SMT-Style Program Analysis

SMT-Style Program Analysis with Value-based
Refinements

Vijay D'Silva Leopold Haller Daniel Kroning

UNIVERSITY OF

OXFORD

NSV-3
July 15, 2010

SMT-Style Program Analysis

QOutline

Imprecision and Refinement in Abstract Interpretation

SAT Style Abstract Analysis

Value-based Refinement for Intervals

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecision in Abstract Interpretation

> Abstract interpretation sound but not complete.

» Incompleteness manifests in imprecision during the

analysis.

N

SMT-Style Program Analysis

leprecision and Refinement in Al

Imprecision in Abstract Interpretation

> Abstract interpretation sound but not complete.

» Incompleteness manifests in imprecision during the analysis
T
L3
/NS
(1,2] [2,3]
/ N/ N\ 7
e B3] [2,2] [3,3]
)

Example: Domain of Intervals

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in join

assert(y !=0);

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in join
Xi=%;

if(x > 5)

V7 8= =ibg
else

— ye[-1,-1],x € [6,0]
Yy 5= i3

assert(y !=0);

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in join
Xi=%;

if(x > 5)

V7 8= =ibg
else

— ye[-1,-1],x € [6,0]
Yy 5= i3

— Y€ [171]»X € [_0035]
assert(y !=0);

SMT-Style Program Analysis

leprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in join
X:=%;

if(x > 5)
y =

else

-1; — ye[-1,-1],x € [6,0]
y = 1; —>yc [131]’XE [_0075]
assert(y !=0);

—ye[-11]

The disjunction y =1V y = —1 cannot be expressed as an interval.

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in transformer

X:=y;
if(x > 5)

assert(y > 5);

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in transformer
XIFy;
if(x > 5)

assert(y > 5);

_>T

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in transformer

x:=y; — T
if(x > 5)
assert(y >5); — x € [6,00]

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Imprecisions in the Domain

Imprecision in transformer

x:=y; — T
if(x > 5)
assert(y >5); — x € [6,00]

Intervals cannot express relational information.

N

SMT-Style Program Analysis

leprecision and Refinement in Al

Imprecisions in the Analysis
Imprecision in widening

while(x < 50000) — x €[0,0],y € [0,0]

{ E‘xe[o,l],ye[o,l]

X++;
widening
if(y < x) x € [0,00],y € [0, oq]
y+t;

}
x € [50000,50000], y € [0,]

Precision can be lost in the the analysis
Refinement of widening studied by, e.g., Gulavani et. al (TACAS 2008),
Wang et al. (CAV 2007)

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Refining Abstract Domains

Global domain
refinement

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Refining Abstract Domains

Global domain
refinement

More powerful
domain

Octagons

Polyhedra

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Refining Abstract Domains

Octagons
More powerful
domain Polyhedra
Global domain
refinement
T
Disjunctive
completin | (£0) (20) (20
- 0

SMT-Style Program Analysis

leprecision and Refinement in Al

Refining Abstract Domains

Octagons
More powerful
domain Polyhedra
Global domain
refinement
- T
Cardinal —
power Disjunctive
completion
Reduced
product

> Global refinements potentially expensive.

+
» How can we locally refine an abstract domain?

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Trace Partitioning

» Trace partitioning allows for flexible and local refinement

SMT-Style Program Analysis

I—Imprecision and Refinement in Al

Trace Partitioning

» Trace partitioning allows for flexible and local refinement

» Consider separately different sets of traces through a program
» Similar to case splits in a mathematical proof.

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Trace partitioning allows for flexible and local refinement

» Consider separately different sets of traces through a program
» Similar to case splits in a mathematical proof.

Control-flow based trace partitioning

[x > 5] y = -1

assert(y != 0)

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Trace partitioning allows for flexible and local refinement

» Consider separately different sets of traces through a program
» Similar to case splits in a mathematical proof.

Control-flow based trace partitioning

[x > 5] y := -1

assert(y !'=0) y=—1

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Trace partitioning allows for flexible and local refinement

» Consider separately different sets of traces through a program
» Similar to case splits in a mathematical proof.

Control-flow based trace partitioning

[x > 5] y := -1

assert(y !'=0) y=—1

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Trace Partitioning

» Wide range of partitionings possible
» control flow,

» values of variables,

» number of iterations through a loop, etc

N

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Wide range of partitionings possible
» control flow,

» values of variables,

» number of iterations through a loop, etc

Value-based partitioning

X:=y;
if(x > 5)

assert(y > 5);

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Wide range of partitionings possible
» control flow,

» values of variables,

» number of iterations through a loop, etc

Value-based partitioning
assume(y > 5);

X:=y;
if(x > 5)

assert(y > 5);
/
y>5

SMT-Style Program Analysis

leprecision and Refinement in Al

Trace Partitioning

» Wide range of partitionings possible
» control flow,

» values of variables,

» number of iterations through a loop, etc.

