analysis constraints. cdfl is a strict generalisation of
propositional cdcl in that, on acyclic programs with only Boolean variables, our
analyser is a clause-learning sat solver. Elucidating this connection is beyond
the scope of this paper.

Contribution and Contents Our new interval analysis builds on the following
contributions to combine the strength of static analysis and bmc.

– A novel account of program safety as satisfiability of a set-constraint for-
mula. Unlike the standard formulation of static analysis, which focuses on
invariants, our formulation is based on error traces.

– A new interval analysis that exploits the efficiency of the interval domain
while being path-sensitive and bit-level accurate.

– A tool that can prove correctness of non-linear, IEEE 754 floating-point
computations using only the interval abstraction. Our experiments reveal
that existing techniques are either imprecise or slow on such programs.

The rest of this section illustrates our approach and discusses related work. The
new formulation of safety as satisfiability is in § 3 and our procedure for deciding
satisfiability is in § 4. Implementation and benchmarks are discussed in § 5.

1.1 Overview

A program, as in Figure 1(a), is an acyclic control flow graph (acfg) Edges can
be labelled with loops, so this representation is not limiting. The variables x and
y are mathematical integers, [y = 0] is a test, and ∗ denotes non-deterministic
choice. We wish to determine if the error location is reachable.

The analysis associates an interval with each location and variable. The in-
tervals for x and y at n1 are [−∞,∞]. The condition [y 6= 0] cannot be modelled
by an interval, so the interval for y at n2 is [−∞,∞]. The intervals for x at n4

and n5 are [−∞,∞], so the analysis cannot prove safety.
The analysis is refined using (for now, arbitrary) constraints on intervals.

First, x is constrained to be in [0,∞] at n4. Interval analysis concludes that
x is in [0,∞] at n5 but cannot prove safety. A second decision constrains y to
[−∞,−124] at n1. Interval analysis shows x to be in [−∞,−124] at n5, so P is
safe assuming x is in [0,∞] at n4 and y is in [−∞,−124] at n1. A proof by cases

3

n1

n2 n3

n4

n5

[y 6= 0] [y = 0]

x := y x := y + 5

while(∗) {x := x+ x}

[x = 0]

(a) A cfg P

n4 : x ≥ 0 n5 : x ≥ 0 : x ≥ 0

n1 : y < −123 (y < 0) n3 : ⊥

n2 : y < −123 (y < 0) n4 : x < −123 (x < 0)

n5 : x < −123 (x < 0)

 : ⊥conflict

(b) Abstract conflict graph

Fig. 1. A control flow graph and conflict graph.

would repeat the analysis, once with x in [−∞,−1] at n4 and once with y in
[−123,∞] at n1. We do not do a proof by cases.

Learning is used to avoid enumerating cases. Deductions made during fixed
point iteration are represented by the abstract conflict graph in Figure 1(b). For
instance, the fact x ≥ 0 at n4 implies that the same holds at n5 and . The
decisions are (n4 : x ≥ 0) and (n1 : y < −123), but only the latter is connected
to (: ⊥), and suffices to prove safety. Conflict analysis in sat solvers is similar.
The next step is new and does not exist in sat solvers. Constraints in the graph
are generalised to the labels in parentheses. In Figure 1(b), (n1 : y < −123)
generalises to (n1 : y < 0); we learn that all error traces must satisfy y ≥ 0 at
n1. Our analysis backtracks, discarding all assumptions. Interval analysis is run
with the learnt constraint and can prove safety.

We emphasise that learning and case-based reasoning are different. A case-
based method does a proof under each assumption. Learning, however, generates
constraints that preserve error reachability. These constraints are not assump-
tions. The procedure is simply rerun after learning.

1.2 Related Work

cdfl can be understood from the perspective of both static analysis and sat
solving. As a static analysis, cdfl is an automated refinement technique. Pos-
sibly the best-known refinement technique is cegar [5], which uses spurious
counterexamples to refine an abstract domain and synthesise transformers. cdfl
restricts transformers to eliminate sources of imprecision. The expensive opera-
tions of domain refinement and transformer synthesis are avoided.

Other work that refines an analysis without modifying the domain eliminates
joins [11], constrains widening operators [23, 22] or transformers [10]. In [10], a
counterexample DAG is analysed and interpolants are used to constrain the
analysis. Our work is similar, but a conflict graph is analysed and decisions and
clauses are used to constrain the analysis. All these techniques can be viewed as
instances of trace partitioning [19]. In technical terms, cdfl discovers program-

4

and property-specific trace partitions. Other methods to discover trace partitions
use cfg rewriting [20], and regular languages [2, 12, 20].

