SMT-Style Program Analysis with Value-based Refinements

Vijay D'Silva Leopold Haller Daniel Kröning

NSV-3
July 15, 2010

Outline

Imprecision and Refinement in Abstract Interpretation

SAT Style Abstract Analysis

Value-based Refinement for Intervals

Imprecision in Abstract Interpretation

- Abstract interpretation sound but not complete.
- Incompleteness manifests in imprecision during the analysis.

Imprecision in Abstract Interpretation

- Abstract interpretation sound but not complete.
- Incompleteness manifests in imprecision during the analysis.

Example: Domain of Intervals

Imprecisions in the Domain

Imprecision in join

$$
\begin{aligned}
& x:=* ; \\
& \text { if }(x>5) \\
& y:=-1 ; \\
& \text { else } \\
& y:=1
\end{aligned}
$$

assert (y ! = 0) ;

Imprecisions in the Domain

Imprecision in join

$$
\begin{aligned}
& \mathrm{x}:=* ; \\
& \text { if }(\mathrm{x}>5) \\
& \mathrm{y}:=-1 ; \quad \longrightarrow y \in[-1,-1], x \in[6, \infty] \\
& \text { else } \\
& \mathrm{y}:=1 \text {; } \\
& \text { assert }(\mathrm{y}!=0) \text {; }
\end{aligned}
$$

Imprecisions in the Domain

Imprecision in join

$$
\begin{aligned}
& \mathrm{x}:=* ; \\
& \text { if }(\mathrm{x}>5) \\
& \mathrm{y}:=-1 ; \quad \longrightarrow y \in[-1,-1], x \in[6, \infty] \\
& \text { else } \\
& \mathrm{y}:=1 ; \quad \longrightarrow y \in[1,1], x \in[-\infty, 5] \\
& \text { assert }(\mathrm{y}!=0) ;
\end{aligned}
$$

Imprecisions in the Domain

$$
\begin{aligned}
& \text { Imprecision in join } \\
& \mathrm{x}:=* ; \\
& \text { if }(\mathrm{x}>5) \\
& \mathrm{y}:=-1 ; \\
& \text { else } \\
& \mathrm{y}:=1 ;
\end{aligned} \quad \longrightarrow y \in[-1,-1], x \in[6, \infty] \begin{aligned}
& \longrightarrow \\
& \text { assert }(\mathrm{y}!=0) ;
\end{aligned}
$$

The disjunction $y=1 \vee y=-1$ cannot be expressed as an interval.

Imprecisions in the Domain

Imprecision in transformer

```
x:=y;
if(x > 5)
    assert(y > 5);
```


Imprecisions in the Domain

Imprecision in transformer

$$
\begin{aligned}
& x:=y ; \\
& \text { if }(x>5) \\
& \quad \text { assert }(y>5) ;
\end{aligned}
$$

Imprecisions in the Domain

Imprecision in transformer

$$
\begin{aligned}
& x:=y ; \\
& \text { if } \begin{array}{l}
\text { (x }>5) \\
\quad \text { assert }(y>5) ;
\end{array} \quad \longrightarrow x \in[6, \infty]
\end{aligned}
$$

Imprecisions in the Domain

Imprecision in transformer

$$
\begin{aligned}
& x:=y ; \\
& \text { if }(x>5) \\
& \quad \text { assert }(y>5) ; \quad \longrightarrow x \in[6, \infty]
\end{aligned}
$$

Intervals cannot express relational information.

Imprecisions in the Analysis

Imprecision in widening

Precision can be lost in the the analysis
Refinement of widening studied by, e.g., Gulavani et. al (TACAS 2008), Wang et al. (CAV 2007)

Refining Abstract Domains

Global domain

 refinement
Refining Abstract Domains

Octagons

More powerful domain
 Polyhedra

Global domain
refinement

Refining Abstract Domains

Refining Abstract Domains

- How can we locally refine an abstract domain?

Trace Partitioning

- Trace partitioning allows for flexible and local refinement

Trace Partitioning

- Trace partitioning allows for flexible and local refinement
- Consider separately different sets of traces through a program
- Similar to case splits in a mathematical proof.

Trace Partitioning

- Trace partitioning allows for flexible and local refinement
- Consider separately different sets of traces through a program
- Similar to case splits in a mathematical proof.

Trace Partitioning

- Trace partitioning allows for flexible and local refinement
- Consider separately different sets of traces through a program
- Similar to case splits in a mathematical proof.