Value-based partitioning
assume(y > 5);

assume (y <= 5);
X:=y;
if(x > 5)

assert(y > 5);
y>5

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Finding Partitioning Functions

» Trace partitioning allows one to refine the precision of an analysis
down to explicit exploration of all traces.

N

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Finding Partitioning Functions

» Trace partitioning allows one to refine the precision of an analysis
down to explicit exploration of all traces.

The main question is:

N

SMT-Style Program Analysis

|—Imprecision and Refinement in Al

Finding Partitioning Functions

» Trace partitioning allows one to refine the precision of an analysis
down to explicit exploration of all traces.

The main question is:

How can we find a good partitioning?

SMT-Style Program Analysis

leprecision and Refinement in Al

Finding Partitioning Functions

» Trace partitioning allows one to refine the precision of an analysis
down to explicit exploration of all traces.

The main question is:
How can we find a good partitioning?

> Precise enough to prove the property, and

> abstract enough to be efficient.

SMT-Style Program Analysis

leprecision and Refinement in Al

Finding Partitioning Functions

> Leino and Logozzo (APLAS 2005): Value-based trace partitionings
based on counter examples

> Gulavani et al. (TACAS 2008): DAG-based Exploration of
control-flow paths inside loops with splitting on demand.

> Gulwani et al. (PLDI 2009): Control-flow refinement for bounds
analysis.

> Harris et al. (POPL 2010): Satisfiability Modulo Path Programs

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

Value-based Trace Partitionings

» If the abstract transformer F is too imprecise, find a set of
transformers F,

., IA-_k, such that

U X FX) 2 wX F(X)

SMT-Style Program Analysis

LSAT Style Abstract Analysis

Value-based Trace Partitionings

» If the abstract transformer F is too imprecise, find a set of
transformers F,

., IA-_k, such that
U X F(X) 2 uX F(X)
1<i<k

E

» This can be done by clipping the analysis by an abstract element
1

:IA-'I‘Ia;

SMT-Style Program Analysis

LSAT Style Abstract Analysis

Value-based Trace Partitionings

» If the abstract transformer F is too imprecise, find a set of
transformers F,

., IA-_k, such that

U X F(X) 2 wX. F(X)
1<i<k
E

;:IA-'I‘Ia

» This can be done by clipping the analysis by an abstract element
i

SN
\/

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

Value-based Trace Partitionings

» If the abstract transformer F is too imprecise, find a set of
transformers F,

., IA-_k, such that
U X EX) 2 pX. F(X)
1<i<k

» This can be done by clipping the analysis by an abstract element
f:i
°

:IA-'I‘Ia;

(@]

P,
)+

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

Value-based Trace Partitionings

» If the abstract transformer F is too imprecise, find a set of
transformers F,

., IA-_k, such that
U X F(X) 2 wX. F(X)
1<i<k

E
(o}

» This can be done by clipping the analysis by an abstract element
1

:IA-'I‘Ia;

(@]

D+

|
o

SMT-Style Program Analysis
LsaT Style Abstract Analysis

Value-based Trace Partitionings

New question:

SMT-Style Program Analysis
LsaT Style Abstract Analysis

Value-based Trace Partitionings

New question:

How can we find such a set of elements ay,

ey dk !

SMT-Style Program Analysis

Lsat Style Abstract Analysis

Value-based Trace Partitionings

New question:

How can we find such a set of elements ay,

..,ak?

Use the search architecture of a SAT solver!

SMT-Style Program Analysis

Lsat Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

£
(decide) | propagate
x__~

DA

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

£
(decide) (propagate)
L

» Main phases of the DPLL procedure:

SMT-Style Program Analysis

Lsat Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

X~

£
(decide) (propagate)

» Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

X~

£
(decide) (propagate)

» Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

X~

£
(decide) (propagate)

» Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

=

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

DPLL framework

DPLL procedure

Conflict

X~

£
(decide) (propagate)

» Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack

=

SMT-Style Program Analysis

LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

v

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Conflict

Is ¢(x,y, z) satisfiable?

Propagation

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

DPLL Procedure

Is ¢(x,y, z) satisfiable?

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

SAT-Style Program Analysis

Safet:

o
(decide) | clipped fixpoint |
7

proven

SMT-Style Program Analysis

LsaT Style Abstract Analysis

SAT-Style Program Analysis

SAT-Style Program Analysis

Safet:

proven

o
(decide) | clipped fixpoint |
X

Decision Refine current element aby a’' C a

SMT-Style Program Analysis

Lsat Style Abstract Analysis

SAT-Style Program Analysis

SAT-Style Program Analysis

Safety proven

N
(decide) | clipped fixpoint |
X

Decision Refine current element aby a’' C a

Propagation Compute clipped fixpoint uX.7T(X) M a’

SMT-Style Program Analysis

|—SAT Style Abstract Analysis

SAT-Style Program Analysis

SAT-Style Program Analysis

Safety proven

N
(decide) | clipped fixpoint |
X

Decision Refine current element aby a’' C a
Propagation Compute clipped fixpoint uX.7T(X) M a’

Learning Find @’ 3 &, such that uX.F(X)Ma" is safe.

