Abstract Conflict Driven Clause Learning

Leopold Haller

Joint work with
Vijay D’Silva, Alberto Griggio, Michael Tautschnig, Daniel Kroening

Anglo-EU Translation Guide		
What the British say	What the British mean	What others understand
That's not bad.	That's good	Could be better.
Oh, by the way \ldots	The primary purpose of our discussion is ...	It's not very important, but ...

"Everything is Abstract Interpretation ..."

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says	What they might mean	What others understand
Isn't this an instance of abstract interpretation?	I think there is a simple top-down characterisation of this in the language of algebra, fixed points and abstraction.	This is a trivial consequence of abstract interpretation.
Technique X computes an abstract fixed point.	There is a view of X that allows for the application of a rich body of results.	Details are unimportant.

"Everything is Abstract Interpretation ..."

Abstract Interpretation-Everyone Else Translation Guide

What an Abs. Int. person says	What they might mean	What others understand
Isn't this an instance of abstract interpretation?	I think there is a simple top-down characterisation of this in the language of algebra, fixed points and abstraction.	This is a trivial consequence of abstract interpretation.
Technique X computes an abstract fixed point.	There is a view of X that allows for the application of a rich body of results.	Details are unimportant.

... including SAT solvers
(Satisfiability Solvers are Static Analysers. D'Silva, Haller, Kroening, SAS 2012)

Propositional Satisfiability (SAT)

Given a propositional formula φ, is there a propositional truth assignment σ such that $\sigma \models \varphi$.

- Solvers are based on Conflict Driven Clause Learning (CDCL)
- Basis of modern Satisfiability Module Theory (SMT) solvers
- Critical components of program verification techniques

(Malik and Zhang, 2009)

Work on CDCL has resulted in an exponential decrease in runtimes.
Can we lift this success to other domains?

SMT via DPLL(T)

Solve satisfiability for (QF) first order formula with background theory

$$
(\underbrace{x+y \leq 3}_{p} \vee \underbrace{2 x-y \geq 1}_{q}) \wedge(\underbrace{x=5}_{r} \vee \underbrace{y=x}_{s})
$$

$$
(p \vee q) \wedge(r \vee s)
$$

CDCL enumerates candidate propositional truth assignments, theory solver checks consistency.

DPLL(T) is a mathematical recipe and implementation framework for building SMT decision procedures!

SMT via DPLL(T)

DPLL(T) can be viewed to partition the space of potential models using the structure of the formula.
Measures have to be taken to avoid enumeration behaviour.

$$
\begin{array}{r}
(x=0 \vee x=2 \vee x=4 \vee \ldots \vee x=2 k) \wedge \\
(y=0 \vee y=2 \vee y=4 \vee \ldots \vee y=2 k) \wedge \\
\\
(x+y=2 c+1)
\end{array}
$$

xly	0	2	4	\ldots
0				\ldots
2				\ldots
4				\ldots
\ldots	\ldots	\ldots	\ldots	\ldots

DPLL(T) explores truth assignments to predicates

Full even / odd partitioning

Natural Domain SMT

Abstract Intenprelation

Abstract Interpretation by Example: Intervals

Track possible range for variable

int $a=5 ;$
int $b ;$
if(*)
else $=3 ;$
$b=-3 ;$
$a+=b ;$
$a s s e r t(a==0) ;$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

int $a=5 ;$
int $b ;$
if(*)
else $=3 ;$
$b=-3 ;$
$a+=b ;$
assert $(a==0) ;$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T	int $a=5 ;$ int $b ;$
	if(*) $b=3 ;$ else $b=-3 ;$
	$a+=b ;$
	assert $(a==0) ;$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

T	
$a \mapsto[5,5]$	int $\mathrm{a}=5 ;$ int $\mathrm{b} ;$
	if(*) $\mathrm{b}=3 ;$ else $\mathrm{b}=-3 ;$
	$\mathrm{a}+=\mathrm{b} ;$
	assert $(\mathrm{a}=\mathbf{=}) ;$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int } b \text {; } \end{aligned}$
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{aligned} & \text { if(}(*) \\ & \mathrm{b}=3 ; \\ & \text { else } \\ & \mathrm{b}=-3 ; \end{aligned}$
	$\mathrm{a}+=\mathrm{b}$;