Let us discuss decision procedures. The DPLL(T) architecture leverages the
efficiency of sat solvers to reason about richer theories but separates proposi-
tional and theory reasoning. An alternative is to lift cdcl directly to a first-
order theory as in generalised dpll [17], conflict resolution [15], natural-domain
smt [7], and the cutting-planes extension [14]. Our work has similar motivations
to these. First order formulae are replaced by abstract domain elements, trans-
formers do theory propagation and set constraints are learnt instead of lemmas.
We believe the abstract conflict graph and the related generalisation are new.
Moreover, set-constraints allow us to handle loops.

Finally, cdfl is one of many efforts to combine static analysis and decision
procedures. Shallow integration methods facilitate communication between en-
gines treated as black boxes. Satisfiability Modulo Path Programs (smpp) [13]
lifts DPLL(T) to programs, using a sat solver to guide an abstract interpreter.
Deep integration techniques embed program analysis in satisfiability architec-
tures. Examples are yogi [3] and lazy annotation [16], both of which require
quantifier-free first order theories. We use abstract domains and transformers.

2 Program Model and Domain

This section introduces the program model and identifies properties of the in-
terval domain that enable conflict driven learning.

Programs Consider sets of expressions Exp and Boolean expressions BExp
over variables Var . We focus on numeric, machine data types, so variables take
values in a finite, totally ordered set Val with minimum min and maximum max .
IEEE 754 values are ordered by setting NaN greater than numeric values and
using the arithmetic order. A statement, as below, is an assignment, conditional,
sequential concatenation, non-deterministic choice or a loop.

s ::= x := exp | [b] | s1; s2 | choose{s1, s2} | loop{s}

An acyclic control flow graph (acfg) is an acyclic graph (Loc, E, stmt), with
locations Loc, edges E and a function stmt labelling edges with statements. Loc
contains unique initial and error locations init and . A loop-free acfg has no
loop statements.

Concrete Semantics Statement semantics is defined over environments Env =
Var → Val . A statement s defines a function posts : ℘(Env)→ ℘(Env), called a
transformer. Assignments and tests have their expected semantics; concatenation
is composition, choice is union and the semantics of a loop is a fixed point.

posts1;s2 = posts2 ◦ posts1 postchoose{s1,s2} = λX.posts1(X) ∪ posts2(X)

postloop{s} = λX.lfpY.X ∪ posts(Y)

5

We abbreviate poststmt(n,m) to post (ni,ni+1). A state is a location with an envi-
ronment. A trace is a sequence of states (n0, ε0), . . . , (nk, εk) such that for all
0 ≤ i < k, (ni, ni+1) is an acfg edge and εi+1 ∈ post (ni,ni+1)({εi}). A program
is safe if there is no trace as above with n0 = init and nk = . The concrete
domain is the lattice of environments ℘(Var → Val) with a transformer posts
for statements. Abstract interpretation with intervals is illustrated next.

Example 1. We use abstract interpretation to show that, if x is in the range
[−3, 3] and the statement s = z := x; y := x ∗ z is executed, y is non-negative.
Let a = 〈x 7→ [−3, 3]〉 denote that x has the range shown and other variables are
unconstrained. Abstract transformers, denoted by ˆpost , produce the facts below.

ˆpostz:=x(a) = b = 〈x 7→ [−3, 3], z 7→ [−3, 3]〉
ˆposty:=x∗z(b) = 〈x 7→ [−3, 3], y 7→ [−9, 9], z 7→ [−3, 3]〉

Intervals lose the information that x and z are equal. Let m be 〈x 7→ [0,max]〉
and ∼m be 〈x 7→ [min,−1]〉. The two intervals cover all values of x. Precision is
regained by rerunning the analysis with the restrictions below.

ˆposts(a um) t ˆposts(a u ∼m) = 〈x 7→ [−3, 3], y 7→ [0, 9], z 7→ [−3, 3]〉

The transformer restriction increases precision without losing soundness. C

Interval Abstraction The set Itv of intervals over Val contains pairs [l, u]
with l ≤ u. The partial order on Itv is: a v b if b contains a. The interval
environments domain is the lattice IEnv = ((Var → Itv) ∪ {⊥},v,t,u) with
abstract transformers ˆposts. The least element is ⊥ and the greatest element
> maps all variables to [min,max]. The interval environment that maps x1 to
[l1, u1], x2 to [l2, u2] and all other variables to [min,max] is denoted 〈x1 7→
[l1, u1], x2 7→ [l2, u2]〉. Further, 〈x 7→ [min, c]〉 is written 〈x ≤ c〉. The well

known Galois connection ℘(Env) −−−→←−−−α
γ

IEnv between environments and interval
environments is recalled below.

