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NSV-3
July 15, 2010



SMT-Style Program Analysis

Outline

Imprecision and Refinement in Abstract Interpretation

SAT Style Abstract Analysis

Value-based Refinement for Intervals



SMT-Style Program Analysis

Imprecision and Refinement in AI

Imprecision in Abstract Interpretation

I Abstract interpretation sound but not complete.

I Incompleteness manifests in imprecision during the analysis.
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Imprecision and Refinement in AI

Imprecisions in the Domain

Imprecision in join

x:=*;

if(x > 5)

y := -1;

else

y := 1;

assert(y != 0);

y ∈ [−1,−1], x ∈ [6,∞]

y ∈ [1, 1], x ∈ [−∞, 5]

y ∈ [−1, 1]

The disjunction y = 1 ∨ y = −1 cannot be expressed as an interval.
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Imprecision and Refinement in AI

Imprecisions in the Analysis

Imprecision in widening

while(x < 50000)

{

x++;

if(y < x)

y++;

}

x ∈ [0, 0], y ∈ [0, 0]

x ∈ [0, 1], y ∈ [0, 1]

widening

x ∈ [0,∞], y ∈ [0,∞]

x ∈ [50000, 50000], y ∈ [0,∞]

Precision can be lost in the the analysis
Refinement of widening studied by, e.g., Gulavani et. al (TACAS 2008),

Wang et al. (CAV 2007)
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Imprecision and Refinement in AI

Refining Abstract Domains

Global domain
refinement

More powerful
domain

Octagons

Polyhedra

. . .

Disjunctive
completion

>

≤ 0 6= 0 ≥ 0

− 0 +

⊥

Reduced
product

Cardinal
power

I Global refinements potentially expensive.

I How can we locally refine an abstract domain?
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Imprecision and Refinement in AI

Trace Partitioning

I Trace partitioning allows for flexible and local refinement

I Consider separately different sets of traces through a program
I Similar to case splits in a mathematical proof.

Control-flow based trace partitioning

x := *
[x > 5]

[x <= 5] y := 1

y := -1

assert(y != 0) y = −1

y = 1
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Imprecision and Refinement in AI

Trace Partitioning

I Wide range of partitionings possible

I control flow,
I values of variables,
I number of iterations through a loop, etc.

Value-based partitioning

x:=y;

if(x > 5)

assert(y > 5);

assume(y > 5);

y > 5

assume(y <= 5);

⊥



SMT-Style Program Analysis

Imprecision and Refinement in AI

Trace Partitioning

I Wide range of partitionings possible

I control flow,
I values of variables,
I number of iterations through a loop, etc.

Value-based partitioning

x:=y;

if(x > 5)

assert(y > 5);

assume(y > 5);

y > 5

assume(y <= 5);

⊥



SMT-Style Program Analysis

Imprecision and Refinement in AI

Trace Partitioning

I Wide range of partitionings possible

I control flow,
I values of variables,
I number of iterations through a loop, etc.

Value-based partitioning

x:=y;

if(x > 5)

assert(y > 5);

assume(y > 5);

y > 5

assume(y <= 5);

⊥



SMT-Style Program Analysis

Imprecision and Refinement in AI

Trace Partitioning

I Wide range of partitionings possible

I control flow,
I values of variables,
I number of iterations through a loop, etc.

Value-based partitioning

x:=y;

if(x > 5)

assert(y > 5);

assume(y > 5);

y > 5

assume(y <= 5);

⊥



SMT-Style Program Analysis

Imprecision and Refinement in AI

Finding Partitioning Functions

I Trace partitioning allows one to refine the precision of an analysis
down to explicit exploration of all traces.

The main question is:
How can we find a good partitioning?

I Precise enough to prove the property, and

I abstract enough to be efficient.
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Imprecision and Refinement in AI

Finding Partitioning Functions

I Leino and Logozzo (APLAS 2005): Value-based trace partitionings
based on counter examples

I Gulavani et al. (TACAS 2008): DAG-based Exploration of
control-flow paths inside loops with splitting on demand.

I Gulwani et al. (PLDI 2009): Control-flow refinement for bounds
analysis.