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with
strongest postcondition

$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int } b ; \end{aligned}$
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{aligned} & \text { if }(*) \\ & \text { b }=3 ; \\ & \text { else } \\ & \text { b }=-3 ; \end{aligned}$
$\underline{a \mapsto[2,8], b \mapsto[-3,3]}$	$\mathrm{a}+=\mathrm{b}$;

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

Underapproximate Analysis with weakest precondition
$\frac{\top}{a \mapsto[5,5]}$

```
int \(\mathrm{a}=5\);
int b;
```

if(*)
Imprecise OA:
$a \mapsto[5,5], b \mapsto[-3,3]$
else
b $=-3$;
$a \mapsto[2,8], b \mapsto[-3,3]$
a += b;
assert(a == 0);

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

Underapproximate Analysis with weakest precondition

```
T
\(a \mapsto[5,5]\)
    Imprecise OA:
\(a \mapsto[5,5], b \mapsto[-3,3]\)
    int \(a=5\);
    int b;
if(*)
    b \(=3\);
    else
    b \(=-3\);
\(a \mapsto[2,8], b \mapsto[-3,3]\)
a += b;
```


Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

Underapproximate Analysis with weakest precondition

$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int } b ; \end{aligned}$	
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{aligned} & \text { if }(*) \\ & b=3 ; \\ & \text { else } \\ & b=-3 ; \end{aligned}$	UA "guess": $\{(a \mapsto[4, \infty], b \mapsto[-3,3])\}$
$a \mapsto[2,8], b \mapsto[-3,3]$	$a+=b ;$	$\{a \mapsto[-\infty,-1], a \mapsto[1, \infty]\}$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

Underapproximate Analysis with weakest precondition

$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int b; } \end{aligned}$	$\{a \mapsto[4, \infty]\}$
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{gathered} \text { if }(*) \\ b=3 ; \\ \text { else } \\ b=-3 ; \end{gathered}$	UA "guess": $\{(a \mapsto[4, \infty], b \mapsto[-3,3])\}$
$a \mapsto[2,8], b \mapsto[-3,3]$	$a+=b ;$	$\{a \mapsto[-\infty,-1], a \mapsto[1, \infty]\}$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

T		T
$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int b; } \end{aligned}$	$\{a \mapsto[4, \infty]\}$
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{aligned} & \text { if }(*) \\ & \mathrm{b}=3 ; \\ & \text { else } \\ & \mathrm{b}=-3 ; \end{aligned}$	UA "guess": $\{(a \mapsto[4, \infty], b \mapsto[-3,3])\}$
$a \mapsto[2,8], b \mapsto[-3,3]$	a += b;	$\{a \mapsto[-\infty,-1], a \mapsto[1, \infty]\}$

Abstract Interpretation by Example: Intervals

Track possible range for variable

Overapproximate Analysis with strongest postcondition

T		T
$a \mapsto[5,5]$	$\begin{aligned} & \text { int } a=5 \text {; } \\ & \text { int b; } \end{aligned}$	$\{a \mapsto[4, \infty]\}$
Imprecise OA: $a \mapsto[5,5], b \mapsto[-3,3]$	$\begin{aligned} & \text { if }(*) \\ & \mathrm{b}=3 ; \\ & \text { else } \\ & \mathrm{b}=-3 ; \end{aligned}$	UA "guess": $\{(a \mapsto[4, \infty], b \mapsto[-3,3])\}$
$a \mapsto[2,8], b \mapsto[-3,3]$	a += b;	$\{a \mapsto[-\infty,-1], a \mapsto[1, \infty]\}$

Sound, but incomplete

Abstract Interpretation

Concrete Lattice
$(\wp($ States $), \subseteq, \cap, \cup)$

Galois connection:
$\underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}$

Abstract Lattice
(Intervals, $\sqsubseteq, \sqcap, \sqcup$)

Abstract Interpretation

Concrete Lattice $(\wp($ States $), \subseteq, \cap, \cup)$

Galois connection:

Abstract Lattice

(Intervals, $\sqsubseteq, \sqcap, \sqcup$)