α(∅) = ⊥ α(X) =

{
x 7→ [inf

ε∈X
{ε(x)} , sup

ε∈X
{ε(x)}] | x ∈ Var

}
γ(⊥) = ∅ γ(a) = {ε | ε(x) is in a(x) for all x}

Atoms and Meet Irreducibles The properties of elements used for decisions
and clause learning are identified next. Fix a lattice (A,v,t,u) with elements
⊥ and >. An atom x of A is a least element strictly above ⊥: ⊥ @ x and no
y satisfies ⊥ @ y @ x. The set of atoms is Atoms(A). An atom of ℘(Env) is a
singleton. An atom of IEnv maps variables to singleton intervals. An abstract
transformer is precise on atoms if the equality posts ◦ γ = γ ◦ ˆposts holds. We
assume abstract transformers for loop-free statements have this property.

An element a is meet irreducible if, for all X ⊆ A,
d
X = a implies a is

in X. The meet irreducibles of A are Irredu(A). Meet irreducibles of ℘(Env)

6

are complements of singletons, and those of IEnv have the form 〈x ≤ c〉 or
〈x ≥ c〉. A meet decomposition function decomp : A → ℘(Irredu(A)) satisfies
that

d
decomp(a) = a for all a.

Example 2. The element m = 〈x ≥ 0〉 in Example 1 is meet irreducible. The
complement of m in the concrete, Env \ γ(m), has a precise representation in
the abstract as ∼m = 〈x < 0〉. Interval environments lack complements but can
be decomposed into meet-irreducibles that have complements.

decomp(〈x 7→ [0,max], y 7→ [1, 4]〉) = {〈x ≥ 0〉, 〈y ≥ 1〉, 〈y < 3〉}

Complementable meet irreducibles are required for cdcl. C

An interval environment a is precisely complementable if there is an abstract
element ∼a satisfying γ(a) = ℘(Env) \ γ(∼a). Precise complementation differs
from the standard notion of a complement in a lattice. Interval environments
have the property that all meet irreducibles are precisely complementable.

3 Static Analysis as Second-Order Constraint Solving

A standard approach to analyse programs is to solve a set of equations gener-
ated by a control-flow graph. Program analysis with set-constraints makes the
language explicit [8, 1]. A constraint language and its satisfiability problem are
defined next. Fix an acfg P = (Loc, E, stmt), a set CVar = {Xn|n ∈ Loc} of
constraint variables indexed by locations and a concrete domain ℘(Env).

Second-Order Constraints Terms and constraints are of the form below,
with d ranging over concrete domain elements, and m and n over locations.

terms t ::= d | Xn | post (m,n)(t) | t ∪ t | t ∩ t
constraints c ::= Xn ⊆ t | Xn ⊇ t | Xn ∩ t ⊃ ∅

Let a be an interval environment. We abuse notation and write Xl ∩ a for Xl ∩
γ(a). A clause is a disjunction of constraints and a formula is a conjunction
of clauses. Following standard convention, a clause is represented as a set of
constraints and a formula as a set of clauses.

A valuation v : Loc → ℘(Env) maps constraint variables to sets of environ-
ments. Valuations form a lattice (CVals,v,t,u). The order, join and meet are
lifted pointwise from ℘(Env). That is, v1 v v2 if v1(l) v v2(l) for all locations l,
and v1 ⊕ v2 = λl. v1(l)⊕ v2(l) for ⊕ in {u,t}. An atomic valuation maps every
location to at most one environment. The semantics JtKv of a term t under a
valuation v is inductively defined below.

JdKv = d JXnKv = v(n) Jt1 ∪ t2Kv = Jt1Kv ∪ Jt2Kv
Jpost (m,n)(t)Kv = post (m,n)(JtKv) Jt1 ∩ t2Kv = Jt1Kv ∩ Jt2Kv

7

A valuation v satisfies a constraint t1 ./ t2 if Jt1Kv ./ Jt2Kv holds for ./ in {⊆,⊂}.
A valuation satisfies a clause if it satisfies at least one constraint in the clause
and satisfies a formula if every clause in the formula is satisfied. A valuation
satisfying a formula is a solution. A formula is satisfiable if it has a solution.

3.1 Safety as Satisfiability

The standard approach to checking program safety is to compute an invariant.
Formally, an invariant is a solution to the formula Inv(P) below.

Inv(P) = Xinit ⊇ Env ∧
∧

n∈Loc

Xn ⊇
⋃

(m,n)∈E

post (m,n)(Xm)


The error is unreachable if an invariant also satisfies the formula X ⊆ ∅. Stan-
dard static analysis for safety can be viewed as a sound but incomplete sat
procedure for the formula Safe(P) = Inv(P) ∧X ⊆ ∅. An alternative we pro-
pose is to search for an error – a solution to the formula below.