Trace Partitioning

- Trace partitioning allows for flexible and local refinement
- Consider separately different sets of traces through a program
- Similar to case splits in a mathematical proof.

Trace Partitioning

- Wide range of partitionings possible
- control flow,
- values of variables,
- number of iterations through a loop, etc.

Trace Partitioning

- Wide range of partitionings possible
- control flow,
- values of variables,
- number of iterations through a loop, etc.

$$
\begin{aligned}
& \text { Value-based partitioning } \\
& \\
& \quad \mathrm{x}:=\mathrm{y} \text {; } \\
& \text { if }(\mathrm{x}>5) \\
& \text { assert }(\mathrm{y}>5) \text {; }
\end{aligned}
$$

Trace Partitioning

- Wide range of partitionings possible
- control flow,
- values of variables,
- number of iterations through a loop, etc.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Value-based partitioning } \\
\text { assume }(y>5) ; \\
x:=y ; \\
\\
\text { if }(x>5) \\
\quad \text { assert }(y>5) ;
\end{array}
\end{aligned}
$$

Trace Partitioning

- Wide range of partitionings possible
- control flow,
- values of variables,
- number of iterations through a loop, etc.

$$
\begin{aligned}
& \text { Value-based partitioning } \\
& \text { assume }(y>5) ; \quad \text { assume }(y<=5) ; \\
& x:=y ; \\
& \\
& \text { if }(x>5) \\
& y>5
\end{aligned}
$$

Finding Partitioning Functions

- Trace partitioning allows one to refine the precision of an analysis down to explicit exploration of all traces.

Finding Partitioning Functions

- Trace partitioning allows one to refine the precision of an analysis down to explicit exploration of all traces.

The main question is:

Finding Partitioning Functions

- Trace partitioning allows one to refine the precision of an analysis down to explicit exploration of all traces.

The main question is:
How can we find a good partitioning?

Finding Partitioning Functions

- Trace partitioning allows one to refine the precision of an analysis down to explicit exploration of all traces.

The main question is:
How can we find a good partitioning?

- Precise enough to prove the property, and
- abstract enough to be efficient.

Finding Partitioning Functions

- Leino and Logozzo (APLAS 2005): Value-based trace partitionings based on counter examples
- Gulavani et al. (TACAS 2008): DAG-based Exploration of control-flow paths inside loops with splitting on demand.
- Gulwani et al. (PLDI 2009): Control-flow refinement for bounds analysis.
- Harris et al. (POPL 2010): Satisfiability Modulo Path Programs

Value-based Trace Partitionings

- If the abstract transformer \hat{F} is too imprecise, find a set of transformers $\hat{F}_{1}, \ldots, \hat{F}_{k}$, such that

$$
\bigcup_{1 \leq i \leq k} \gamma\left(\mu X \cdot \hat{F}_{i}(X)\right) \supseteq \mu X \cdot F(X)
$$

Value-based Trace Partitionings

- If the abstract transformer \hat{F} is too imprecise, find a set of transformers $\hat{F}_{1}, \ldots, \hat{F}_{k}$, such that

$$
\bigcup_{1 \leq i \leq k} \gamma\left(\mu X \cdot \hat{F}_{i}(X)\right) \supseteq \mu X \cdot F(X)
$$

- This can be done by clipping the analysis by an abstract element:

$$
\hat{F}_{i}=\hat{F} \sqcap a_{i}
$$

Value-based Trace Partitionings

- If the abstract transformer \hat{F} is too imprecise, find a set of transformers $\hat{F}_{1}, \ldots, \hat{F}_{k}$, such that

$$
\bigcup_{1 \leq i \leq k} \gamma\left(\mu X \cdot \hat{F}_{i}(X)\right) \supseteq \mu X \cdot F(X)
$$

- This can be done by clipping the analysis by an abstract element:

$$
\hat{F}_{i}=\hat{F} \sqcap a_{i}
$$

Value-based Trace Partitionings

- If the abstract transformer \hat{F} is too imprecise, find a set of transformers $\hat{F}_{1}, \ldots, \hat{F}_{k}$, such that

$$
\bigcup_{1 \leq i \leq k} \gamma\left(\mu X \cdot \hat{F}_{i}(X)\right) \supseteq \mu X \cdot F(X)
$$