Abstraction and concretisation function

$$
\begin{aligned}
\alpha(\{x \mapsto 3, x \mapsto 1, x \mapsto 9\}) & =x \mapsto[1,9] \\
\gamma(x \mapsto[4,6]) & =\{x \mapsto 4, x \mapsto 5, x \mapsto 6\}
\end{aligned}
$$

Abstract Interpretation

Concrete Lattice $(\wp($ States $), \subseteq, \cap, \cup)$

Galois connection:

Abstract Lattice
(Intervals, $\sqsubseteq, \sqcap, \sqcup$)

Abstraction and concretisation function

$$
\begin{aligned}
\alpha(\{x \mapsto 3, x \mapsto 1, x \mapsto 9\}) & =x \mapsto[1,9] \\
\gamma(x \mapsto[4,6]) & =\{x \mapsto 4, x \mapsto 5, x \mapsto 6\}
\end{aligned}
$$

Concrete transformer
Sound abstr. transformer

$$
\text { post : } \wp(\text { States }) \rightarrow \wp(\text { States })
$$

$$
\begin{aligned}
& \text { pôst }: \text { Intervals } \rightarrow \text { Intervals } \\
& \text { post } \circ \gamma \subseteq \gamma \circ \hat{\text { post }}
\end{aligned}
$$

Approximating Fixed Points

Fixed points can be computed in the abstract

$$
\text { Ifp } X . I \cup \operatorname{post}(X) \subseteq \gamma(\operatorname{Ifp} X . \alpha(I) \sqcup \hat{\operatorname{post}}(X))
$$

Concrete

Accelerating Fixed Point Computations

$$
\begin{aligned}
& x=0 ; \\
& \text { while }(x<1000) \\
& \quad \text { x++; }
\end{aligned}
$$

Fixed point computations might take a long time (or fail to terminate): $F_{0}: x \mapsto[0,0] \quad F_{1}: x \mapsto[0,1] \quad F_{2}: x \mapsto[0,2] \quad F_{3}: x \mapsto[0,3]$

Accelerating Fixed Point Computations

$$
\begin{aligned}
& x=0 ; \\
& \text { while(} x<1000) \\
& \text { x++; }
\end{aligned}
$$

Fixed point computations might take a long time (or fail to terminate): $F_{0}: x \mapsto[0,0] \quad F_{1}: x \mapsto[0,1] \quad F_{2}: x \mapsto[0,2] \quad F_{3}: x \mapsto[0,3] \quad \ldots$

Abstract Intepprelation Intespreling Logic

Abstractly Interpreting Logic

Check satisfiability of the following formula

$$
\varphi=p \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q)
$$

Prove the following program safe

```
int main()
    if(p)
    if(!p || q)
        if(!p || !q)
                assert(false);
}
```


Abstractly Interpreting Logic

Constants analysis

int main()

int main()	T
if(p)	$p: \mathrm{t}$
$\operatorname{if(!p~\|\|~q)}$	$p: \mathrm{t}, q: \mathrm{t}$
$\quad \operatorname{if(!p~\|\|~!q)}$	\perp
assert(false);	

\}

Abstractly Interpreting Logic

Set of formulae
Form

Set of structures
Struct

Semantic entailment relation
$\models \in \wp($ Struct \times Form $)$

Concrete Domain
$(\wp($ Struct $), \subseteq, \cap, \cup)$

Abstractly Interpreting Logic

Set of formulae
Form

Set of structures
Struct

Semantic entailment relation
$\vDash \in \wp($ Struct \times Form $)$

Concrete Domain
$(\wp($ Struct $), \subseteq, \cap, \cup)$
E.g., propositional logic:

$$
\begin{aligned}
\text { Lit } & =\{p, \neg p \mid p \in \text { Props }\} & \text { Clauses } & =\wp(\text { Lit }) \\
\text { Form } & =\wp(\text { Clauses }) & \text { Struct } & =\text { Props } \rightarrow\{\mathrm{t}, \mathrm{f}\}
\end{aligned} \quad \begin{array}{ll}
\sigma \models \varphi \mathrm{iff} & \\
\forall C \in \varphi . \exists l \in C . \quad(l=p \wedge \sigma(p)=\mathrm{t}) \vee(l=\neg p \wedge \sigma(p)=\mathrm{f})
\end{array}
$$