Exec(P) = Xinit ⊆ Env ∧
∧

n ∈ Loc

 ∨
(m,n)∈E

Xn ⊆ post (m,n)(Xm)


A program contains an error if a solution to Exec(P) also satisfies X ⊃ ∅. bmc
can be viewed as a sat procedure for the formula Err(P) = Exec(P) ∧X ⊃ ∅.
Solutions to Safe(P) and Err(P) are quite different as demonstrated next.

Example 3. Revisit the acfg P in Figure 1. An environment ε is written as
(ε(x), ε(y)). The valuation v1 that maps all locations to Env is an invariant
and satisfies Inv(P), as does v2 = {n1 7→ Env , n2 7→ {(i, j)|j 6= 0} , n3 7→
{(i, j)|j = 0} , n4 7→ {(i, j)|i 6= 0} , n5 7→ {(i, j)|i 6= 0} , 7→ ∅}. Only v2 satis-
fies Safe(P) and is strong enough to prove safety.

The condition X ⊃ ∅ prevents v2 from satisfying Err(P). The constraint
X ⊆ post [x=0](X4) is not satisfied by v1 so neither is Err(P). In fact, Err(P)
is unsatisfiable. Let P ′ be the acfg with the test [y = 0] modified to [y ≤ 0].
The valuation v3 = {n1 7→ {(1,−5), (3,−7)} , n2 7→ ∅, n3 7→ {(1,−5)} , n4 7→
{(0,−5)} , n5 7→ {(0,−5)} , 7→ {(0,−5)}} contains states on an error trace.
This valuation does not satisfy Inv(P ′) or Safe(P ′) but satisfies Err(P ′). C

To prove safety of P , we can either find an invariant satisfying Safe(P) or
show that Err(P) is unsatisfiable.

Lemma 1. The following conditions are equivalent for an acfg P . (1) P is
safe. (2) Safe(P) is satisfiable. (3) Err(P) is unsatisfiable.

In propositional sat solvers, a partial assignment represents a set of potential
solutions to a formula. Decisions and constraint propagation refine this set. Over
programs, we represent potential sets of errors and use transformer restriction
and fixed point iteration to refine the set.

8

Abstract Valuations An abstract valuation is figuratively an envelope con-
taining potential solutions to Err(P). An abstract valuation maps constraint
variables to interval environments. An abstract valuation is atomic if it maps
each constraint variable to an atom or to ⊥. The abstract semantics ‖t‖v of
a term t with respect to an abstract valuation v is defined as expected, with
abstract transformers, join and meet replacing concrete ones. An abstract valu-
ation v̂ abstractly satisfies a formula if there is a concrete solution v for which
the inequality v(X) ⊆ γ ◦ v̂(X) holds for all constraint variables. If the formula
Err(P) cannot be abstractly satisfied, the program is safe.

Example 4. Consider the acfg init
[x<0]−→ n

[x=4]−→ generating the formula below.

Err(P) = Xinit ⊆ Env ∧Xn ⊆ post [x<0](Xinit) ∧X ⊆ post [x=4](Xn)

Standard static analysis can be viewed as refining an abstract valuation as below.

v̂0 = {Xinit 7→ >, Xn 7→ >, X 7→ >}
v̂1 = {Xinit 7→ >, Xn 7→ 〈x < 0〉, X 7→ >}
v̂2 = {Xinit 7→ >, Xn 7→ 〈x < 0〉, X 7→ ⊥}

As X maps to ⊥, Err(P) is not abstractly satisfied, so is unreachable. C

4 Conflict Driven Fixed Point Learning

We now present cdfl, a procedure that lifts propositional cdcl to abstract
domains and program analysis constraints. Example 4 showed that standard
static analysis can be viewed as a process that applies transformers to refine
an abstract valuation. cdfl extends standard static analysis by using decisions,
deduction, learning and backtracking to search the space of abstract valuations.
Decisions restrict abstract domain elements, deduction uses transformers and
set-constraint clauses and learning infers set-constraint clauses. For simplicity,
heuristics for learning, decision making, and backtracking are abstracted away
as non-deterministic choices. Common heuristics described in the sat literature
such as first-UIP learning, non-chronological backtracking, restarts and activity-
based decision heuristics can be used to resolve this non-determinism.

4.1 Overview of CDFL

The technique is shown in Procedure CDFL. It begins with a formula Err(P)
and the abstract valuation v = λX.>. The call deduce() refines this valuation
to the result of standard fixed point iteration in an abstract domain. If static
analysis shows that the program is safe, our procedure terminates. Otherwise,
static analysis was not precise enough and the solver enters the main loop. Thus,
cdfl never does extra work if standard static analysis is sufficiently precise.