[m]

=

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

Initially, a =

/ / \\
/\/\/\/\
B, By By

\/k/\/\/
\QMQ/

5

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

Propagation

nicialy, 3=)
//7\ (12X F00) not soe)

/\/1/\/\

B, By By bBs

\/\C/\/\/
\\//

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

/ / \\
/\/\/\/\
B, By By

\/k/\/\/
\QMQ/

[Decision: refine a|

5

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

AN
/\/\/\/\

B, By By bBs

\/k/\/\/
\QMQ/

[Decision: refine a|

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

-
AR

Al A2 A3 A4

/\/\/\/\

(Decision: refine a) B Bs B,

\/k/\/\/
\\//

5

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

.
/ / \\

/\/\/\/\

[Decision: refine a B, By Bi Bs [uX (F(X)N By) safe)

\/k/\/\/
\QMQ/

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

-
/ / \\
/\/\/\/\
By By By Bs

\/k/\/\/
\QMQ/

o 5 = = £ DA

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

-
/ / \\
/\/\/\/\ ;

B, By Bi Bs [uX.F(X)I‘IAz safe]

\/k/\/\/
\QMQ/

o 5 = = £ DA

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

/ /\ \/\

Bs [uX F(X) M Ay safe]

SMT-Style Program Analysis
LsaT Style Abstract Analysis

SAT-Style Program Analysis

/\/\/\/\

B B By Bs

\/k/\/\/
\\//

o 5 = = £ DA

SMT-Style Program Analysis
LsaT Style Abstract Analysis

Comments on Analysis

» When can we efficiently prove safety with this?

SMT-Style Program Analysis

LSAT Style Abstract Analysis

Comments on Analysis

» When can we efficiently prove safety with this?

A

» When there is a small and finite number of elements ay, ..., ax
such that the fixpoints puX.(F(X) M a;) can be put together to
form a concrete postfixpoint.

SMT-Style Program Analysis
LsaT Style Abstract Analysis

Comments on Analysis

» When can we efficiently prove safety with this?

» When there is a small and finite number of elements ay, ..., ax

such that the fixpoints puX.(F(X) M a;) can be put together to
form a concrete postfixpoint.

> Specific implementation issues:

» Generalization step
» Decision heuristic

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Value-based Refinement for Intervals

domain of intervals.

We have created a preliminary instantiation of this framework for the

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Value-based Refinement for Intervals

domain of intervals.

We have created a preliminary instantiation of this framework for the
[Decision:

Choose an initial assignment for all variables

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Value-based Refinement for Intervals

domain of intervals.

We have created a preliminary instantiation of this framework for the
[Decision:

Choose an initial assignment for all variables

[Propagation:

Compute forward interpretation for this initial value

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Value-based Refinement for Intervals

domain of intervals.

We have created a preliminary instantiation of this framework for the
[Decision:

Choose an initial assignment for all variables

[Propagation:

Compute forward interpretation for this initial value

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

assert(y!=0);

[x<= 5]

- --- Choose initial: x =0,y =0

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

- --- Choose initial: x =0,y =0

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

- --- Choose initial: x =0,y =0

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

- --- Choose initial: x =0,y =0
[x > 5] [x<= 5]
1 ----x=0,y=0
y:=-1
----y>0
assert(y!=0);
-T

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

- --- Choose initial: x =0,y =0
[x > 5] [x<= 5]
1 ----x=0,y=0
y:=-1
----y>0
assert(y!=0);
-T

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

- --- Choose initial: x =0,y =0
[x<= 5]

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

_- Generalized init

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

—|XS5

- --- Choose initial: x =8,y =0
[x<= 5]

assert(y!=0);

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

—|XS5

- --- Choose initial: x =8,y =0

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

[x<= 5]

l - Generalized init: ~ x >5

—|XS5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 1

—|XS5

- x>5

assert(y!=0);

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

[x>=5]

: ----x=0,y=1
F{:=y

[x<5]

Iassert (y<5)
©

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

----x=0,y=1
X:=y

----x=1Ly=1
[x<5]

----x=1Ly=1
Tassert(y<5)

O----x=1y=1

[x>=5]

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

[x>=5]

O -

- Generalized init:
//
v

X:=y

----y <5
[x<5]

——-.y<5

Tassert (y<5)

T

y<5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

[x>=5]

«—— <

X:=y

[x<5]

Iassert (y<5)
©

oy <5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

[x>=5]

: ----x=0,y=06
F{:=y

[x<5]

Iassert (y<5)
©

oy <5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

Propagation =
X:=y

---- L
assert (y<5)

O----x=6,y=6

[x>=5]

oy <5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

i . Generalized init:

oy <5
y=5
x:=y
----x>5
[x<5]
[x>=5] ----y <5
Tassert(y<5)
©----T

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Example 2

«—— <
I

1=y

[x<5]

Iassert (y<5)
©

[x>=5]

oy <5
-y >5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.