Abstract Satisfaction

Structure transformers;

$$
\begin{array}{rlrl}
\operatorname{mods}_{\varphi}(S) & =\{\sigma \mid \sigma \in S \wedge \sigma \models \varphi\} & \operatorname{confs}_{\varphi}(S)=\{\sigma \mid \sigma \in S \vee \sigma \notin \varphi\} \\
\operatorname{mods}_{\varphi} & =\operatorname{post}_{\operatorname{assume}(\varphi)} & \operatorname{confs}_{\varphi} & =p \tilde{r} e_{\operatorname{assume}(\varphi)}
\end{array}
$$

Abstract Satisfaction

Structure transformers;

$$
\begin{array}{rlrl}
\operatorname{mods}_{\varphi}(S) & =\{\sigma \mid \sigma \in S \wedge \sigma \vDash \varphi\} & \operatorname{confs}_{\varphi}(S)=\{\sigma \mid \sigma \in S \vee \sigma \nLeftarrow \varphi \\
\operatorname{mods}_{\varphi} & =\text { post }_{\text {assume }(\varphi)} & \operatorname{confs}_{\varphi} & =\operatorname{pr}^{\operatorname{rossume}}(\varphi)
\end{array}
$$

Overapproximation $\operatorname{amods}_{\varphi}$ of $\operatorname{mods}_{\varphi}$
Underapproximation $\operatorname{aconfs}_{\varphi}$ of $\operatorname{confs}_{\varphi}$
gfp $\operatorname{amods}_{\varphi}=\perp$ or
Ifp aconfs $_{\varphi}=\top \quad \Longrightarrow \varphi$ is unsatisfiable

Model Search

Find either a satisfying assignment or a conflicting partial assignment

Partial Assignments are an Abstract Domain

```
#define 1_True (lbool (( uint8_t )0))
#define l_False (lbool (( uint8_t)1))
#define l_Undef (lbool (( uint8_t )2))
    class lbool { [...] };
    class Solver {
        [...]
    // FALSE means solver is in a conflicting state
    bool okay () const;
    vec<lbool> assigns; // The current assignments.
    // Enqueue a literal . Assumes value of literal is undefined.
```


Deduction Computes a Greatest Fixed Point

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Deduction Computes a Greatest Fixed Point

$$
\neg p \wedge(p \vee q) \wedge(\neg q \vee r)
$$

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Deduction Computes a Greatest Fixed Point

$$
\neg p \wedge(p \vee q) \wedge(\neg q \vee r)
$$

$$
\underset{(p: f)}{\downarrow}
$$

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Deduction Computes a Greatest Fixed Point

$$
\neg p \wedge(p \vee q) \wedge(\neg q \vee r)
$$

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Deduction Computes a Greatest Fixed Point

$$
\neg p \wedge(p \vee q) \wedge(\neg q \vee r)
$$

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Deduction Computes a Greatest Fixed Point

$$
\neg p \wedge(p \vee q) \wedge(\neg q \vee r)
$$

The unit rule overapproximates the model transformer, BCP abstractly computes the fixed point:
gfp $\operatorname{mods}_{\varphi}$

Decision Making is Dual Widening

Once no more new facts can be deduced, a solver heuristically picks a truth value for an unassigned variable

$$
p \wedge(q \vee r) \wedge(q \vee \neg r)
$$

Deduction

$$
\downarrow_{\partial}{ }^{\top}
$$

Decision Making is Dual Widening

Once no more new facts can be deduced, a solver heuristically picks a truth value for an unassigned variable

Decision Making is Dual Widening

Once no more new facts can be deduced, a solver heuristically picks a truth value for an unassigned variable

$$
p \wedge(q \vee r) \wedge(q \vee \neg r)
$$

Deduction

Decision q :f

Deduction

Decision Making is Dual Widening

Once no more new facts can be deduced, a solver heuristically picks a truth value for an unassigned variable

$$
p \wedge(q \vee r) \wedge(q \vee \neg r)
$$

Deduction

Decision q :f

Deduction

Recall: Widenings jump over a least fixed point
Decisions jump under a greatest fixed point (unusual: unsound!)