The current valuation is refined using an interval meet irreducible in the
call to decide(). Consequences of this decision are inferred by a call to deduce().

9

1 (v, F)← (λl.>,Err(P))
2 deduce()
3 if v() = ⊥ then return safe
4 while true do
5 if atomic(v) then return (v, fail)
6 decide()
7 deduce()
8 while (v, F) in conflict do
9 learn()

10 if backtrack() = fail then return safe
11 deduce(v, F)

Procedure CDFL: Conflict Driven Fixed Point Learning

Decisions and deduction alternate until one of two scenarios. If atomic(v) returns
true, the valuation v cannot be refined and is returned. Either v contains an error
trace or the current abstraction is insufficient to prove safety. The second scenario
is a conflict; the valuation v does not abstractly satisfy the formula. Learning is
used to generate a reason for the conflict. Technically, learning adds a clause C
to the current formula, so that F ∧ C is equi-satisfiable to F . The backtracking
step backtrack() then returns the solver to an earlier state that does not conflict
with C. If this is not possible, Err(P) is unsatisfiable and P is safe.

4.2 Data Structure and Phases of CDFL

Internally, sat solvers use a stack to track the sequence of variable assignments
of the form (x, v) where x is a propositional variable, and v is either true or
false. In our procedure, the stack contains elements of the form (l, a), where l is
a location and a is a meet-irreducible or is ⊥.

A labelled restriction (l, a, z) consists of a location l, a meet-irreducible a and
the label z = d if (l, a) is a decision, or z = i if (l, a) was inferred by deduction.
The set of labelled restrictions is L = Loc×(Irredu(IEnv)∪{⊥})×{d, i}. A stack
is a sequence of labelled restrictions, where the empty stack is ε, and UV denotes
concatenation. A stack S defines an abstract valuation bSc where bεc = > and
bS(l, a, z)c = bSc u 〈l 7→ a〉. An interval meet-irreducible a at location l refines
the stack, denoted refines(S, (l, a)), if the condition bSc(Xl)ua @ bSc(Xl) holds.

A solver state (S, F) consists of a stack of labelled restrictions S and a formula
F and the current valuation is bSc. The solver is in conflict if some clause in F
is not abstractly satisfied by bSc. We present the components of cdfl as state
transitions made by the solver, inspired by the presentation of cdcl in [18].

Deduction Deduction uses two rules to transform the solver state. The rule
tprop applies transformers to abstract valuations, and is comparable to theory
propagation in smt solvers. The rule uprop generalises the unit rule in proposi-

10

tional solvers to set-constraint clauses. If deduction refines the current valuation,
the new information is added to the stack. These rules are illustrated below.

Example 5. Consider the formula Err(P) for the acfg in Figure 1. The ini-
tial valuation is v0 = λX.>. This valuation is refined using the clause {X3 ⊆
post [y=0](X1)}, and the transformer ˆpost [y=0] to v1 that maps X3 to 〈y = 0〉.
Next, consider the clause {X4 ⊆ post [x:=y+5](X3), X4 ⊆ post [x:=y](X2)}. The
right side of the first constraint evaluates to a1 = 〈y 7→ [0, 0], x 7→ [5, 5]〉, and
the second to a2 = >. One of these constraints must hold, so the weaker condi-
tion X4 ⊆ γ(a1) ∪ γ(a2) must as well. But a1 t a2 = >, which does not refine
the current valuation of X4, so the stack is not modified.

To illustrate the unit rule, continue with the valuation obtained above and
assume that there is a clause {X1 ∩ 〈y < 0〉 ⊃ ∅, X4 ∩ 〈x > 10〉 ⊃ ∅}. The val-
uation v1 does not satisfy the first constraint, so every solution must satisfy
the second constraint. Every solution satisfying this constraint must also satisfy
X4 ⊆ 〈x > 10〉, so the valuation v1 is refined, mapping X4 to 〈x > 10〉. C

The deduction rules are defined below.

tprop : (S, F)→ (S(l, a, i), F) if refines(S, (l, a)), {Xl ⊆ t1, . . . , Xl ⊆ tk} ∈ F

where a ∈ decomp(
⊔

1≤i≤k

‖ti‖bSc u bSc(Xl))

uprop : (S, F)→ (S(l, a, i), F) if refines(S, (l, a)) and ({Xl ∩ t ⊃ ∅} ∪ C) ∈ F
where C is not abstractly satisfied by bSc and

where a ∈ decomp(‖t‖bSc)

Both of these rules are sound in the sense that if bSc contains a solution to F ,
bS(l, a, i)c will also contain a solution. The function deduce applies these rules
exhaustively until the valuation becomes atomic or until the solver is in conflict.