- This can be done by clipping the analysis by an abstract element:

$$
\hat{F}_{i}=\hat{F} \sqcap a_{i}
$$

Value-based Trace Partitionings

- If the abstract transformer \hat{F} is too imprecise, find a set of transformers $\hat{F}_{1}, \ldots, \hat{F}_{k}$, such that

$$
\bigcup_{1 \leq i \leq k} \gamma\left(\mu X \cdot \hat{F}_{i}(X)\right) \supseteq \mu X \cdot F(X)
$$

- This can be done by clipping the analysis by an abstract element:

$$
\hat{F}_{i}=\hat{F} \sqcap a_{i}
$$

LsAT Style Abstract Analysis

Value-based Trace Partitionings

New question:

Value-based Trace Partitionings

New question:
How can we find such a set of elements a_{1}, \ldots, a_{k} ?

Value-based Trace Partitionings

New question:
How can we find such a set of elements a_{1}, \ldots, a_{k} ?

Use the search architecture of a SAT solver!

DPLL framework

DPLL procedure

DPLL framework

DPLL procedure

- Main phases of the DPLL procedure:

DPLL framework

> DPLL procedure

- Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable

DPLL framework

> DPLL procedure

- Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable Propagation Deduce implied variable values

DPLL framework

> DPLL procedure

- Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

DPLL framework

> DPLL procedure

- Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Decision

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Propagation

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Decision

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Propagation

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Propagation

Conflict

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Learning

DPLL Procedure

Is $\phi(x, y, z)$ satisfiable?

Learning

SAT-Style Program Analysis

SAT-Style Program Analysis

Decision Refine current element a by $a^{\prime} \sqsubset a$

SAT-Style Program Analysis

Decision Refine current element a by $a^{\prime} \sqsubset a$
Propagation Compute clipped fixpoint $\mu X . \hat{T}(X) \sqcap a^{\prime}$

SAT-Style Program Analysis

Decision Refine current element a by $a^{\prime} \sqsubset a$
Propagation Compute clipped fixpoint $\mu X . \hat{T}(X) \sqcap a^{\prime}$
Learning Find $a^{\prime \prime} \sqsupseteq a^{\prime}$, such that $\mu X . \hat{F}(X) \sqcap a^{\prime \prime}$ is safe.

SAT-Style Program Analysis

Decision

SAT-Style Program Analysis

Propagation

SAT-Style Program Analysis

Decision

Decision: refine a

SAT-Style Program Analysis

Propagation

Decision: refine a

SAT-Style Program Analysis

Decision

SAT-Style Program Analysis

Propagation

SAT-Style Program Analysis

Generalization

Comments on Analysis

- When can we efficiently prove safety with this?

Comments on Analysis

- When can we efficiently prove safety with this?
- When there is a small and finite number of elements a_{1}, \ldots, a_{k} such that the fixpoints $\mu X .\left(\hat{F}(X) \sqcap a_{i}\right)$ can be put together to form a concrete postfixpoint.

Comments on Analysis

- When can we efficiently prove safety with this?
- When there is a small and finite number of elements a_{1}, \ldots, a_{k} such that the fixpoints $\mu X .\left(\hat{F}(X) \sqcap a_{i}\right)$ can be put together to form a concrete postfixpoint.
- Specific implementation issues:
- Generalization step
- Decision heuristic

Value-based Refinement for Intervals

We have created a preliminary instantiation of this framework for the domain of intervals.

Value-based Refinement for Intervals

We have created a preliminary instantiation of this framework for the domain of intervals.

Decision:

Choose an initial assignment for all variables

Value-based Refinement for Intervals

We have created a preliminary instantiation of this framework for the domain of intervals.

Decision:

Choose an initial assignment for all variables

Propagation:

Compute forward interpretation for this initial value

Value-based Refinement for Intervals

We have created a preliminary instantiation of this framework for the domain of intervals.

Decision:

Choose an initial assignment for all variables

Propagation:

Compute forward interpretation for this initial value

Generalization and Learning:

Generalize the result by locally generalizing intervals. Remove generalized initial values from selection pool

Example 1

Decision

Example 1

Propagation

Example 1

Generalization

Example 1

Generalization

Example 1

Example 1

Example 1

Generalization

Example 1

Generalization

Example 2

Decision

Example 2

Propagation

Example 2

SMT-Style Program Analysis

ᄂ Value-based Refinement for Intervals

Example 2

$$
\neg y<5
$$

\qquad

Example 2

$$
\neg y<5
$$

Decision

Example 2

$$
\neg y<5
$$

Propagation

Example 2

SMT-Style Program Analysis

ᄂ Value-based Refinement for Intervals

Example 2

Notes on Implementation

- Initial values chosen by call to a SAT solver.