Conflict Analysis

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph

$$
(\neg p \vee q) \wedge(\neg p \vee \neg r) \wedge(\neg q \vee r \vee \neg s) \wedge(s \vee t) \wedge(s \vee \neg t)
$$

Implication Graph Cutting

CDCL solvers record deductions in data structure called implication graph

$$
(\neg p \vee q) \wedge(\neg p \vee \neg r) \wedge(\neg q \vee r \vee \neg s) \wedge(s \vee t) \wedge(s \vee \neg t)
$$

Conflict abduction is performed by obtaining cuts through the graph

$$
\text { Original conflict } \quad \pi=(p: \mathrm{t}, q: \mathrm{t}, r: \mathrm{f}, s: \mathrm{f}, t: \mathrm{t})
$$

Possible generalisations from cuts

$$
\operatorname{cut}(\{\pi\})=\{(p: \mathrm{t}),(q: \mathrm{t}, r: \mathbf{f}),(s: \mathrm{f})\}
$$

Abduction computes a least fixed point

Abduction computes a least fixed point

Collecting all conflicts

Abduction computes a least fixed point

Collecting all conflicts

Abduction underapproximately computes the fixed point lfp $\operatorname{confs}_{\varphi}$

Heuristic Choice is Dual Narrowing

$$
\begin{gathered}
\{(p: \mathrm{t}, q: \mathrm{t}),(r: \mathrm{f}),(s: \mathrm{t})\} \\
\uparrow \\
\{(p: \mathrm{t}, q: \mathrm{t}),(r: \mathrm{f}, s: \mathrm{t})\} \\
\uparrow \\
\{(p: \mathrm{t}, q: \mathrm{t}, r: \mathrm{f}, s: \mathrm{t})\}
\end{gathered}
$$

Collecting all conflicts

Heuristic Choice is Dual Narrowing

Collecting all conflicts

SAT Solvers choose one reason

Heuristic Choice is Dual Narrowing

Collecting all conflicts

SAT Solvers choose one reason

Recall that narrowing is used to converge above a greatest fixed point. Heuristic choice of conflict reasons leads to convergence below a least fixed point!

ACDCL: A recipe for deriving natural domain SMT solvers from abstract domains

Overapproximating domain O
Underapproximating domain U

Model Search and Conflict Analysis with Abstract Domains

Struct

Model Search and Conflict Analysis with Abstract Domains

Struct

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Model Search and Conflict Analysis with Abstract Domains

Deduction
Decision
Deduction
Conflict
Abduction
Choice
Abduction

Model Search and Conflict Analysis with Abstract Domains

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

Tabu Learning

Simple but weak form of learning:
When the conflict region is reentered immediately deduce conflict

No lattice theoretic prerequisites, possible over any domain

$$
t a b u_{C}(\pi)= \begin{cases}\perp & \text { if } \pi \sqsubseteq C \\ \pi & \text { otherwise }\end{cases}
$$

Propositional Clause Learning

When assignment is "nearly conflicting", drive the search away from the conflict

Propositional Clause Learning

When assignment is "nearly conflicting", drive the search away from the conflict

Propositional Clause Learning

When assignment is "nearly conflicting", drive the search away from the conflict

$$
C=(p: \mathrm{t}, q: \mathrm{t}, r: \mathrm{f})=(p: \mathrm{t}) \sqcap(q: \mathrm{t}) \sqcap(r: \mathrm{f})
$$

decomposition allows complements drive the search away from conflict

$$
\begin{array}{ll}
\text { way from conflict }^{\text {unit }_{(p: t, q: t, r: f)}(\pi)}= \begin{cases}\pi \sqcap \neg(p: \mathrm{t}) & \pi \sqsubseteq(q: \mathrm{t}) \wedge \pi \sqsubseteq(r: \mathrm{f}) \\
\pi \sqcap \neg(q: \mathrm{t}) & \pi \sqsubseteq(p: \mathrm{t}) \wedge \pi \sqsubseteq(r: \mathrm{f}) \\
\pi \sqcap \neg(r: \mathrm{f}) & \pi \sqsubseteq(p: \mathrm{t}) \wedge \pi \sqsubseteq(q: \mathrm{t})\end{cases}
\end{array}
$$

us to express"nearly conflicting"

Complementable Meet Irreducibles

Clause learning requires a weak complementation property of the abstraction

No precise
Precise complement

Every element needs to have a decomposition into precisely complementable elements.