Decisions A decision picks a location l and program variable x and constrains
it with a meet irreducible. Additionally, decisions must be chosen such that they
do not put the solver in conflict.

decide : (S, F) −→ (S(l, a, d), F) if refines(S, (l, a)) and

(S(l, a, d), F) is not in conflict

Example 6. A valid decision for the cfg P in Figure 1, for the valuation v that
maps X to 〈x 7→ [0, 0]〉 and all other locations to > is (X1, 〈y > 0〉, d). The
restriction (, 〈x > 0〉, d) is not a valid decision because v(X) u 〈x > 0〉 is
bottom, causing a conflict. C

Learning and Backtracking Learning identifies sufficient reasons for con-
flicts and adds a clause that expresses the negation of that reason. For an ab-
stract valuation v, we define the clause complement clcomp(v) as the clause

11

{Xl ∩ ∼a ⊃ ∅ | a ∈ decomp(v(l))}. This formula is a complement in the sense
that a concrete valuation is a solution of clcomp(v) exactly if it is not contained
in the concretisation of v.

Example 7. Let Loc = {1, 2} and let v be an abstract valuation with v(1) =
〈x < 0〉 and v(2) = 〈y 7→ [0, 10]〉. Then clcomp(v) contains the three constraints
X1 ∩ 〈x ≥ 0〉 ⊃ ∅, X2 ∩ 〈y < 0〉 ⊃ ∅ and X2 ∩ 〈y > 10〉 ⊃ ∅}. C

Backtracking is used to remove a suffix of the stack to restore the solver to
a consistent state after a conflict has been encountered. Backtracking may only
jump back to decision elements on the stack. Abstract rules for learning and
backtracking can be stated as follows.

learn : (S, F)→ (S, F ∧ clcomp(R)) if clcomp(R) 6∈ F and γV (R)

contains no solutions of F

backtrack : (S1(l, a, d)S2, F)→ (S1, F) if (S1, F) is not in conflict

Soundness and Completeness We denote the cdfl procedure over the in-
terval domain as cdfl(IEnv). The cdfl(IEnv) procedure is sound, and, under
certain conditions, also complete.

Theorem 1. If P is a loop-free program and the set of values Val is finite, then
cdfl(IEnv) is a sound and complete decision procedure to check safety of P .

4.3 Abstract Conflict Graphs

In order to instantiate the learning step, heuristics for finding conflict reasons
are needed. Like propositional solvers, we record deductions in a data structure
called conflict graph, which is incrementally built by recording decisions and
deductions. The nodes of the conflict graph are labelled restrictions. An example
is provided in Figure 1. The two nodes without predecessors are decision nodes,
all other nodes are implication nodes. The predecessors of each node n in the
graph are sufficient to deduce n. Once a conflict is reached, the graph is analysed
to determine a sufficient reason for unsatisfiability. A cut of a conflict graph
(R, I) is a set L ⊆ R such that any path from a decision node to the conflict
node goes through L. Every cut of a conflict graph provides a conflict reason that
can be used in learning. In contrast to propositional sat, we can obtain stronger
learnt clauses by generalising the nodes of the implication graph itself before
obtaining a cut. Generalisation is performed by computing maximal sufficient
pre-conditions in the domain of intervals, which we handle in our implementation
using binary search on bounds.

Example 8. Consider the conflict graph in Figure 1. The following two sets are
different cuts of the graph, and hence sufficient reasons for a conflict, R1 = {n5 :
x < −123}, R2 = {n2 : y < −123, n3 : ⊥}. In learning, these cuts produce the
following clauses, C1 = {X5 ∩ 〈x ≥ −123〉 ⊃ ∅}, C2 = {X2 ∩ 〈y ≥ −123〉 ⊃
∅, X3 ⊃ ∅}. Stronger clauses can be obtained by applying generalisation first.

12

Consider the node n5 : x < −123 in the conflict graph of Figure 1. This node is
used to deduce : ⊥ using the conditional statement s = [x = 0]. The weakest
pre-condition of : ⊥ w.r.t. s is x < 0 ∨ x > 0, but this is not expressible as
an interval element. Instead, we choose the maximal generalisation of x < −123
that is sufficient to prove : ⊥, and obtain x < 0. Cutting now yields the
stronger clause {X5 ∩ 〈x ≥ 0〉 ⊃ ∅}. C

5 Implementation and Experiments

We have implemented cdfl for ANSI-C programs. The domains used are inter-
vals over IEEE 754 floating-point numbers and machine integers. This section
will show that our approach is able to efficiently prove correctness of several
programs where a standard interval analysis yields a false alarm. In case our
procedure fails to prove correctness it returns a concrete environment at the
initial control flow node to constants. This assignment either leads to an error,
or helps localise the imprecision of the abstract analysis by providing a maximal
restriction that cannot be proved correct using intervals. We apply our analysis
to verify properties on floating-point programs from various sources, and show
that, in many cases, our analysis is as efficient as static analysis, but provides
the precision of a floating-point decision procedure.