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{$ pre $\}$ from forward analysis.
- generalize using search on bounds.

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{$ pre $\}$ from forward analysis.
- generalize using search on bounds.
- Generalization step:

$$
\begin{gathered}
0 \leq a \leq 5, b>5, c<10 \quad \text { Repair using SAT solver } \\
\operatorname{assert}(\mathrm{a}<=10 \quad| | \mathrm{a}>=-10) \\
b>5
\end{gathered}
$$

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{p r e\}$ from forward analysis.
- generalize using search on bounds.
- Generalization step:

$$
\begin{array}{cl}
0 \leq a \leq 5, b>5, c<10 & \text { Repair using SAT solver } \\
\operatorname{assert}(\mathrm{a}<=10| | a>=-10) & \text { Increase bounds by search } \\
b>5 &
\end{array}
$$

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{p r e\}$ from forward analysis.
- generalize using search on bounds.
- Generalization step:

$$
\begin{array}{cl}
0 \leq a \leq \infty, b>5, c<10 & \text { Repair using SAT solver } \\
\text { assert }(\mathrm{a}<=10| | \mathrm{a}>=-10) & \text { Increase bounds by search } \\
b>5 &
\end{array}
$$

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{p r e\}$ from forward analysis.
- generalize using search on bounds.
- Generalization step:

$$
\begin{array}{cl}
0 \leq a \leq \infty, b>5, c<10 & \text { Repair using SAT solver } \\
\operatorname{assert}(\mathrm{a}<=10 \| \mathrm{a}>=-10) & \text { Increase bounds by search } \\
b>5 &
\end{array}
$$

Notes on Implementation

- Initial values chosen by call to a SAT solver.
- Generalization uses local repair (SMPP):
- Set every location to T
- For each invalid triple $\{p r e\}$ stmt $\{p o s t\}$
- repair with $\{p r e\}$ from forward analysis.
- generalize using search on bounds.
- Generalization step:

$$
\begin{array}{cl}
-10 \leq a \leq \infty, b>5, c<10 & \text { Repair using SAT solver } \\
\operatorname{assert}(\mathrm{a}<=10 \text { || } \mathrm{a}>=-10) & \text { Increase bounds by search } \\
b>5 &
\end{array}
$$

Preliminary benchmarks

- Selection of NEC Small Static Analysis Benchmarks (slightly modified)
- Interval analysis too imprecise in all cases

Preliminary benchmarks

- Selection of NEC Small Static Analysis Benchmarks (slightly modified)
- Interval analysis too imprecise in all cases

Inst.	\# paths (SCC-decomp.)	runtime (s)	iterations
inf1.c	36	$*$	$*$
inf2.c	12	0.7	5
inf3.c	16	0.9	4
inf4.c	1080	$*$	$*$
inf5.c	28	2.1	19
inf6.c	32	0.9	4
inf7.c	27	1.7	7
inf8.c	40	3.3	9

Preliminary benchmarks

- Selection of NEC Small Static Analysis Benchmarks (slightly modified)
- Interval analysis too imprecise in all cases

Inst.	\# paths (SCC-decomp.)	runtime (s)	iterations
inf1.c	36	$*$	$*$
inf2.c	12	0.7	5
inf3.c	16	0.9	4
inf4.c	1080	$*$	$*$
inf5.c	28	2.1	19
inf6.c	32	0.9	4
inf7.c	27	1.7	7
inf8.c	40	3.3	9

- Does not work if fully relational information is required (inf1.c,inf4.c)

$$
\begin{aligned}
& \operatorname{assume}(x>y) \text {; } \\
& \operatorname{assert}(x>y) \text {; }
\end{aligned}
$$

Current Work

- Extending the prototype into a tool

Current Work

- Extending the prototype into a tool
- Move towards a fully SAT-style analyzer

Current Work

- Extending the prototype into a tool
- Move towards a fully SAT-style analyzer
- Handling of floating-point numbers

Current Work

- Extending the prototype into a tool
- Move towards a fully SAT-style analyzer
- Handling of floating-point numbers
- Move to more powerful domains

Current Work

- Extending the prototype into a tool
- Move towards a fully SAT-style analyzer
- Handling of floating-point numbers
- Move to more powerful domains
- Use trace partitioning and SMT/SAT-style analysis as "glue" to combine a static analyzer with a bounded model checker.