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Intervals and Octagons are intersections of complementable half-spaces

Complementable Meet Irreducibles

Examples of lattices with complementable meet irreducibles

Intervals and Octagons are intersections of complementable half-spaces

Branches $\rightarrow\{$ left, right, $\top\}$

Trace abstraction based on control history

Generalised Unit Rule

Generalised Unit Rule

Intervals

Generalised Unit Rule

Intervals

Generalised Unit Rule

Intervals

Generalised Unit Rule

Intervals

Trace abstractions:
Conflict c

Generalised Unit Rule

Intervals

Element o

Generalised Unit Rule

Intervals

Conflict c

Element o

Inslences/Applicelions

Abs. Inleprelalion based SMT Solven
$\frac{\text { CDCL-Slyle }}{\text { Slalic Analysis }}$
Stalic Analysis

An SMT Solver based on ACDCL

Floating Point Intervals	Interval Splitting		Sets of Intervals	Trail-Guided Choice
\uparrow	\downarrow		\uparrow	\uparrow
OA Domain Interface	Decision Heuristic		UA Domain Interface	Choice Heuristic
Abstract Model Search			Abstract Conflict Graph Generalisation	
Abstract CDCL				

(Joint work with Alberto Griggio, implemented using MathSAT infrastructure)

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

$$
x \in[-\infty, 0]
$$

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

$$
x \in[-\infty, 0]
$$

$$
y \in[-\infty, 0]
$$

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

$$
x \in[-\infty, 0]
$$

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

$$
\begin{gathered}
x \in[-\infty, 2] \\
x \in[-\infty, 0] \\
y \in[-\infty, 0] \longrightarrow \\
y \in[-\infty, 7] \\
\hline
\end{gathered}
$$

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

Generalised Conflict Graphs

FirstUIP conflict graph analysis can be lifted to work over abstractions

$$
x=y \wedge x+y \geq 10
$$

Graph nodes are meet irreducibles (e.g., half spaces)

I. Generalise each node of the conflict graph using heuristic choice
2. Cut the graph

Experiments

(Bit-vector encoding generated by MathSAT, solved by Z3)

ACDCL for Programs

Treat program analysis as a logical problem:
$\pi \models P$ iff trace π is an erroneous trace generated by program P

ACDCL for Programs

Treat program analysis as a logical problem:
$\pi \models P$ iff trace π is an erroneous trace generated by program P

Fwd/bwd Ifp analysis with strongest postcondition and preimage

Fwd/bwd gfp with
weakest precondition and universal post.

Example I: Interval Conflict Graphs

Example I: Interval Conflict Graphs

DLO

Example I: Interval Conflict Graphs

Example I: Interval Conflict Graphs

DL1
$n_{1}: a \leq-42$

Example I: Interval Conflict Graphs

DL1

SAFE

Example I: Interval Conflict Graphs

Example I: Interval Conflict Graphs

DL1

ACDCL "intelligently" decomposes the problem

Example 2: Problem Dependent Decomposition

Program output

Example 2: Problem Dependent Decomposition

Example 2: Problem Dependent Decomposition

[^0]
Example 2: Problem Dependent Decomposition

$$
-\frac{\pi}{2} \quad \frac{\pi}{2}
$$

Example 2: Problem Dependent Decomposition

$$
-\frac{\pi}{2} \quad \frac{\pi}{2}
$$

Example 2: Problem Dependent Decomposition

Example 2: Problem Dependent Decomposition

Intelligent decomposition of the analysis

And never the twain shall meet?

Oh, East is East, and West is West, and never the twain shall meet, Till Earth and Sky stand presently at God's great Judgment Seat; But there is neither East nor West, Border, nor Breed, nor Birth, When two strong men stand face to face, tho' they come from the ends of the earth!

Thanks for your attention!

[^0]: result ≥-1.5