We compare our tool to the static analyser Astrée [4], which uses interval
analysis, and to the bounded model checker CBMC [6], which uses a bit-precise
floating-point decision procedure based on propositional encoding. Our bench-
marks show highly non-linear behaviour. Astrée is not optimised for the kinds
of programs we consider and introduces a high degree of imprecision. (Astrée of-
fers simple trace partitioning heuristics for Booleans and machine integers, but
not floating-point programs.) CBMC translates the floating-point arithmetic to
large propositional circuits which are hard for sat solvers. As benchmarks we
use ANSI-C code originating from (a) controller code auto-generated from a
Simulink model with varying loop bounds; (b) examples from the Functional
Equivalence Verification Suite [21]; (c) benchmarks presented at the 2010 Work-
shop on Numerical Software Verification; (d) code presented by Goubault and
Putot [9]; (e) hand-crafted instances that implement Taylor expansions of sine
and square functions, as well as Newton-Raphson approximation. In order to
allow comparison to bounded model checking, only benchmark programs with
bounded loops were chosen, which were completely unrolled prior to analysis.
All our 57 benchmarks, more detailed benchmark results, together with the pro-
totype tool, are available online1.

We discuss the following results: (1) our analysis is as precise as a full floating-
point decision procedure while still being orders of magnitudes faster; (2) learning
and the choice of decision heuristic yield a speed-up of more than an order of
magnitude; (3) dynamic precision adjustment is observed frequently.

1 http://www.cprover.org/cdfpl/

13

benchmark

ti
m

e
(s

)

0 5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

1000 Astrée

CBMC

CDFL

Fig. 2. Execution times of Astrée, CBMC, and cdfl; wrong results set to 3600s

Learning disabled

W
it

h
le

a
rn

in
g

0.1 1 10 100 1000

0.1

1

10

100

1000

Range decisions

R
a
n
d
o
m

d
ec

is
io

n
s

0.1 1 10 100 1000

0.1

1

10

100

1000

Fig. 3. Effects of learning and decision heuristics

Efficient and Precise Analysis In Figure 2, we show execution times for
Astrée, CBMC, and our analysis (cdfl). To highlight wrong verification results
or out-of-memory errors, the time for such failures was set to the timeout of
3600 seconds. We make several observations: on average, our analysis is at least
264 times faster than cbmc. The figure 264 is a lower bound, since some runs
of cbmc were aborted due to timeouts or errors. The maximum speed-up is a
factor of 1595. Although Astrée is often faster than our prototype, its precision is
insufficient in many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning Figure 3 visualises the effects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment One unique feature of our procedure is
property-dependent refinement. The precision of the analysis dynamically adapts
to match the precision required by the property. This is illustrated in Figure 4

14

−π
2

π
2≤ 1.2

≥ -1.2

≤ 1.01

≥ -1.01

−π
2

π
2

Fig. 4. Partitions explored during bounds check

where we check bounds on the result of computing a sine approximation under
the input range [−π2 ,

π
2]. The input value is shown on the x-axis, the result of

the computation on the y-axis. The bound we check against is depicted as two
dashed horizontal lines, boundaries of explored partitions are shown as black
vertical lines. The actual maximum of the function lies at about 1.00921. As the
checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches this value, our
procedure dynamically increases the precision of the analysis by exploring more
partitions.

Limitations of CDFL(IEnv) Our procedure is instantiated over the domain
of intervals. There are simple programs that are not amenable to interval anal-
ysis, even when additional partition-based refinement is used. Consider for ex-
ample the one-line program x := y together with the relational property x = y.
Intervals are non-relational, hence cdfl(IEnv) would enumerate all singleton
intervals over y. Similar enumeration behaviour can be found in propositional
sat solvers, which may perform badly when applied to certain, highly relational
problems. This can be fixed by instantiating cdcl(A) using a richer base do-
main. Further, our implementation is a prototype and restricts learning to the
initial control flow node, which limits performance on deep programs.

