Abstract Satisfaction

Vijay D'Silva, Leopold Haller, Daniel Kroening

A Tale of Two Software Verification DPhils

?

Abstract Interpretation

Abstract Interpretation based Program Analysis

Lattice of Boolean Constants

Abstract interpretation operates over lattices

Domain of Constants

Constant Propagation

$$Var \to IntVals \cup \{?\}$$

Analyse by applying abstract transformers

Efficient, but imprecise

Domain of Intervals

```
Var \mapsto \{[l, u] \mid l, u \in IntVals\}
```


Efficient, but imprecise

SAT Solving

Build a logical formula that encodes program semantics $isTrace(t) \wedge error(t)$

Solve satisfiability: Does there exist a *t* that makes the above formula true.

Fast SAT solvers exist that can solve this question.

Thursday, 17 November 11

SAT encoding

● ● ● ● □ test.c (/private/tmp) - VIM □ □
<pre>int main() {</pre>
<pre>int a,b; bool cond;</pre>
a = 1; b = a:
if(cond)
a = 4; else
a = 10;
assert(a > 0);
return 0;
}
<pre><test.c [len="18]</pre" [p0s="0018.0001][100%]"></test.c></pre>
"/tmp/test.c" 18L, 148C written

 $a_0 = 1 \land$ $b_0 = a_0 \land$ $(c_0 \to a_1 = 4) \land$ $(\neg c_0 \to a_1 = 10) \land$ $(a_1 \le 0 \lor b_0 \le 0)$

Translate inequalities and equalities to circuits

?

SAT

Solving

Precise, but not scalable

Our initial project

Let's combine SAT solving and abstract interpretation to achieve both <u>efficiency</u> and <u>precision</u>?

Partial assignments in SAT

The main data-structure in a SAT solver is a <u>partial</u> assignment from variables to truth values.

This assignment is extended using deductions and decisions.

SAT operates over a lattice

SAT operates the Boolean constants lattice

Unit Rule

 $\dots \wedge (\neg p) \lor (q) \lor (r) \lor \neg w) \land \dots$


```
if(!p || q || r || !w)
{
    ...
}
```


Decisions

No deductions are possible on the following formula.

 $\phi = (w \lor q) \land (\neg w \lor q)$

Hence a decision is made:

 $q\mapsto \mathsf{false}$

From which both of the following can be deduced:

 $w \mapsto \mathsf{true} \qquad w \mapsto \mathsf{false}$

The solver backtracks and learns that q must be true, essentially, we expanded the formula into

 $(q \land \phi) \lor (\neg q \land \phi)$

Trace partitioning

Trace partitioning is an well-known refinement technique in abstract interpretation

```
void foo(int a, int x) {
    if(a < 0)
        x = 1;
    else
        x = -1;
    assert(x != 0); x \in [-1, 1] too imprecise!
}</pre>
```

Trace partitioning

Trace partitioning is an well-known refinement technique in abstract interpretation

```
void foo(int a, int x) {
    if(a < 0)
        x = 1;
    else
        x = -1;
    assert(x != 0); x \in [-1, 1] too imprecise!
}
```

Apply partitioning:

```
void foo_part(int a, int x)
{
    if(a < 0)
        foo(a,x); x \in [1,1] safe
    else
        foo(a,x); x \in [-1,-1]
}
```

Trace partitioning

Trace partitioning is an well-known refinement technique in abstract interpretation

```
void foo(int a, int x) {
    if(a < 0)
        x = 1;
    else
        x = -1;
    assert(x != 0); x \in [-1, 1] too imprecise!
}
```

Apply partitioning:

```
void foo_part(int a, int x)
{
    if(a < 0)
        foo(a,x); x \in [1,1] safe
    else
        foo(a,x); x \in [-1,-1]
}
```

Decisions are a well-known program analysis technique!

Summary: SAT = AI

Modern SAT solvers are abstract interpreters

The SAT architecture is an abstract interpreter architecture that automatically and intelligently refines a base domain.

SAT over Interval Domain

Naive implementation of SAT(Intervals) applied to numeric program verification benchmarks.

On average ca. 200x faster than SAT, significantly more precise than mature abstract interpreters.

Choose a domain that's better suited to your problem than the Boolean constants domain!

Wrap them in the SAT architecture!

Thursday, 17 November 11

Thanks for your attention