I Harris et al. (POPL 2010): Satisfiability Modulo Path Programs
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SAT Style Abstract Analysis

Value-based Trace Partitionings

I If the abstract transformer F̂ is too imprecise, find a set of
transformers F̂1, . . . , F̂k , such that⋃

1≤i≤k

γ(µX . F̂i (X )) ⊇ µX . F (X )

I This can be done by clipping the analysis by an abstract element:

F̂i = F̂ u ai

+ =
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Value-based Trace Partitionings

New question:

How can we find such a set of elements a1, . . . , ak?

Use the search architecture of a SAT solver!
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SAT Style Abstract Analysis

DPLL framework

DPLL procedure

decide propagate

Conflict

learn

backtrack

I Main phases of the DPLL procedure:

Decision Assume a value for an undetermined variable
Propagation Deduce implied variable values

Learning Learn reason for conflict and backtrack
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DPLL Procedure

DecisionPropagationLearning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

Decision

PropagationLearning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

Decision

Propagation

Learning

Is φ(x , y , z) satisfiable?

x = 1

z = 0

y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

Decision

PropagationLearning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

Decision

Propagation

Learning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

Decision

Propagation

Learning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

DecisionPropagation

Learning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

DPLL Procedure

DecisionPropagation

Learning

Is φ(x , y , z) satisfiable?

x = 1

z = 0
y = 1

z = 1

Conflict

x = 0



SMT-Style Program Analysis

SAT Style Abstract Analysis

SAT-Style Program Analysis

SAT-Style Program Analysis

decide clipped fixpoint

Safety proven

generalize

backtrack

Decision Refine current element a by a′ @ a

Propagation Compute clipped fixpoint µX .T̂ (X ) u a′

Learning Find a′′ w a′, such that µX .F̂ (X ) u a′′ is safe.
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SAT-Style Program Analysis

>

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

⊥

Decision

PropagationGeneralization

>Initially, a = >

µX .F̂ (X ) not safe

A1Decision: refine a µX .(F̂ (X ) u A1) not safe

B2Decision: refine a µX .(F̂ (X ) u B2) safe

A2

µX .F̂ (X ) u A2 safe

A2

B2 B3

C1 C2 C3

⊥

Backtrack
and continue
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Comments on Analysis

I When can we efficiently prove safety with this?

I When there is a small and finite number of elements a1, . . . , ak
such that the fixpoints µX .(F̂ (X ) u ai ) can be put together to
form a concrete postfixpoint.

I Specific implementation issues:

I Generalization step
I Decision heuristic
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Value-based Refinement for Intervals

We have created a preliminary instantiation of this framework for the
domain of intervals.

Decision:
Choose an initial assignment for all variables

Propagation:
Compute forward interpretation for this initial value

Generalization and Learning:
Generalize the result by locally generalizing intervals. Re-
move generalized initial values from selection pool
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Notes on Implementation

I Initial values chosen by call to a SAT solver.

I Generalization uses local repair (SMPP):

I Set every location to >
I For each invalid triple {pre} stmt {post}

I repair with {pre} from forward analysis.
I generalize using search on bounds.

I Generalization step:

0 ≤ a ≤ 5, b > 5, c < 100 ≤ a ≤ 5, b > 5, c < 10 Repair using SAT solver0 ≤ a ≤ 5, b > 5, c < 10

Increase bounds by search

0 ≤ a ≤ ∞, b > 5, c < 100 ≤ a ≤ ∞, b > 5, c < 10−10 ≤ a ≤ ∞, b > 5, c < 10

assert(a <= 10 || a >= -10)

b > 5
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Preliminary benchmarks

I Selection of NEC Small Static Analysis Benchmarks (slightly
modified)

I Interval analysis too imprecise in all cases

Inst. # paths (SCC-decomp.) runtime (s) iterations
inf1.c 36 * *

inf2.c 12 0.7 5

inf3.c 16 0.9 4

inf4.c 1080 * *

inf5.c 28 2.1 19

inf6.c 32 0.9 4

inf7.c 27 1.7 7

inf8.c 40 3.3 9

I Does not work if fully relational information is required
(inf1.c,inf4.c)

assume(x > y);

assert(x > y);
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Current Work

I Extending the prototype into a tool

I Move towards a fully SAT-style analyzer

I Handling of floating-point numbers

I Move to more powerful domains

I Use trace partitioning and SMT/SAT-style analysis as “glue“ to
combine a static analyzer with a bounded model checker.
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