6 Conclusion

We presented a novel approach for bounds analysis that instantiates a cdcl
architecture over abstract domains. In the absence of loops and for finite value
domains we obtain a sound and complete analysis. Our prototype implementa-
tion witnesses the potential of this approach: our analysis is substantially more
precise than a state-of-the-art static analyser and outperforms a sat based IEEE
754 floating-point decision procedure by several orders of magnitude on small,
non-linear programs.

Much research in program analysis attempts to leverage the efficiency of sat
solvers. The efficiency is the result of an intensive, community effort to discover
efficient engineering techniques, and decision and learning heuristics in modern
solvers. This paper has demonstrated how to lift the architecture of a modern
rsat solver to program analyzers. Similarly, our approach could benefit greatly
by studying heuristics and efficient engineering techniques.

15

The formal framework in this paper is by no means limited to bounds analysis
with intervals. A number of domains, numeric or otherwise, have the comple-
mentation properties necessary for instantiations of cdfl. Examples are given by
numeric domains such as octagons and polyhedra, or by equality domains. Non-
numeric examples include some pointer analyses, or trace-based abstractions, for
example those based on control-flow unwindings, where decisions would corre-
spond to refinements of control structure imprecision. The instantiation of cdfl
with other domains is the focus of our current work. We believe that extending
our technique to new domains can yield a new class of general purpose verifica-
tion tools that dynamically combine the efficiency provided by abstraction with
the precision of a sat solver.

Acknowledgments We thank Antoine Miné for providing experimental results
using Astrée. One anonymous reviewer summarised our paper better than we
did and another pointed out technical loose ends.

References

1. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79–111, November 1999.

2. G. Balakrishnan, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Refining the
control structure of loops using static analysis. In Proc. of the Intl. Conf. on
Embedded Software, pages 49–58. ACM Press, 2009.

3. N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from
tests. In Proc. of Software Testing and Analysis, pages 3–14. ACM Press, 2008.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The Essence of Com-
putation, volume 2566 of LNCS, pages 85–108. Springer, 2002.

5. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, volume 1855 of LNCS,
pages 154–169. Springer, 2000.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In Proc. of Tools and Algorithms for the Construction and Analysis of Systems,
volume 2988 of LNCS, pages 168–176. Springer, 2004.

7. S. Cotton. Natural domain SMT: A preliminary assessment. In Formal Modeling
and Analysis of Timed Systems, volume 6246 of LNCS, pages 77–91, 2010.

8. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proc. of Functional Programming
Languages and Computer Architecture, pages 170–181. ACM Press, June 1995.

9. E. Goubault and S. Putot. Static analysis of numerical algorithms. In Proc. of
Static Analysis Symposium, volume 4134 of LNCS, pages 18–34. Springer, 2006.

10. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. In Proc. of Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 4963 of LNCS, pages 443–458, 2008.

11. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for abstract
interpretation. In Proc. of Tools and Algorithms for the Construction and Analysis
of Systems, LNCS, pages 474–488. Springer, 2006.

16

12. S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress in-
variants for bound analysis. In Proc. of Programming Language Design and Im-
plementation, pages 375–385. ACM Press, June 2009.

13. W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis
via satisfiability modulo path programs. In Proc. of Principles of Programming
Languages, pages 71–82. ACM Press, 2010.

14. D. Jovanovic and L. M. de Moura. Cutting to the chase solving linear integer
arithmetic. In Computer Aided Deduction, volume 6803 of LNCS, pages 338–353.
Springer, 2011.

15. K. Korovin, N. Tsiskaridze, and A. Voronkov. Conflict resolution. In Constraint
Programming, pages 509–523, 2009.

16. K. L. McMillan. Lazy annotation for program testing and verification. In Proc. of
Computer Aided Verification, volume 6174 of LNCS, pages 104–118. Springer, 2010.

17. K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In Proc. of Computer Aided Verification, volume 5643 of LNCS, pages 462–476.
Springer, 2009.

18. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

19. X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans-
actions on Programming Languages and Systems, 29(5):26, 2007.

20. S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static analysis in
disjunctive numerical domains. In Proc. of Static Analysis Symposium, volume
4134, pages 3–17. Springer, 2006.

21. S. F. Siegel and T. K. Zirkel. A functional equivalence verification suite for high-
performance scientific computing. Technical Report UDEL-CIS-2011/02, Depart-
ment of Computer and Information Sciences, University of Delaware, 2011.

22. A. Simon and A. King. Widening polyhedra with landmarks. In Proc. of the Asian
Symposium on Programming Languages and Systems, pages 166–182, 2006.

23. C. Wang, Z. Yang, A. Gupta, and F. Ivančic. Using counterexamples for improving
the precision of reachability computation with polyhedra. In Proc. of Computer
Aided Verification, pages 352–365. Springer, 2007.