> Generalization uses local repair (SMPP):
» Set every location to T

» For each invalid triple {pre} stmt {post}
> repair with {pre} from forward analysis.
> generalize using search on bounds.

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.
> Generalization uses local repair (SMPP):

» Set every location to T
» For each invalid triple {pre} stmt {post}

> repair with {pre} from forward analysis.
> generalize using search on bounds.

» Generalization step:

0<a<5b>5c<10 Repair using SAT solver
assert(a <= 10 || a >= -10)
b>5

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.
> Generalization uses local repair (SMPP):

» Set every location to T
» For each invalid triple {pre} stmt {post}

> repair with {pre} from forward analysis.
> generalize using search on bounds.

» Generalization step:

0<a<b,b>5, Repair using SAT solver
assert(a <= 10 || a >= -10) Increase bounds by search
b>5

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.
> Generalization uses local repair (SMPP):

» Set every location to T
» For each invalid triple {pre} stmt {post}

> repair with {pre} from forward analysis.
> generalize using search on bounds.

» Generalization step:

0<a<oo,b>5, Repair using SAT solver
assert(a <= 10 || a >= -10) Increase bounds by search
b>5

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.
> Generalization uses local repair (SMPP):

» Set every location to T
» For each invalid triple {pre} stmt {post}

> repair with {pre} from forward analysis.
> generalize using search on bounds.

» Generalization step:

0<a<oo,b>5, Repair using SAT solver
assert(a <= 10 || a >= -10) Increase bounds by search
b>5

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Notes on Implementation

> Initial values chosen by call to a SAT solver.
> Generalization uses local repair (SMPP):

» Set every location to T
» For each invalid triple {pre} stmt {post}

> repair with {pre} from forward analysis.
> generalize using search on bounds.

» Generalization step:

—10<a<oo,b>5, Repair using SAT solver
assert(a <= 10 || a >= -10) Increase bounds by search
b>5

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Preliminary benchmarks

> Selection of NEC Small Static Analysis Benchmarks (slightly
modified)

> Interval analysis too imprecise in all cases

SMT-Style Program Analysis

LValue—based Refinement for Intervals

Preliminary benchmarks

> Selection of NEC Small Static Analysis Benchmarks (slightly
modified)

> Interval analysis too imprecise in all cases

Inst. | # paths (SCC-decomp.) | runtime (s) | iterations
infl.c 36 * *
inf2.c 12 0.7 5
inf3.c 16 0.9 4
inf4.c 1080 * *
inf5.c 28 2.1 19
inf6.c 32 0.9 4
inf7.c 27 1.7 7
inf8.c 40 3.3 9

SMT-Style Program Analysis

LValue—based Refinement for Intervals

Preliminary benchmarks

> Selection of NEC Small Static Analysis Benchmarks (slightly

modified)

> Interval analysis too imprecise in all cases

Inst. | # paths (SCC-decomp.) | runtime (s) | iterations
infl.c 36 * *
inf2.c 12 0.7 5
inf3.c 16 0.9 4
inf4.c 1080 * *
inf5.c 28 2.1 19
inf6.c 32 0.9 4
inf7.c 27 1.7 7
inf8.c 40 3.3 9

» Does not work if fully relational information is required

(infl.c,inf4.c)

assume(x > y);
assert(x > y);

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Current Work

» Extending the prototype into a tool

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Current Work

» Extending the prototype into a tool

> Move towards a fully SAT-style analyzer

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Current Work

» Extending the prototype into a tool

> Move towards a fully SAT-style analyzer

» Handling of floating-point numbers

N

SMT-Style Program Analysis

|—Value-based Refinement for Intervals

Current Work

» Extending the prototype into a tool

> Move towards a fully SAT-style analyzer

» Handling of floating-point numbers

» Move to more powerful domains

SMT-Style Program Analysis

LVaIue-based Refinement for Intervals

Current Work

» Extending the prototype into a tool

> Move towards a fully SAT-style analyzer
» Handling of floating-point numbers

» Move to more powerful domains

> Use trace partitioning and SMT /SAT-style analysis as “glue* to
combine a static analyzer with a bounded model checker.

	Imprecision and Refinement in Abstract Interpretation
	SAT Style Abstract Analysis
	Value-based Refinement for Intervals

